000078891 001__ 78891 000078891 005__ 20191126134633.0 000078891 0247_ $$2doi$$a10.1364/OE.26.00A398 000078891 0248_ $$2sideral$$a106454 000078891 037__ $$aART-2018-106454 000078891 041__ $$aeng 000078891 100__ $$aMarín-Sáez, J. 000078891 245__ $$aFull modeling and experimental validation of cylindrical holographic lenses recorded in Bayfol HX photopolymer and partly operating in the transition regime for solar concentration 000078891 260__ $$c2018 000078891 5060_ $$aAccess copy available to the general public$$fUnrestricted 000078891 5203_ $$aConcentrating photovoltaics for building integration can be successfully carried out with Holographic Optical Elements (HOEs) because of their behavior analogous to refractive optical elements and their tuning ability to the spectral range that the photovoltaic (PV) cell is sensitive to. That way, concentration of spectral ranges that would cause overheating of the cell is avoided. Volume HOEs are usually chosen because they provide high efficiencies. However, their chromatic selectivity is also very high, and only a small part of the desired spectral range reaches the PV cell. A novel approach is theoretically and experimentally explored to overcome this problem: the use of HOEs operating in the transition regime, which yield lower chromatic selectivity while keeping rather high efficiencies. A model that considers the recording material’s response, by determining the index modulation reached for each spatial frequency and exposure dosage, has been developed. It has been validated with experimental measurements of three cylindrical holographic lenses with different spatial frequency ranges recorded in Bayfol HX photopolymer. Simulations of systems comprising two lenses and a mono-c Si PV cell are carried out with the standard AM 1.5D solar spectrum. Promising results are obtained when using the system with lower spatial frequencies lenses: a total current intensity equal to 3.72 times the one that would be reached without the concentrator. 000078891 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T76$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-48325-R$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2016-81040-R$$9info:eu-repo/grantAgreement/ES/UZ/UZ2017-CIE-02 000078891 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000078891 590__ $$a3.561$$b2018 000078891 591__ $$aOPTICS$$b20 / 95 = 0.211$$c2018$$dQ1$$eT1 000078891 592__ $$a1.473$$b2018 000078891 593__ $$aAtomic and Molecular Physics, and Optics$$c2018$$dQ1 000078891 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000078891 700__ $$0(orcid)0000-0001-9804-990X$$aAtencia, J.$$uUniversidad de Zaragoza 000078891 700__ $$aChemisana, D. 000078891 700__ $$0(orcid)0000-0002-3299-253X$$aCollados, M.V.$$uUniversidad de Zaragoza 000078891 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada 000078891 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica 000078891 773__ $$g26, 10 (2018), A398-A412$$pOpt. express$$tOptics Express$$x1094-4087 000078891 8564_ $$s3783452$$uhttps://zaguan.unizar.es/record/78891/files/texto_completo.pdf$$yVersión publicada 000078891 8564_ $$s96430$$uhttps://zaguan.unizar.es/record/78891/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000078891 909CO $$ooai:zaguan.unizar.es:78891$$particulos$$pdriver 000078891 951__ $$a2019-11-26-13:42:43 000078891 980__ $$aARTICLE