000078844 001__ 78844 000078844 005__ 20200716101427.0 000078844 0247_ $$2doi$$a10.3390/ma12050691 000078844 0248_ $$2sideral$$a111209 000078844 037__ $$aART-2019-111209 000078844 041__ $$aeng 000078844 100__ $$aMontero-Chacón, F. 000078844 245__ $$aComputational multiscale solvers for continuum approaches 000078844 260__ $$c2019 000078844 5060_ $$aAccess copy available to the general public$$fUnrestricted 000078844 5203_ $$aComputational multiscale analyses are currently ubiquitous in science and technology. Different problems of interest-e.g., mechanical, fluid, thermal, or electromagnetic-involving a domain with two or more clearly distinguished spatial or temporal scales, are candidates to be solved by using this technique. Moreover, the predictable capability and potential of multiscale analysis may result in an interesting tool for the development of new concept materials, with desired macroscopic or apparent properties through the design of their microstructure, which is now even more possible with the combination of nanotechnology and additive manufacturing. Indeed, the information in terms of field variables at a finer scale is available by solving its associated localization problem. In this work, a review on the algorithmic treatment of multiscale analyses of several problems with a technological interest is presented. The paper collects both classical and modern techniques of multiscale simulation such as those based on the proper generalized decomposition (PGD) approach. Moreover, an overview of available software for the implementation of such numerical schemes is also carried out. The availability and usefulness of this technique in the design of complex microstructural systems are highlighted along the text. In this review, the fine, and hence the coarse scale, are associated with continuum variables so atomistic approaches and coarse-graining transfer techniques are out of the scope of this paper. 000078844 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000078844 590__ $$a3.057$$b2019 000078844 592__ $$a0.647$$b2019 000078844 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b132 / 314 = 0.42$$c2019$$dQ2$$eT2 000078844 593__ $$aMaterials Science (miscellaneous)$$c2019$$dQ2 000078844 593__ $$aCondensed Matter Physics$$c2019$$dQ2 000078844 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/publishedVersion 000078844 700__ $$aSanz-Herrera, J.A. 000078844 700__ $$0(orcid)0000-0001-8741-6452$$aDoblaré, M.$$uUniversidad de Zaragoza 000078844 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est. 000078844 773__ $$g12, 5 (2019), 691 [46 pp]$$pMATERIALS$$tMaterials$$x1996-1944 000078844 8564_ $$s1848109$$uhttps://zaguan.unizar.es/record/78844/files/texto_completo.pdf$$yVersión publicada 000078844 8564_ $$s105139$$uhttps://zaguan.unizar.es/record/78844/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000078844 909CO $$ooai:zaguan.unizar.es:78844$$particulos$$pdriver 000078844 951__ $$a2020-07-16-08:45:40 000078844 980__ $$aARTICLE