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Abstract

A new representation of the Lerch’s transcendent Φ(z, s, a), valid for positive
integer s = n = 1, 2, . . . and for z and a belonging to certain regions of the
complex plane, is presented. It allows to write an equation relating Φ(z, n, a)
and Φ(1/z, n, 1−a), which in turn provides an expansion of Φ(z, n, a) as a power
series of 1/z, convergent for |z| > 1.

Keywords: Lerch’s transcendent; Hurwitz zeta function; polylogarithms
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1. Introduction

The Lerch’s transcendent Φ(z, s, a), also known as Hurwitz-Lerch zeta func-
tion, is defined by its series representation [2, Sec. 1.11, Eq. (1)] [9, Eq. 25.14.1]

Φ(z, s, a) =
∞∑

m=0

zm

(a+m)s
, (1)

provided

a �= 0,−1,−2, . . . ; |z| < 1; |z| = 1, �s > 1 . (2)

The restriction on the values of a guarantees that all terms of the series in the
right-hand side are finite. Obviously, the series is convergent if |z| < 1, indepen-
dently of the value of s, or if |z| = 1 and �s > 1. For other values of its argu-
ments, Φ(z, s, a) is defined by analytic continuation. This is achieved by means
of integral representations, the most common of them being [9, Eq. 25.14.5]

Φ(z, s, a) =
1

Γ(s)

∫ ∞

0

ts−1 e−at

1− z e−t
dt , (3)
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whenever
�s > 0 , �a > 0 , z ∈ C \ [1,∞) . (4)

The conditions imposed on a and z ensure the regularity of the integrand in
the right-hand side of (3). The restriction on s allows to prove the equivalence
of the representations (1) and (3) in their common region of validity (see, for
instance, [6, Lemmas 2.1 and 2.2]). A thorough discussion of the analytic con-
tinuation of Φ, as a multivalued function of three complex variables, and of its
“singular strata” can be found in a recent paper by Lagarias and Li [7], where
the monodromy functions describing the multivaluedness are computed. (Be
aware that, in the notation used in Ref. [7], the two first arguments of Φ are
transposed, as compared with the notation used in Refs. [2] and [9].)

In the course of a research on the use of dispersion relations in the study of
elementary particles [4, 5], we have encountered what we believe to be a new
representation of the Lerch’s transcendent Φ(z, s, a) for positive integer values
of the second argument, s = n = 1, 2, . . .. This is our first result, presented
as Theorem 1 in Sec. 2. Such a representation allows to unveil, as a second
result reported in Sec. 3 as Theorem 2, a property of Φ not noticed before. This
property, in turn, provides our third result, expressed in Corollary 1 of Sec. 4,
consisting of an expansion of Φ(z, n, a) in powers of 1/z, convergent for |z| > 1.
The proofs of the three results, followed by pertinent remarks, are presented in
Secs. 2, 3 and 4, respectively. Some comments are added in Sec. 5.

2. A new representation

Let D denote the open unit disc in the complex plane, cut along the negative
real semiaxis, that is,

z ∈ D ⇒ z ∈ C, 0 < |z| < 1, −π < arg(z) < π. (5)

A new representation of the Lerch’s transcendent Φ(z, s, a), for positive integer
values of its second argument, is provided by the following

Theorem 1. Let us assume z ∈ D and denote

ϕ = arg(− ln z). (6)

For positive integer n = 1, 2, . . ., and complex a such that �[(a− 1)eiϕ] < 0, the
Lerch’s transcendent admits the representation

Φ(z, n, a) =
(−1)n−1

(n− 1)!

{
P

∫ ∞eiϕ

0

tn−1 eat

z et − 1
dt+ π

∂n−1

∂an−1

(
z−a cot(πa)

)}
, (7)

where the symbol P stands for the Cauchy principal value of the path integral
along the ray arg(t) = ϕ.
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Proof. Our starting point is an integral encountered as we were writing dis-
persion relations for proton-proton and proton-antiproton scattering at high
energies [4, 5]. According to the definition of principal value of an integral,

P

∫ ∞eiϕ

0

tn−1 eat

z et − 1
dt = lim

ε→0+

{
−

∫ − ln z−εeiϕ

0

tn−1 eat

1− z et
dt

+ z−1

∫ ∞eiϕ

− ln z+εeiϕ

tn−1 e(a−1)t

1− z−1 e−t
dt

}
. (8)

By replacing, in the right-hand side, 1/(1 − z et) and 1/(1 − z−1 e−t) by their
respective geometric series expansions we obtain

P

∫ ∞eiϕ

0

tn−1 eat

z et − 1
dt =

∞∑
m=0

[
lim

ε→0+

{
− zm

∫ − ln z−εeiϕ

0

e(m+1/2)t G(t) dt

+ z−m−1

∫ ∞eiϕ

− ln z+εeiϕ
e−(m+1/2)t G(t) dt

}]
, (9)

with the notation
G(t) ≡ tn−1 e(a−1/2)t . (10)

Repeated integration by parts gives

P

∫ ∞eiϕ

0

tn−1 eat

z et − 1
dt =

∞∑
m=0

[
lim

ε→0+

{
− zm

∞∑
k=0

[
(−1)ke(m+1/2)t

(m+ 1/2)k+1

dkG(t)

dtk

]t=− ln z−εeiϕ

t=0

− z−m−1
∞∑
k=0

[
e−(m+1/2)t

(m+ 1/2)k+1

dkG(t)

dtk

]t→∞eiϕ

t=− ln z+εeiϕ

}]

=
∞∑

m=0

zm
∞∑
k=0

(−1)k

(m+ 1/2)k+1

dkG(t)

dtk

∣∣∣∣
t=0

+ z−1/2
∞∑

m=0

∞∑
l=0

2

(m+ 1/2)2l+2

d2l+1G(t)

dt2l+1

∣∣∣∣
t=− ln z

, (11)

where use has been made of the condition �[(a− 1)eiϕ] < 0. Obviously,

dkG(t)

dtk

∣∣∣∣
t=0

=

{
0 , if k < n− 1 ,
(k!/(k−n+1)!) (a−1/2)k−n+1 , if k ≥ n− 1 ,

(12)

dkG(t)

dtk

∣∣∣∣
t=− ln z

=

min{k,n−1}∑
j=0

[(
k

j

)
(n−1)!

(n−1−j)!
(− ln z)n−1−j

(a−1/2)k−j z−a+1/2

]
, (13)
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which, introduced in (11), give

P

∫ ∞eiϕ

0

tn−1 eat

z et − 1
dt =

∞∑
m=0

zm
∞∑

k=n−1

(−1)k k! (a− 1/2)k−n+1

(k − n+ 1)! (m+ 1/2)k+1

+ z−a
∞∑
l=0

(
min{2l+1,n−1}∑

j=0

(
2l + 1

j

)
(n−1)!

(n−1−j)!
(− ln z)n−1−j (a−1/2)2l+1−j

∞∑
m=0

2

(m+ 1/2)2l+2

)
. (14)

The last sum can be written in terms of Bernoulli numbers in the form [10,
Vol.1, Eq. (5.1.4.1)]

∞∑
m=0

2

(m+ 1/2)2l+2
= (2π)2l+2 22l+2 − 1

(2l + 2)!
|B2l+2| . (15)

By recalling the series expansion of the tangent function [9, Eq. 4.19.3]

tanα =

∞∑
n=1

22n (22n − 1) |B2n|
(2n)!

α2n−1 , |α| < π/2 , (16)

and of its derivatives

dj

dαj
tanα =

∞∑
n=1+[j/2]

22n (22n − 1) |B2n|
(2n)!

(2n− 1)!

(2n− 1− j)!
α2n−1−j , |α| < π/2 ,

(17)
equation (14) becomes

P

∫ ∞eiϕ

0

tn−1 eat

z et − 1
dt = (−1)n−1(n− 1)!

∞∑
m=0

zm

(m+ a)n

+π z−a
n−1∑
j=0

(
n− 1

j

)
(− ln z)n−1−j dj

daj
tan(π(a− 1/2))

= (−1)n−1(n−1)! Φ(z, n, a)− π
∂n−1

∂an−1

(
z−a cot(πa)

)
, (18)

provided |a − 1/2| < 1/2, a restriction which may be relaxed, as explained in
Remark 1 below. Isolation of the Lerch’s transcendent completes the proof. �

Remark 1. The condition |a − 1/2| < 1/2, necessary for the validity of (18),
restricts the possible complex values of a to an open disc of radius 1/2 centered
at 1/2. Nevertheless, the representation can be continued analytically to the
complex half-plane �[(a − 1)eiϕ] < 0, the points a = 0,−1,−2, . . . being ex-
cluded. At these points Φ(z, n, a), which for fixed z is a meromorphic function
of a, presents poles of order n, as proved by Lagarias and Li [7, Sec. 7, Theorem
7.1]. The trigonometric expression in the right-hand side of (7) shows these
singularities.
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Figure 1: The integration path of the integral in the right-hand side of Eq. (20).

3. A “symmetry” property

In the computation of the principal value of the integral in (8), before taking
the limit ε → 0+, we can add and subtract the contribution of completing the
integration path, which goes from 0 to − ln z − εeiϕ and from − ln z + εeiϕ to
∞eiϕ, with a semi-circumference (sc) of radius ε, centered at t = − ln z, and
going from − ln z − εeiϕ to − ln z + εeiϕ in such a way that the point − ln z
lies out of the region delimited by the resulting path, that we denote by Γ (see
Figure 1), and the positive real semi-axis. Obviously,

lim
ε→0+

∫
sc

tn−1 eat

z et − 1
dt = sgn(ϕ) i π (− ln z)n−1 z−a. (19)

Then

P

∫ ∞eiϕ

0

tn−1 eat

z et − 1
dt =

∫
Γ

tn−1 eat

z et − 1
dt− sgn(ϕ) i π (− ln z)n−1 z−a. (20)

In the case of being �[(a − 1)eicϕ] < 0 for all c ∈ [0, 1], the path Γ can be
deformed to coincide with the positive real semi-axis. We obtain, in this way,

P

∫ ∞eiϕ

0

tn−1 eat

z et − 1
dt = z−1

∫ ∞

0

tn−1 e−(1−a)t

1− z−1 e−t
dt− sgn(ϕ) i π (− ln z)n−1 z−a.

(21)
We have now all necessary information to prove
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Theorem 2. For z ∈ D \ (0, 1), a /∈ Z, and ϕ as defined in (6), the Lerch’s
transcendent with positive integer second argument presents the “symmetry”
property

Φ(z, n, a) + (−1)n z−1 Φ(z−1, n, 1− a) =

π (−1)n−1

(n− 1)!

∂n−1

∂an−1

(
z−a (cot(πa)− sgn(ϕ) i)

)
. (22)

Proof. Let us consider Eq. (21) above. Since the integral in the right-hand side
is, up to a factor, the well known representation (3) of the Lerch’s transcendent,
we can write

P

∫ ∞eiϕ

0

tn−1 eat

z et − 1
dt = z−1 (n− 1)! Φ(z−1, n, 1− a)− sgn(ϕ) i π (− ln z)n−1 z−a,

(23)
provided

z−1 /∈ [1,∞) or, equivalently, z /∈ [0, 1] .

Substitution of (23) in the right-hand side of (7), bearing in mind that

(− ln z)n−1 z−a =
∂n−1

∂an−1
z−a ,

gives (22). The condition �[(a − 1)eicϕ] < 0 for all c ∈ [0, 1], required for the
validity of (21), is not necessary for the property (22), which can be continued
analytically to the whole complex a-plane, the integers being excepted. At these
points, a = . . . ,−2,−1, 0, 1, 2, . . ., both left and right hand sides of (22) present
poles of order n. The theorem becomes proved in this way. �

Remark 2. It is immediate to verify that Eq. (22) remains invariant under the
simultaneous replacements of z by z−1 (and, consequently, sgn(ϕ) by −sgn(ϕ))
and a by (1 − a). This means that, although it has been deduced on the as-
sumption that |z| < 1, the property (22) applies, as it is, to the case of |z| > 1,
provided z /∈ (1,∞), and is also valid, by continuation, for |z| = 1. The par-
ticular value z = 1 deserves special consideration, as it belongs to the singular
stratum {0, 1,∞} of the double specialization of Φ(z, s, a) for positive integer
s = n and fixed complex a [7, Sec. 8]. In the case of n = 1, Φ(1, 1, a) and
Φ(1, 1, 1− a) are singular and the left-hand side of (22) turns out to be the dif-
ference of two infinities. For n = 2, 3, . . ., the fact that the Lerch’s transcendent
becomes the Hurwitz zeta function when z = 1 [9, Eq. 25.14.2],

ζ(s, a) = Φ(1, s, a) , �s > 1 , a �= 0,−1,−2, . . . , (24)

may be used to write (22) in the form

ζ(n, a)+(−1)n ζ(n, 1−a) =
(−1)n−1 π

(n− 1)!

dn−1

dan−1
cot(πa) , n = 2, 3, . . . , (25)
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that is a known reflection property [1, Sec. 4]1, or in terms of polygamma
functions [9, Eq. 5.15.6],

ψ(m)(a)− (−1)m ψ(m)(1− a) = −π
dm

dam
cot(πa) , m = 0, 1, 2, . . . , (26)

a relation which follows trivially from the reflection property of the Gamma
function [9, Eq. 5.5.3]

Γ(a) Γ(1− a) = π/ sin(πa) . (27)

4. A convergent expansion

In what follows, to avoid misunderstanding, we make use of the notation

w ≡ z−1, b ≡ 1− a . (28)

Consequently, we have for ϕ, defined in (6),

ϕ = arg(lnw). (29)

An immediate consequence of our Theorem 2 is the following

Corollary 1. For

|w| > 1, w /∈ (−∞, 1) ∪ (1,∞), (30)

and positive integer n, the Lerch’s transcendent Φ(w, n, b) admits the convergent
expansion

Φ(w, n, b) =
π

(n− 1)!

[
∂n−1

∂tn−1

(
wt

(
sgn(ϕ) i− cot(πt)

))]
t=−b

−
∞∑

m=1

w−m

(b−m)n
.

(31)

Proof. With the notation introduced in (28), Eq. (22) becomes

Φ(w−1, n, 1− b) + (−1)n wΦ(w, n, b) =

π(−1)n−1

(n− 1)!

∂n−1

∂(1− b)n−1

(
w1−b (cot(π − πb)− sgn(ϕ) i)

)
. (32)

Rearrangement of terms and use of the representation (1) for Φ(w−1, n, 1 − b)
gives (31). �

1Notice a typo in the citation in the first paragraph of Sec. 4. Instead of Ref. 6, one should
read Ref. 8.
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Remark 3. It is trivial to check that our expansion (31), whenever the ar-
guments of Φ make it applicable, satisfies the well known identities [6, Eqs.
(7)–(9)]

Φ(z, s, a+ 1) =
1

z

(
Φ(z, s, a)− 1

as

)
, (33)

Φ(z, s− 1, a) =

(
a+ z

∂

∂z

)
Φ(z, s, a) , (34)

Φ(z, s+ 1, a) = − 1

s

∂

∂a
Φ(z, s, a) , (35)

stemming from the series representation (1), and the partial differential equation
[7, Eq. (1.7)] (

z
∂

∂z

∂

∂a
+ a

∂

∂a
+ s

)
Φ(z, s, a) = 0 , (36)

which results from composition of the identities (34) and (35).

Remark 4. The expansion (31) is apparently not valid in the case of positive
integer values of b = N = 1, 2, . . ., since the right-hand side shows singular
terms. Nevertheless, Eq. (31) becomes meaningful for b = N if we interpret the
right-hand side as its limit for b → N , that is,

Φ(w, n,N) = lim
t→−N

{
π

(n− 1)!

∂n−1

∂tn−1

(−wt cot(πt)
)− w−N

(−t−N)n

}

+w−N

(
sgn(ϕ)

i π (lnw)n−1

(n− 1)!
−

N−1∑
k=1

wk

kn
− (−1)n Lin(w

−1)

)
, (37)

or, equivalently,

Φ(w, n,N) = w−N

(
lim
ε→0

{
π

(n− 1)!

∂n−1

∂εn−1

(− wε cot(πε)
)− (−1)n

(ε)n

}

+sgn(ϕ)
i π (lnw)n−1

(n− 1)!
−

N−1∑
k=1

wk

kn
− (−1)n Lin(w

−1)

)
, (38)

where Lin represents, as usual, the polylogarithm of order n. One obtains in
this way, for the lowest values of n,

Φ(w, 1, N) = w−N

(
sgn(ϕ) i π − lnw −

N−1∑
k=1

wk

k
+ Li1(w

−1)

)
, (39)

Φ(w, 2, N) = w−N

(
π2

3
+ sgn(ϕ) i π lnw − 1

2
(lnw)2

−
N−1∑
k=1

wk

k2
− Li2(w

−1)

)
, (40)
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Φ(w, 3, N) = w−N

(
π2

3
lnw + sgn(ϕ)

i π

2
(lnw)2 − 1

6
(lnw)3

−
N−1∑
k=1

wk

k3
+ Li3(w

−1)

)
, (41)

Φ(w, 4, N) = w−N

(
π4

45
+

π2

6
(lnw)2 + sgn(ϕ)

i π

6
(lnw)3 − 1

24
(lnw)4

−
N−1∑
k=1

wk

k4
− Li4(w

−1)

)
, (42)

Φ(w, 5, N) = w−N

(
π4

45
lnw +

π2

18
(lnw)3 + sgn(ϕ)

i π

24
(lnw)4 − 1

120
(lnw)5

−
N−1∑
k=1

wk

k5
+ Li5(w

−1)

)
, (43)

understanding that the sum in k is void if N = 1.

Remark 5. Lagarias and Li [7] have coined the term “extended polylogarithm”
to refer to the function

Lis(z, a) := zΦ(z, s, a) , (44)

which interpolates all polylogarithms via the parameter s. In the case, consid-
ered in this paper, of positive integer s = n, Lin(z, a) gives a deformation of
the polylogarithm Lin(z) with deformation parameter a. These authors have
proved [7, Theorem 8.1] that Lin(z, a), considered as a function of z, obeys a
linear ordinary differential equation of order n+1 with polynomial coefficients.
Following a similar procedure, one can prove that Φ(z, n, a) is a solution of the
differential equation

z
d

dz
(1− z)

(
z

d

dz
+ a

)n

f(z) = 0 . (45)

Linearly independent solutions of this equation are the functions of z

z−a(ln z)n−1, z−a(ln z)n−2, . . . , z−a,

∞∑
m=1

z−m(a−m)−n, (46)

the last of them only for |z| > 1. These functions constitute a basis in the space
of solutions of (45). Our expansion (31) merely expresses, mutatis mutandis,
the solution Φ(z, n, a) in such a basis.

5. Final discussion

From a computational point of view, the representation of the Lerch’s tran-
scendent given in Theorem 1, cannot compete against the series expansion (1).
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Nevertheless, written in the form (18), it becomes very useful to compute princi-
pal value integrals appearing in different branches of Physics, especially in high
energy scattering of elementary particles. More interesting, in what concerns
Number Theory, is the property unveiled in our Theorem 2, which has its coun-
terparts in analogous properties for the Hurwitz zeta function and the gamma
function. Our third result, namely Corolary 1, provides an expansion of the
Lerch’s transcendent which, due to its algebraic simplicity and computational
efficiency, may be favourably compared with the known expansions for large
values of the first argument. It has, however, the drawback of being restricted
to positive integer values of the second argument. Asymptotic expansions of
Φ(z, s, a), for large complex z, large or small complex a, and complex s, have
been obtained by Ferreira and López [3]. On the other hand, Navas, Ruiz and
Varona [8] have studied Φ(z, s, a) as a function of the complex variable a, with
complex parameters z and s, and shown its asymptotic behaviour for �s → −∞
and |�s| bounded. In our case, the restriction of s, in Φ(z, s, a), to positive in-
teger values s = n = 1, 2, . . . , has been necessary to obtain the representation
(7). The question arises if this representation and its consequences are valid also
for more general values of s. A conclusive answer to this issue would require
methods of fractional calculus which lie out of the scope of this paper.
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