
Characterising Resource Management Performance in
Kubernetes

Vı́ctor Medela, Rafael Tolosana-Calasanza, José Ángel Bañaresa, Unai
Arronateguia, Omer Ranab

aAragon Institute of Engineering Research, University of Zaragoza, Spain
bSchool of Computer Science & Informatics, Cardiff University, UK

Abstract

One of the challenges for enabling elastic automated resource management

in cloud computing is to accomplish effective automated resource management

actions, which include provisioning, maintaining, and de-provisioning of com-

puting power. Among the cloud resources currently available, containers are

rapidly replacing Virtual Machines (VMs) as the compute instance of choice in

cloud-based deployments. One of the reasons is the significantly lower overhead

of deploying and terminating containers in comparison to VMs. Understanding

performance associated with deploying, terminating and maintaining a container

is therefore significant. In this paper, we analyse performance of the Kubernetes

system and develop a Petri net-based model of resource management within this

system. Our model is characterised using real data from a Kubernetes deploy-

ment, and can be used as a basis to design scaleable applications that make use

of Kubernetes.

Keywords: Performance Models, Cloud Resource Management

∗Corresponding authors
Email addresses: vmedel@unizar.es (Vı́ctor Medel), rafaelt@unizar.es (Rafael

Tolosana-Calasanz), banares@unizar.es (José Ángel Bañares), unai@unizar.es (Unai
Arronategui), ranaof@cardiff.ac.uk (Omer Rana)

Preprint submitted to Journal of Computers & Electrical Engineering



1. Introduction

Cloud systems enable computational resources to be acquired (and released)

on-demand and in accordance with (changing) application requirements. Users

can rent computational resources of different types: virtual machines (VMs),

containers, specialist hardware (e.g. GPU or FPGA), or bare-metal resources,

each having their own characteristics and cost. An effective automated control of

cloud resource (de-) provisioning needs to consider [? ]: (i) resource utilization,

(ii) economic cost of provisioning and management, and (iii) the resource man-

agement actions that can be automated. Increasingly, many cloud providers

support resource provisioning (and billing) on a per second or even per mil-

lisecond basis, such as GCE1, or Amazon Lambda2 – referred to as “serverless

computing”. Therefore, understanding performance associated with deploying,

terminating and maintaining a container that hosts that function is significant,

as it affects the ability of a provider to offer finer grained charging options for

users with stream analytics/ processing application requirements. Provisioning

and de-provisioning actions are subject to a number of factors [? ], mainly: (i)

the overheads associated with the action (e.g. launching a new VM can often

take minutes [? ]); and (ii) the actual processing time required can vary due to

resource contention – leading to uncertainty for the user.

Kubernetes [? ] is a system that enables a container-based deployment

within Platform-as-a-Service (PaaS) clouds, focusing specifically on cluster-

based systems. It can provide a cloud-native application (CNA) [? ], a dis-

tributed and horizontally scalable system composed of (micro)services, with

operational capabilities such as resilience and elasticity support. From an archi-

tectural point of view, Kubernetes introduces the pod concept, a group of one

or more containers (e.g. Docker, or any OCI compliant container system) with

shared storage and network. In this paper, we investigate deploying, terminating

and maintaining performance of (Docker) containers with Kubernetes, identi-

1https://cloud.google.com/
2https://aws.amazon.com/lambda/

2

https://cloud.google.com/
https://aws.amazon.com/lambda/


fying operational states that arise with the associated pod–container. This is

achieved through Reference Nets (a kind of Petri-Net (PN) [? ]) based models.

The models can be further annotated and configured with deterministic time,

probability distributions, or functions obtained from monitoring data acquired

from a Kubernetes deployment. It can also be used by an application developer

/ designer: (i) to evaluate how pods and containers could impact their applica-

tion performance; or (ii) to support capacity planning for application scale-up

/ scale-down.

This paper extends [? ] by: (i) the inclusion of additional experiments in a

larger cluster; (ii) considering the impact of variable latency/Round-Trip Time

(RTT) in the communication network; (iii) analysing the impact of varying the

number of containers inside a pod; (iv) analysing the impact of downloading a

container image at deployment time; (v) using rules to assist developers to better

structure their Kubernetes deployment. The paper is organized as follows. In

Section 2, we describe our model. Section 3 shows our pod abstraction overhead

characterization. We discuss the deployment results in Section 4 and related

work in Section 5. The conclusions are outlined in Section 6.

2. Kubernetes Overhead Analysis & Performance Models

The Kubernetes architecture incorporates the concept of a pod, an abstrac-

tion that aggregates a set of containers with some shared resources at the same

host machine. It plays a key factor in the overall performance of Kubernetes.We

make use of Reference Nets to model pods and containers and to conduct perfor-

mance analysis. Reference Nets can be interpreted by Renew[? ], a Java-based

Reference net interpreter and a graphical modelling tool.

2.1. Kubernetes Performance Model

Kubernetes supports two kinds of pods: (i)Service Pods: They are run per-

manently, and can be seen as a background workload in the cluster. Two key

performance metrics are associated with them: (i.a) availability (influenced by

3



faults and the time to restart a pod/container) and (i.b) utilisation of the ser-

vice (impacting response time to clients). For example, high utilisation leads to

an increased response time. Several Kubernetes system services (e.g. container

network or DNS) and high level services (e.g. monitoring, logging tools) are

provided by Service Pods. (ii)Job/batch Pods: They are containers that execute

tasks and terminate on task completion. For a Job pod, both deployment and

total execution time (including restarting, if necessary) are important metrics.

The restart policy of these containers can be onFailure or never.

When a pod is launched in Kubernetes, it requests resources (RAM and

CPU) to the Kubernetes scheduler. If enough resources are available, the sched-

uler selects the best node for deployment. The requested CPU could be consid-

ered as a reservation in contingency situations. For instance, when a container

is idle (e.g. it is inside a service pod and the service has low utilisation), other

containers can use the CPU. With this resource model, the overall performance

of the pod depends on its resource requests and on the overall workload. We

could define a CPU usage limit, but then some resources might remain unused.

We model a pod’s life cycle in order to estimate the impact of different sce-

narios on the deployment time and the performance of the applications running

inside a pod. In Kubernetes, a pod’s life cycle depends on the state of the con-

tainers that are inside it. For instance, a pod has to wait until all its containers

are created. With the Reference Nets abstraction, we can provide an unam-

biguous hierarchical representation of the Kubernetes manager system as the

System Net and the Pods (with the containers) as the Token Nets. The tokens

inside our Token Net represent containers and the tokens inside our System Net

represent Pods, as illustrated in Figures 1 and 2. The models were derived from

the Kubernetes documentation 3; specifically, from the Pod Lifecycle section 4

and from the Resource Management section 5. Details about places and transi-

3https://kubernetes.io/docs
4https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
5https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

4

https://kubernetes.io/docs
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/


Figure 1: Model of the life cycle of pods in Kubernetes.

tions, needed to specify the initial marking, are hidden to improve legibility. In

addition, we assume that the scheduler assigns a pod to a single node arbitrarily,

as long as the machine has enough resources available. If there are not enough

resources in the cluster, the pod waits in Pending Scheduling place. This

behaviour could be refined by introducing more sophisticated policies and a re-

jection place for pods. Machines place 6 represents the resources managed by

the scheduler. For each machine, there is a tuple token with the identification of

the node, the available RAM size and number of available cores. Figure 1 shows

three machines ranging from 8GB to 32GB, with 1 to 4 cores. The resources

6It should be noted that Machines place appears twice: One with a single circle (actual

definition) and with a double circle (a duplication to simplify the model). Reference nets

support double circle to simplify the model and to improve its legibility. If it were not used,

several arcs would cross the model with their corresponding arc labels

5



Figure 2: Model of the life cycle of containers inside a pod. r models the restart policy of a

container – Always = 0, OnFailure=1, Never = 2.

assigned to a pod are only released when the pod restart policy is “never” or

“onFailure”.

Once the pod has been assigned to a machine, Kubernetes starts creating

the containers – it is in Pending Scheduler place – while the pod waits in its

Pending place. Both nets are synchronized through the inscription runCont.

In this way, when a container in a Pod changes to Running place in Figure 2,

the number of pending containers in this pod is decremented in the Pending

place of Figure 1. When all containers are running in the pod, the transition

with the guard pend==0 is fired and the pod states changes to Running.

While the pod is in Running state, it is waiting for its containers to ter-

minate. If a container fails, the pod goes to RunningFailed place where it

waits for the termination of all containers (with a potential restart action). If

there are no failures, the pod will be in Running place or eventually will reach

Success place when all containers have finished.

Figure 2 illustrates the behaviour of a container. A token in that net repre-

sent a container. A pod’s restart policy is included in the net. A created pod

enters the Running place, and may reach the Success or Failure place. The

firing of the corresponding Transitions (T1, T2 and T3) is synchronised with

the System Net. According to the restart policy, the containers might return to

6



Transition Variable Trans. Variable

T1 Container creation T2 Container execution

T3 Time to Container failure T4, T5
Container termination time
if the container is restarted

T6, T7
(Graceful)
Container termination

Table 1: Timed transitions in the model

Running place or they might finish in SuccessExit or in FailedExit places.

We include several timed transitions, as summarised in Table 1. By default, the

firing of T2 and T3 is arbitrary and non-deterministic; however, with Renew, it

is possible to simulate any probability distribution for them in order to simulate

a failure. Additionally, it is possible to assign different random distributions for

the timed transitions. In the next sections, we describe different experiments

to obtain the real value of these metrics. The termination time (T6 and T7)

and the termination time when a container is restarted (T4 and T5) do not

depend on the success of the container, so both transitions are modelled with

the same distribution. When a container is restarted, the total restarting time

can be calculated as T4 – or T5– + T1.

2.2. Experiments to feed the performance model

We conducted several experiments to estimate the value of transitions in

Table 1 by deploying Kubernetes on a cluster with eight physical machines –

n = 8–, each with 32GB of RAM and 4 Intel i5-4690(3.500GHz) cores. The

results are shown in the next subsections. The performance metrics of the high

level model (Figure 1) are determined by the firing sequences of transitions in

the Token Net (Figure 2). For example, if there is a pod with three containers,

the T1 transition of this pod is fired three times. The pod is waiting this time

in the Pending place.

2.2.1. Benchmarking Starting Time

To estimate the value of Transition T1, we launched a variable number

of containers, whose image was preloaded at all the machines, and measured

7



the total deployment time. Each experiment was repeated 30 times, and we

calculated the mean, the standard deviation, and the confidence intervals (for

α = 0.05). In order to calculate the confidence interval, we assumed (by the

Central Limit Theorem) that the underlying distribution of the sampled mean

follows a normal distribution.

In Figure 3, we show how different variables influence the deployment time.

These variables are: (i) The number of machines available in the cluster (n). We

observe that the scheduler launches pods sequentially, without multi-threading

(red line in Figure 3), showing a linear total deployment time with the number

of deployed containers. (ii) The number of containers C inside a pod (ρ factor).

The ρ factor is calculated as follows: ρ = #Pods
C . For instance, a ρ factor of 0.25

implies that there are 4 containers inside each pod. We can see that the time to

deploy 10 pods with 4 containers in a single machine is 25.89 s., which is higher

than the time to deploy 10 pods in a single container on a single machine (16.01

s.). (iii) Cluster constraints as the number of nodes.

The total provisioning time (Tt) is calculated as: Tt = Td + Tdown Where

Td is the time to deploy pods and containers on physical machines and Tdown

is the time to download the needed container image to the involved machines.

Our experiments show that Td has a linear behaviour. Therefore, Td depends

on the number of deployed containers C and on the number of deployed pods,

#Pods: Td = C Tc(ρ,n,C)
min{#Pods,n} . As the scheduler manages the pod as the minimal

schedulable unit, the maximum number of pods deployed in parallel in a cluster

is given by min{#Pods, n}. Tc is a function that returns the time to create a

single container. This value depends on how the deployment is structured – ρ

and C parameters – and the number of machines in the cluster (n). In Figure 4,

we show different values for Tc, obtained experimentally. We can see that for

large C values, and as ρ approaches 0, Tc becomes constant. Therefore, we

can write: limρ→0,n→∞,C→∞ Tc(ρ, n, C) = tc. Under these assumptions, the Tc

value could be considered as a constant – attached to T1 transition.

In order to characterise the impact of container image download time, we

repeated the previous experiments without preloading the image. The image is

8



0 10 20 30 40
0

20

40

60

Total Containers C

T
ot
al

D
ep
lo
y
m
en
t
T
im

e
(s
)

ρ = 1

0 10 20 30 40
0

20

40

60

Total Containers C

ρ = 0.25

0 10 20 30 40
0

20

40

60

Total Containers C

ρ = 0.1

10 20 30 40
0

20

40

60

Number of Containers C

T
ot
al

D
ep
lo
y
m
en
t
T
im

e
(s
)

ρ = 0.05

10 20 30 40
0

20

40

60

Number of Containers C

ρ = 0.025

n = 1 n = 2 n = 4 n = 8

Figure 3: Total deployment time (Td) vs. Number of deployed containers (C). Each graph

shows: mean time, confidence interval for the mean for a varying number of machines in

cluster, n. The results are grouped by the number of containers inside a pod, 1
ρ

downloaded from a machine located inside the cluster connected directly to the

same switch. The results are shown in Figure 5. The results of the homogeneous

latency scenario are better than the ones of the variable latency scenario – as

ρ tends to zero, the latency impact on the results decreases. We can see that

as the number of machines increase, the total deployment time also increases,

because the image needs to be downloaded by all the machines in the cluster,

and all the machines are connected to the same server. When the number of

deployed pods is greater than the number of machines, the deployment time

remains stable, so we can conclude that Kubernetes only downloads the image

once per machine.

Several variables related to the cluster architecture impact the deployment

time, such as parameters of the physical machines and the network topology. To

assess the network topology impact, we repeated the experiments in a cluster

9



10 20 30 40
0

1

2

3

4

Total containers

T
c
(s
)

ρ = 1

10 20 30 40
0

1

2

3

4

Total containers

ρ = 0.25

10 20 30 40
0

1

2

3

4

Total containers

ρ = 0.1

10 20 30 40
0

1

2

3

4

Number of Containers C

T
c
(s
)

ρ = 0.05

10 20 30 40
0

1

2

3

4

Number of Containers C

ρ = 0.025

n = 1 n = 2 n = 4 n = 8

Figure 4: Time to create a single container (Tc function) vs. Number of deployed containers

(C). Each graph shows: mean time, confidence interval for the mean for a varying number of

machines in cluster, n. The results are grouped by the number of containers inside a pod, 1
ρ

with heterogeneous latency. We simulated that half of the machines are in a

different network area, so that their Round Trip Time (RTT) is about 100ms.

The RTT for the rest of the machines is 0.25ms. Table 2 depicts the results for

ρ = 1 and n = 8. The results for other values of ρ and n are quite similar. We

can see that the latency has not a significant impact on Td – and neither on

Tc. As in Tt is included the time to download the container image, this value is

higher. However, the size of the image mitigates the latency impact.

2.2.2. Benchmarking Termination Time

A Pod is expected to be terminated at some time. If it is a service, and

consequently it has to be running all the time, the termination may be due

to a failure and the pod has to be restarted. This philosophy also applied to

containers, as we discussed previously in the Container Net model (transitions

10



0 10 20 30 40
0

20

40

60

80

100

Number of Containers C

T
ot
al

P
ro
v
is
io
n
in
g
T
im

e
(s
)

ρ = 1

0 10 20 30 40
0

20

40

60

80

100

Number of Containers C

ρ = 0.25

0 10 20 30 40
0

20

40

60

80

100

Number of Containers C

ρ = 0.1

10 20 30 40
0

20

40

60

80

100

Number of Containers C

T
ot
al

P
ro
v
is
io
n
in
g
T
im

e
(s
)

ρ = 0.05

10 20 30 40
0

20

40

60

80

100

Number of Containers C

ρ = 0.025

n = 1 n = 2 n = 4 n = 8

Figure 5: Tt vs. C. Each graph shows: mean time, confidence interval for the mean for a

varying number of machines in cluster, n. The results are grouped by the number of containers

inside a pod, 1
ρ
. The container image (1.225 GB) is not present in the machines.

T4, T5, T6, T7). We consider T3 to depend on the application, and it rep-

resents the failure rate (or the time between failures). When a pod terminates,

Kubernetes waits for a grace period (which, by default, is 30 seconds) until it

kills any associated container and data structures.

As far as we have tested, the only variable that affects termination time of

a pod is the number of containers in that pod. This occurs because when a pod

finishes, all its containers have to be finished; however, in a normal scenario,

pods finish – or restart – asynchronously. Therefore, the overhead caused by

finalising several pods on several machines is negligible. As ρ approaches zero,

the mean time to stop a single container inside a pod remains constant. The way

in which these times are aggregated and synchronised depends on the scenario,

and the specific performance metrics can be derived from the complete Petri

Net Model.

11



Homogeneous RTT Heterogeneous RTT

C Td Tt Td Tt

1 1.85 31.09 1.94 33.26

5 2.37 67.28 2.66 66.79

10 3.77 83.44 3.87 82.66

20 5.69 83.81 5.56 86.93

40 10.24 85.47 10.21 91.02

Table 2: Td and Tt values from a Kubernetes cluster with homogeneous RTT (0.25ms) and

from a Kubernetes cluster with heterogeneous RTT. ρ = 1 and n = 8. The container image

is 1.225 GB. The results are in seconds.

In order to associate the corresponding metric for the transitions, we perform

the experiments shown in Table 3 in the same cluster, as in the previous section.

We present the results for T4 and T6 which correspond to a successful scenario.

Without taking into account the time to detect the failure, the behaviour of

transitions T5 and T7 is similar: (i) Transitions T4, T5 : These transitions

measure the time to stop a container when it is going to be restarted. We have

deployed pods with a variable number of containers to measure the time. The

results are shown in column “T4 per Container” in Table 3. When we decrease

ρ, the mean time to terminate a container remains constant. Additionally, the

highest measured mean time is ∼ 0.3s and 80% of sampled times are < 0.22s.

(ii) Transitions T6, T7 : These transitions model the normal behaviour of

Kubernetes. On successful completion, Kubernetes waits for the grace period

and deletes all the data structures associated with a container. We measured

these variables in columns “T6 Graceful termination” and “T6 per container” in

Table 3. For these experiments, we set the grace period to 30s (the default). We

can observe that the stopping time remains constant for more than 10 containers

in a pod (Column “T6 per container”) and for low values is negligible. It is

interesting to note that the time to stop a container is higher when the container

is going to be restarted. This overhead is about 10ms.

12



C ρ
T4 (T5) per
Container

T6 (T7) Graceful
termination

T6 (T7) per
Container

1 1 0.01 30 0

10 0.1 0.11 30.99 0.10

20 0.05 0.12 32.8 0.14

40 0.025 0.15 34.69 0.11

60 0.016 0.16 37.04 0.11

Table 3: T4 and T6 experimental results (in seconds).

3. Overhead Analysis of the Pod Abstraction

The pod abstraction allows several containers to be grouped together sharing

different resources. However, the way in which resources are shared between

containers in the same pod and the impact on the performance of a container

are not easy to determine. In this section, we analyse this performance change

based on how the deployment is structured (e.g. the number of containers inside

each pod), using the total execution time as a metric. We performed several

experiments to measure the overhead induced by the pod abstraction. The aim

is to measure how transition T2 is affected by the deployment configuration.

Let us consider the following scenarios: (i) Scenario 1 : A pod is deployed

and all the containers are inside that pod – ρ = 1/c. (ii) Scenario 2 : Several

pods are deployed and there is exactly one container inside each pod – ρ = 1.

The total number of containers deployed is given by C and all pods are de-

ployed on the same machine. The machine has 12 Intel Xeon E5-2620 (2.00GHz)

cores and 32GB of RAM. Each experiment, one for each scenario, was repeated

30 times, so that we can consider that the probability distribution of both means

follows a normal distribution (by the Central Limit Theorem). We present the

mean execution time (µi) and the standard deviation (σi). In order to compare

both scenarios, we propose the following statistical hypothesis test: H0 : µ1 − µ2 = 0

H1 : µ1 − µ2 ̸= 0

As we assume that both means follow a normal distribution and they have

13



Scenario 1 Scenario 2

C µ1 σ1 µ2 σ2 µ1 − µ2 = 0?

1 123.47 0.43 123.38 0.39 Yes

4 473.65 0.96 475.15 0.62 No

8 946.90 0.72 946.63 0.69 Yes

12 1417.76 1.67 1420.40 1.35 No

20 2370.21 1.16 2374.36 3.89 Yes

Table 4: Pov-ray experiment. Comparison between the execution time (s) for Scenarios 1 (µ1)

and 2 (µ2) and hypothesis testing.

the same variance, we can use the Student t test [? ]. Additionally, as there are

several resources shared between containers, we can expect different behaviour

for each one. In the following subsections, we accomplished a hypothesis test

for applications with high CPU usage – Pov-Ray 3.7–, high I/O usage – IOzone

benchmark – and high network usage –netperf.

3.1. CPU intensive application

We used the multi-threaded pov-ray 3.7 application as a benchmark to mea-

sure the overhead of pods for CPU intensive use. Kubernetes inherits from

Docker the CPU quota reservation. This contingency mechanism allows a con-

tainer to reserve a maximum CPU quota. However, the quota is only used

when there is contingency in the machine, otherwise, all available CPU is used.

The comparison between Scenarios 1 and 2 is presented in Table 4. We can

see that when the number of containers increases, the null hypothesis should be

rejected. Additionally, when H0 is rejected, Scenario 1 is faster than Scenario 2.

The overhead caused by having one container inside each pod is about 0.01%.

3.2. I/O intensive application

We used IOzone as a representative benchmark of an I/O application. Ta-

ble 5 depicts the results (in seconds) for the execution of the iozone benchmark

– the benchmark was executed as follows: iozone -a -i 0 -i 1 -g 4M. If we com-

pare both scenarios, we can conclude that there is enough statistical evidence to

accept H0: As the number of pods in a machine increases, the caused overhead

14



Scenario 1 Scenario 2

C µ1 σ1 µ2 σ2 µ1 − µ2 = 0?

1 23.52 0.82 23.19 0.64 Yes

4 60.85 1.45 65.02 1.25 No

8 85.98 2.25 91.36 2.24 No

12 108.54 4.14 91.36 3.40 No

20 153.51 6.47 170.99 5.28 No

Table 5: IOzone experiment (iozone -a -i 0 -i 1 -g 4M). Comparison between the execution

time (s) for Scenario 1 (µ1) and for Scenario 2 (µ2) and hypothesis testing.

Scenario 1 Scenario 2

C µ1 σ1
∑ BWi

C
µ2 σ2

∑ BWi
C

H0?

1 1.88 0.06 1.88 1.90 0.04 1.90 Yes

4 8.61 0.21 2.15 8.82 0.05 2.20 Yes

8 15.53 0.12 1.94 16.26 0.20 2.03 No

12 14.99 0.21 1.25 16.42 0.38 1.37 No

20 15.10 0.19 0.75 18.32 0.91 0.91 No

Table 6: Hypothesis test for Network bandwidth (GB) for C iperf Clients. Iperf server &

client are on the same machine.

is higher. The conclusion of these experiments is that it is better to group all

the containers in the same pod.

3.3. Network intensive application

The network infrastructure of a machine is shared by all the containers inside

a pod. All the containers in a pod share the port space and the pod has only

one IP address. Sharing the access to the network by several containers might

cause an overhead on the container performance. To measure that overhead,

we deployed an iperf server inside a pod and several clients with the previous

scenario configuration. All test measure the network bandwidth for a 30 second

interval of TCP traffic.

The first experiment schedules all the containers at the same machine. In

a real scenario, this situation might arise when the scheduler groups pods /

containers together with high network traffic among them. In Table 6, we show

the average bandwidth per container and the hypothesis test. When the number

15



Scenario 1 Scenario 2

C µ1 σ1
∑ BWi

C
µ2 σ2

∑ BWi
C

H0?

1 108.26 0.04 108.26 108.26 0.04 108.26 Yes

4 110.53 0.39 27.63 110.17 0.84 27.54 Yes

8 113.81 0.47 14.23 115.64 0.51 14.46 No

12 117.42 0.92 9.78 117.53 4.01 9.79 Yes

20 124.74 1.22 6.24 126.52 2.09 6.33 No

Table 7: Hypothesis test for Network bandwidth (MB) for C iperf Clients. Iperf Clients are

on a different physical machine from the server one.

of containers inside the pod is above 4, there is enough statistical evidence to

reject H0. The best results are achieved when each pod has an isolate container

(Scenario 2).

We repeated the experiments with the iperf server placed on a machine and

the clients scheduled in another machine. Table 7 shows the results, which are

similar to the previous ones. The bandwidth values from Scenario 2 are higher

than the values from Scenario 1. From these experiments, we can conclude that

deploying several pods with a few coupled containers is better than a single pod

with a large number of containers.

4. Discussion

We demonstrated that the deployment of an application on a specific infras-

tructure can impact its overall performance. We used results from our experi-

ments to derive rules that try to improve it. Since in Kubernetes the minimal

schedulable unit is the pod, then ρ is the parameter which has the highest im-

pact on performance. We assume that the Kubernetes nodes are homogeneous

and that all the containers can be distributed across physical nodes, improving

the performance of the application – i.e. there is no coupling between contain-

ers, and this is considered as a design restriction. Figure 6 summarises the rules

to choose the best ρ from our experiments.

If an application is CPU or I/O intensive, it is better to group all the con-

tainers together –from experiments in Tables 4 and 5. However, we want to

16



Application Group 
Containers
(𝝆 = 𝒏/𝑪)

Is it 
network 
intensive

?

Network 
Intensive

CPU / IO 
Intensive

Is it a 
service

?

Service

Job

#Containers 
< #Cluster 
Machines?

Is Dep. 
overhead 

< Exec. 
overhead?

(Eq. 1)

Split 
Containers

(𝝆 = 𝟏)

Split 
Containers

(𝝆 = 𝟏)

Rule no. 2

Rule no. 1

Rule no. 2

Yes

No

Yes

No

Yes

No

No

Yes

Figure 6: Flow diagram to choose the best ρ parameter. C is the number of containers to

deploy and n is the number of machines in the cluster.

distribute the pods among as many machines as possible –through ρ parameter.

If the number of containers is greater than the number of machines, ρ should

be equal to n
c (Rule no. 1) – we have n pods with c

n containers at each pod.

This rule tries to minimise the impact of Td – which decreases for low values of

ρ. If the number of containers to deploy is less than the number of machines,

then ρ = 1 (Rule no. 2.) – we deploy a pod with a container at each machine.

The ρ choice is different if we consider an application that makes a high use

of the network. If it is a service pod and there are few failures in the scenario

–equivalently, Td is negligible – the best choice is to set ρ = 1. The reason is that

regardless of the machine where a pod is scheduled, the effective bandwidth is

higher when there is only one container inside a pod (Tables 6 and 7). However,

if Td is relevant, we can calculate the total time Tt (deployment time Td plus

execution time Te) as a function of ρ: Tt(ρ) = Td(ρ)+α(ρ)Te =
c
nTc(ρ)+α(ρ)Te;

where α(ρ) is the overhead caused by the pod abstraction (Section 3) and it

can be calculated as µ1

µ2
, where µ2 corresponds to a scenario with 1

ρ containers

per pod. In general, as µ2 is expected to be greater than µ1, then α > 1.

Additionally, α(1) = 1. Figure 7 depicts an example of Tc(ρ), calculated when

17



0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

ρ

T
c
(s
)

n = 1 n = 2 n = 4 n = 8

Figure 7: Function Tt(ρ) for different values of n. The number of deployed containers is

assumed to tend to infinity

C → ∞, obtained from Figure 4.

It is a complex task to minimise the function Tt(ρ). As a simplification,

we can assume that α(ρ) remains constant and when n tends to infinity, the

mean time to create a container also remains constant. In our experiments, for

low values of ρ (Table 7), its value is about 1.01. Assuming that the major

improvement in the execution time is achieved by executing tasks in parallel,

we can compare the situation where ρ = 1 versus ρ = n
c . The first one will be

faster than the second one when Equation 1 is satisfied – Rule no. 2 should

be applied. Otherwise, Rule no. 1 will be more suitable.

Tt(1) < Tt(n/c) =⇒ c

n
Tc(1) + Te <

c

n
Tc(n/c) + αTe =⇒

Tc(1)− Tc(n/c) <
n(α− 1)

c
Te (1)

These rules are based on the experiments in Section 3. Other container

technologies – such as Linux LXC or Core OS rocket – can be abstracted in

a similar way. The use of a particular technology does not have an impact

on our model, as many of these container framework will also share similar

lifecycle states. However, the performance values may vary depending on the

use of a particular container framework/ technology. In Section 5, we provide

a comparison of the performance of different technologies. Additionally, there

18



Work Model
Virtualisation
infrastructure

Experimental
framework

[? ] Experimental approach VMs
Hyper-V, KVM,
vSphere, Xen

[? ] Experimental approach VMs KVM, Xen, vBox

[? ? ] Experimental approach
Containers
and VMs

Docker, KVM,
Xen, LXC

[? ] Experimental approach
Containers
and VMs

LXC, OpenVZ,
VServer, Xen

[? ] Experimental approach Containers LXC

[? ? ] Experimental approach Containers Docker, KVM

[? ] Experimental approach Containers Docker, Weave

[? ? ]
Continuous Markov Chains
(Exponential PDF)

Containers
over VMs

Docker Swarm
over Amazon EC2

[? ] Nets within Nets (any PDF) VMs Simulations

Our work
Nets within Nets (any PDF)
Experimental approach

Containers
Kubernetes
over bare metal

Table 8: Summary of related work with the kind of model they proposed, the assumptions of

the model, the virtualisation infrastructure that they used and the experimental framework.

are different container management systems such as Docker Swarm, or Apache

Mesos. Although these other platforms do not have the pod abstraction, our

models and results could be relevant to them in scenarios where ρ = 1.

In our work, we have proposed a methodology to feed the model and to

analyse the overhead of pod abstraction. This methodology should be applied

to different configurations to be generalised. For instance, all our experiments

were carried out within a private cloud and Kubernetes was deployed over a bare

metal system. This configuration allows us to avoid the additional overhead

caused by the execution of Kubernetes inside VMs. On the other hand, the

Google Cloud Engine platform gives the possibility of running a Kubernetes

cluster; however, the containers are run over VMs, which may have an impact on

the performance and the hypothesis tests may change. Besides, the underlying

service architecture is different. For example, since the storage service is accesses

through the cloud, the I/O intensive application will have a different behaviour,

and the overhead caused by pod abstraction may not be negligible.

19



5. Related Work

We summarised the most important references in performance evaluation of

cloud environments in Table 8. Most of them focused on performance compar-

ison of VMs rather than on containers as the unit of computation. A set of

workloads were developed to get the usage of memory, CPU, networking, and

storage [? ? ? ]. However, all of them are based on experimental results that

do not have an analytical model that supports reasoning about performance.

To the best of our knowledge, no work has tackled container performance

from a rigorous analytical perspective. Even in previous cloud technologies, few

studies are based on formal models [? ]. A Markov Chain based analytical model

is used in [? ] to study performance analysis of microservices and implemented

with Docker and Docker Swarm. However, their analytical model assumes that

the workload generation rate follows a Poisson distribution – the time between

arrivals has an exponential probability density function (PDF) – which may

yield to non-realistic scenarios. In contrast, we can link Petri Net transitions

with any PDF or with functions obtained from real application benchmarking.

In [? ], an iterative, and step-wise refinement methodology was proposed

for cloud applications, covering all the software lifecycle steps. The method-

ology is centered around a performance model that captures (non) functional

requirements, control flow, data flow and the involved computing resources. As

a result the performance of the distributed system can be formally analysed by

considering all the aspects that affect performance.

All these models need temporal information for feeding them. Previous

studies are focused on obtaining this kind of information [? ? ]. Some others

provide a performance comparison between VMs and containers [? ? ? ],

concluding that there is better performance and resource usage in containers.

Scalability performance in Kubernetes was studied in [? ], where the results

show that containers perform 22x times faster than VMs for the provisioning

action. Container platform evaluation, as Docker and LXC in [? ], shows

performance issues being improved and this approach being considered for High

20



Performance Computing (HPC). They conclude that the performance is near-

native for both technologies. In [? ], the authors present several variables

(e.g. Linux kernel version) having an impact on the performance of containers.

However, both studies focus on the execution time as a performance metric and

they do not consider other measures.

As we described, Kubernetes introduces the pod abstraction. To the best

of our knowledge, a performance analysis of this abstraction has not been con-

ducted, but the analysis of nested containers is the closest research field. In [?

? ], network performance degradation was observed in some configurations be-

cause of a deployment based on full nested containers. This degradation is

caused by the usage of network virtualization technologies – Linux Bridge or

OpenvSwicht – twice or by the usage of Software Defined Networks and en-

cryptation. However, the Kubernetes pod abstraction gives a common space

port to all containers – and therefore the same IP address to all services – so

the performance degradation may be different.

Finally, several performance metrics of Kubernetes 7 were reported by its

team. In a cluster of 100 nodes, their results show a 99th percentile pod startup

time below 3 seconds, which is consistent with our results. Their experiments

show how a Kubernetes cluster behaves when the scale of the deployment is

increased by pod start time, end-to-end response time and response time of

different API operations. However, the way the deployment is structured and

the impact of grouping containers inside a pod were not analysed.

6. Conclusions and Future Work

An efficacious automated resource management in cloud computing requires

to launch, terminate and maintain computing instances rapidly, with a minimum

overhead. In this paper, we conduct performance analysis over Kubernetes,

achieved through a Petri Net-based performance model. It allows us to analyse

7http://blog.kubernetes.io/2016/03/1000-nodes-and-beyond-updates-to-Kubernetes-performance-and-scalability-in-12.

html

21

http://blog.kubernetes.io/2016/03/1000-nodes-and-beyond-updates-to-Kubernetes-performance-and-scalability-in-12.html
http://blog.kubernetes.io/2016/03/1000-nodes-and-beyond-updates-to-Kubernetes-performance-and-scalability-in-12.html


deployment and termination overheads of containers in Kubernetes, as well as

understanding the performance of different configurations of a Kubernetes pod

– i.e. the influence of the number of containers per pod. We conducted our

analysis in a Kubernetes cluster of 8 machines. Our model can be exploited as a

basis to improve two activities: (i) capacity planning and resource management;

(ii) application design, specifically how an application may be structured in

terms of pods and containers. From our experiments, we can see that a single

container can be deployed in a time interval than ranges from less than a second

to up to 3 seconds, depending on the circumstances, – i.e. the number of pods

per container, the number of containers deployed simultaneously, the network

latency, or the number of host machines. In contrast, the termination time is

typically in the order of a tenth of a second. Moreover, we also provide a set of

rules that assist in allocating the number of containers per pod that provides

the best performance. These rules consider a number of characteristics of the

application, such as the usage of CPU or network.

As future work, we expect to study the resource contention phenomenon

in containers, which appears when multiple containers compete for the same

computational resource. We plan to exploit our model with different purposes:

(i) to estimate the overhead introduced by resource contention in containers,

(ii) to improve the Kubernetes scheduler so that it is aware of resource con-

tention problems and (iii) to undertake various what-if scenarios to investigate

the behaviour of different resource management policies.

Acknowledgments

This work was supported in part by: The Industry and Innovation depart-

ment of the Aragonese Government and European Social Funds (COSMOS

group, ref. T93) and the Spanish Ministry of Economy (“Programa de I+D+i

Estatal de Investigación, Desarrollo e innovación Orientada a los Retos de la

Sociedad” –TIN2013-40809-R). V. Medel was the recipient of a fellowship from

the Spanish Ministry of Economy.

22


	Introduction
	Kubernetes Overhead Analysis & Performance Models
	Kubernetes Performance Model
	Experiments to feed the performance model
	Benchmarking Starting Time
	Benchmarking Termination Time


	Overhead Analysis of the Pod Abstraction
	CPU intensive application
	I/O intensive application
	Network intensive application

	Discussion
	Related Work
	Conclusions and Future Work

