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Abstract
Quantum dynamics (i.e. the Schrödinger equation) and classical dynamics
(i.e. Hamilton equations) can both be formulated in equal geometric terms: a
Poisson bracket defined on a manifold. In this paper, we first show that the
hybrid quantum-classical dynamics prescribed by the Ehrenfest equations can
also be formulated within this general framework, what has been used in the
literature to construct propagation schemes for Ehrenfest dynamics. Then, the
existence of a well-defined Poisson bracket allows us to arrive to a Liouville
equation for a statistical ensemble of Ehrenfest systems. The study of a generic
toy model shows that the evolution produced by Ehrenfest dynamics is ergodic
and therefore the only constants of motion are functions of the Hamiltonian.
The emergence of the canonical ensemble characterized by the Boltzmann
distribution follows after an appropriate application of the principle of equal
a priori probabilities to this case. Once we know the canonical distribution
of an Ehrenfest system, it is straightforward to extend the formalism of Nosé
(invented to do constant temperature molecular dynamics by a non-stochastic
method) to our Ehrenfest formalism. This work also provides the basis for
extending stochastic methods to Ehrenfest dynamics.

PACS numbers: 31.15.xv, 31.15.xr, 02.70.Ns

1. Introduction

The Schrödinger equation for a combined system of electrons and nuclei enables us to
predict most of the chemistry and molecular physics that surrounds us, including bio-
physical processes of great complexity. Unfortunately, this task is not possible in general,
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and approximations need to be made, one of the most important and successful being the
classical approximation for a number of the particles. Mixed quantum-classical dynamical
(MQCD) models are therefore necessary and widely used.

The so-called Ehrenfest equations (EE) result from a straightforward application of the
classical limit to a portion of the particles of a full quantum system, and constitute the most
evident MQCD model, as well as a first step in the intricated problem of mixing quantum
and classical dynamics. For example, it can be noted that much of the field of molecular
dynamics (MD)—whether ab initio or not—is based on equations that can be obtained from
further approximations to the Ehrenfest model: for instance, written in the adiabatic basis,
the Ehrenfest dynamics collapse into Born–Oppenheimer MD if we assume the non-adiabatic
couplings to be negligible.

It is not the purpose of this work, however, to dwell on the justification or validity
conditions of the EE (see for example [1–5] for rigourous analyses). Nor is it to investigate
the unsettled problem of which is the best manner of mixing quantum and classical degrees
of freedom. The Ehrenfest model has a proven application niche, and for this reason we are
interested in investigating some of its theoretical foundations, in a manner and with an aim
that we describe in the following. For recent progress in non-adiabatic electronic dynamics in
MQCD see, for example, [6].

Classical mechanics (CM) can be formulated in several mathematical frameworks,
each corresponding to a different level of abstraction (Newton equations, the Hamiltonian
formalism, the Poisson brackets, etc). Perhaps its more abstract and general formulation
is geometrical, in terms of Poisson manifolds. Similarly, quantum mechanics (QM) can be
formulated in different ways, some of which resemble its classical counterpart. For example, the
observables (self-adjoint linear operators) are endowed with a Poisson algebra almost equal to
the one that characterizes the dynamical variables in CM. Moreover, the Schrödinger equation
can be recast into the Hamiltonian equation form (see [7]) by transforming the complex Hilbert
space into a real one of double dimension; the observables are also transformed into dynamical
functions in this new phase space, in analogy with the classical case. Finally, a Poisson bracket
formulation has also been established for QM, which permits us to classify both the classical
and the quantum dynamics under the same heading.

This variety of formulations does not emerge from academic caprice; the successive
abstractions simplify further developments of the theory, such as the step from microscopic
dynamics to statistical dynamics: the derivation of the Liouville equation (or the von Neumann
equation in the quantum case), at the heart of statistical dynamics, is based on the properties
of the Poisson algebra.

The issue regarding what is the correct equilibrium distribution of a mixed quantum-
classical system is seen as a very relevant one [8–16]. An attempt to its derivation can be found
in [14], where they arrive at the same distribution that we will advocate below, although it is
found using the Nosé–Hoover technique [17, 18], which in principle is only a mathematical
scheme to produce the equilibrium, and which the very authors of [14] agree that it is not clear
how to apply to a mixed quantum-classical dynamics. On the other hand, in [8] they provide
some analytical results about this distribution, but not in the case in which the system of
interest is described by the EE; instead (and as in [9, 10]), they assume that the system is fully
quantum, and that it is coupled to an infinite classical bath via an Ehrenfest-like interaction.

It is therefore necessary to base Ehrenfest dynamics—-or any other MQCD model—on a
firm theoretical ground. In particular, we are interested in establishing a clear path to statistical
mechanics for Ehrenfest systems, which in our opinion should be done by first embedding
this dynamics into the same theoretical framework used in the pure classical or quantum cases
(i.e. Poisson brackets, symplectic forms, etc). Then, the study of their statistics will follow the
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usual steps for purely classical or purely quantum ensembles. In this respect, it should be noted
that other approaches to MQCD (not based on EE) exist [19–21], and to their corresponding
statistics [22, 23], however, it has been found that the formulation of well-defined quantum-
classical brackets (i.e. satisfying the Jacobi identity and Leibniz derivation rule) is a difficult
issue [24–27]. On the contrary, as shown below, and as a result of the fact that the evolution
of a quantum system can be formulated in terms of Hamilton equations similar to those of a
classical system [4, 28], we will not have difficulties in a rigorous formulation of the Ehrenfest
dynamics in terms of Poisson brackets.

The road map of this project is the following. In section 2, we recall the definition of
the Ehrenfest model. In section 3, we quickly summarize the formulation of CM in terms
of Poisson brackets. Then we summarize, in section 4, the analogous description of QM in
terms of geometrical objects which can be found, for example, in [29, 7, 30–36]. These works
demonstrate how the Schrödinger equation can be written as a set of (apparently classical)
Hamiltonian equations. Also, by using a suitable definition of observables as functions on
the (real) set of physical states, the Schrödinger equation can be written in terms of a
canonical Poisson bracket. QM appears in this way as ‘classical’, although the existence
of an extra algebraic structure encodes the probabilistic interpretation of measurements, and
the superposition and indetermination principles [29–33]. As we have in mind the application
to computer simulations, we will consider only finite-dimensional quantum systems, obtained
by a suitable sample of the electronic states. This simplifies significantly the description, even
if the framework is valid also for the infinite-dimensional case (see [33]).

For the case of Ehrenfest dynamics, we can now combine it (section 5) with CM, whose
Poisson bracket formulation is very well known. This is the first of the contributions of the
paper: once we realize that the geometric description of classical and quantum dynamics
is formally analogous, we can combine them as we do when combining different classical
systems. The procedure is very simple: we consider as a global phase space the Cartesian
product of the electronic and the nuclear phase spaces and define a global Poisson bracket
simply as the sum of the classical and the quantum ones. It is completely straightforward to
prove that such a Poisson bracket is well defined and that it provides the correct dynamical
equations (EE). From a formal point of view, the resulting dynamics is more similar to a
classical system than to a quantum one, although when considering a pure quantum system the
dynamics is the usual Schrödinger one. This is not surprising since the coupling of the classical
and quantum systems makes the total system nonlinear in its evolution, and this is one of the
most remarkable differences between a classical and a quantum system in any formulation.

Once the dynamical description as a Poisson system is at our disposal, it is a very simple
task (section 6) to construct the corresponding statistical description following the lines of
[37] and [38]. This is another main result of the paper: not having proved the Hamiltonian
nature of Ehrenfest dynamics, it was not possible to provide a self-consistent definition of the
statistics corresponding to it. Once the Hamiltonian description is available, the definition of
this statistics is straightforward.

The formal similarity with the CM case ensures the correctness of the procedure and
allows us to derive a Liouville equation. The choice of the equilibrium distribution is based,
as usual, on the principle of equal a priori probablities implicitly used by Gibbs and clearly
formulated by Tolman [39]. After this, in section 7 we extend Nosé formalism to the Ehrenfest
MQCD framework and then provide a method to simulate the canonical ensemble of Ehrenfest
systems. This is the final main contribution of the paper.

Please note that for systems where the Born–Oppenheimer approximation is not sufficient,
the use of the canonical ensemble of a mixed quantum-classical system such as Ehrenfest’s is
compulsory, since those systems where the electronic gap is small can be affected by electronic
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temperature effects of the same order. Therefore, a simple mechanism of simulation such as
Nosé is very important for practical applications.

Finally, in the conclusions (section 8), we propose to extend, within our formalism,
stochastic methods to Ehrenfest dynamics.

2. The Ehrenfest model

The EE have the following general form:

�̇RJ(t) = 〈ψ(t)| ∂Ĥ

∂ �PJ

(�R(t), �P(t), t)|ψ(t)〉, (1)

�̇PJ(t) = − 〈ψ(t)| ∂Ĥ

∂ �RJ

(�R(t), �P(t), t)|ψ(t)〉, (2)

i�
d

dt
|ψ(t)〉 = Ĥ(�R(t), �P(t), t)|ψ(t)〉, (3)

where (�R, �P) denote collectively the set of canonical position and momenta coordinates of a
set of classical particles, whereas ψ is the wavefunction of the quantum part of the system (see
[40] for the issue of the Hellmann–Feynman theorem in this context, i.e. whether one should
take the derivative inside or outside the expectation value).

This and other MQCD models appear in different contexts; in many situations, the division
into quantum and classical particles is made after the electrons have been integrated out, and is
used to quantize a few of the nuclear degrees of freedom. However, a very obvious case to use
EE is when we want to treat electrons quantum mechanically, and nuclei classically. In order
to fix ideas, let us use this case as an example: the Hamiltonian for the full quantum system is

Ĥ := −�
2
∑

J

1

2MJ
∇2

J − �
2
∑

j

1

2
∇2

j + 1

4πε0

∑
J<K

ZJZK

|�RJ − �RK |

− 1

4πε0

∑
j<k

1

|�r j − �rk| − 1

4πε0

∑
J, j

ZJ

|�RJ − �r j|

=: −�
2
∑

J

1

2MJ
∇2

J − �
2
∑

j

1

2
∇2

j + Vn−e(�r, �R)

=: −�
2
∑

J

1

2MJ
∇2

J + He(�r, �R), (4)

where all sums must be understood as running over the whole natural set for each index. MJ is
the mass of the Jth nucleus in units of the electron mass, and ZJ is the charge of the Jth nucleus
in units of (minus) the electron charge. Also note that we have defined the nuclei–electron
potential Vn–e(�r, �R) and the electronic Hamiltonian He(�r, �R) operators.

The EE may then be reached in the following way [1–5]: first, the full wavefunction is
split into a product of nuclear and electronic wavefunctions, which leads to the time-dependent
self-consistent field model, in which the two subsystems are quantum and coupled. Afterwards,
a classical limit procedure is applied to the nuclear subsystem, and the EE emerge naturally.
In terms of the nuclei positions �RJ and of the element of the Hilbert space |ψ〉 ∈ H which
encodes the state of the electrons of the system, the Ehrenfest dynamics is then given by

MJ �̈RJ = −〈ψ |∇JHe(�r, �R)|ψ〉, (5)

i�
d

dt
|ψ〉 = He(�r, �R)|ψ〉. (6)
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These equations can be given a Hamiltonian-type description by introducing a Hamiltonian
function of the form

H(�R, �P) =
∑

J

�P2
J

2MJ
+ 〈ψ |He(�r, �R)|ψ〉. (7)

Then, by fixing a relation of the form �PJ = M �̇RJ , we obtain a structure similar to Hamilton
equations:

�̇RJ =
�PJ

MJ
, (8)

�̇PJ = −〈ψ |∇JHe(�r, �R)|ψ〉, (9)

i�
d

dt
|ψ〉 = He(�r, �R)|ψ〉. (10)

This set of equations perhaps constitutes the most evident MQCD model, as well as a first
step in the intricated problem of mixing quantum and classical dynamics. In this sense, it is
interesting to note that written in the adiabatic basis {ψm(�R)}m formed by the eigenvectors of
the electronic Hamiltonian,

Ĥe(�r, �R)|ψm(�R)〉 = Em(�R)|ψm(�R)〉, (11)

the Ehrenfest dynamics collapse into ground state Born–Oppenheimer MD (gsBOMD) if we
assume the non-adiabatic couplings to be negligible. Indeed, by expanding the wavefunction
in this basis (some relevant considerations related to this change of variables can be found in
[40], section 2)

|ψ(t)〉 =
∑

m

cm(t)|ψm(�R(t))〉, (12)

the equations are transformed into

MJ �̈RJ(t) = −
∑

m

|cm(t)|2∇JEm(�R(t)) −
∑
mn

c∗
m(t)cn(t)[Em(�R(t)) − En(�R(t))] �dmn

J (�R(t)),

(13)

i
d

dt
cm(t) = Em(�R(t))cm(t) − i

∑
n

cn(t)

[ ∑
J

�̇RJ · �dmn
J (�R(t))

]
(14)

where the ‘non-adiabatic couplings’ are defined as
�dmn

J (�R) := 〈ψm(�R)|∇Jψn(�R)〉. (15)

If these are negligible, and we assume that the electronic system starts from the ground state
(cm(0) = δm0), the EE model reduces to gsBOMD:

MJ �̈RJ(t) = ∇JE0(�R(t)), (16)

cm(t) = δm0. (17)

In spite of the formal similarities, the EE equations do not correspond yet to Hamilton
equations, since they lack a global phase-space formulation (encompassing both the nuclear
and the electronic degrees of freedom) and a Poisson bracket.
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3. CM in terms of Poisson brackets

We begin by recalling very quickly the Hamiltonian formulation of classical dynamics (we
address the interested reader to a classical text, such as [41], for a detailed presentation). Let
us consider a classical system with phase space MC, which, for the sake of simplicity, we
can identify with R

2n, where n is the number of degrees of freedom (strictly speaking, MC is
a general 2n-dimensional manifold, homeomorphic to R

2n only locally). The 2n dimensions
correspond with the n position coordinates that specify the configuration of the system, and
the n corresponding momenta (mathematically, however, the division into ‘position’ and
‘momenta’ coordinates is a consequence of the Darboux theorem—see below).

The ‘observables’ in CM are differentiable functions

f : MC → R, (18)

that assign the result of a measurement to every point in MC. On this set of functions C∞(MC)

we introduce the Poisson bracket, {·, ·}, a bilinear operation

{·, ·} : C∞(MC) × C∞(MC) → C∞(MC), (19)

which

• is antisymmetric,

{ f , g} = −{g, f }, ∀ f , g ∈ C∞(MC),

• satisfies the Jacobi identity, i.e. ∀ f , g, h ∈ C∞(MC):

{ f , {g, h}} + {h, { f , g}} + {g, {h, f }} = 0,

• and satisfies the Leibniz rule ,i.e. ∀ f , g, h ∈ C∞(MC):

{ f , gh} = { f , g}h + g{ f , h}.

If the Poisson bracket is non-degenerate (it has no Casimir functions), a theorem due to
Darboux ensures that there exists a set of coordinates (�R, �P) for which the bracket has the
‘standard’ form (at least locally, in a neighbourhood of every point):

{ f1, f2} =
n∑

k=1

∂ f1

∂Pk

∂ f2

∂Rk
− ∂ f1

∂Rk

∂ f2

∂Pk
. (20)

These coordinates are called Darboux coordinates. They are specially useful when studying
the dynamics and invariant measures of a Hamiltonian system [41]. In the rest of the paper,
we will work with this kind of coordinates.

The Poisson bracket allows us to introduce the concept of a Hamiltonian vector field:
Given a function f ∈ C∞(MC) and a Poisson bracket {·, ·}, a vector field, Xf , is said to be its
Hamiltonian vector field if

Xf (g) = { f , g}, ∀g ∈ C∞(MC).

In standard coordinates:

Xf =
n∑

k=1

∂ f (R, P)

∂Pk

∂

∂Rk
− ∂ f (R, P)

∂Rk

∂

∂Pk
. (21)

We will call a Hamiltonian system to a triple (MC, {·, ·}, H), where {·, ·} is a Poisson
bracket on MC, and H ∈ C∞(MC) is the Hamiltonian of the system. The dynamics of a
Hamiltonian system can be formulated in two alternative manners:
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• The trajectories of the system are given by the integral curves of the Hamiltonian vector
field XH .

• If we consider instead the set of classical observables, the dynamics is written as the Poisson
bracket of the Hamiltonian function H with any other function, i.e.

d f

dt
= {H, f }, ∀ f ∈ C∞(MC). (22)

Both approaches are equivalent: the differential equations that determine the integral
curves of the Hamiltonian vector field are given by equation (22), for the functions ‘position’
and ‘momenta’ of each particle (i.e. �R and �P). These equations are nothing else but Hamilton
equations:

Ṙ j = ∂H

∂Pj
, (23)

Ṗj = − ∂H

∂Rj
. (24)

4. Summary of geometric QM

The aim of this section is to provide a description of quantum mechanical systems by using
the same geometric tools which are used to describe classical mechanical systems, outlined
above. It is just a very quick summary of the framework which has been developed in the
last 30 years and which can be found in [29, 7, 30–36] and references therein. For the sake
of simplicity, we will focus only on the finite-dimensional case. The Hilbert space H then
becomes isomorphic to C

n for n a natural number, C
n ∼ H:

4.1. The states

Consider a basis {|ψk〉} for H. Each state |ψ〉 ∈ H can be written in that basis with complex
components {zk}:

|ψ〉 =
∑

k

zk|ψk〉.

We can just take the vector space inherent to the Hilbert space, and turn it into a real vector
space MQ, by splitting each coordinate in its real and imaginary parts:

zk = qk + ipk �→ (qk, pk) ∈ R
2n ≡ MQ.

We will use real coordinates (qk, pk), k = 1, . . . , n, to represent the points of H when
thought as real manifold elements. From this real point of view the similarities between
the quantum dynamics and the classical one described in the previous section will be more
evident. Sometimes it will be useful to maintain the complex notation ψ or zk for the elements
of the Hilbert space. Please note that, despite the use of ‘q’ and ‘p’, these coordinates have
in principle no relation at all, with the position or the momentum of the quantum system.
They are simply the real and imaginary parts of the complex coordinates used to represent
the (finite-dimensional) Hilbert space vector in the chosen basis. Therefore, the resulting
geometrical description has no relation with the usual phase-space descriptions of QM, such
as the Wigner representation, which is defined for infinite-dimensional quantum systems and
where the coordinates to represent the point of the phase space do correspond to the spectra
of the position and momentum operators. For the same reason, there is no relation with any
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classical limit of the quantum system: the description in terms of these coordinates (q, p) is
purely quantum.

There is no one-to-one correspondence between physical states and elements of the
Hilbert space used to describe it; it is a well-known fact that physical states are independent
of global phases. This ambiguity also translates to the formulation with real vector spaces.
Two equivalent states are related by a phase transformation; the best way to characterize these
transformations in MQ is by introducing their infinitesimal generator, given by

� :=
∑

k

(
qk

∂

∂ pk
− pk

∂

∂qk

)
. (25)

This is a vector field whose meaning is clear if we realize that a phase change modifies the
angle of the complex number representing the state, when considered in polar form (i.e. in
polar coordinates {rk, θk}k=1,...,n with zk = rk eiθk , equation (25) becomes � = ∑

k ∂θk ). Then,
from a geometrical point of view we can use equation (25) in two ways:

• computing its integral curves, which are the different states which are obtained from an
initial one by a global phase multiplication;

• acting with the vector field on functions of MQ. A function will be acceptable as an observable
if it is invariant under phase transformations, i.e. � f = 0.

In a quantum Hilbert space, we also consider two states to be equivalent if they merely
differ by their norm. One may therefore only consider the sphere of states with norm equal to
1 in C

n; this corresponds in the real-vector-space description to the (2NQ − 1)-dimensional
sphere:

SQ :=
{

(�q, �p) ∈ MQ

∣∣∣∣ ∑
k

(
q2

k + p2
k

) = 1

}
. (26)

It is immediate that the vector field � is tangent to SQ, since the phase change preserves the
norm of the state.

4.2. The Poisson bracket

Taking as coordinates zk = qk + ipk, the components of a vector in an orthonormal basis, we
can define a Poisson bracket in MQ by

{ f , g} :=
∑

k

1

2

(
∂ f

∂ pk

∂g

∂qk
− ∂ f

∂qk

∂g

∂ pk

)
, (27)

that corresponds to the standard Poisson bracket in CM. It will also be useful to introduce a
symmetric bracket by

{ f , g}+ :=
∑

k

1

2

(
∂ f

∂qk

∂g

∂qk
+ ∂ f

∂ pk

∂g

∂ pk

)
. (28)

We have made use of a specific basis; one may think that the definition of the brackets could
depend on the choice of the basis. However, it is a matter of simple algebra to prove that this
is not the case.

An important property of the brackets defined above is that they are preserved by the
vector field � in equation (25) in the sense that

�{ f , g} = {� f , g} + { f , �g}
and

�{ f , g}+ = {� f , g}+ + { f , �g}+,
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a fact that can be proved with a simple computation. This property is important for us because
it implies that the symmetric or antisymmetric bracket of two phase-invariant functions will
also be phase invariant:

� f = �g = 0 ⇒ �{ f , g} = �{ f , g}+ = 0.

4.3. The observables

We now proceed to discuss how to represent the physical observables on this new setting.
Instead of considering the observables as linear operators (plus the usual requirements, self-
adjointness, boundedness, etc) on the Hilbert space H, we will represent them as functions
defined on the real manifold MQ, as it is done in CM. But we cannot forget the linearity of
the operators, and thus not any function is acceptable. We will consider, for any operator
A ∈ Lin(H), the quadratic function

fA(ψ) := 〈ψ |Aψ〉. (29)

We will denote the set of such functions as Fs(MQ).
Note that this definition of observable is different from the analogous one in the classical

case. In the classical framework, a state, represented by a point in MC, provides a well-defined
result for any observable f : MC → R. In this geometric quantum mechanics (GQM in the
following) framework, on the other hand, the value at a given state of fA ∈ Fs(MQ) provides
just the average value of the corresponding operator in that state. Besides, contrarily to the
classical case, not all the C∞ functions on MQ are regarded as observables, but only those of
the form of (29).

Once the definition has been stated, one must verify that it is a consistent one, meaning
that (i) they are phase-invariant functions (� f = 0), and (ii) the set of observables is closed
with respect to both the symmetric and antisymmetric brackets (i.e. the bracket of two elements
of Fs(MQ) is also an element of Fs(MQ)). Both facts can be proven by direct computation.
The second proof, however, is interesting because it leads us to consider the relevant algebraic
operations within Fs(MQ). In the usual approach of QM, there are three algebraic structures on
the set of operators, which turn out to be meaningful and important for the physical description.

• The associative product of two operators:

A, B ∈ Lin(H) → A · B ∈ Lin(H).

It is important to note, though, that this operation is not internal in the set of Hermitian
operators (i.e. those associated with physical magnitudes), since the product of two Hermitian
operators is not Hermitian, in general.

• The anticommutator of two operators:

A, B ∈ Lin(H) → [A, B]+ ∈ Lin(H).

• The commutator of two operators:

A, B ∈ Lin(H) → i[A, B] ∈ Lin(H).

Note that these last two operations are internal in the space of Hermitian operators. How
do we translate these operations into the GQM scheme? If we take fA, fB ∈ Fs(MQ),
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• the anticommutator of two operators becomes the symmetric bracket or Jordan product of
the functions (see [42]):

[A, B]+ → f[A,B]+ = { fA, fB}+ ∈ Fs(MQ),

• the commutator of two operators translates into the Poisson bracket of the functions:

i[A, B] → fi[A,B] = { fA, fB} ∈ Fs(MQ).

We may conclude, therefore, that the operators and their algebraic structures are encoded in
the set of functions with the brackets associated with the Hermitian product. Thus, we see why
it makes sense to consider only that specific type of functions: it is a choice which guarantees
to maintain all the algebraic structures which are required in the quantum description.

Another important property of the set of operators of QM is the corresponding spectral
theory. In any quantum system, it is of utmost importance to be able to find eigenvalues and
eigenvectors. In GQM, these objects are considered in the following way: let fA be the function
associated with the observable A. Then, if we consider ψ ∈ SQ,

• the eigenvectors of the operator A coincide with the critical points of the function fA, i.e.
d fA(ψ) = 0 ⇒ ψ is an eigenvector of A,

• the eigenvalue of A at the eigenvector ψ is the value that the function fA takes at the critical
point ψ .

We finalize this discussion on the observables by noting that the identity operator I

corresponds with the function

fI(q, p) =
∑

k

(
q2

k + p2
k

)
, (30)

and the Hamiltonian vector field of this function is precisely the generator of phase
transformations:

{ fI, ·} =
∑

k

(
pk

∂

∂qk
− qk

∂

∂ pk

)
= �. (31)

4.4. The dynamics

As in the classical case, the dynamics can be implemented in different forms, always in a way
which is compatible with the geometric structures introduced so far.

• In the Schrödinger picture, the dynamics is described as the integral curves of the vector
field XfH , where H is the Hamiltonian operator of the system:

XfH = �
−1{ fH, ·}. (32)

• In the Heisenberg picture, the dynamics is introduced by transferring the Heisenberg equation
into the language of functions:

ḟA = �
−1{ fH, fA}. (33)

For example, the von Neumann equation is rewritten as

ḟρ = �
−1{ fH, fρ}, (34)

where fρ is the function associated with the density matrix.

10
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Therefore, it is possible to describe quantum dynamics as a flow of a vector field on
the manifold MQ or on the set of quadratic functions of the manifold. Such a vector field
is a Hamiltonian vector field with respect to the Poisson bracket encoded in the Hermitian
structure of the system.

The dynamics thus defined preserves the norm of the state, which allows us to restrict the
set of admissible states to those with norm equal to 1. This can be proved by analysing the
evolution of the function fI, given by the Poisson bracket with the Hamiltonian:

ḟI = �
−1{ fH, fI}. (35)

But, because of the properties of the bracket, { fH, fI} = f[H,I] = 0, and thus the flow is
restricted to the sphere SQ.

Example 1. Let us consider a simple two-level quantum system, defined on C
2. As a real

manifold, MQ ∼ R
4. Then, consider a Hamiltonian H : C

2 → C
2:

H =
[

H11 H12

H21 H22

]
. (36)

If we consider it as a matrix on the real vector space MQ, it reads

HR =

⎡⎢⎢⎣
Hq1q1 Hq1 p1 Hq1q2 Hq1 p2

Hp1q1 Hp1 p1 Hp1q2 Hp1 p2

Hq2q1 Hq2 p1 Hq2q2 Hq2 p2

Hp2q1 Hp2 p1 Hp2q2 Hp2 p2

⎤⎥⎥⎦ . (37)

It is easy to prove that this matrix is symmetric if the Hamiltonian is Hermitian (H12 = H∗
21).

The function fH in Fs(MQ) thus becomes

fH = ψ t
R

HRψR, where ψR = (q1, p1, q2, p2)
t

and then, the Hamiltonian vector field turns out to be

XH = �
−1

(
∂ fH

∂ p1

∂

∂q1
− ∂ fH

∂q1

∂

∂ p1
+ ∂ fH

∂ p2

∂

∂q2
− ∂ fH

∂q2

∂

∂ p2

)
and its integral curves are precisely the expression of the Schrödinger equation when we write
it back in complex terms:

q̇1 = �
−1(Hp1q1 q1 + Hp1q2 q2 + Hp1 p1 p1 + Hp1 p2 p2),

ṗ1 = −�
−1(Hq1q1 q1 + Hq1q2 q2 + Hq1 p1 p1 + Hq1 p2 p2),

q̇2 = �
−1(Hp2q2 q2 + Hp2q1 q1 + Hp2 p2 p2 + Hp2 p1 p1),

ṗ2 = −�
−1(Hq2q2 q2 + Hq2q1 q1 + Hq2 p2 p2 + Hq2 p1 p1).

We can write these equations as

ψ̇R = −�
−1JHRψR, with J =

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤⎥⎥⎦ (38)

or, equivalently,

|ψ̇〉 = −�
−1iH|ψ〉, where |ψ〉 =

[
q1 + ip1

q2 + ip2

]
(39)

is the complex state vector in terms of the real coordinates. The operator J, that satisfies
J2 = −I, is called the complex structure. As it is apparent when comparing (38) and (39), it
implements the multiplication by the imaginary unity i in the real presentation of the Hilbert
space. Observe that J and HR commute, this is due to the fact that the latter comes from an
operator H in the complex Hilbert space.
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5. Ehrenfest dynamics as a Hamiltonian system

In this section, we show how to put together the dynamics of a quantum and a classical system
following the presentation of the two previous sections. Thus, we are describing a physical
system characterized by the following elements.

5.1. The set of states of our system

• First, letH be a Hilbert space which describes the quantum degrees of freedom of our system.
For example, it could describe the electronic subsystem; in this case, it is the vector space
corresponding to the completely antisymmetric representation of the permutation group SN

(i.e. a set of Slater determinants), where N is the number of electrons of the system and
each electron lives in a Hilbert space of dimension M. Thus, the dimension of H will be
NQ = M!

N!(M−N)! .
We know that it is a complex vector space, but we prefer to consider it as a real vector

space with the double of degrees of freedom and denote it as MQ. Also, in correspondence
with the Hilbert space vectors in the usual formalism of QM, several states in MQ represent
the same physical state. To consider true physical states one should extract only those
corresponding to the projective space, which can be identified with a submanifold of MQ. A
more general approach is to consider the sphere of states with norm equal to 1, SQ, and take
into account the phase transformations generated by equation (25) in a proper way. We will
discuss this in the following sections.

• Second, let MC be a differentiable manifold which contains the classical degrees of freedom.
We will assume it to be a phase space, and thus it will have an even number of degrees
of freedom and it will be endowed with a non-degenerate Poisson bracket that in Darboux
cordinates (�R, �P) reads

{ f , g}C =
∑

J

∂ f

∂PJ

∂g

∂RJ
− ∂ f

∂RJ

∂g

∂PJ
.

• Third, we let our state space S be the Cartesian product of both manifolds:

S := MC × MQ.

Such a description has important implications: it is possible to consider each subsystem
separately in a proper way but it is not possible to entangle the subsystems with one another.
As long as Ehrenfest dynamics disregards this possibility, the choice of the Cartesian product
is the most natural one.

The coordinates that describe the state of the system are as follows.

• The positions and momenta of the nuclei:

(�R, �P) ∈ MC. (40)

We will have 3NC + 3NC of these, for NC the number of nuclei of the system.
• The real and imaginary parts of the coordinates of the Hilbert space vectors with respect to

some basis:

(�q, �p) ∈ MQ. (41)

We will have NQ + NQ of these, for NQ the complex dimension of the Hilbert space H.
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5.2. The observables

Our observables are functions defined on the state space S = MC × MQ. We know from our
discussion in the case of a purely quantum system that any function of the form (29) produces
an evolution, via the Poisson bracket, which preserves the norm. In the MQCD case, we can
easily write the analogue of the vector field (25) by writing

�Q = I ⊗ �. (42)

This is again the infinitesimal generator of phase transformations for the quantum
subsystem, but written at the level of the global state space MC × MQ. A reasonable property
to be asked to the functions chosen to represent our observables is to be constant under
this transformation. From a mathematical point of view, we will define the set of possible
observables, O, as the set of all C∞-functions on the set MC × MQ which are constant under
phase changes on the quantum degrees of freedom, i.e.

O := { f ∈ C∞(MC × MQ)| �Q f = 0}. (43)

As we will see later, this choice reflects the fact that, when considered coupled together, the
nonlinearity of CM expands also to MQCD. There are some important subsets that should be
considered.

• The set of classical functions: these are functions which depend only on the classical degrees
of freedom. Mathematically, they can be written as those functions f ∈ O such that there
exists a function fC ∈ C∞(MC) such that

f (�R, �P, �q, �p) = fC(�R, �P).

We denote this subset as OC. An example of a function belonging to this set is the linear
momentum of the nuclei.

• The set of generalized quantum functions: functions which depend only on the quantum
degrees of freedom and which are constant under changes in the global phase.
Mathematically, they can be written as those functions f ∈ O such that there exists a
function fQ ∈ C∞(MQ) such that

f (�R, �P, �q, �p) = fQ(�q, �p); �( fQ) = 0. (44)

We denote these functions as OQ. We have added the adjective ‘generalized’ because this
set is too large to represent only the set of pure quantum observables. These later functions
should be considered, when necessary, as a smaller subset, which corresponds to the set of
functions defined in equation (29). We denote this smaller subset as Os

Q. An example of a
function belonging to Os

Q is the linear momentum of the electrons.
• A third interesting subset is the set of arbitrary linear combinations of the subsets above,

i.e. those functions which are written as the sum of a purely classical function and a purely
quantum one:

f (�R, �P, �q, �p) = fC(�R, �P) + fQ(�q, �p). (45)

We will denote this set as OC+Q. An element of this set of functions is the total linear
momentum of the composed system.

We would like to make a final but very important remark. We have not chosen the set of
observables as

P := { fA ∈ C∞(MC × MQ)| fA = 〈ψ |A(�R, �P)ψ〉}, (46)

for A(�R, �P) a linear operator on the Hilbert space H depending on the classical degrees of
freedom, because of two reasons.
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• It is evident that the set above is a subset of (43) and thus we are not loosing any of these
observables. But it is a well-known property that Ehrenfest dynamics is not linear and it
does not preserve P . We must thus enlarge the set (46).

• We are going to introduce in the next section a Poisson bracket on the space of observables.
For that bracket to close a Poisson algebra, we need to consider the whole set (43).

It is important to note that in the set (43) there are operators which are not representing
linear operators for the quantum part of the system and hence the set of properties listed in
section 4 for the pure quantum case are meaningless for them. But this is a natural feature of
the dynamics we are considering, because of its nonlinear nature.

5.3. Geometry and the Poisson bracket on the classical-quantum world

As we assume that both the classical and the quantum subsystems are endowed with Poisson
brackets, we face the same problem we have when combining, from a CM perspective, two
classical systems. Therefore, it is immediate to conclude that the corresponding Poisson
structures can be combined as

{·, ·} := {·, ·}C + �
−1{·, ·}Q, (47)

where the term {·, ·}C acts on the degrees of freedom of the first manifold and {·, ·}Q acts on
the degrees of freedom of the second one. It is a known fact [41] that such a superposition of
Poisson brackets always produces a well-defined Poisson structure in the product space.

The set of pure classical functions OC and the set of quantum generalized functions OQ

are closed under the Poisson bracket. The same happens with the quantum functions Os
Q and

the set of linear combinations OC+Q. In mathematical terms, what we have is a family of
Poisson subalgebras. This property ensures that the description of purely classical or purely
quantum systems, or even both systems at once but uncoupled to each other, can be made
within the formalism.

Once the Poisson bracket on MC × MQ has been introduced, one can prove, in analogy
to the full quantum case, that the infinitesimal generator of the phase transformations is the
Hamiltonian vector field of the identity operator, �Q = { fI, ·}. Therefore, a function is a
legitimate observable if it commutes with fI: { fI, f } = 0.

5.4. The definition of the dynamics

Analogously to the description given in sections 3 and 4, the dynamics of the mixed quantum
classical systems can be implemented on

• the manifold which represents the set of states by defining a vector field whose integral
curves represent the solutions of the dynamics (Schrödinger picture),

• the set of functions (please note the differences between the classical and the quantum
cases) defined on the set of states which represent the set of observables of the system. In
this case the Poisson bracket of the functions with the Hamiltonian of the system defines the
corresponding evolution (Heisenberg picture).

Both approaches are not disconnected, since they can be easily related:

XH = { fH, ·}, (48)

where we denote by XH the vector field which represents the dynamics on the phase space and
by fH the function which corresponds to the Hamiltonian of the complete system.

We can now proceed to our first goal: to provide a Hamiltonian description of Ehrenfest
dynamics in terms of a Poisson structure. We thus define the following Hamiltonian system:
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• A state space corresponding to the Cartesian product MC × MQ.
• A set of operators corresponding to the set of functions O defined in equation (43).
• The Poisson bracket defined in equation (47).
• And finally, the dynamics introduced by the following Hamiltonian function:

fH (�R, �P, �q, �p) :=
∑

J

�P2
J

2MJ
+ 〈ψ(�q, �p)|He(�R)ψ(�q, �p)〉, (49)

where He is the expression of the electronic Hamiltonian, MJ are the masses of the classical
subsystem of the nuclei and ψ(�q, �p) is the real-space representation of the state ψ analogous
to |ψ〉 in equation (39).

As a result, the dynamics of both subsystems are obtained easily. In the Schrödinger
picture we obtain

�̇R = ∂ fH

∂ �P
= M−1 �P, (50)

�̇P = −∂ fH

∂ �R
= −grad(〈ψ(�q, �p)|He(�R)ψ(�q, �p)〉), (51)

q̇k = �
−1 ∂ fH

∂ pk
, k = 1, . . . , NQ, (52)

ṗk = −�
−1 ∂ fH

∂qk
, k = 1, . . . , NQ. (53)

This set of equations corresponds exactly with Ehrenfest dynamics.
Finally, it is important to verify that the dynamics preserves the set of observables O, i.e.

for any observable f , { fH, f } ∈ O. This can be easily proven since we have established that
an observable belongs to O if it Poisson-commutes with fI. Thus, as fH ∈ O, if we consider
an observable f ∈ O, by the Jacobi identity

{ fI, { fH, f }} = −{ f , { fI, fH}} − { fH, { f , fI}} = 0. (54)

6. A phase-space description of the statistics of the Ehrenfest dynamics

The next step in our work is the definition of a statistical system associated with the dynamics
we introduced above. The first ingredient for that is the definition of the distributions we will
describe the system with.

The main conclusion from the previous section is that Ehrenfest dynamics can be described
as a Hamiltonian system on a Poisson manifold. Therefore, we are in a situation similar to a
standard classical system. We have seen that the dynamics preserves the submanifold MC ×SQ

(SQ being the sphere in equation (26)), and thus it is natural to consider such a manifold as the
space of our statistical system.

Thus, we have to construct now a statistical system composed of two subsystems. We may
think of introducing a total distribution factorizing as the product of a classical and a quantum
distribution. But as the events of the classical and the quantum regimes are not independent,
the two probabilities must be combined and not defined through two factorizing functions.

Hence, we will consider a density FQC ∈ O and the canonical volume element dμQC in
the quantum-classical phase space, restricted to MC × SQ:

dμQC := dμC d
Q, (55)
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which allows us to define the macroscopic average for any observable M ∈ O:

〈M〉 :=
∫

MC×SQ

M(�R, �P, �q, �p)FQC(�R, �P, �q, �p) dμQC. (56)

In the rest of the section we will discuss in more detail the ingredients of this definition.
We start by the volume form. Given the classical phase space MC with Darboux coordinates

(�R, �P) (they always exist locally [41]) we define the volume element in the classical phase
space by

dμC :=
∏

J

dPJ dRJ, (57)

which, as it is well known, is invariant under any purely classical Hamiltonian evolution, and
does not depend on the choice of coordinates.

We might proceed in the same way for the quantum part of our system. Indeed, as we have
written the quantum dynamics like a classical Hamiltonian one we could use the canonical
invariant volume element, described in the previous paragraph, dμQ on MQ. However, new
complications appear in this case as in the quantum part of the phase space we restrict the
integration to SQ and then we look for an invariant volume form in the unit sphere, rather than
in the full Hilbert space.

The new ingredient that makes the restriction possible is the fact that all our observables
and of course, also the Hamiltonian, are killed by �. This implies, as discussed before, that fI
is a constant of motion. Using this we decompose

dμQ = d fI d
̃Q, (58)

which is possible on H \ {0}. The decomposition is not unique, but the restriction (pullback)
of d
̃Q to the unit sphere gives a uniquely defined, invariant volume form on SQ that we will
denote by d
Q. The decomposition is nothing but the factorization into the radial part and the
solid angle volume element.

Example 2. For the simple case we studied above, where H = C
2 and hence MQ = R

4 and
SQ is a three-dimensional sphere, the volume element above would be

d
Q = q1 dq2 dp1 dp2 − q2 dq1 dp1 dp2 + p1 dq1 dq2 dp2 − p2 dq1 dq2 dp1. (59)

Now, we finally put together the two ingredients to obtain the invariant volume element
dμQC in equation (55).

Now, we discuss the properties we must require from FQC in order for equation (56) to
correctly define the statistical mechanics for the Ehrenfest dynamics.

• The expected value of the constant observable should be that constant which implies that
the integral on the whole set of states is equal to 1:∫

MC×SQ

FQC dμQC = 1. (60)

• The average for any observable fA of the form (46) associated with a positive definite
Hermitian operator A should be positive. This implies the usual requirements of positive
probability density in purely classical statistical mechanics.

It is simple to go from this phase-space description to the formulation of a density operator
ρ for the quantum system and make the construction closer to the usual description of quantum
statistical mechanics. The density operator is defined as follows:

ρ(�R, �P) :=
∫

SQ

dμQ(�q, �p)FQC(�R, �P, �q, �p)|ψ(�q, �p)〉〈ψ(�q, �p)|, (61)
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where |ψ(�q, �p)〉〈ψ(�q, �p)| is the projector on the quantum state parametrized by the pair (�q, �p).
The average value of a pure quantum magnitude A, represented by the quadratic function fA,
can be computed as

〈A〉(�R, �P) := Tr(ρ(�R, �P)A) =
∫

SQ

dμQ(�q, �p)FQC(�R, �P, �q, �p) fA(�q, �p). (62)

To obtain the corresponding total average, it is required to integrate the resulting object
on the classical phase space:

〈A〉 :=
∫

MC

dμC(�R, �P)〈A〉(�R, �P). (63)

So far we have discussed general considerations about the statistical mechanics of our
system. Now we should include the dynamics in the game. Given that we have formulated the
Ehrenfest dynamics as a Hamiltonian system, it is well known [37] which is the evolution of
the density function FQC. It is given by the Liouville equation

dFQC

dt
+ { fH, FQC} = 0, (64)

where, in the derivation of the equation, it is an essential requirement that the invariance of
the volume form under the evolution of the system.

The equilibrium statistical mechanics is obtained by requiring ḞQC = 0, which making
use of (64) is equivalent to

{ fH, FQC} = 0,

or, in other words, FQC should be a constant of motion. An obvious non-trivial constant of
motion is given by any function of fH . The question is if there are more. To answer this we
should examine closely our particular dynamics. In several occasions we have mentioned the
nonlinear character of a generic Ehrenfest system. This is an essential ingredient, because due
to this fact we do not expect any other constant of motion than a function of the Hamiltonian
itself. This is in contrast with the case of linear equations of motion, where the system is
necessarily integrable.

The question of the existence of more constants of motion and, therefore, more candidates
for the equilibrium density FQC can be elucidated with a simple example that we discuss below.
In it we show the presence of ergodic regions (open regions in the leave of constant energy
densely covered by a single orbit). This rules out the existence of constants of motion different
from the constant function in the region (i.e. functions of fH).

Example 3. In the following example we will study a simple toy model in which the coupling
between classical and quantum degrees of freedom gives rise to chaotic behaviour and the
appearance of ergodic regions.

The system consists of a complex two-dimensional Hilbert space MQ = C
2 and a classical

2D phase space where we define a 1D harmonic oscillator. Using coordinates (Iθ , θ ) for the
classical variables (action-angle coordinates for the oscillator) and � ∈ C

2 we define the
following Hamiltonian:

fH = Iθ + 1
2 〈�|σz + ε cos(θ )σx|�〉,

with σx, σz the Pauli sigma matrices.
We parametrize the normalized quantum state by

|�〉 = eiα

[
Iφ

eiφ
√

1 − I2
φ

]
. (65)
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Figure 1. The plot shows a single orbit of the Poincaré map of equation (66) at θ = 0. The angle
φ ∈ [−π, π ] is plotted in the horizontal axis and Iφ ∈ [0, 1] in the vertical one. We have taken
ε = 0.8. The energy determines Iθ and its actual value does not affect the dynamics of φ and Iφ .

One can now easily check that Iφ and φ are canonical conjugate variables. In these variables
the Hamiltonian reads

fH = Iθ + I2
φ + εIφ

√
1 − I2

φ cos(θ ) cos(φ), (66)

where ε measures the coupling of the classical and quantum systems.
In the limit of vanishing ε the system is integrable and actually linear in these coordinates.

However, for non-vanishing ε the model becomes nonlinear and, as we will show below,
regions of chaotic motion emerge.

In order to understand the behaviour of our system it is useful to study its Poincaré
map (see [41] for the definition). To this end we take the transversal (or Poincaré) section at
θ = 0 and, taking into account the conservation of energy, only two coordinates are needed to
describe the map, we have chosen the quantum variables Iφ and φ.6

By examining the plot of figure 1, one sees that the orbit densely fills a large region of the
Poincaré section and therefore any constant of motion should be the constant function in that
region. In the presence of such an ergodic evolution the only constants of motion are functions
of the Hamiltonian.

As a consequence we can claim that, generically within the Ehrenfest dynamics, the only
functions which commute with the Hamiltonian in (64) are those which are function of the
Hamiltonian fH itself. As the Poisson bracket is skew-symmetric, the property follows trivially.
Ergodicity helps us to assert, roughly speaking, that in general no other function in O will be
a constant of the motion.

Thus, at this stage, we can finish our construction with the equilibrium distribution
associated with Ehrenfest dynamics. Taking into account the ergodicity of the dynamics, we
can impose the equal-probabilities condition to the configurations of an isolated Ehrenfest
system, which leads to the microcanonical ensemble (see [43]).

6 In our construction of the Poincaré map we represent the value of φ and Iφ whenever the periodic coordinate θ

takes the value θ = 0. The successive values of φ and Iφ , for some initial condition, form our orbit. As stressed in
[41], the Poincaré map is a very useful tool in the context of nonlinear dynamics as many properties of the full system
like ergodicity, chaos or regular behaviour, may be inferred from the same property of the Poincaré map.
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In the case in which this system is weakly coupled to a bath, if we assume that the dynamics
of the system plus bath is ergodic as well, such that the system plus bath are microcanonically
distributed, then the statistics of the Ehrenfest system are given by the well-known canonical
probability density (see, for example, [37, 38, 44])

Fc
QC(�R, �P, �q, �p) = Z−1 e−β fH , Z =

∫
MC×SQ

e−β fH dμQC, (67)

where β−1, proportional to the temperature of the subsystem, is the parameter governing
the equilibrium between the system and the bath. An information-theoretic approach to the
equiprobability in the microcanonical ensemble and to equation (67) may be seen in [45] or
in [46, 47] for a much more modern and mathematically sound exposition. We also strongly
recommend the recent work of Reimann [48, 49] for a foundation of statistical mechanics
under experimentally realistic conditions.

7. Application: Nosé formalism for Ehrenfest systems

We now proceed to extend the non-stochastic method proposed by Nosé [17, 18] to our
Hamiltonian (49). Consider a system defined on MC × MQ as before and an extension of that
system including two new classical degrees of freedom (s, ps), which produces a total state
space

MC × MQ × R
2.

In this case, in order to include the quantum degrees of freedom, we must take into account
the problem of the deformation of the domain (see the change of coordinates of equation (77))
of integration we dealt with in the previous section. Thus, we must rewrite the Hamiltonian
given in equation (49) in order to extend the domain of the quantum part from the sphere to
the whole MQ. In order to do this, we consider

H(�R, �P, �q, �p) :=
∑

k

�P2
k

2M
+ 〈ψ(�q, �p)|He(�R)ψ(�q, �p)〉

〈ψ(�q, �p)|ψ(�q, �p)〉
=: HN (�P) + eHe (�q, �p, �R), (68)

Now we transform this Hamiltonian into the ‘extended’ one by introducing a dependence with
respect to the new degrees of freedom:

H(�R, �P, �q, �p, s, ps) := HN (�P/s) + eHe (�q, �p/s, �R) + p2
s

2Q
+ gkT log(s). (69)

This is very similar to the method proposed by Nosé [17, 18] for thermostating classical
systems. The Nosé technique is basically an algorithm to produce the correct equilibrium
distribution and, therefore, the interpretation of the coordinate s as describing the behaviour
of some ‘thermostat’ is only metaphorical. In the same sense, the particular form of the last
two terms in the above Hamiltonian is just the one needed for the theorem that we mention in
the following lines to work.

The extended equations of motion now read

�̇R = �P/(Ms2), (70)

�̇P = −grad�R(eHe (�q, �p/s, �R)), (71)

q̇k = �
−1s−1

〈ψ |ψ〉 (Hpkq1 q1 + · · · + Hpk pNQ
pNQ/s − eHe (�q, �p/s, �R)pk), (72)
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ṗk = − �
−1

〈ψ |ψ〉 (Hqkq1 q1 + · · · + Hqk pNQ
pNQ/s − eHe (�q, �p/s, �R)qk), (73)

ṡ = ps

Q
, (74)

ṗs = s−1
∑

k

q̇k +
∑

j

Ṙ j − s−1gKT, (75)

where k = 1, . . . , NQ.
Now we generalize the standard result of Nosé [17, 18] by proving the equivalence of

the microcanonical distribution of the extended system and the canonical distribution of the
original one. Equations (70)–(75) are the necessary ones to implement the microcanonical
scheme once we assume the ergodic hypothesis for the extended system. To prove the
equivalence with the canonical distribution of the original system, we take the Hamiltonian
above, and we consider the corresponding microcanonical distribution:

Z =
∫

MC×MQ×R2
dμC dμQ dps dsδ(H(�R, �P, �q, �p, s, ps) − E ), (76)

where dμC dμQ is the volume element on MC × MQ.
If we consider the following noncanonical transformation on MC × MQ × R

2 :

R′ j = Rj, P′
j = Pj

s
, q′k = qk, p′

k = pk

s
, s′ = s, p′

s = ps, (77)

the partition function reads (we use the same symbol again for the transformed variables but
include the Jacobian which is equal to sD)

Z =
∫

MC×MQ×R2
dμC dμQ dpS ds sD

× δ

(
HN (�P) + eHe (�q, �p, �R) + p2

s

2Q
+ gkT log(s) − E

)
, (78)

where D is the number of degrees of freedom of the system (the sum of classical and quantum
degrees of freedom).

As the original integral domain includes the complete MQ, and therefore a rescaling of
momenta does not modify it, we can use the equivalence

δ( f (s)) = δ(s − s0)/| f ′(s0)|,
where

s0 = exp

⎛⎝−
HN (�P) + eHe (�q, �p, �R) + p2

s
2Q − E

gkT

⎞⎠ ,

and write

Z =
∫

MC×MQ×R2
dμC dμQ dpS ds sDδ

⎡⎣s − exp

⎛⎝−
HN (�P) + eHe (�q, �p, �R) + p2

s
2Q − E

gkT

⎞⎠⎤⎦ .

(79)

Integrating in the variable s, we obtain

Z = 1

gkT

∫
dps exp

[
D + 1

gkT

(
E − p2

s

2Q

)]
×

∫
MC×MQ

dμCdμQ exp

[
−D + 1

gkT
(HN (�P) + eHe (�q, �p, �R)

]
. (80)
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Then, if we choose g = D + 1, the exponential takes the desired form. Besides, we can
note that when calculating the average of any function M ∈ O (where O corresponds to
equation (43) and therefore M does not depend on the extended variables), the quantity

1

(D + 1)kT

∫
dps exp

[
1

kT

(
E − p2

s

2Q

)]
factorizes. If we also assume that the function M does not depend either on the norm of the
quantum state (as it is the case for the quantum observables) and we decompose the volume
element dμQ as equation (58), the radial part of the quantum integral also factorizes and
cancels the analogous term arising from the partition function.

Thus, we can write

〈M〉 = 1/Z
∫

MC×MQ×R2
dμC d fI d
̃Q dps dsM(�R, �P, �q, �p)δ(H(�R, �P, �q, �p, s, ps) − E )

= 1/Z

(
1

(D + 1)kT

∫
dps exp

[
1

kT

(
E − p2

s

2Q

)] ∫
R

d fI

×
∫

MC×SQ

dμC d
QM(�R, �P, �q, �p) exp

[
− 1

kT
(HN (�P) + eHe (�q, �p, �R))

])
,

where

Z = 1

(D + 1)kT

∫
dps exp

[
1

kT

(
E − p2

s

2Q

)]∫
R

d fI

×
∫

MC×SQ

dμC d
Q exp

[
− 1

kT
(HN (�P) + eHe (�q, �p, �R))

]
.

Hence, we have proved that the microcanonical distribution of the extended dynamical system
created by equation (69) is equivalent to the canonical distribution created by the Hamiltonian

H(�R, �P, �q, �p) = HN (�P) + eHe (�q, �p, �R).

8. Conclusions and future work

In this paper, we have constructed a rigorous Hamiltonian description of the Ehrenfest
dynamics of an isolated system by combining the Poisson bracket formulation of classical
mechanics with the geometric formulation of quantum mechanics. We have also constructed the
corresponding statistical description and obtained the associated Liouville equation. Finally,
after verifying numerically that the Ehrenfest dynamics is ergodic, we justify the equilibrium
distribution produced by it.

It is important to keep in mind the restriction to finite-dimensional quantum systems
that we fixed as starting point, since our first goal is to apply our construction to molecular
dynamics. From a theoretical point of view, though, it is very interesting to perform the same
type of analysis for infinite-dimensional quantum systems (note that the Ehrenfest dynamics
as formulated in [4, 5] consists of classical nuclei and an infinite-dimensional Hilbert space
for the electronic subsystem). Formally, the construction can be defined in the same way, once
we adapt the language to infinite-dimensional manifolds. But the nonlinearity of the resulting
dynamics imposes very challenging problems at many levels, for instance at the very existence
of the solutions of the Hamiltonian dynamical flow. Another interesting problem would be to
recover, within the geometrical formalism, the classical-quantum system as a suitable classical
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limit for the nuclear degrees of freedom of an original completely quantum system (similarly
to what is done in [4, 5] in the standard approach). We hope to address these problems in the
future.

The definition of the Hamiltonian in equation (49) and its associated canonical equilibrium
distribution (equation (67)) allows us now to use (classical) Monte Carlo methods for
computing canonical equilibrium averages in our system, given by expression (56). But this
formalism also allows us to easily introduce a Nosé extended system scheme to compute
averages in the canonical ensemble by performing constant energy molecular dynamics
simulations. This is a very important feature of the final setting, because the situations where
the Ehrenfest approach is necessary (i.e. those where the electronic energy gap is small and
the Born–Oppenheimer approximation is not sufficient) the effect of the temperature can be
relevant. A method for the simulation of the canonical ensemble is thus of greatest importance.

Alternatively, if we wish to perform MD simulations using stochastic methods, we
should first construct the Langevin dynamics associated with our Hamiltonian (49) and
equations (50)–(53). To develop this program, we also need an analogue of the Fokker–
Planck equation associated with those Langevin equations and then we have to check whether
its solution at infinite time approaches equation (67). Presently, we are working on this point
[50], i.e. on the extension of our formalism to an associated stochastic MD.
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We would like to thank José F Cariñena, Andrés Cruz and David Zueco for many illuminating
discussions. This work has been supported by the research projects E24/1, E24/2 and E24/3
(DGA, Spain), FPA2009-09638 (CICYT, Spain), FIS2009-13364-C02-01 (MICINN, Spain),
200980I064 (CSIC, Spain) and ARAID and Ibercaja grant for young researchers (Spain). We
also acknowledge the suggestions and insights of the referees.

References

[1] Marx D and Hutter J 2009 Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge:
Cambridge University Press)

[2] Gerber R B, Buch V and Ratner M A 1982 Time-dependent self-consistent field approximation for
intramolecular energy transfer: I. Formulation and application to dissociation of van der Waals molecules
J. Chem. Phys. 77 3022–30

[3] Gerber R B and Ratner M A 1988 Self-consistent field methods for vibrational excitations in polyatomic systems
Advances in Chemical Physics 70 97–132

[4] Bornemann F A, Nettesheim P and Schütte C 1996 Quantum-classical molecular dynamics as an approximation
to full quantum dynamics J. Chem. Phys. 105 1074–83
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