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Abstract The development of Information Systems to-
day faces the era of Big Data. Large volumes of in-

formation need to be processed in realtime, for exam-
ple, for Facebook or Twiter analysis. This paper ad-
dresses the redesign of NewsAsset, a commercial prod-

uct that helps journalists by providing services, which
analyze millions of media items from the social net-
work in realtime. Technologies like Apache Storm can
help enormously in this context. We have quantita-

tively analyzed the new design of NewsAsset to assess
whether the introduction of Apache Storm can meet
the demanding performance requirements of this media

product. Our assessment approach, guided by the Uni-
fied Modeling Language (UML), takes advantage, for
performance analysis, of the software designs already

used for development. In addition, we converted UML
into a domain-specific modeling language (DSML) for
Apache Storm, thus creating a profile for Storm. Later,
we transformed said DSML into an appropriate lan-

guage for performance evaluation, specifically, stochas-
tic Petri nets. The assessment ended with a successful
software design that certainly met the scalability re-
quirements of NewsAsset.
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1 Introduction

Innovative practices for Information Systems develop-
ment, like Big Data technologies, Model-Driven Engi-
neering techniques or Cloud Computing processes have

penetrated in the media domain. News agencies are
already feeling the impact of these technologies (e.g.,
transparent distribution of information, sophisticated

analytics or processing power) for facilitating the de-
velopment of the next generation of applications. Espe-
cially, considering interesting media and burst events,
which is out there in the digital world, these technolo-

gies can offer very efficient processing capabilities and
can provide an added value to journalists.

Apache Storm (Apache, 2017a) is a free and open

source distributed realtime computation system that
can process a million tuples per second per node. Storm
helps for improving real-time analysis, news and adver-

tisements, the customization of searches, and the opti-
mization of a wide range of online services that require
low-latency processing. Today, the volume of informa-

tion in Internet increases exponentially, especially that
of interest for the media. For example, in the case of
natural disasters, social or sportive events, the traffic of
tweets or messages may rise up to 10 or 100 times with
respect to the number of messages in a normal situa-
tion (Ranjan, 2014). Hence, applications developed us-
ing Apache Storm need to be very demanding in terms
of performance and reliability.

This paper addresses, using Apache Storm, the re-
design of NewsAsset, a commercial product developed
by the Athens Technological Center (ATC, 2018). To
this end, we apply a quality-driven methodology, that
we already introduced in (Requeno et al., 2017), for the
performance assessment of Apache Storm applications.
For ATC the redesign also means to reuse coding of the
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current version of the NewsAsset, then trying to impact
only on the stream processing for leveraging Apache
Storm. The simulation-based approach that we apply
here is useful for predicting the behavior of the appli-
cation for future demands, and the impact of the stress
situations in some performance parameters (e.g., appli-
cation response time, throughput or device utilization).
Consequently, ATC gets, before reimplementation and
deployment of the full application, a valuable feedback
which saves coding and monetary efforts.

In particular, this paper extends the approach in
(Requeno et al., 2017) with respect to the quality-driven
methodology in different aspects. First, we improve the
UML profile of the methodology for introducing a relia-
bility characterization of Storm. Consequently, we con-
vert UML into a DSML1 for performance and reliabil-
ity of Apache Storm applications. Second, we propose
new transformations, into stochastic Petri nets (SPN),
for some performance parameters of Storm not already
addressed in (Requeno et al., 2017). Moreover, we in-
troduce computation of reliability metrics by means of

the UML profile. Consequently, our approach enables
the performance and reliability assessment of Apache
Storm applications. Finally, the application of the method-

ology to the NewsAsset case study has been useful to
validate the approach in a real scenario and to assess
ATC about its scalability.

On the modeling side, our DSML allows to work
with the Apache Storm performance and reliability pa-
rameters in the very same model used for the workflow
and deployment specifications. Moreover, the developer

takes advantage of all the facilities provided by a UML
software development environment. These reasons rec-
ommend the UML modeling, instead of doing it directly

with the SPN, that can be merely obtained by trans-
formation.

Regarding the related work, (Ranjan, 2014) discusses
the role of modeling and simulation in the era of big
data applications and defends that they can empower
practitioners and academics in conducting “what-if”
analyses. (Singhal and Verma, 2016) develop a frame-
work for efficiently set-up heterogeneous MapReduce
environments and (Nalepa et al., 2015a,b) address the
need of modeling and performance assessment in stream
applications. More in particular, a generic profile for
modeling big data applications is defined for the Palla-
dio Component Model (Kroß et al., 2015). In (Kroß and
Krcmar, 2016), the authors model and simulate Apache

Spark streaming applications. Mathematical models for
predicting the performance of Spark applications are
introduced in (Wang and Khan, 2015). Some of these
works use variants of the Petri nets, but they are ap-

1 Domain Specific Modeling Language.

plied in a generic context for stream processing (Nalepa
et al., 2015b) or distributed systems (Samolej and Rak,
2009; Rak, 2015). Generalised stochastic Petri nets (Chi-
ola et al., 1993), the formalism for performance analy-
sis that we adopt here, have been already used for the
performance assessment of Apache Hadoop MapReduce
(et al., 2016). A recent publication uses fluid Petri nets
for the modeling and performance evaluation of Apache
Spark applications (et al., 2017). However, the work in
(Requeno et al., 2017) was the first entirely devoted to
the Apache Storm performance evaluation, combining a
genuine UML profile and GSPNs, and the present work
validates and extends it as aforementioned.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the NewsAsset case study. Section 3
recalls the basics on Apache Storm for performance and
reliability and defines the DSML. Section 4 presents our
performance modeling approach with focus on the case
study. Section 5 is devoted to the performance analy-
sis of NewsAsset. Finally, Section 6 draws a conclusion.
Appendix A details the transformation to get perfor-

mance models. Appendix B explains the computation
of reliability metrics in a Storm design. Appendix C re-
calls basic notions of Generalized stochastic Petri nets
(Chiola et al., 1993).

2 A Case Study in the Media Domain

Heterogeneous sources like social or sensor networks are
continuously feeding the world of Internet with a variety
of real data in a tremendous pace: media items describ-
ing burst events, traffic speed on roads, or air pollution

levels by location. Journalists are able to access these
data aiding them in all manner of news stories. It is
the social networks like Twitter, Facebook or Instagram
that people are using to watch the news ecosystem and
try to learn what conditions exist in real-time. Subse-
quently, news agencies have realized that social-media
content is becoming increasingly useful for news cover-
age and can benefit from this trend only if they adopt
current innovative technologies that effectively manage
such volume of information. Thus, the challenge is to

catch up with this evolution and provide services that
can handle the new situation in the media industry.

NewsAsset is a commercial product positioned in
the news and media domain, branded by Athens Tech-
nology Center (ATC), a SME2 located in Greece. NewsAs-
set suite constitutes an innovative management solu-
tion for handling large volumes of information offering

a complete and secure electronic environment for stor-
age, management and delivery of sensitive information

2 Small and medium-sized enterprise.
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in the news production environment. The platform pro-
poses a distributed multi-tier architecture engine for
managing data storage composed by media items such
as text, images, reports, articles or videos.

NewsAsset is built on the achievements of a EU-
funded project, namely SocialSensor (et al., 2012), which
managed to develop a framework for enabling real-time
multimedia indexing and search in the Social Web. So-
cialSensor deployed an open source platform capable of
collecting, processing, and aggregating big streams of
social media data and multimedia.

As a commercial product, the NewsAsset is in con-
tinuous evolution, extending the original suite with new
upgrades and functionalities. The NewsAsset needs to
be constantly updated for handling efficiently the in-
creasing volume of data. On the other hand, the NewsAs-
set application must continue satisfying a set of quality
standards defined in terms of reliability and efficiency.
Therefore, the system needs to adopt runtime scalabil-
ity methods to manage temporal peaks of high compu-
tational demand (i.e., during the peaks of a bust event).

2.1 Objetive of the Performance Analysis

The ATC team identified several functional and non-
functional quality-driven requirements that are not ad-
dressed by the current status of the platform (Reqs.,

DICE Consortium, 2016). The ultimate goal is to mod-
ernize the existing commercial product NewsAsset. The
main foreseen challenges are:

– Refactoring of the old-fashioned engine related to
cloud processing and Big Data technologies,

– Reconfiguration of the obsolete architecture with re-
spect to quality-driven metrics, and

– Managing the complexity real-time responsiveness
for temporal peaks of high computational demand.

The part of the NewsAsset framework that poten-
tially creates a major bottleneck, and therefore it must
be redesigned, is the News Orchestrator application.
The time behavior of the News Orchestrator application

is quite critical since the analyzed information, regard-
ing the trending topics extracted, should be indexed
and exposed by the User Interface in real time, enhanc-
ing in this way the importance of the identified news
topics. We will focus on this part in this work.

The idea is to re-engineer the architecture and in-
troduce Big Data technologies where this is possible.
Essentially, the core is replacing the batch processing,
that is now the current approach, with stream process-
ing. Then, the logical choice for the Big Data technology
to accomplish this purpose is Apache Storm. It would

definitely affect the accuracy and processing time of

the system. The goal is to optimize the existing pro-
cessing time by means of not only minimizing the time
slot duration to reflect real time processing but also by
maximizing the crawling capacity of the social networks
crawler, giving us the potential to collect and analyze
as much social networks content as possible.

By identifying and analyzing quality-driven metrics
we expect to detect bottlenecks in the architecture and
redesign those critical parts by introducing more com-
putational resources and/or adjusting configuration pa-
rameters of Apache Storm.

3 A DSML for Apache Storm

In the following, the main concepts of the Storm tech-
nology related to performance and reliability are re-
vised. In fact, the Apache Storm framework offers con-
figuration parameters, that when correctly tuned allow
one to improve the performance and the reliability of
the Storm applications. Consequently, these parameters

are essential for the performance or reliability analysis
of the Storm applications. Table 1 summarizes all these
parameters.

Storm applications are directed acyclic graphs (DAG)
with nodes and edges, see Figure 1. Nodes are the points
where the information is generated or processed. They

can be spouts, sources of information that inject streams
of data at a certain rate, or bolts, that elaborate input
data and produce results which, in turn, are emitted
towards other bolts. The edges define the transmission

of data from one node to another. By default, a Storm
application runs indefinitely until killed.

spout_1

spout_2

weight=5
grouping=all

bolt_1

bolt_2

parallelism=2
synchronous

parallelism=2
asynchronous

bolt_3

weight=5
grouping=shuffle

weight=5
grouping=shuffle

Fig. 1 A Storm Application

The computation of a bolt requires n tuples for pro-
ducing m results. Such asymmetry is captured by the
weights in the arcs of the DAG, that represent the num-
ber of tuples the next bolt requires for emitting a new

message. The notions of tuples and messages are then
equivalent. A bolt can select different synchronization
policies. When it receives messages from two or more
sources, it can a) progress, if at least a tuple from any
of the sources is available (asynchronously), or b) wait
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for a message from all the sources (synchronously). The
parallelism specifies the number of concurrent threads
executing the same task (spout or bolt).

Specifically for the edges. Besides the weights, the
grouping determines the way a message is propagated to
and handled by the receiving nodes. By default, a mes-
sage is broadcast to every successor of the current node.
Once the message arrives to a bolt, it is either redirected
randomly to any of the multiple internal threads (shuf-
fle), copied to all of them (all) or copied to a specific
subset of threads according to some criteria (e.g, field
or global).

The Storm Nimbus is the cluster master node. It
statically deploys the spouts and bolts to the computa-
tional resources of the cluster, at the beginning of the
execution. Complex schedulers may take into account
the available computational resources and the software
requirements (memory and CPU consumption) for defin-
ing an optimal distribution of the tasks. The Apache
Zookeeper is a service used by the cluster to moni-
tor, coordinate and recover the computational resources

against failures.

Table 1 Storm Concepts for Performance and Reliability

# Concept Meaning
1. Spout (task) Source of information
2. Rate No. of tuples per unit of time

produced by a spout
3. Bolt (task) Data elaboration
4. Weight No. of tuples required by a bolt
5. Asynchronous The bolt progresses when at least

policy one input tuple is available
6. Synchronous The bolt progresses when all input

policy tuples are available
7. Parallelism No. of concurrent threads per task
8. Grouping Tuple propagation policy (e.g., all)
9. Nimbus Deployment of tasks
10. Zookeeper Service for recovering computational

resources against failures

3.1 A UML Profile for Apache Storm

A UML profile is a set of stereotypes, and corresponding
tags, that extend the semantics of the UML diagrams
when they are applied to the elements of a model. Here
we present an extension of the UML profile for Apache
Storm introduced in (Requeno et al., 2017), which is the

first and only one in the literature devoted to Apache
Storm, to the best of our knowledge. This profile ex-
tends UML with the Storm concepts identified in Ta-
ble 1. Then, according to (Selic, 2007) and (Lagarde
et al., 2007), we are creating a DSML for specifying the

properties that affect the performance and reliability of
the Apache Storm applications designed with UML.

The Storm profile provides the stereotypes collected
in Table 2. The attributes of the stereotypes may have
multiplicity one (e.g., [1]) or multiple (e.g., [*] for un-
bounded arrays). For the concepts of spout and bolt
we introduce the �StormSpout� and �StormBolt�
stereotypes. They share the parallelism, i.e., number of
concurrent threads executing the task, which is speci-
fied by the tag parallelism. Spouts also add the tag
avgEmitRate, which represents the rate at which the
spout produces tuples.

The concept of stream is captured by the �Storm-
StreamStep� stereotype, which owns three tags:

– numTuples matches the weight concept. It repre-
sents the number of tuples required by the target
bolt for emitting a tuple. A value $nT between 0
and 1 means that the next bolt produces 1/$nT
messages per input.

– grouping matches the grouping concept; and
– probFields is a n-dimensional array of reals that

is used when the type of grouping is equal to field.

The array specifies the probabilities pi that a mes-
sage, transmitted through the StormStreamStep, ar-
rives to the threads ti of the target bolt. The value

of pi can be estimated or obtained at runtime exper-
imentally, i.e., by tracing the messages grouped by
the bolt thread.The dimension of the array depends
on the parallelism of the target bolt.

Stereotypes�StormNimbus� and�StormZookeeper�
are devoted to reliability analysis, so they are treated in
Appendix B. The rest of the stereotypes in Table 2 are
described in Section 4 in the context of the modeling.

Profile Inheritance

The standard MARTE3 profile provides a complete frame-

work for quantitative analysis, while the DAM4 pro-
file addresses the reliability analysis. In particular, the
GQAM sub-profile of MARTE is specialized for perfor-
mance analysis. These are the reasons why the Apache
Storm profile inherits from MARTE and DAM.

The stereotypes for bolts, spouts and streams in-
herit from MARTE::GQAM::GaStep. So, they can be

treated as computational steps and the bolts can use
the hostDemand tag from GaStep for defining the task
execution time.

MARTE also offers the NFPs and VSL sub-profiles.
The NFP sub-profile aims to describe the non-functional

3 Modelling and Analysis of Real Time and Embedded Sys-
tems (OMG, 2011a).
4 Dependability Modelling and Analysis (Bernardi et al.,

2011).
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Storm concept Stereotype Applied to Tag Inheritance/Type
Spout �StormSpout� Action/Activity Node MARTE::GQAM::GaStep

Parallelism parallelism NFP Integer [1]
Rate avgEmitRate NFP Frequency [1]

Bolt �StormBolt� Action/Activity Node MARTE::GQAM::GaStep

Parallelism parallelism NFP Integer [1]
Execution Time hostDemand NFP Duration [1]

Stream �StormStreamStep� Control Flow MARTE::GQAM::GaStep

Weight numTuples NFP Real [1]
Grouping grouping {all, shuffle, global, field}

[1]
probFields NFP Real [*]

Workstations �GaExecHost� Device/Node inheritance
resMult NFP Integer [1]

�GaCommHost� Device/Node inheritance
capacity NFP DataTxRate [1]

Nimbus �StormNimbus� Device/Node
Zookeeper �StormZookeeper� Device/Node

Table 2 Apache Storm Profile

properties of a system, performance and reliability in
our case. The VSL sub-profile, provides a concrete tex-

tual language for specifying the values of metrics, con-
straints, properties, and parameters related to perfor-
mance, in our particular case.

VSL expressions are useful for:

(i) specifying the input parameters in the model. An
example:

expr=$b, unit=ms, statQ=mean, source=est

(1) (2) (3) (4)

This expression, applied to a bolt, specifies its demand
$b (1) milliseconds (2) of processing time, whose mean
value (3) will be obtained from an estimation in the
real system (4). $b is a variable that can be set with
concrete values during the analysis of the model.

(ii) specifying the metrics that will be computed for the

model. An example:

expr=$util, unit=%, statQ=mean, source=calc

(1) (2) (3) (4)

This expression, applied to a resource, specifies that its
utilization (4) is computed as a percentage of time
(2), whose mean value (3) will be assigned to variable
$util (1).

4 NewsAsset Performance Modeling

4.1 System Workflow Description

As explained in Section 2.1, the News Orchestrator is
the part of the NewsAsset product that manages large
volumes of information. In particular, the topic-detector,

within the News Orchestrator, defines the workflow that
exposes the system to handle the realtime Big Data in-
formation, hence the critical data-intensive computa-
tion part of the system. The main purpose of topic-
detector is in fact the extraction of trending topics
contained in items shared through social networks. By
trending topics we refer to frequent features (n-grams,
named entities or hashtags) that exhibit an abnormal
increase on the current time slot compared to others.

The main workflow of the topic-detector is depicted
in Figure 2. It has been refactored, from the current
version, as an Apache Storm topology, for the sake of
reusing the code pipelined forwardly. The backend of
the system consists of several processes running contin-
uously on a 24/7 basis as persistent loops.

In Figure 2 we observe that the input stream con-
sists of two spouts that inject items in the topology: a)
one waiting for incoming items from Twitter’s Stream-
ing API, and b) one that listens to a Redis message
broker following the Publish/Subscribe pattern. The

first bolt in the topology extracts named entities from
the text of the messages injected, for this procedure
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Fig. 2 Workflow of the topic-detector

Stanford NER extractor is used. The next bolt extracts
a signature from the text based on the MinHash al-
gorithm. Intuitively, items with similar text will have
identical signatures. The next bolt extracts terms from

the items i.e. n-grams and hashtags. The Solr indexer
bolt used to index the items in a running instance of
Solr database.

At that point, the topology splits into two parallel
pipelines: the first one is used to extract trending top-

ics based on trending terms, while the second is used to
cluster items based on minhash signature. Both of these
pipelines use the same sequence of bolts, but operate on
a different field of the items (terms and minhash signa-
ture respectively). The first bolt, TermsRollingCount-
Bolt performs rolling counts of incoming objects (terms
or minhash). Rolling means that by using a sliding win-

dow the bolt keeps track of statistics of an object to the
current time window compared to the previous ones. At
the end of each time window, the bolt emits a rolling
count tuple per object, consisting of the object itself, its
latest rolling count, a metric that indicates how trend-
ing is the object and the actual duration of the sliding
window (just for testing as the length of the windows
is constant).

As each object can be emitted from multiple nodes

in a distributed topology, the next two bolts aggregate
and rank the objects, in a map-reduce fashion. The final
ranking bolt emits a ranking of top objects (terms or

minhash) for the current time window. Finally, each of
the objects in the rank is stored in a MongoDB instance.
The time stamp of the current window is also stored in

order to keep track of the evolution of these objects over
time.

4.2 UML Performance Design

Once the system workflow has been defined, we need to
introduce the performance parameters, that will even-
tually enable a performance analysis of the system. For
this reason, we defined in Section 3 a DSML for Apache
Storm applications. In particular, we need to model:
i) the Storm topology, i.e., the DAG; ii) the perfor-
mance parameters, and iii) the deployment of the sys-
tem, where the resources will be defined.

i) Modeling the Storm topology

For this purpose our approach proposes the UML
activity diagram, which is interpreted as a DAG. It ba-
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Stream6

Stream7

Stream5
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Fig. 3 Activity diagram for the topic-detector workflow, with profile annotations

«device»
«GaExecHost»
Core_1

resMult=(expr=$c1)

«device»
«GaExecHost»
Core_2

resMult=(expr=$c )2

«StormBolt»
SolrUpdater

«StormBolt»
ItemDeserializer

«StormBolt»
...

«StormBolt»
...

Fig. 4 Deployment diagram

sically mimics the workflow of the system, although the

semantics we adopt is slightly different from the stan-
dard one of the UML activity diagram. In our approach,
a UML activity diagram will always start with a set of
initial nodes connected to the spout tasks since they
are the sources of information responsible of inserting
tuples in the topology. The rest of the tasks (i.e., bolts)
will follow according to the Storm synchronization pol-

icy declared for them. Besides, the arcs connecting ac-
tivities do not represent a logical succession of actions,
as in standard UML, but a communication channel be-
tween two tasks (i.e., spouts and/or bolts). Figure 3
depicts the model for the topics-detector.

ii) Modeling the performance parameters

They represent input parameters and the metrics
to compute and obviously are introduced in the model

using the stereotypes and tags already defined in Ta-
ble 2. In Figure 3, we observe that the activities and
transitions have been stereotyped accordingly to their
semantics. The tags that detail these stereotypes, i.e.,
the input parameters appear in Tables 3 and 4.

Table 3 introduces the variables associated to the
tags of the spouts and bolts stereotypes in the UML

activity diagram.The first column includes the level of
parallelism (number of threads) for each spout (bolt)
of the system. The second column shows the expected
average execution time, in milliseconds, required by a

spout (bolt) for creating (processing) a tuple. The total
execution time depends on the number of input tuples
needed for emitting an output.

Table 4, shows the grouping policies, weights and
probabilities associated to the communication streams

linking spouts and bolts. The weight corresponds to the
number of messages consumed by the following bolt in
order to generate a new message. The probabilities are

associated to the probFields tag. The size of the array
of probabilities depends on the parallelism of the target
bolt (i.e., it shows the probability of receiving a tuple
by the i-th thread).

iii) Deployment modeling

The bolts of the activity diagram are mapped to
the computational resources where they will execute
upon deployment. This modeling is of great importance
since resources may turn into system bottlenecks. Fig-

ure 4 shows the deployment diagram, which comple-
ments the previous activity diagram. Each computa-
tional resource is stereotyped as GaExecHost, inherited
from MARTE, and defines its resource multiplicity, i.e.,
number of cores. Table 5 defines variables for specifying
the number of available cores in each workstation of the
cluster.

Initializing the values of the model parameters The vari-
ables already defined in the Tables 3, 4 and 5, i.e., tags
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of the stereotypes, are initialized according to the ac-
tual parameters of the running Storm application. The
parallelism and grouping parameters are statically de-
termined by the configuration of the Storm application
when the DAG is defined for execution. Part of the
weight parameters are also specified statically, while
the rest has been dynamically extracted by monitoring.
In most of the cases, the bolts need a single incoming
tuple. The average execution times are also extracted
from the Storm web monitoring platform. The values of
the probfFelds array are set according to observed dis-
tribution of the messages in the tasks receiving a field
stream. Section 5 presents the actual configurations of
the NewsAsset used for analysis purposes.

4.3 Complex Storm Applications

Naturally, more complex Storm topologies – such as

diamonds or stars – can also be modeled using our
approach. However, the topology is not enough when
we want to represent complex behavior for tasks (i.e.,
spouts and bolts). So far we assumed a task to be a

black box and, then, modeled by an action of the ac-
tivity diagram. Nevertheless, UML offers nesting mod-
eling capabilities of activity nodes, i.e., modeling the

internals of an activity with another UML activity di-
agram. Consequently, we use this UML feature to al-
low the designer to model in detail the subset of tasks

which are of interest for performance evaluation. These
Storm tasks are just java programs that can be mod-
eled with the usual interpretation of the activity di-
agram (e.g., sub-activities, choices, synchronizations,

etc.). Moreover, this specification of the spout or bolt
can be annotated using MARTE then gaining a detailed
performance specification.

5 Experimentations

The UML design, presented in Subsection 4.2, has been
first calibrated and validated using monitored data from
the deployed Storm topic-detector application (Subsec-
tion 5.1). Then, simulation experiments have been con-
ducted with the validated model to predict the scala-
bility of the application (Subsection 5.2).

The experiments in this section have been carried
out using the performance model in Figure 11. Ap-

pendix A details how an Apache UML design is trans-
formed in a performance model.

5.1 Model Calibration and Validation

To calibrate and validate the UML design we have de-
ployed a prototype of the Storm application under dif-
ferent workload assumptions, where the emission rate
of the spouts ranges in the interval [10−80] tuples/sec..
We then monitored performance indexes (i.e., bolt uti-
lizations, total number of tuples generated by the spout
and produced by the topic-detector) for a total period
of two hours per scenario.

Each scenario has been launched and monitored three
times for removing environmental noise. The monitor-
ing has been carried out by a Linux script shell that pe-
riodically polls the Storm Web UI through the REST
API. The execution environment where the NewsAs-
set application was launched consists of a set of four
workstations for running the computations and basic
Storm services (e.g., Nimbus, Zookeeper) and a single
workstation for hosting the databases (MongoDB and
Solr). The workstations dedicated to running the com-
putations are virtual AMD CPUs (4x2.60GHz) with

4GBytes of RAM. The workstation dedicated to host-
ing the databases is a virtual AMD CPU (2x2.60GHz)
with 4GBytes of RAM. All workstations are deployed

on the Flexiant cloud (Flexiant, 2017) and they have
a Gigabit ethernet and Ubuntu Linux (version 14.04)
OS.

Independent sets of monitored data have been used
to calibrate and validate the model. In the calibration
phase, we have set the values of the performance input

parameters that were not explicitly provided in the con-
figuration of NewsAsset, i.e., the host demands of the
bolts (Table 6, third column), the probabilities for the
field grouping policy streams and the number of input
tuples of some of the bolts (Table 7, items in bold font).

In particular, from the monitored data, we observed

that some input parameters were linearly dependent
on the spout emission rate. This is the case of the in-
put streams of the two bolts TermsRollingCounter and
MinHashRollingCounter (Figure 5), due to an ad-hoc
implementation of a time window which enables to col-
lect the tuples generated by the TermsExtraction bolt
and send them in bunches to the mentioned bolts.

The host demands of the bolts accessing the databases
are also linearly depend on the emission rate of the
spout, as shown in Figure 6. The database writing scales
linearly with respect to the emission rate of the spout
because of the increasing size of the sliding window that
accumulates tuples in bolts TermsRollingCounter and
MinHashRollingCounter.

The calibrated model has been validated using the
paired-t approach in Averill (2015), based on the com-

putation of the confidence interval for the mean of the
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Table 3 Configuration of spouts and bolts

parallelism Expected execution time (ms)
TwitterSample $pTwitterSample $tTwitterSample
ItemDeserealizer $pItemDeserializer $tItemDeserealizer
EntityExtraction $pEntityExtraction $tEntityExtraction
MinhashExtraction $pMinHashExtraction $tMinHashExtraction
SolrUpdater $pSolrUpdater $tSolrUpdater
TermsExtraction $pTermsExtraction $tTermsExtraction
TermsRollingCounter $pTermsRollingCounter $tTermsRollingCounter
IntermediateRanker $pIntermediateRanker $tIntermediateRanker
FinalRanker $pFinalRanker $tFinalRanker
TopicsMongoDBWriter $pTopicsMongoDBWriter $tTopicsMongoDBWriter
TopicsLabeler $pTopicsLabeler $tTopicsLabeler
MinhashRollingCounter $pMinHashRollingCounter $tMinHashRollingCounter
MinhashIntermediateRanker $pMinHashIntermediateRanker $tMinHashIntermediateRanker
MinHashFinalRanker $pMinHashFinalRanker $tMinHashFinalRanker
ClustersMongoDBWriter $pClustersMongoDBWriter $tClustersMongoDBWriter
ClustersLabeler $pClustersLabeler $tClustersLabeler

Table 4 Configuration of streams

Connection from to Stream Id grouping numTuples ProbFields
(max 1.0)

TwitterSample ItemDeserializer Stream1 shuffle $ntStream1
ItemDeserializer EntityExtraction Stream2 shuffle $ntStream2
EntityExtraction MinHashExtraction Stream3 shuffle $ntStream3
MinHashExtraction SolrUpdater Stream4 shuffle $ntStream4
MinHashExtraction TermsExtraction Stream5 shuffle $ntStream5
TermsExtraction MinHashRollingCounter Stream6 field $ntStream6 [$prStream6 1,

. . .,
$prStream6 n]

TermsExtraction TermsRollingCounter Stream7 field $ntStream7 [$prStream7 1,
. . .,
$prStream7 n]

MinHashRollingCounter MinHashIntermediateRanker Stream8 field $ntStream8 [$prStream8 1,
. . .,
$prStream8 n]

TermsRollingCounter IntermediateRanker Stream9 field $ntStream9 [$prStream9 1,
. . .,
$prStream9 n]

MinHashIntermediateRanker MinHashFinalRanker Stream10 global $ntStream10
IntermediateRanker FinalRanker Stream11 global $ntStream11
MinHashFinalRanker ClustersMongoDBWriter Stream12 shuffle $ntStream12
FinalRanker TopicsMongoDBWriter Stream13 shuffle $ntStream13
ClustersMongoDBWriter ClustersLabeler Stream14 shuffle $ntStream14
TopicsMongoDBWriter TopicsLabeler Stream15 shuffle $ntStream15

Table 5 Configuration of Workstations

Workstation resMult (nCores)
Core 1 $c1
Core 2 $c2

differences between two sets of N observations. In par-
ticular, for each performance index of interest, we have
collected two sets of independent observations: one set
X includes the values of the performance index mon-
itored by running the deployed application under dif-
ferent workload assumption (within the interval range
[10− 80] tuples/sec.); and the other set Y includes the
values of the performance index obtained via simulation

of the calibrated model under the same workload as-
sumptions. Then, for each performance index, we have
constructed a 95% confidence interval for the sample
mean of the difference µ̄ = µ̄X − µ̄Y with the aim of
evaluating its statistical and practical significance.

Table 8 summarizes the validation results for the
performance indexes of interest (one per column). Con-
cretely, the utilization of the bolts belonging to the first
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parallelism emit rate (tuples/s) host demand (ms)
TwitterSample 1 x ∈ [10− 80]
ItemDeserializer 4 0.665
EntityExtraction 4 21.683
MinhashExtraction 4 13.048
SolrUpdater 1 16.895
TermsExtraction 2 10.441
TermsRollingCounter 4 10.127
IntermediateRanker 4 10.731
FinalRanker 1 16.308
TopicsMongoDBWriter 1 11.5x+ 24.8
TopicsLabeler 1 4.9x+ 82.2
MinhashRollingCounter 4 10.212
MinhashIntermediateRanker 1 10.219
MinHashFinalRanker 1 19.600
ClustersMongoDBWriter 1 7.5x+ 76.6
ClustersLabeler 1 5.6x+ 66.7

Table 6 Configuration of Spout and Bolt Elements: parallelism, emit rate/host demand

Connection from to Stream Id grouping numTuples ProbFields
(
∑

i
pi = 1)

TwitterSample ItemDeserializer Stream1 shuffle 1
ItemDeserializer EntityExtraction Stream2 shuffle 1
EntityExtraction MinHashExtraction Stream3 shuffle 1
MinHashExtraction SolrUpdater Stream4 shuffle 10
MinHashExtraction TermsExtraction Stream5 shuffle 0.2857
TermsExtraction MinHashRollingCounter Stream6 field 4x + 3 [0.16, 0.24, 0.27, 0.33]
TermsExtraction TermsRollingCounter Stream7 field 9x + 1 [0.12, 0.12, 0.27, 0.49]
MinHashRollingCounter MinHashIntermediateRanker Stream8 field 59 [1.0]
TermsRollingCounter IntermediateRanker Stream9 field 27 [0.18, 0.26, 0.27, 0.29]
MinHashIntermediateRanker MinHashFinalRanker Stream10 global 1
IntermediateRanker FinalRanker Stream11 global 3
MinHashFinalRanker ClustersMongoDBWriter Stream12 shuffle 0.06
FinalRanker TopicsMongoDBWriter Stream13 shuffle 0.06
ClustersMongoDBWriter ClustersLabeler Stream14 shuffle 1
TopicsMongoDBWriter TopicsLabeler Stream15 shuffle 1

Table 7 Configuration of Streams: number of tuples and probability fields

Utilization Throughput ratio (XEndi
/XTwitterSample)

Item Entity MinHash Solr Terms
End1 End2 End3

Deserializer Extraction Extraction Updater Extraction
µ̄ 0.0906 -0.3378 -0.2826 -1.2475 -1.3607 -2.553E-3 -1.523E-4 -2.258E-4
σ̄ 0.1750 1.1474 1.4331 15.5080 1.3761 3.104E-2 1.946E-4 1.899E-4
lb 0.0130 -0.8467 -0.9181 -8.1246 -1.9709 -1.632E-2 -2.386E-4 -3.100E-4
ub 0.1682 0.1710 0.3529 5.6296 -0.7504 1.121E-2 -6.604E-5 -1.416E-4

ε (%) 19.93 3.50 6.34 11.57 8.84 1.67 12.27 16.41

Table 8 Validation of the UML model

part of the workflow, and the ratio of the tuples pro-
duced by each branch of the News Orchestrator work-
flow with respect to the input stream generated by the
spout TwitterSample. In the UML model, the latter in-
dexes correspond to the throughput ratios

XEndi

XTwitterSample
.

The rows of the table indicate: the difference sam-
ple mean µ̄ (first row), the sample standard deviation
of the difference σ̄ (second row), the lower and up-

per bounds of the 95% confidence interval5 (third and
fourth rows, respectively), and the maximum relative
errormax( lb

µ̄X
, ubµ̄X

), where µ̄X is the sample mean of the
index computed from the monitored data (fifth row).

From the validation results, we observe that all the

sample means, but the one related to the utilization
of the ItemDeserializer, are negative meaning that the
UML model produces an underestimation of the con-

5 The Student t-distribution with N-1=21 degrees of free-
dom has been used.
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Fig. 5 Input streams: TermsRollingCounter (left), MinHashRollingCounter (right).
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Fig. 6 Host Demand: TopicsMongoDB (top-left), TopicsLabeler (top-right), ClusterMongoDB (bottom-left), ClusterLabeler
(bottom-right).

sidered performance indexes with respect to the de-
ployed application. However, analyzing the confidence
intervals, we can infer that the differences between the
monitored values and the simulated ones for the utiliza-
tion of the EntityExtraction, MinHashExtraction, Sol-
rUpdater and the throughput ratio of the first branch of
the workflow (End1 ) might be caused by sampling fluc-
tuation and they are not statistically significant (i.e.,
0 ∈ [lb, ub]). Although the differences for the rest of the

performance indexes could be statistically significant

(i.e., 0 6∈ [lb, ub]), they are not considered significant in
practice by the domain experts.

5.2 Performance Predictions

The UML model, calibrated and validated under differ-
ent workload assumptions of the NewsAsset, has been
used to assess the performance requirements identified
by ATC (Reqs., DICE Consortium, 2016):

– Scalability of the current topology. The software ar-
chitects are interested in figuring out whether the



12 José I. Requeno et al.

��

���

���

���

���

���

���

���

���

���

����

��� ��� ��� ��� ��� ��� ��� ���
��������������������

����������������
����������������
�����������������
�����������
���������������
�������������������
���������������������

��

���

���

���

���

����

��� ��� ��� ��� ��� ��� ��� ���
��������������������

�������
�������

Fig. 7 Utilization (%) of bolts on the left, and utilization (%) of cores on the right.

system is linearly scalable and it scales out rather
than up, meaning that performance problems can
be solved by simply adding more cores. This goal
implies the detection of system bottlenecks in or-
der to identify the type of resources that need to be

increased.
– Performance of alternative architectures. The soft-

ware quality engineers are interested in measuring

the impact of different architecture alternatives based
on performance and cost.

In the following paragraphs, we describe the perfor-

mance experiments (parameter configuration and mea-
sures to compute) to assess the performance goals.

5.2.1 Scalability of the current topology

To assess the first performance goal, we have conducted
a bottleneck analysis considering both the hardware

(i.e., the cluster CPUs) and software resources (i.e.,
bolts). During the calibration and validation of the UML
model for different spout emission rates, we already de-

tected a potential bottleneck in the SolrUpdater bolt. In
particular, the SolrUpdater becomes a bottleneck when
the emission rate is higher than 60 tuples/sec. (see Fig-
ure 7 on the left), whereas the utilization6 of the other
bolts is lower than 60%. Besides, the utilization of the
cluster CPU’s is always less than 53% for the worksta-
tions hosting the spout and bolts; and less than 55%
for the workstation hosting the databases (see Figure 7
on the right).

Therefore, unlike the expectation of the software ar-
chitects, the design does not scale out, since the bot-
tleneck is not a hardware resource. Figure 8 confirms
that the increase in the number of cores (workstation
Core 2 ) does not improve the system performance. In
particular, for a given emission rate, the utilization of

6 Figure 7 does not show the utilizations of the bolts that
are below 5%.

the SolrUpdater bolt remains constant. Indeed, the lim-
iting factor for the maximum production rate of the
topic-detector is the parallelism of the bolt SolrUp-
dater (software bottleneck). Therefore, we initially rec-

ommended to ATC the redesign of the algorithms of
this bolt module to achieve the performance objective,
that did not turn out to be an easy task.
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Fig. 8 Utilization (%) of SolrUpdater, with one thread, un-
der different number of cores and workload.

5.2.2 Performance of alternative architectures

The objective of the second experiment is to evaluate
the impact of different architecture alternatives of the
News Orchestrator, based on the Apache Storm per-
formance features. In particular, we aimed at reaching
a practical solution for the bottleneck detected in the
bolt SolrUpdater.

For this purpose, we considered the basic configu-
ration of the UML model used in the calibration and
validation phases (Tables 6 and 7). In order to analyze
the sensitivity of the performance indices to the Storm

configuration, the varying parameters are the level of
parallelism of the SolrUpdater ([1−10] threads) and the
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Fig. 9 Utilization (%) of SolrUpdater on the left, and throughput (tuples/ms) of SolrUpdater on the right.

emission rate ([10 − 80] tuples/s). Figure 9 shows the
utilization (left plot) and the throughput (right plot) of
the SolrUpdater. In particular, considering high spout
emission rates (that is, an emission rate greater than
60 tuples/s), we can observe that the utilization of the

SolrUpdater is reduced by at least a 30% when just two
threads are set for the bolt and it is drastically reduced
by a 90% for 10 threads. On the other hand, two threads

for the bolt are sufficient to increase the throughput
of the first branch of the topic-detector workflow and
to avoid the system saturation under the considered

workload assumption (for more than one thread, the
throughput increases linearly with respect to the in-
crease of the emission rate).

Therefore, the ATC software quality engineers should

consider this alternative configuration to guarantee an
optimal throughput under high workloads.

For the sake of offering alternative choices to the
ATC engineers, we carried out additional experiments.
A similar sensitivity analysis was conducted consid-
ering the second potential bottleneck for high work-
loads identified in the first experiment, that is, the bolt
TermsRollingCounter (see Figure 7, left plot). The goal

was to figure out how to change the Storm configura-
tion in order to improve also the throughput of the
second branch of the topic-detector workflow, i.e., the
throughput of End2 in the activity diagram in Figure 3.
In this case, the level of parallelism of TermsRolling-
Counter ranged from 4 to 12 threads (in the basic
configuration, the level of parallelism of the bolt was

set to 4). Figure 10 shows the utilization (left plot) of
the TermsRollingCounter and the throughput of End2
(right plot). For high workloads (i.e., emission rate greater
than 60 tuples/sec.), the utilization of the bolt is re-
duced by a half when the number of threads is doubled
and it is reduced by two-thirds when the number of
threads is tripled. Nevertheless, as shown by the plot on
the right, the increase of the level of parallelism of this

bolt does not improve the throughput of End2, which
remains basically constant. Thus, increasing the level of
parallelism of the TermsRollingCounter is not a good
solution if the aim is increasing the throughput of End2.

6 Conclusion

The work in (Requeno et al., 2017) presents, and val-
idates synthetically, an approach for the performance

analysis of Apache Storm applications. Now, we have
extended the approach for addressing also the reliabil-
ity analysis in the same context. Therefore, this work

has presented a quality-driven methodology, for Apache
Storm applications, that can be used by practitioners as
a blueprint for development. In our view, an important
contribution is that we have applied the methodology to

a commercial product, working together with the engi-
neers of the Athens Technological Center (ATC), which
means a real validation of the methodology.

ATC needed to refactor the NewsAsset application
in order to satisfy highly demanding performance re-
quirements, in the context of processing large volumes

of data in realtime from the social network. The results
of the performance assessment helped to modernize, re-
design and correctly tune the core of NewsAsset using
Apache Storm. Several issues, bottlenecks and bad con-
figurations where identified, but not initially supposed,
some of them have been reported in this paper.

We also consider important that the methodology
is currently usable by practitioners since we have de-
veloped a complete framework that automates it, the
DICE Simulation tool (DICE Consortium, 2017). This

tool includes the Apache Storm profile, the transfor-
mation of the Apache Storm designs into GSPN and
the computation of performance metrics (utilization,
throughput and response time) and reliability metrics
(availability and MTTF).



14 José I. Requeno et al.

��������������������

��������������������
��

���

���

���

���

���

���

���

���������������������

���
���

���
���

���
���

���
���

��������������������

��������������������
��

�����

����

�����

����

���������������������

���
���

���
���

���
���

���
���

Fig. 10 Utilization (%) of TermsRollingCounter on the left, and throughput (tuples/ms) of End2 on the right.
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A Transformation of a UML Design to a
Performance Model

For evaluating performance metrics (utilization, throughput
and response time), we need to transform the UML Apache
Storm design into a performance model. We choose as tar-
get performance model Generalized Stochastic Petri Nets (see
Appendix C). In the following, we recall the transformation
patterns proposed in Requeno et al. (2017). Each pattern
takes as input a part of the Storm design and produces a
GSPN subnet.

A.1 Activity Diagram Transformation

Tables 9–11 show the patterns for the activity and deploy-
ment diagrams. For each figure, the left hand side presents
the input of the pattern, i.e., the UML model elements, pos-
sibly stereotyped with the Storm profile. The right hand side
indicates the corresponding GSPN subnet. For an easier un-
derstanding of the transformation, we depicted: a) text in
bold to match input and output elements; b) interfaces with
other patterns as dotted grey elements, because they actually
do not belong to the pattern.

Patterns P1 and P2 map spout and bolt tasks, respec-
tively. Both spout and bolt subnets become structurally sim-
ilar when the bolt subnet is merged with a P3–P5 pattern.
The subnet consists of two places, a timed transition, an im-
mediate transition, and a set of arcs. Places pA1 and pA2

represent, respectively, the idle state and the processing state
of incoming messages. The place pA1 is marked with as many
tokens as the parallelism tagged-value associated to the task
denotes ($n0). The rate of the timed transition is equal to
either the emission rate ($rate) of the spout or the inverse of
the host demand of the bolt (1/ $time). The timed transi-
tions have an infinite server semantics because the production
of tuples is already constrained by the number of available
threads (tokens) defined by the parallelism. The immediate
transition in the spout subnet does not have source places
because it models the continuous arrival of new messages.

Patterns P3, P4 and P5 map the reception of a stream
of tuples by a bolt. In P3 the source of the stream is only one
task, whereas in P4 and P5 there are multiple sources. In par-
ticular, the pattern P4 represents the synchronous case and
the pattern P5 is the asynchronous one. In P3–P5 subnets,
the interface transition tA refers to the transition in P2 with
the same name. Pattern P6 maps the final node to a tran-
sition without output places. This is a sink transition that
represents the end of the stream processing and could poten-
tially act as interface with subsequent systems (i.e., injecting
tuples in another Storm application).

Patterns P8–P11 detail the transformation of the num-
Tuples and grouping tagged-values of a given stream step.
Therefore, these patterns refine patterns P3, P4 and P5. The
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Table 9 Transformation Patterns for Storm-profiled UML Activity Diagrams (Node Elements)

UML Pattern Petri net Pattern

P1 A
«StormSpout»
=(expr=$rate, unit=Hz,

source=est, statQ=mean)
parallelism=$n0

avgEmitRate 

A1
M(p )=$n0p

A1

t
A

r(t
A
)=$rate

p
A2

P2 A
«StormBolt»

hostDemand=(expr=$time, unit=s,
source=est, statQ=mean)

parallelism=$n0
A1

M(p )=$n0

p
A1

t
A

r(t
A
)=1/$time

p
A2

P3 A B

B1
M(p )=$n0

p
B2

p
B1

t
A

P4

A

B

C

C1
M(p )=$n0

p
C2

p
C1

t
A

t
B

P5

A

C

B
p

C1

C1
M(p )=$n0

p
C2t

A

t
B

P6 A
t
A

numTuples indicates the number of input tuples that the re-
ceiving bolt requires for producing a message. Then, such a
value is mapped to the weight of the arcs a2 (P8 subnet), a1
(P9–P10 subnets), and ai (P11 subnet).

Additionally, the grouping defines how the stream should
be partitioned among the next bolt’s threads. If the grouping
is set to all, every thread of the receiving bolt will process
a copy of the tuple, then the weight of the arc a1 in the
GSPN subnet is equal to the parallelism of the bolt B (P8 ).
Otherwise, only one thread of the receiving bolt will process
the tuple, therefore, the weight will be set to the default value
(i.e., 1). If the grouping policy is shuffle, the target execution
thread of B is selected randomly among the idle ones (P9 ).
In the case of global policy, the entire stream goes to the
bolt’s thread with the lowest id (P10 ). The initial marking
of place pBG, in the GSPN subnet, is set to a single token
for restricting the access to just one thread. Finally, the field
grouping policy divides the outgoing stream of A by value
(P11 ) and all the messages having the same value are sent to
the same threads of the receiving bolt. The transformation
creates a GSPN subnet with n basic subnets, where n is the
number of different stream values. This number is limited by
the number of parallel threads (parallelism tagged-value) in
B. When an incoming message arrives to the receiving bolt,
it is redirected to one of the basic subnets according to the
probabilities $probi assigned to the immediate transitions
tB1i

.

A.2 Deployment Diagram Transformation

Pattern P7 (Table 11) illustrates the modifications intro-
duced in the GSPN model by the profile extensions in the de-
ployment diagram. The Storm tasks are first logically grouped
into partitions in the activity diagram, later they are deployed
as artifacts and mapped to physical execution nodes (GaEx-
ecHost stereotype) in the deployment diagram. In particular,
P7 maps the GaExecHost to a new place pR in the GSPN,
with an initial marking that represents the number of compu-
tational cores of the node (resMult tagged-value). The addi-
tion of such place restricts the logical concurrency, that is the
number of threads of the Storm tasks, to the number of avail-
able cores. The pattern corresponds to the acquire/release
operations of the cores by the spouts and bolts.

A.3 Performance Model and Implementation

Figure 11 shows the final GSPN model for the Storm design
in Figures 3 and 4. It has been obtained by applying the pat-
terns and combining the subnets through the interfaces. The
image of the GSPN model has been simplified for readability
purposes. For instance, the input (output) arcs of the tran-
sitions that acquire (release) tokens from (to) the resource
places Core 1 and Core 2 are shown as broken arcs.

The UML Profile for Apache Storm can be downloaded
from DICE Consortium (Oct., 2016). The transformation of
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Table 10 Transformation Patterns for Storm-profiled UML Activity Diagrams (Stream Policies)

UML Pattern Petri net Pattern

P7

«StormStreamStep»
numTuples=$n1
grouping=all

A B

1
W(a )=B.parallelism

a
1

a
2

W(a )=$n1
2 B1

M(p )=$n0

p
B2

p
B1

t
A

P8

«StormStreamStep»
numTuples=$n1
grouping=shuffle

A B

a
1

W(a )=$n1
1

B1
M(p )=$n0

p
B2

p
B1

t
A

P9

«StormStreamStep»
numTuples=$n1
grouping=global

A B a
1

W(a )=$n1
1

B1
M(p )=$n0

p
BG2

p
B1

t
A

t
BG

BG1
M(p )=1BG1

p

r(t
BG
)=r(t

B
)

P10

«StormStreamStep»
numTuples=$n1

probFields=[$prob1 n,...,$prob ]

grouping=field

A B
a

1

W(a )=$n1
i

t
A

t
B2_1

r(t
B2_i

)=r(t
B
)

a
n

B2_1
p

B1_i
M(p )= $n0/n

B2_n
p

t
B2_n

p
B1

t
B1_1

t
B1_n

Prob(tB1_i)=$probi

B1_1
p

B1_n
p

Table 11 Transformation Patterns for Storm-profiled UML Deployment Diagrams

UML Pattern Petri net Pattern

P11

Partition(R)

A
ct
iv
it
y

A

D
e
p
lo
ym

e
n
t «GaExecHost»

resMult=
(expr=$size)

Node(R)

A

M(p )=$size
R

p
A2

A1
M(p )=$n0

p
A1

t
A

p
R

the UML models to GSPN, as well as the evaluation of the
performance metrics, have been automatized in the DICE
Simulation tool (DICE Consortium, 2017), they are publicly
available. The transformation uses QVT-MOF 2.0 OMG (2011b)
to obtain a Petri Net Markup Language file (PNML) ISO
(2008), an ISO standard for XML-based interchange format
for Petri nets. Later on, a model-to-text (M2T) transforma-
tion from PNML into a GSPN tool specific format, concretely
for the GreatSPN tool (Dipartimento di informatica, Univer-
sità di Torino, Dec., 2015), has been performed. Other tools,
such as TimeNet (Zimmermann, 2017), also could be used,
although not integrated in the framework yet.

B Computation of Reliability Metrics

The DICE Simulation tool (DICE Consortium, 2017), used
in this work, also computes reliability metrics. In particular,
the availability and mean time to failure for UML Apache
Storm designs stereotyped using the Apache Storm profile
presented in Section 3.

Many of the technologies covered for data-intensive ap-
plications (DIAs), such as Apache Storm, are designed as
fault-tolerant, which means that their failures are internally
handled and are not visible to users. Therefore, the metrics
are calculated from the properties of the resources used by
the technologies, rather than from the activities executed by
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Fig. 11 GSPN for the design in Fig. 3 and 4.

the applications. The following paragraphs detail how each
metric is computed.

B.1 Computation of the Mean Time to Failure

Apache Storm applications are fault-tolerant and the progress
of the computation of elements in the input streams is man-
aged and stored by a differentiated software, Zookeeper (Apache,
2017b). Therefore, for the failure of a Storm application, the
important concept to consider is the failure of the cluster of
Zookeeper nodes, rather than the failure of spouts and bolts.
In this case resources that execute Zookeeper service have to
be stereotyped with <<StormZookeeper>> to point out their
functionality and with <<DaComponent>>, inherited from the
DAM profile, to specify their multiplicity with the “resMult”
attribute and the estimated MTTF of the resource with the
“failure” attribute.

To compute the MTTF, the DICE Simulation tool tra-
verses all Nodes and Devices represented in the Deployment
Diagram of the application looking for the element stereo-
typed as <<StormZookeeper>>. When it finds this element, it
gets from it the information in its <<DaComponent>> stereo-
type regarding the number of resources used for the Zookeeper
cluster and the estimated MTTF of each of them. Finally, the
computation of the global MTTF considers that the Storm
DIA takes place when all the resources dedicated to execute
Zookeeper cluster have failed.

B.2 Computation of the availability

The availability of a system is defined as the readiness for
correct service (Avizienis et al., 2004). We compute the per-
centage of time that a system is available, i.e., the percentage
of time that the system is ready for executing a correct ser-
vice for its users (steady state availability). It is defined as the
mean time that the system is working correctly between two
consecutive failures (i.e., MTTF) with respect to the Mean
Time Between two consecutive Failures (called MTBF). In
turn, MTBF is defined as the mean time of correct service
until a failure plus the Mean Time to Repair (MTTR). There-
fore, the steady state availability is calculated using the for-
mula:

Availability =
MTTF

MTTF +MTTR
· 100.

We opted to offer a computation of the system availabil-
ity when users choose to use preemptable resources, such as
Amazon AWS EC2 spot instances. Users need to fill the a)
expected amount of time that a preemptable resource will be
granted for utilization, and b) the expected amount of time
required to choose an alternative affordable set of resources,
boot them, set up and configure the technology (i.e., repair
time of the application). This information is provided by
the attributes “failure” and “repair” of the <<DaComponent>>

stereotype. Information a) is filled into field MTTF of “fail-
ure” attribute and information b) is filled into field MTTR
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of “repair” attribute. The computation of the availability is
computed from these two values.

C Petri Nets

A GSPN (Generalized Stochastic Petri Net, Marsan et al.,
1994) is a Petri net with a stochastic time interpretation.
Therefore a GSPN is a modeling formalism suitable for per-
formance analysis purposes. A GSPN model is a bipartite
graph, consisting of two types of vertices: places and transi-
tions.

Places are graphically depicted as circles and may con-
tain tokens. A token distribution in the places of a GSPN,
namely a marking, represents a state of the modeled system.
The dynamic of the system is governed by the transition en-
abling and firing rules, where places represent pre- and post-
conditions for transitions. In particular, the firing of a transi-
tion removes (adds) as many tokens from its input (output)
places as the weights of the corresponding input (output)
arcs. Transitions can be immediate, those that fire in zero
time; or timed, those that fire after a delay which is sampled
from a (negative) exponentially distributed random variable.
Immediate transitions are graphically depicted as black thin
bars while timed ones are depicted as white thick bars.


