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Abstract. The paper provides a description of the large deviation behavior

for the Euclidean norm of projections of `np -balls to high-dimensional random

subspaces. More precisely, for each integer n ≥ 1, let kn ∈ {1, . . . , n−1}, E(n)

be a uniform random kn-dimensional subspace of Rn and X(n) be a random
point that is uniformly distributed in the `np -ball of Rn for some p ∈ [1,∞].

Then the Euclidean norms ‖PE(n)X(n)‖2 of the orthogonal projections are

shown to satisfy a large deviation principle as the space dimension n tends

to infinity. Its speed and rate function are identified, making thereby visible
how they depend on p and the growth of the sequence of subspace dimensions

kn. As a key tool we prove a probabilistic representation of ‖PE(n)X(n)‖2
which allows us to separate the influence of the parameter p and the subspace
dimension kn.
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1. Introduction

The geometry of convex bodies in high dimensions is a fascinating and vivid field
at the core of what is known today as Asymptotic Geometric Analysis, a branch of
mathematics at the crossroads between analysis, geometry and probability. In par-
ticular, it has been realized in the last decades that the presence of high dimensions
forces certain regularity on the geometry of convex bodies that in many instances
has a probabilistic flavor, compare with the surveys of Guédon [16, 17] and the
monograph [7], for example. The arguably most prominent example is the central
limit theorem, which is widely known in probability theory to capture the fluctu-
ations of a sum of (independent) random variables (see, e.g., Chapter 5 in [18]).
In the geometric context it roughly says that most k-dimensional marginals of a
high-dimensional isotropic convex body are approximately Gaussian, provided that
k is of smaller order than nκ for some universal constant κ ∈ (0, 1), i.e., k = o(nκ).
The central limit theorem for convex bodies was conjectured in [1] by Anttila, Ball
and Perissinaki (for k = 1), who proved the conjecture for the case of uniform
distributions on convex sets whose modulus of convexity and diameter satisfy some
additional quantitative assumptions. Other contributions to different facets of the
central limit problem for (special classes of) convex bodies are due to Bobkov and
Koldobsky [5], Brehm, Hinow, Vogt and Voigt [8], E. Meckes [23, 24], E. and M.
Meckes [25], E. Milman [27] or Paouris [29], just to mention a few. For general
bodies, based on a principle going back to the work of Sudakov [34], and Diaconis
and Freedman [12], a central limit theorem was proved by Klartag in [20, 21], who
obtained that κ ≥ 1/15. If in addition the convex body is 1-unconditional, that is,
symmetric with respect to all coordinate hyperplanes, this has been extended by
M. Meckes [26] to k-dimensional marginals with k = o(n1/3). In particular, this
class of convex bodies includes the `np -balls considered in the present text.

On the one hand the central limit theorem underlines the universal behavior
of Gaussian fluctuations. On the other hand, it is widely known in probability
theory that the so-called large deviation behavior, which considers fluctuations be-
yond the Gaussian scale, is much more sensitive to the distributions of the involved
random variables. For example, Cramér’s theorem (see, e.g., [10, Theorem 2.2.3]
or [18, Theorem 27.5]) guarantees that if X,X1, X2, . . . are independent, identi-
cally distributed and centered random variables with cumulant generating function
Λ(u) := log(EeuX) <∞ for all u ∈ R, one has that

lim
n→∞

1

n
logP(X1 + . . .+Xn ≥ nt) = −Λ∗(t)

for all t > EX, where Λ∗ is the Legendre-Fenchel transform of Λ. Equivalently, this
means that for any ε > 0 and any t > EX there exists some natural number n0 so
that for each n ≥ n0,

e−n(Λ∗(t)+ε) ≤ P(X1 + . . .+Xn ≥ nt) ≤ e−n(Λ∗(t)−ε).

We emphasize that this function usually displays an entirely different behavior
for random variables sharing the same properties on the scale of the central limit
theorem. While large deviations have been investigated intensively in probability
theory (see, for instance, [10, 11] and the references cited therein), they have – in
sharp contrast to the central limit theorem – left almost no traces in Asymptotic
Geometric Analysis so far. However and as already anticipated above, the study
of large deviations of marginals of high-dimensional convex bodies might open new
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perspectives and give access to non-universal features that allow to make transpar-
ent properties that distinguish between different convex bodies. In addition to the
potential mentioned before, random projections of random vectors in high dimen-
sions naturally appear in machine learning and information science, for instance,
in linear regression [22] when searching for the best regression function and for the
purpose of dimension reduction in information retrieval in text documents [4] to
reduce the computational complexity.

It was only recently that Gantert, Kim and Ramanan [14, 13], and Kim and Ra-
manan [19] opened this field by deriving, in particular, a Large Deviation Principle
(LDP) in the spirit of Donsker and Varadhan for 1-dimensional random projections
of `np -balls in Rn, as the space dimension n tends to infinity. More precisely, their

results show that if for each n ∈ N, Θ(n) ∈ Sn−1 is a uniform random direction and
X(n) is an independent random point uniformly distributed in the `np -ball of Rn for
some fixed p ∈ [1,∞], then the sequence of rescaled random variables

n
1
p−

1
2 〈X(n),Θ(n)〉

satisfies an LDP with speed n
2p

2+p if p ∈ [1, 2) and speed n if p ∈ [2,∞] and with a
certain rate function that also depends on p (all notions and notation are explained
in Section 2 below). In view of Klartag’s multi-dimensional version of the central
limit theorem for convex bodies (see [20, Theorem 1.3] and [21, Theorem 1.1]) it is
also natural to consider projections onto higher-dimensional random subspaces as
well. As a matter of fact, an understanding of the Grassmannian setting has been
the basis for many deep results in the geometry of Banach spaces and asymptotic
convex geometry (see, e.g., [7, 17]). The purpose of the present paper is to put
the results from [13] (more precisely, the annealed framework) into a wider context
and to provide a description of the large deviation behavior for the Euclidean norm
of projections of `np -balls onto random subspaces in high dimensions. At the same
time it helps to clarify the rôle of the involved parameters and contributes to a
better understanding of large deviation principles and their potential in the theory
of Asymptotic Geometric Analysis, which is of rising interest. The essential obser-
vation to such an extension to higher dimensions is a probabilistic representation
of the Euclidean norm of a random projection (see Theorem 3.1) in the spirit of
Schechtman and Zinn [32] that allows us to separate the influence of the param-
eter p and the subspace dimension. This representation might be of independent
interest.

Let us explain our main results in more detail (again, we refer to Section 2 below
for any unexplained notion or notation). We fix p ∈ [1,∞] and let for each n ∈ N,
X(n) be an independent random point that is uniformly distributed in the `np -ball of

Rn. Furthermore, we let kn ∈ {1, . . . , n− 1} be an integer and assume that E(n) is
a random linear subspace distributed according to the Haar probability measure on
the Grassmann manifold of kn-dimensional subspaces in Rn which is independent of
X(n). The sequence of random variables of interest to us are the Euclidean norms
of the orthogonal projections PE(n)X(n) of X(n) onto E(n), that is,∥∥PE(n)X(n)

∥∥
2
, n ∈ N.

We set ‖PEX‖ :=
(
n

1
p−

1
2 ‖PE(n)X(n)‖2

)
n∈N and note that if kn = 1 for all n ∈ N,

this reduces to the sequence of random variables studied in [13]. We first consider
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the case p ∈ [2,∞] and define for p ∈ [2,∞) the function

Jp(y) := inf
x1,x2>0

x
1/2
1 x

−1/p
2 =y

I∗p (x1, x2) , y ∈ R ,

where I∗p (x1, x2) is the Legendre-Fenchel transform of

Ip(t1, t2) := log

(∫
R
et1x

2+t2|x|p fp(x) dx

)
, (t1, t2) ∈ R×

(
−∞, 1

p

)
with fp(x) := (2p1/pΓ(1 + 1/p))−1e−|x|

p/p, x ∈ R, being the density of a p-
generalized Gaussian random variable. To handle the exceptional case p = ∞
simultaneously, we write J∞(y) := I∗∞(y2) with I∗∞ being the Legendre-Fenchel

transform of I∞(t) := log
(
2
∫ 1

0
etx

2

dx
)
. Our first main result reads as follows.

Theorem 1.1. Let p ∈ [2,∞] and assume that the limit λ := lim
n→∞

kn
n exists in

[0, 1]. Then the sequence ‖PEX‖ satisfies an LDP with speed n and rate function

I‖PEX‖(y) :=


inf
x≥y

[
λ
2 log

(
λx2

y2

)
+ 1−λ

2 log
(

1−λ
1−y2x−2

)
+ Jp(x)

]
: y > 0

Jp(0) : y = 0, λ ∈ (0, 1]

inf
x≥0
Jp(x) : y = 0, λ = 0

+∞ : y < 0 ,

where we understand the cases λ ∈ {0, 1} as the corresponding limits.

We emphasize at this point that while the LDP in Theorem 1.1 shows a universal
speed, its rate function depends in a subtle way on the underlying convex body via
the parameter p.

Next, we shall discuss the special case p = 2, which corresponds to the Euclidean
unit ball, in some more detail. First of all, in this situation the rate function can
be made fully explicit and is given by

(1) I‖PEX‖(y) =

{
λ
2 log

(
λ
y2

)
+ 1−λ

2 log
(

1−λ
1−y2

)
: y ∈ (0, 1)

+∞ : otherwise ,

where we understand the cases λ ∈ {0, 1} as the corresponding limits and with 0
or 1 included in the effective domain of I‖PEX‖. In particular, if λ takes the value
zero the rate function reduces to

I‖PEX‖(y) =

{
− 1

2 log(1− y2) : y ∈ [0, 1)

+∞ : otherwise

and this is exactly the rate function that already appeared in the 1-dimensional
LDP in [2, Theorem 3.4] or [13, Theorem 2.12]. In other words, this means that
in the Euclidean case p = 2 the LDP does not ‘feel’ the random subspaces E(n)

we project onto as long as their dimension is growing slowly with n, that is, if
kn = o(n). The difference to the 1-dimensional projections becomes visible only in
the ‘truly’ high-dimensional regime in which kn is eventually proportional to n.

We now turn to the case p ∈ [1, 2), which already for the 1-dimensional pro-
jections shows a large deviation behavior at different scales, but this time with a
fully explicit rate function (see [13, Theorem 2.3]). Our next results shows that this
continues to hold for high-dimensional random projections as well.
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Theorem 1.2. Let p ∈ [1, 2) and assume that the limit λ := lim
n→∞

kn
n exists in (0, 1].

Then the sequence ‖PEX‖ satisfies an LDP with speed np/2 and rate function

I‖PEX‖(y) :=

{
1
p

(
y2

λ −m
) p

2 : y ≥
√
λm

+∞ : otherwise ,

where m = mp := pp/2

3

Γ(1+ 3
p )

Γ(1+ 1
p )

.

We emphasize that for p ∈ [1, 2) the LDP for random projections of `np -balls
holds at a non-universal and p-dependent speed. Moreover, a comparison with [13,
Theorem 2.3] shows that both, the speed and the rate function differ from those
for the 1-dimensional random projections. In fact, in this situation (where kn = 1

for all n ∈ N) the sequence ‖PEX‖ satisfies an LDP with speed n
2p

2+p and rate
function

I‖PEX‖(y) =

{
2+p
2p y

2p
2+p : y ≥ 0

+∞ : otherwise

Note that the rate function stated here slightly differs from the rate function in
[13], since we are not dealing with signed distances in our set-up but rather with
their absolute values. Note that our Theorem 1.2 leaves open the case where the
subspace dimensions kn are such that kn

n → 0, as n → ∞. We conjecture that in
this case the LDP for ‖PEX‖ is the same as for ‖PEX‖ with kn ≡ 1 discussed
above.

After having presented our main theorems, let us comment on the tools we
are going to use in their proofs. They basically reflect a lively interplay between
geometric arguments with techniques and methods from large deviation theory.
As already anticipated above, the key to Theorem 1.1 and Theorem 1.2 is a new
probabilistic representation of the random variables ‖PE(n)X(n)‖2. Notably, in the
special case that kn = 1 for all n ∈ N this is different from the one that has been
used in [13]. More precisely, for each n ∈ N we will identify ‖PE(n)X(n)‖2 with the
product of three independent random variables:

‖PE(n)X(n)‖2 = U1/n · Z(n) ·G(n) .

Here,

• U is uniformly distributed on [0, 1],
• Z(n) is the quotient of the `n2 - and the `np -norm of an n-dimensional random

vector consisting of independent p-generalized Gaussian random entries,

• G(n) is given by (
∑kn
i=1 g

2
i )1/2/(

∑n
i=1 g

2
i )1/2 with standard Gaussian random

variables g1, . . . , gn that are independent.

The essential feature of this representation is that the parameter p influences only
the random variables Z(n), while on the other hand the dimension parameter kn
shows up exclusively in the definition of G(n). This in turn allows us to study the
different effects separately and paves the way to the higher-dimensional generaliza-
tions of the results in [13]. We emphasize that the representation of ‖PE(n)X(n)‖2
as a product is well reflected by the rate function appearing in Theorem 1.1, which
possesses the following probabilistic interpretation: while the radial part U1/n has
no influence as already seen in the 1-dimensional case, the rate function is the in-
fimum of the sum of two rate functions corresponding to LDPs for Z(n) and G(n).
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Moreover, the latter corresponds to the rate function (1) appearing in the particular
Euclidean case p = 2.

The rest of this paper is structured as follows. In Section 2 we introduce our
notation, recall the necessary background material from large deviation theory and
provide some preliminaries on the geometry of `np -balls. The aforementioned prob-

abilistic representation of ‖PE(n)X(n)‖2 is the content of Section 3. We prove some
auxiliary LDPs in Section 4 and in the final Section 5 we eventually prove Theorem
1.1 and Theorem 1.2. Since we have in mind a broad readership, especially col-
leagues working in functional analysis, convex geometry and probability theory, we
decided to include background material, tools and arguments from both Asymptotic
Geometric Analysis and probability theory.

2. Preliminaries

2.1. Notation. In this paper we denote by |A| the n-dimensional Lebesgue mea-
sure of a Lebesgue measurable set A ⊂ Rn and we write L (Rn) for the σ-field of all
Lebesgue measurable subsets of Rn. The collection of Borel sets in Rn is denoted
by B(Rn). We supply the n-dimensional Euclidean space Rn with its standard
inner product 〈 · , · 〉 and the Euclidean norm ‖ · ‖2. The boundary, the interior
and the closure of a set A ⊂ Rn are denoted by ∂A, A◦ and Ā, respectively.

We write Bn2 := {x ∈ Rn : ‖x‖2 ≤ 1} for the Euclidean unit ball and Sn−1 :=
{x ∈ Rn : ‖x‖2 = 1} for the corresponding unit sphere in Rn, and σn−1 for the
uniform probability measure on Sn−1, that is, the normalized spherical Lebesgue
measure. As subsets of Rn they carry natural Borel σ-fields that we denote by
B(Bn2 ) and B(Sn−1), respectively. Moreover, we recall that

|Bn2 | =
πn/2

Γ(1 + n
2 )
,(2)

where Γ( · ) is the Gamma-function.
The group of (n× n)-orthogonal matrices is denoted by O(n) and we let SO(n)

be the subgroup of orthogonal n × n matrices with determinant 1. As subsets of

Rn2

, O(n) and SO(n) can be equipped with the trace σ-field of B(Rn2

). Moreover,
both compact groups O(n) and SO(n) carry a unique Haar probability measure
which we denote by ν and ν̃, respectively. Since O(n) consists of two copies of
SO(n), the measure ν can easily be derived from ν̃ and vice versa.

Given k ∈ {0, 1, . . . , n}, we use the symbol Gn,k to denote the Grassmannian of
k-dimensional linear subspaces of Rn. Denoting by dH( · , · ) the Hausdorff distance
we supply Gn,k with the metric d(E,F ) := dH(BE , BF ), E,F ∈ Gn,k, where BE
and BF stand for the Euclidean unit balls in E and F , respectively. The Borel
σ-field on Gn,k induced by this metric is denoted by B(Gn,k) and we supply the
arising measurable space Gn,k with the unique Haar probability measure νn,k. It can
be identified with the image measure of the Haar probability measure ν̃ on SO(n)
under the mapping SO(n)→ Gn,k, T 7→ TE0 with E0 := span({e1, . . . , ek}). Here,
we write e1 := (1, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1) ∈ Rn for the
standard orthonormal basis in Rn and span({e1, . . . , ek}) ∈ Gn,k, k ∈ {1, . . . , n},
for the k-dimensional linear subspace spanned by the first k vectors of this basis.

2.2. Large Deviation Principles. The purpose of this section is to provide the
necessary background material from large deviation theory, which may be found in
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[10, 11, 18], for example. We directly start with the definition of what we understand
by a full and a weak large deviation principle. We refrain from presenting these
definitions in the most general possible framework and rather restrict to the set-up
needed in this paper. For this reason, let d ≥ 1 be a fixed integer and assume that
the d-dimensional Euclidean space Rd is supplied with its standard topology. In
this subsection we denote for clarity the space dimension by d instead of n in order
to distinguish it from our index parameter n. Finally, we make the assumption that
all random objects we are dealing with are defined on a common (and sufficiently
rich) probability space (Ω,F ,P).

Definition 2.1. Let X := (X(n))n∈N be a sequence of random vectors taking values
in Rd. Further, let s : N→ [0,∞] and I : Rd → [0,∞] be a lower semi-continuous
function with compact level sets {x ∈ Rd : I(x) ≤ α}, α ∈ R. We say that X
satisfies a (full) large deviation principle with speed s(n) and (good) rate function
I if

− inf
x∈A◦

I(x) ≤ lim inf
n→∞

1

s(n)
log(P(X(n) ∈ A))

≤ lim sup
n→∞

1

s(n)
log(P(X(n) ∈ A)) ≤ − inf

x∈A
I(x)

(3)

for all A ∈ L (Rd). Moreover, we say that X satisfies a weak large deviation
principle with speed s(n) and rate function I if the lower bound in (3) holds as
stated, while the upper bound is valid only for compact sets A ⊂ Rn.

We notice that on the class of all I-continuity sets, that is, on the class of sets
A ∈ L (Rd) for which I(A◦) = I(Ā) with I(A) := inf{I(x) : x ∈ A}, one has the
exact limit relation

lim
n→∞

1

s(n)
log(P(X(n) ∈ A)) = −I(A) .

In our paper we use the convention that the rate function in an LDP for a
sequence of random vectors X is denoted by IX.

What separates a weak from a full LDP is the so-called exponential tightness
of the sequence of random variables (see, for instance, [10, Lemma 1.2.18] and [18,
Lemma 27.9]).

Proposition 2.2. Let X := (X(n))n∈N be a sequence of random vectors taking
values in Rd. Suppose that X satisfies a weak LDP with speed s(n) and rate function
IX. Then X satisfies a full LDP if and only if X is exponentially tight, that is, if
and only if

inf
K

lim sup
n→∞

1

s(n)
log(P(X(n) /∈ K)) = −∞ ,

where the infimum is running over all compact sets K ⊂ Rd.

The following proposition (see, for instance, [10, Theorem 4.1.11]) shows that it
is sufficient to prove a weak LDP for a sequence of random variables solely for sets
in a basis of the underlying topological space.

Proposition 2.3. Let d ∈ N and A be basis of the standard topology in Rd. Let
X = (X(n))n∈N be a sequence of Rd-valued random vectors. For every A ∈ A,
define

I(A)
X := − lim inf

n→∞

1

s(n)
log(P(X(n) ∈ A))
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and for x ∈ Rd set IX(x) := sup{I(A)
X : A ∈ A, x ∈ A}. Suppose that for all x ∈ Rd,

IX(x) = sup
A∈A
x∈A

[
− lim sup

n→∞

1

s(n)
log (P (X ∈ A))

]
.

Then X satisfies a weak LDP with speed s(n) and rate function IX.

Let d ≥ 1 be a fixed integer and let X be an Rd-valued random vector. We write

Λ(u) = ΛX(u) := log(Ee〈X,u〉) , u ∈ Rd ,

for the cumulant generating function of X. Moreover, we define the (effective)
domain of Λ to be the set DΛ := {u ∈ Rd : Λ(u) <∞} ⊂ Rd.

Definition 2.4. The Legendre-Fenchel transform of a convex function Λ : Rd →
(−∞,+∞] is defined as

Λ∗(x) := sup
u∈Rd

[〈u, x〉 − Λ(u)] , x ∈ Rd .

The Legendre-Fenchel transform of the cumulant generating function plays a
crucial rôle in the following result, usually referred to as Cramér’s theorem, (see,
e.g., [10, Theorem 2.2.30, Theorem 6.1.3, Corollary 6.1.6] or [18, Theorem 27.5]).

Proposition 2.5 (Cramér’s theorem). Let X,X1, X2, . . . be independent and iden-
tically distributed random vectors taking values in Rd. Assume that the origin is an
interior point of DΛ, where Λ stands for the cumulant generating function of X.

Then the partial sums 1
n

n∑
i=1

Xi, n ∈ N satisfy an LDP with speed n and good rate

function Λ∗.

It will be rather important for us to deduce from an already existing large de-
viation principle a new one by applying various transformations. We first consider
the large deviation behavior under the formation of vectors. For this, assume that
d1 and d2 are integers and that X = (X(n))n∈N is a sequence of Rd1 -valued random
vectors and that Y = (Y (n))n∈N is a sequence of Rd2 -random vectors. Assum-
ing that X and Y satisfy large deviation principles, does then also the sequence
Z := ((X(n), Y (n)))n∈N of Rd1+d2-valued random vectors satisfy a large deviation
principle and, if so, what is its rate function? The following result is only implicit in
[10]. For the sake of completeness we present a self-contained proof in the appendix,
since we were not able to precisely locate it in the existing literature.

Proposition 2.6. Assume that X satisfies an LDP with speed s(n) and good rate
function IX and that Y satisfies an LDP with speed s(n) and good rate function IY.
Then, if X(n) and Y (n) are independent for every n ∈ N, Z = ((X(n), Y (n)))n∈N
satisfies an LDP with speed s(n) and rate function IZ, where IZ(x) = IX(x1) +
IY(x2) for all x = (x1, x2) ∈ Rd1 × Rd2 .

Next, assume that a sequence X = (X(n))n∈N of random variables satisfies an
LDP with speed n and rate function IX. Suppose now that Y = (Y (n))n∈N is a
sequence of random variables that are ‘close’ to the ones from X. Our aim is to
transfer in such a situation the LDP from X to Y. The conditions under which
such an approach is working are the content of the next result, which we took from
[10, Theorem 4.2.13] or [18, Lemma 27.13].
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Proposition 2.7. Let X = (X(n))n∈N and Y = (Y (n))n∈N be two sequence of Rd-
valued random vectors and assume that X satisfies an LDP with speed s(n) and rate
function IX. Further, suppose that X and Y are exponentially equivalent, i.e.,

lim sup
n→∞

1

s(n)
log(P(‖X(n) − Y (n)‖2 > δ)) = −∞

for any δ > 0. Then Y satisfies an LDP with the same speed and the same rate
function.

Remark 2.8. If the dimension d ∈ N is fixed, then, since all norms are equivalent,
we may consider the `1-norm instead of the `2-norm in the definition of exponential
equivalence.

Finally, we consider the possibility to ‘transport’ a large deviation principle to
another one by means of a continuous function. This device is known as the con-
traction principle and we refer to [10, Theorem 4.2.1] or [18, Theorem 27.11(i)].

Proposition 2.9 (Contraction principle). Let d1, d2 ∈ N and let F : Rd1 → Rd2
be a continuous function. Further, let X = (X(n))n∈N be a sequence of Rd1-
valued random vectors that satisfies an LDP with speed s(n) and rate function
IX. Then the sequence Y := (F (X(n)))n∈N of Rd2-valued random vectors satis-
fies an LDP with the same speed and with rate function IY = IX ◦ F−1, i.e.,
IY(y) := inf{IX(x) : F (x) = y}, y ∈ Rd2 , with the convention that IY(y) = +∞ if
F−1({y}) = ∅.

While this form of the contraction principle was sufficient to analyse the large
deviation behavior for 1-dimensional random projections of `np -balls, we will need
a refinement to treat the higher-dimensional cases. More precisely, to handle this
situation we need to allow the continuous function to depend on n. The following
result can be found in [10, Corollary 4.2.21].

Proposition 2.10. Let d1, d2 ∈ N and let F : Rd1 → Rd2 be a continuous function.
Suppose that X = (X(n))n∈N is a sequence of Rd1-valued random variables that
satisfies an LDP with speed s(n) and rate function IX. Further, suppose that for
each n ∈ N, Fn : Rd1 → Rd2 is a measurable function such that for all δ > 0,
Γn,δ := {x ∈ Rd1 : ‖Fn(x)− F (x)‖2 > δ} ∈ L (Rd1) and

lim sup
n→∞

1

s(n)
log(P(X(n) ∈ Γn,δ)) = −∞ .

Then the sequence of Rd2-valued random variables (Fn(X(n)))n∈N satisfies an LDP
with the same speed and with rate function IX ◦ F−1.

Finally, we recall from [11, Theorem V.6] a version of what is known as the
Gärtner-Ellis theorem in large deviation theory. It can be regarded as a general-
ization of Cramér’s theorem in different directions.

Proposition 2.11 (Gärtner-Ellis theorem). Let X = (X(n))n∈N be a sequence of
random variables with cumulant generating functions Λn. We assume that for each
y ∈ R the limit Λ(y) := lim

n→∞
1
nΛn(ny) exists in [−∞,∞] and that 0 ∈ D◦Λ. We

also assume that the function Λ is lower semi-continuous and differentiable on R
and that DΛ = R. Then X satisfies a LDP with speed n and rate function Λ∗.
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2.3. Geometry of `np -balls. Let n ≥ 1 be an integer and consider the n-dimensio-
nal Euclidean space Rn. For any p ∈ [1,∞] the `np -norm, ‖x‖p, of x = (x1, . . . , n) ∈
Rn is given by

‖x‖p :=


( n∑
i=1

|xi|p
)1/p

: p <∞

max{|x1|, . . . , |xn|} : p =∞ .

Although ‖x‖p depends on the space dimension n, we decided to suppress this
dependency in our notation for simplicity, since n will always be clear from the
context.

For any n and p let us denote by Bnp := {x ∈ Rn : ‖x‖p ≤ 1} the `np -ball in

Rn and denote by Sn−1
p := {x ∈ Rn : ‖x‖p = 1} the corresponding unit sphere.

The restriction of the Lebesgue measure to Bnp provides a natural volume measure

on Bnp . Although one could supply Sn−1
p with the (n − 1)-dimensional Hausdorff

measure, the so-called cone measure turns out to be more useful as explained later
(see [28] for the relation between these two measures).

Definition 2.12. For a set A ∈ B(Sn−1
p ) we define

µp(A) :=
|{rx : x ∈ A, r ∈ [0, 1]}|

|Bnp |
.

The measure µp is called the cone (probability) measure of Bnp .

We remark that the cone measure µp coincides with the (n − 1)-dimensional
Hausdorff probability measure on Sn−1

p if and only if p = 1, p = 2 or p = +∞. In
particular, µ2 is the same as σn−1, the normalized spherical Lebesgue measure.

The proofs of our results heavily rely on the following probabilistic representa-
tions for the volume and the cone probability measure of Bnp for p ∈ [1,∞), which
are taken from [30] and [32] (we also refer to [3] for a different representation).

Proposition 2.13. Let n ∈ N and p ∈ [1,∞). Suppose that Z1, . . . , Zn are inde-
pendent p-generalized Gaussian random variables whose distribution has density

fp(x) :=
1

2p1/pΓ(1 + 1
p )
e−|x|

p/p

with respect to the Lebesgue measure on R. Consider the random vector Z :=
(Z1, . . . , Zn) ∈ Rn and define X := Z/‖Z‖p. Furthermore, let U be a uniformly
distributed random variable on [0, 1], which is independent of the Zi’s, and let us
write Y := U1/nX. Then,

(i) the random vector X ∈ Sn−1
p is independent of ‖Z‖p and is distributed

according to µp,
(ii) the random vector Y ∈ Bnp is uniformly distributed in Bnp .

In the rest of this paper (gi)i∈N will always denote a sequence of independent
real-valued standard Gaussians, U will denote an independent random variable
uniformly distributed on [0, 1] and, for p ≥ 1, (Zi)i∈N will denote a sequence of
independent p-generalized Gaussian random variables with density fp. All these
random variables are assumed to be independent.

For further probabilistic aspects pertaining the geometry of `np -balls we refer to
[3, 31, 32, 33] as well as the references cited therein.
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3. A probabilistic representation for ‖PEX‖2
In this section the dimension of the space n will be fixed. Thus, for simplicity

in the notation, we will omit the indices that will refer to the dimension n. Fix
p ∈ [1,∞), let X be a point chosen according to the uniform distribution on Bnp
and let E ∈ Gn,k be an independent random subspace with distribution νn,k for
some k ∈ {1, . . . , n}. In this section we will develop the already announced proba-
bilistic representation for ‖PEX‖2, which will turn out to be crucial in the proofs
of Theorems 1.1 and 1.2. The key feature of this representation is that it will allow

us to identify ‖PEX‖2 with a continuous function of two random variables V
(n)
1

and W (n). These random variables in turn can be written as functions of sums of
independent identically distributed random variables. Besides, only one of them
will depend on p, while the other one will depend only on the dimension k of the
random subspace E. These properties, together with Cramér’s theorem and the
contraction principle will give us the LDPs in the main theorems.

Theorem 3.1. For any n ∈ N and k ∈ {1, . . . , n} let X be a random vector
uniformly distributed in Bnp for some p ∈ [1,∞) and let E ∈ Gn,k be a random
subspace distributed according to νn,k. Then the random variable ‖PEX‖2 has the
same distribution as the random variable

U1/n

(∑n
i=1 Z

2
i

)1/2
(
∑n
i=1 |Zi|p)

1/p

(∑k
i=1 g

2
i

)1/2

(
∑n
i=1 g

2
i )

1/2
.

Proof. Let x ∈ Rn be a fixed vector. By construction of the Haar measure νn,k on
Gn,k and uniqueness of the Haar measure ν on O(n), we have that, for any t ∈ R,

νn,k (E ∈ Gn,k : ‖PEx‖2 ≥ t) = ν (T ∈ O(n) : ‖PTE0
x‖2 ≥ t)

= ν (T ∈ O(n) : ‖PE0Tx‖2 ≥ t)

= ν

(
T ∈ O(n) : ‖x‖2

∥∥∥PE0
T

x

‖x‖2

∥∥∥
2
≥ t
)
,

where E0 := span({e1, . . . , ek}). Again, by the uniqueness of the Haar measure σn−1

on Sn−1, T (x/‖x‖2) is a random vector uniformly distributed on Sn−1 according to
σn−1, provided that T ∈ O(n) has distribution ν. Thus,

ν

(
T ∈ O(n) : ‖x‖2

∥∥∥PE0T
x

‖x‖2

∥∥∥
2
≥ t
)

= σn−1

(
u ∈ Sn−1 : ‖x‖2 ‖PE0

u‖2 ≥ t
)
.

Since G = (g1, . . . , gn) is a standard Gaussian random vector in Rn, by Proposition
2.13, the random vector G

‖G‖2 is distributed on Sn−1 according to σn−1. Thus,

σn−1

(
u ∈ Sn−1 : ‖x‖2 ‖PE0

u‖2 ≥ t
)

= P
(
‖x‖2

‖PE0
G‖2

‖G‖2
≥ t
)
.

Consequently, if X is a random vector uniformly distributed on Bnp , E ∈ Gn,k is a
random subspace independent of X having distribution νn,k, and G is a standard
Gaussian random vector in Rn that is independent of X and E, we have that

P(X,E)
(
(x, F ) ∈ Bnp ×Gn,k : ‖PFx‖2 ≥ t

)
=

1

|Bnp |

∫
Bn
p

νn,k (E ∈ Gn,k : ‖PEx‖2 ≥ t) dx
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=
1

|Bnp |

∫
Bn
p

P
(
‖x‖2

‖PE0
G‖2

‖G‖2
≥ t
)

dx

= P(X,G)

(
(x, g) ∈ Bnp × Rn : ‖x‖2

‖PE0
g‖2

‖g‖2
≥ t
)
.

Here, P(X,E) denotes the joint distribution of the random vector (X,E) ∈ Bnp×Gn,k,

while P(X,G) stands for that of (X,G) ∈ Bnp × Rn. Now, let Z = (Z1, . . . , Zn) be a
random vector having independent p-generalized Gaussian random entries. Then,
by Proposition 2.13, the random vector U1/n Z

‖Z‖p is uniformly distributed in Bnp .

Therefore,

P(X,G)

(
(x, g) ∈ Bnp × Rn : ‖x‖2

‖PE0
g‖2

‖g‖2
≥ t
)

= P(U,Z,G)

(
(u, z, g) ∈ [0, 1]× Rn × Rn : u1/n ‖z‖2

‖z‖p
‖PE0g‖2
‖g‖2

≥ t
)

with P(U,Z,G) being the joint distribution of the random vector (U,Z,G) ∈ [0, 1]×
Rn × Rn. Consequently, we conclude that the two random variables

‖PEX‖2 and U1/n

(∑n
i=1 Z

2
i

)1/2
(
∑n
i=1 |Zi|p)

1/p

(∑k
i=1 g

2
i

)1/2

(
∑n
i=1 g

2
i )

1/2

have the same distribution. �

4. Proof of auxiliary LDPs

The purpose of this section is to derive a number of auxiliary LDPs for the
factors appearing in the probabilistic representation for ‖PE(n)X(n)‖2 in Theorem
3.1. These results can be seen as intermediate steps in the proof of Theorem 1.1.
Recall the set-up and the notation introduced above, define for each n ∈ N the
random variables

• V (n) :=

(∑kn
i=1 g

2
i

)1/2

(∑n
i=1 g

2
i

)1/2
,

• V
(n)
1 := U1/nV (n),

• W (n) := n
1
p−

1
2

(∑n
i=1 Z

2
i

)1/2

(∑n
i=1 |Zi|p

)1/p
,

and the sequences V := (V (n))n∈N, V1 := (V
(n)
1 )n∈N and W := (W (n))n∈N. Using

these definitions we notice that n
1
p−

1
2 ‖PE(n)X(n)‖2 has the same distribution as

V
(n)
1 W (n).

For technical reasons, we will have to split the LDPs for the sequences V, and
V1 into the three different cases

• λ ∈ (0, 1),
• λ = 0,
• λ = 1,
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where, λ = lim
n→∞

kn
n . Note that the LDPs for the random sequences V and V1 will

be unaffected by the choice of the value p. The latter enters only in the LDP for the
random sequence W and causes the different large deviation behavior of ‖PEX‖
displayed Theorem 1.1 and Theorem 1.2.

4.1. LDP for the random sequence V. We prepare the proof for the LDP for
the sequence V with the following general lemma. For this we recall that a random
variable is gamma distributed with parameters a > 0 and b > 0 provided that its
Lebesgue density is

x 7→ ba

Γ(a)
xa−1e−bx , x ≥ 0 .

Similarly, a random variable is beta distributed with parameters a > 0 and b > 0
if its Lebesgue density is given by

x 7→ 1

B(a, b)
xa−1(1− x)b−1, x ∈ [0, 1] ,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is Euler’s beta function.

Lemma 4.1. Let (an)n∈N and (bn)n∈N be positive sequences such that the limits
lim
n→∞

an
n = a ∈ [0,∞) and lim

n→∞
bn
n = b ∈ [0,∞) exist are not equal to zero at the

same time. For each n ∈ N let X(n) be a beta distributed random variable with
parameters an and bn. Then the sequence X = (X(n))n∈N satisfies a LDP with
speed n and with the rate function IX given by

IX(y) =


−a log y

a − b log 1−y
b − (a+ b) log(a+ b) : y ∈ (0, 1) and a > 0, b > 0

−a log y : y ∈ (0, 1] and a > 0, b = 0

−b log (1− y) : y ∈ [0, 1) and a = 0, b > 0

+∞ : otherwise .

Proof. For t ∈ R let us write

Λ(t) := lim
n→∞

1

n
logEetnX

(n)

= lim
n→∞

1

n
log

1

B(an, bn)

∫ 1

0

xan−1(1− x)bn−1 etnx dx

= lim
n→∞

1

n
log

1

B(an, bn)
+ lim
n→∞

1

n
log

∫ 1

0

en(tx+ an−1
n log x+ bn−1

n log(1−x)) dx .

According to Laplace’s principle, the second term is equal to

Ψ∗(t) = sup
x∈(0,1)

[xt−Ψ(x)] with Ψ(x) = −a log x− b log(1− x) ,

where here and below we interpret the formal expression 0 log 0 as 0. Using the
explicit form of Ψ and the fact that a and b cannot both be equal to zero one easily
computes that, for all t ∈ R,

Ψ∗(t) =
1

2

(
t− (a+ b) +

√
(a+ b− t)2 − 4at

)
+ a log

( t− (a+ b) +
√

(a+ b− t)2 − 4at

2t

)
+ b log

( t+ a+ b+
√

(a+ b− t)2 − 4at

2t

)
.

(4)
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To treat the first term, which involves the beta function, we distinguish different
cases. First assume that an →∞ and bn →∞. Then Stirling’s formula yields that
asymptotically, as n→∞, B(an, bn) behaves like

√
2π

a
an− 1

2
n b

bn− 1
2

n

(an + bn)an+bn− 1
2

.

Thus,

lim
n→∞

1

n
log

1

B(an, bn)

= − lim
n→∞

[ log
√

2π

n
+
an − 1

2

n

(
log n+ log

an
n

)
+
bn − 1

2

n

(
log n+ log

bn
n

)
−
an + bn − 1

2

n

(
log n+ log

an + bn
n

)]
= −a log a− b log b+ (a+ b) log(a+ b) .

If otherwise an stays bounded and bn →∞ then B(an, bn) behaves like Γ(an)b−ann ,
which implies that in this case

lim
n→∞

1

n
log

1

B(an, bn)
= − lim

n→∞

1

n
logB(an, bn) = 0

and the same is true if an →∞ and bn is bounded. Putting things together yields,
for y ∈ (0, 1) and any (permitted) choice of an and bn, the limiting relation

Λ(t) = lim
n→∞

1

n
logEetnX

(n)

= ca,b + Ψ∗(t)

with the constant ca,b given by

ca,b := −a log a− b log b+ (a+ b) log(a+ b) .

A glance at (4) shows that the function Λ is clearly lower semi-continuous and
even infinitely differentiable on R. In addition, DΛ = R. We can thus apply the
Gärtner-Ellis theorem in Proposition 2.11 to deduce that the sequence X satisfies
a LDP with speed n and rate function

Λ∗(y) = sup
t∈R

[ty − Λ(t)] = sup
t∈R

[ty −Ψ∗(t)− ca,b]

= sup
t∈R

[ty −Ψ∗(t)]− ca,b = Ψ∗∗(y)− ca,b = Ψ(y)− ca,b ,

where in the last step we used the fact that the Legendre-Fenchel transform is an
involution (at least in our set-up, where Ψ is differentiable on R). If a > 0 and
b > 0 we have, for y ∈ (0, 1),

Λ∗(y) = −a log y − b log(1− y) + a log a+ b log b− (a+ b) log(a+ b)

= −a log
y

a
− b log

1− y
b
− (a+ b) log(a+ b) .

If a = 0 and b > 0 we obtain, for y ∈ [0, 1), the representation

Λ(y)∗ = −b log(1− y)

and if a > 0 and b = 0 we get, for y ∈ (0, 1],

Λ(y)∗ = −a log y .

This completes the proof. �
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We shall now apply the previous result to deduce a LDP for the sequence V.

Lemma 4.2. For each n ∈ N let kn ∈ N with kn ∈ {1, . . . , n− 1} and assume that
lim
n→∞

kn
n = λ ∈ [0, 1]. Then the sequence V satisfies a LDP with speed n and rate

function

I(λ)
V (y) =


−λ2 log y2

λ −
1−λ

2 log 1−y2
1−λ : y ∈ (0, 1) and λ ∈ (0, 1)

− 1
2 log y2 : y ∈ (0, 1] and λ = 1

− 1
2 log(1− y2) : y ∈ [0, 1) and λ = 0

+∞ : otherwise .

Proof. Let us recall that

X(n) := (V (n))2 =

∑kn
i=1 g

2
i∑kn

i=1 g
2
i +

∑n
i=kn+1 g

2
i

=
Γ1

Γ1 + Γ2

with independent random variables Γ1 and Γ2, where Γ1 is gamma distributed
with parameters kn/2 and 1/2, while Γ2 is gamma distributed with parameters
(n− kn)/2 and 1/2. It is well known that in this situation the ratio Γ1

Γ1+Γ2
is beta

distributed with parameters kn/2 and (n − kn)/2. We can now apply Lemma 4.1
with an = kn/2, bn = (n−kn)/2, a = λ/2 and b = (1−λ)/2 (note that a+b = 1/2)

to deduce a LDP for the sequence ((V (n))2)n∈N with speed n and rate function I(λ)
X

given as follows. If λ ∈ (0, 1) and y ∈ (0, 1), then

I(λ)
X (y) = −λ

2
log

2y

λ
− 1− λ

2
log

2(1− y)

1− λ
− 1

2
log

1

2

= −λ
2

log
y

λ
− 1− λ

2
log

1− y
1− λ

− λ

2
log 2− 1− λ

2
log 2 +

1

2
log 2

= −λ
2

log
y

λ
− 1− λ

2
log

1− y
1− λ

,

if λ = 1 and y ∈ (0, 1], then

I(λ)
X (y) =

1

2
log y

and if λ = 0 and y ∈ [0, 1), then

I(λ)
X (y) =

1

2
log(1− y)

and I(λ)
X (y) = +∞ in all other cases. Finally, noting that V (n) = F (Xn) with

the continuous function F (y) =
√
y, y > 0, we apply the contraction principle in

Proposition 2.9 to deduce the LDP with speed n and rate function

I(λ)
V (y) = (I(λ)

X ◦ F−1)(y) = I(λ)
X (y2)

for the sequence V. �

4.2. LDP for the random sequence V1. In this subsection we will prove LDPs
for the sequence V1, again in the three different cases λ ∈ (0, 1), λ = 1 and λ = 0.
As we will see below, the radial part is in fact negligible and so the rate functions
for V1 coincide with the corresponding ones for V obtained in Subsection 4.1.

In all three cases, we will use the following result proved in [13, Lemma 3.3],
which is also a direct consequence of Lemma 4.1.
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Lemma 4.3. The sequence U = (U1/n)n∈N satisfies an LDP with speed n and rate
function

IU(y) :=

{
− log(y) : y ∈ (0, 1]

+∞ : otherwise .

Proof. Note that, for each t ∈ [0, 1],

P(U1/n ≤ t) = P (U ≤ tn) = tn,

which shows that U1/n is beta distributed with parameters n and 1. We can thus
apply Lemma 4.1 with an = n, bn = 1, a = 1 and b = 0 to deduce the LDP for the
sequence U. �

We start with λ ∈ (0, 1).

Corollary 4.4. For each n ∈ N let kn ∈ N with kn ∈ {1, . . . , n − 1} and assume
that

lim
n→∞

kn
n

= λ ∈ (0, 1) .

Then the sequence V1 satisfies an LDP with speed n and rate function

I(λ)
V1

(y) :=

{
λ
2 log

(
λ
y2

)
+ 1−λ

2 log
(

1−λ
1−y2

)
: y ∈ (0, 1)

+∞ : otherwise .

Proof. By Proposition 2.6, Lemma 4.2 and Lemma 4.3 the sequence of random
vectors

(
(U1/n, V (n))

)
n∈N satisfies an LDP with speed n and rate function

I(x1, x2) =

{
− log(x1) + λ

2 log
(
λ
x2
2

)
+ 1−λ

2 log
(

1−λ
1−x2

2

)
: x1 ∈ (0, 1] and x2 ∈ (0, 1)

+∞ : otherwise ,

(x1, x2) ∈ R2. Defining F (x1, x2) := x1x2 and applying the contraction principle
(see Proposition 2.9), we deduce that V1 =

(
F (U1/n, V (n))

)
n∈N satisfies an LDP

with speed n and rate function

I(λ)
V1

(y) = inf
(x1,x2)∈R2
F (x1,x2)=y

I(x1, x2) , y ∈ R .

If y ∈ (0, 1), then

I(λ)
V1

(y)

= inf
x1x2=y

[
− log(x1) +

λ

2
log
( λ
x2

2

)
+

1− λ
2

log
( 1− λ

1− x2
2

)]
= inf
x1x2=y

[
− λ

2
log(x2

1)− 1− λ
2

log(x2
1) +

λ

2
log
( λ
x2

2

)
+

1− λ
2

log
( 1− λ

1− x2
2

)]
= inf
x1x2=y

[λ
2

log
( λ

(x1x2)2

)
+

1− λ
2

log
( 1− λ
x2

1 − (x1x2)2

)]
= inf
x1x2=y

[λ
2

log
( λ
y2

)
+

1− λ
2

log
( 1− λ
x2

1 − y2

)]
=
λ

2
log
( λ
y2

)
+

1− λ
2

log
( 1− λ

1− y2

)
,

since the infimum is attained at x1 = 1 and x2 = y. If y /∈ (0, 1), for every
(x1, x2) ∈ R2 such that x1x2 = y, we have I(x1, x2) = +∞. �
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In the same way we obtained Corollary 4.4, we also treat the LDP for V1 if
λ = 0.

Corollary 4.5. For each n ∈ N let kn ∈ N with kn ∈ {1, . . . , n− 1} be such that

lim
n→∞

kn
n

= 0 .

Then, the sequence of random variables V1 satisfies an LDP with speed n and rate
function

I(0)
V1

(y) :=

{
− 1

2 log(1− y2) : y ∈ [0, 1)

+∞ : otherwise .

Proof. By Proposition 2.6, Lemma 4.2 and Lemma 4.3 the sequence of random
vectors

(
(U1/n, V (n))

)
n∈N satisfies an LDP with speed n and rate function

I(x1, x2) =

{
− log(x1)− 1

2 log(1− x2
2) : x1 ∈ (0, 1] and x2 ∈ [0, 1)

+∞ : otherwise ,

(x1, x2) ∈ R2. Defining F (x1, x2) := x1x2 and applying the contraction principle
(see Proposition 2.9), we deduce that V1 =

(
F (U1/n, V (n))

)
n∈N satisfies an LDP

with speed n and rate function

I(0)
V1

(y) = inf
(x1,x2)∈R2
F (x1,x2)=y

I(x1, x2) , y ∈ R .

If y ∈ [0, 1), then

I(0)
V1

(y) = inf
x1x2=y

[
− log(x1)− 1

2
log(1− x2

2)
]

= inf
x1x2=y

[
− 1

2
log(x2

1)− 1

2
log(1− x2

2)
]

= inf
x1x2=y

[
− 1

2
log
(
x2

1 − x2
1x

2
2

)]
= inf
x1x2=y

[
− 1

2
log
(
x2

1 − y2
)]

= −1

2
log(1− y2) ,

since the infimum is attained at x1 = 1 and x2 = y. If y /∈ [0, 1), for every
(x1, x2) ∈ R2 such that x1x2 = y, we have I(x1, x2) = +∞. �

Finally, we consider the case λ = 1.

Corollary 4.6. For each n ∈ N let kn ∈ N with kn ∈ {1, . . . , n− 1} be such that

lim
n→∞

kn
n

= 1 .

Then, the sequence of random variables V1 satisfies an LDP with speed n and rate
function

I(1)
V1

(y) :=

{
− 1

2 log(y2) : y ∈ (0, 1]

+∞ : otherwise .
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Proof. By Proposition 2.6, Lemma 4.2 and Lemma 4.3 the sequence of random
vectors

(
(U1/n, V (n))

)
n∈N satisfies an LDP with speed n and rate function

I(x1, x2) =

{
− log(x1)− 1

2 log(x2
2) : x1 ∈ (0, 1] and x2 ∈ (0, 1]

+∞ : otherwise ,

(x1, x2) ∈ R2. Defining F (x1, x2) := x1x2 and applying the contraction principle
(see Proposition 2.9), we deduce that V1 =

(
F (U1/n, V (n))

)
n∈N satisfies an LDP

with speed n and rate function

I(1)
V1

(y) = inf
(x1,x2)∈R2
F (x1,x2)=y

I(x1, x2) , y ∈ R .

If y ∈ (0, 1], then

I(1)
V1

(y) = inf
x1x2=y

[
− log(x1)− 1

2
log(x2

2)
]

= inf
x1x2=y

[
− 1

2
log(x2

1)− 1

2
log(x2

2)
]

= inf
x1x2=y

[
− 1

2
log(x2

1x
2
2)
]

= inf
x1x2=y

[
− 1

2
log(y2)

]
= −1

2
log(y2) .

If y /∈ (0, 1], for every (x1, x2) ∈ R2 such that x1x2 = y, we have I(x1, x2) =
+∞. �

4.3. LDP for the random sequence W. In this subsection we prove LDPs for
the sequence W = (W (n))n∈N. We will only consider the case p ∈ [2,∞) (the
special situation in which p = ∞ is treated directly in the proof of Theorem 1.1
in Section 5), where the result follows from Cramér’s theorem and the contraction
principle.

Lemma 4.7. Let p ∈ [2,∞). Then W satisfies an LDP with speed n and rate
function

I(p)
W (y) :=


inf

x1≥0,x2>0

x
1/2
1 x

−1/p
2 =y

I∗(x1, x2) : y ≥ 0

+∞ : y < 0 ,

where I∗ is the Legendre-Fenchel transform of

I(t1, t2) := log

(∫
R
et1x

2+t2|x|p e−
|x|p
p

2p1/pΓ(1 + 1
p )

dx

)
with effective domain R × (−∞, 1/p) if p > 2 and {(t1, t2) ∈ R2 : t1 + t2 <

1
2} if

p = 2.

Proof. We set

S(n) :=
1

n

n∑
i=1

(Z2
i , |Zi|p) , n ∈ N .
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Let t = (t1, t2) ∈ R2 and define

I(t1, t2) := log
(
E e〈t,(Z

2
1 ,|Z1|p)〉

)
= log

(∫
R
et1x

2+t2|x|p e−
|x|p
p

2p1/pΓ(1 + 1
p )

dx

)

= log

(∫ ∞
0

e
1
p (pt1x

2−(1−pt2)xp)

p1/pΓ(1 + 1
p )

dx

)
,

which is finite in R ×
(
− ∞, 1

p

)
if p > 2 and if t1 + t2 < 1

2 for p = 2. Since

(0, 0) is in the interior of the effective domain of I, by Cramér’s theorem (see
Proposition 2.5), (S(n))n∈N satisfies an LDP with speed n and rate function I∗.
Notice that the effective domain of I∗ is contained in [0,∞) × [0,∞). Moreover,
(W (n))n∈N = (F (S(n)))n∈N, with F : R2 → R being the function given by

F (x1, x2) = x
1/2
1 x

−1/p
2 .

Note that this function is continuous on [0,∞)× (0,∞). Hence, by the contraction
principle (see Proposition 2.9), W satisfies an LDP with speed n and rate function

I(p)
W (y) = inf

x1≥0,x2>0

x
1/2
1 x

−1/p
2 =y

I∗(x1, x2) ,

if y ≥ 0 and I(p)
W (y) = +∞ if y < 0, because F−1({y}) = ∅. �

Remark 4.8. Note that if p = 2, the random variables W (n), n ≥ 1 are constantly
equal to 1. This means that for any A ∈ B(R),

lim
n→∞

log
(
P(W (n) ∈ A)

)
n

=

{
0 : 1 ∈ A
−∞ : 1 /∈ A .

Therefore,

I(2)
W (y) =

{
0 : y = 1

+∞ : y 6= 1 .

5. Proof of the main results

After these preparations, we can now present the proofs of our main results,
Theorem 1.1 and Theorem 1.2.

5.1. Proof of Theorem 1.1. First, let p ∈ [2,∞). According to Theorem 3.1, for

each n ∈ N, the random variable n
1
p−

1
2 ‖PE(n)X(n)‖2 has the same distribution as

V
(n)
1 W (n). By Proposition 2.6, if for λ ∈ [0, 1], I(λ)

V1
and I(p)

W are the rate functions
defined in Corollaries 4.4, 4.5 and 4.6, and Lemma 4.7 the sequence of random

vector
(
(V

(n)
1 ,W (n))

)
n∈N satisfies an LDP with speed n and rate function

I(λ)
V1

(x1) + I(p)
W (x2)

=

{
λ
2 log

(
λ
x2
1

)
+ 1−λ

2 log
(

1−λ
1−x2

1

)
+ I(p)

W (x2) : x1 ∈ (0, 1) and x2 ∈ DI(p)W

+∞ : otherwise ,
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(x1, x2) ∈ R2. By the contraction principle (see Proposition 2.9) applied to the
function F : R2 → R, F (x1, x2) = x1x2, we conclude that the sequence of random

variables (F (V
(n)
1 ,W (n)))n∈N satisfies an LDP with speed n and rate function

I‖PEX‖(y) = inf
x1x2=y

[
IV1

(x1) + I(p)
W (x2)

]
, y ∈ R .

If y < 0, then, for any x1, x2 ∈ R such that x1x2 = y, either x1 or x2 is negative
and so I‖PEX‖(y) = +∞. If y = 0, then, for any x1, x2 ∈ R with x1x2 = y, either

x1 = 0, or x2 = 0. If x1 = 0 then I(λ)
V1

(0) = +∞ if λ 6= 0. If λ = 0 then I(0)
V1

(0) = 0.
Thus, if λ 6= 0, we see that

I‖PEX‖(0) = inf
x1∈(0,1)

[
IV1

(x1) + I(p)
W (0)

]
.

Since inf
x1∈(0,1)

IV1
(x1) is attained when x1 =

√
λ and I(λ)

V1
(
√
λ) = 0, we obtain

I‖PEX‖(0) = I(p)
W (0). If λ = 0, then

I‖PEX‖(0) = min{I(p)
W (0), inf

x≥0
I(p)
W (x)} = inf

x≥0
I(p)
W (x) .

If y > 0, then, for any x1, x2 ∈ R such that x1x2 = y, we can write x1 = y
x2

. Since

if 0 < x2 < y, we have that x1 > 1, in such a case I(λ)
V1

(x1) = +∞. If x2 < 0 then

I(p)
W (x2) = +∞. Thus,

I‖PEX‖(y) = inf
x2≥y

[ λ

2x2
2

log
( λ
y2

)
+

1− λ
2

log
( 1− λ

1− y2

x2
2

)
+ I(p)

W (x2)
]
,

which is the function in the statement of the theorem.
Finally, we consider the case p = +∞ and notice that 1√

n
‖PEX‖2 has the

same distribution as the product (W
(n)

)1/2 V (n) with W
(n)

:= 1
n

n∑
i=1

X2
i , where

X = (X1, . . . , Xn) is a random vector whose entries are independent and uniformly
distributed on [−1, 1]. By Cramér’s theorem (see Proposition 2.5) it follows that

W
(n)

satisfies an LDP with speed n and rate function I∗∞, the Legendre-Fenchel

transform of I∞(t) = log
(
2
∫ 1

0
etx

2

dt
)
. Thus, according to Lemma 4.2 and the

contraction principle (see Proposition 2.9), the sequence ( 1√
n
‖PEX‖2)n∈N satisfies

an LDP with speed n and rate function

I‖PEX‖(y) = inf
x1,x2∈R

x
1/2
1 x2=y

[I∞(x1) + I(λ)
V (x2)]

=


inf
x≥y

[
λ
2 log

(
λx2

y2

)
+ 1−λ

2 log
(

1−λ
1−y2x−2

)]
: y > 0

inf
x>0
I∞(x) : y = 0 and λ = 0

+∞ : otherwise .

This complete the proof of the theorem. 2

Remark 5.1. In the special case p = 2 we find that

I‖PEX‖(y) = inf
x1x2=y

[
I(λ)
V1

(x1) + I(2)
W (x2)

]
= I(λ)

V1
(y) + I(2)

W (1) = IV1
(y) ,

since I(2)
W (1) = 0, see Remark 4.8. This proves relation (1) in the introduction.
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5.2. Proof of Theorem 1.2. The proof of Theorem 1.2 requires different tools.
In particular, it relies on a large deviation result for sums of so-called stretched
exponential random variables taken from a paper of Gantert, Ramanan and Rem-
bart [15]. We start by computing the variance of a p-generalized Gaussian random
variable.

Lemma 5.2. Let Z be a p-generalized Gaussian random variable for some p ∈
[1,∞). Then

EZ2 =
p

p
2

3

Γ
(
1 + 3

p

)
Γ
(
1 + 1

p

) .
Proof. Recalling the definition of the density fp of Z from Proposition 2.13 and
applying the change of variables u = xp/p, we see that

EZ2 =

∫ ∞
−∞

x2 fp(x) dx =
1

p1− 2
p Γ
(
1 + 1

p

) ∫ ∞
0

u
3
p−1 e−u du =

p
p
2

3

Γ
(
1 + 3

p

)
Γ
(
1 + 1

p

)
and the proof is complete. �

The next lemma provides bounds for the tails of the random variable Z2. A
function f : (0,∞) → R is said to be slowly varying (at infinity) provided that

lim
t→∞

f(at)
f(t) = 1 for any a > 0.

Lemma 5.3. For p ∈ [1, 2) let Z be a p-generalized Gaussian random variable and
for t > 0 define functions

b(t) :=
1

p
+
p− 1

2
t−

p
2 log t , c1(t) :=

t
p
2

t
p
2 + 1

and c2 = c2(t) := 2.

These functions are slowly varying and, for all t > 0, one has that

c1(t) e−b(t) t
p
2 ≤ P(Z2 ≥ t) ≤ c2 e−b(t) t

p
2 .

Proof. Let us first check that b, c1 and c2 are slowly varying. For c2 this is trivial,
while for b and c1 we have that, for all a > 0,

lim
t→∞

b(at)

b(t)
= lim
t→∞

1
p + p−1

2 (at)−
p
2 log(at)

1
p + p−1

2 t−
p
2 log t

= 1 ,

lim
t→∞

c1(at)

c1(t)
= lim
t→∞

(at)
p
2

(at)
p
2 + 1

t
p
2 + 1

t
p
2

= 1 .

It is well known and easily shown that, for t > 0,

t

tp + 1
e−t

p/p ≤
∫ ∞
t

e−s
p/p ds ≤ 1

tp−1
e−t

p/p .

This readily implies the upper bound

P(Z2 ≥ t) ≤ 2

t
p−1
2

e−t
p
2 /p = 2 e−t

p
2

(
1
p + p−1

2 t−
p
2 log t

)
= c2 e

−b(t) t
p
2

as well as the lower bound by writing

P(Z2 ≥ t) ≥ 2
√
t

t
p
2 + 1

e−t
p
2 /p =

t
p
2

t
p
2 + 1

e−t
p
2

(
1
p + p−1

2 t−
p
2 log t

)
= c1(t) e−b(t) t

p
2 .

The argument is thus complete. �
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In the arguments that follow we also need the following two auxiliary LDP’s.

Lemma 5.4. (a) Suppose that kn → ∞, as n → ∞. Then the sequence G :=

( 1
kn

∑kn
i=1 g

2
i )i∈N satisfies an LDP with speed kn and rate function

IG(y) =

{
y−1

2 −
1
2 log y : y > 0

+∞ : otherwise .

(b) Let p ∈ [1,∞). Then the sequence Zp := ( 1
n

∑n
i=1 |Zi|p)i∈N satisfies an

LDP with speed n and rate function

IZp(y) =

{
1
py − y

1
p+1
(
1 + 1

p

)
: y > 0

+∞ : otherwise .

Proof. Part (a) has already been verified in the proof of Lemma 4.2. To prove the
statement in (b) we apply Cramér’s theorem (Proposition 2.5). Indeed, the moment
generating function of |Z|p, where Z has a p-generalized Gaussian distribution, is
given by

I(y) =

∫ ∞
−∞

e|x|
py fp(x) dx =

1

(1− yp)
1
p

, y <
1

p
.

In particular, zero is an interior point of the effective domain of I. As a consequence,
Zp satisfies an LDP with speed n and rate function given by the Legendre-Fenchel
transform I∗ of I. The latter is given by

I∗(y) = sup
x∈R

[xy − I(x)] =
1

p
y − y

1
p+1

(
1 +

1

p

)
if y > 0 and I∗(y) = +∞ otherwise. �

After these preparations, we can now present the proof of Theorem 1.2. From
now on we shall assume that we are dealing with a fixed parameter p ∈ [1, 2).

Proof of Theorem 1.2. Applying [15, Theorem 1] (with aj(n) = 1
n , s = s1 = 1)

together with Lemma 5.3 implies that for y ≥ m, with m = EZ2 from Lemma 5.2,

lim
n→∞

1

b(n)n
p
2

logP
( 1

n

n∑
i=1

Z2
i ≥ y

)
= −(y −m)

p
2 .

Since the sequences (b(n)np/2)n∈N and ( 1
pn

p/2)n∈N are asymptotically equivalent,

the pre-factor 1/(b(n)np/2) can be replaced by 1/np/2. Moreover, since the random
variables Z2

i are non-negative, this result can be lifted to an LDP, see also [15,
Remark 3.2]. Thus, the sequence of random variables Z := ( 1

n

∑n
i=1 Z

2
i )n∈N satisfies

an LDP with speed np/2 and rate function

IZ(y) =

{
1
p (y −m)

p
2 : y ≥ m

+∞ : otherwise .

Next, we apply the contraction principle to the function F given by F : (0,∞) →
(0,∞), F (x) =

√
x. This yields an LDP for the sequence

√
Z := (( 1

n

∑n
i=1 Z

2
i )

1
2 )n∈N

with speed np/2 and rate function

I√Z(y) =

{
1
p (y2 −m)

p
2 : y ≥

√
m

+∞ : otherwise .
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In a next step, we apply Proposition 2.10 to the functions Fn : R → R, Fn(x) =√
kn
n x and F : R → R, F (x) =

√
λx, where λ > 0 by assumption (the technical

condition in Proposition 2.10 is easily seen to be satisfied in this situation). This

leads to an LDP for the sequence Z̃ := (
√

kn
n ( 1

n

∑n
i=1 Z

2
i ))n∈N with speed np/2 and

rate function

(5) IZ̃(y) = inf
F (x)=y

I√Z(x) =

{
1
p (y

2

λ −m)
p
2 : y ≥

√
λm

+∞ : otherwise ,

which coincides with the function I‖PEX‖(y) in the statement of Theorem 1.2.
In the remaining part of the proof we shall argue that the two random sequences

Z̃ and ‖PEX‖ are exponentially equivalent and thus satisfy the same LDP. For
this, we observe that according to Theorem 3.1, for each n ∈ N, the random variable

‖n
1
p−

1
2PE(n)X(n)‖ has the same distribution as

U1/n

(
1
n

n∑
i=1

Z2
i

)1/2
(

1
n

n∑
i=1

|Zi|p
)1/p

(
1
kn

kn∑
i=1

g2
i

)1/2
(

1
n

n∑
i=1

g2
i

)1/2
√
kn
n
.

Now, fix δ, ε > 0 and note that

P

(∣∣∣∣∣
√
kn
n

( 1

n

n∑
i=1

Z2
i

)1/2

− U1/n

(
1
n

n∑
i=1

Z2
i

)1/2
(

1
n

n∑
i=1

|Zi|p
)1/p

(
1
kn

kn∑
i=1

g2
i

)1/2
(

1
n

n∑
i=1

g2
i

)1/2
√
kn
n

∣∣∣∣∣ > δ

)

≤ P

(√
kn
n

( 1

n

n∑
i=1

Z2
i

)1/2

>
δ

ε

)

+ P

(
1− U1/n 1(

1
n

n∑
i=1

|Zi|p
)1/p

(
1
kn

kn∑
i=1

g2
i

)1/2
(

1
n

n∑
i=1

g2
i

)1/2 > ε

)

+ P

(
1− U1/n 1(

1
n

n∑
i=1

|Zi|p
)1/p

(
1
kn

kn∑
i=1

g2
i

)1/2
(

1
n

n∑
i=1

g2
i

)1/2 < −ε

)

=: T1 + T2 + T3 .

We further estimate T2 by

T2 ≤ P(U1/n < (1− ε)1/4) + P
( 1

kn

kn∑
i=1

g2
i < (1− ε)1/2

)
+ P

( 1

n

n∑
i=1

|Zi|p > (1− ε)−p/4
)

+ P
( 1

n

n∑
i=1

g2
i > (1− ε)−1/2

)
=: T2,1 + T2,2 + T2,3 + T2,4 .

According to Lemma 4.3 and Lemma 5.4, the terms T2,1, T2,3 and T2,4 decay expo-
nentially with speed n. Indeed, this follows from the fact that the rate functions of
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the corresponding LDP’s do not vanish at (1− ε)1/4, (1− ε)−p/4 and (1− ε)−1/2,
respectively. In addition and again by Lemma 5.4, the term T2,2 decays exponen-
tially with speed kn and again the rate function in the corresponding LDP does
vanish at (1− ε)−p/4.

Similarly, for T3 we have the bound

T3 ≤ P(U1/n > (1 + ε)1/4) + P
( 1

kn

kn∑
i=1

g2
i > (1 + ε)1/2

)
+ P

( 1

n

n∑
i=1

|Zi|p < (1 + ε)−p/4
)

+ P
( 1

n

n∑
i=1

g2
i < (1 + ε)−1/2

)
= P

( 1

kn

kn∑
i=1

g2
i > (1 + ε)1/2

)
+ P

( 1

n

n∑
i=1

|Zi|p < (1 + ε)−p/4
)

+ P
( 1

n

n∑
i=1

g2
i < (1 + ε)−1/2

)
.

As for T2 discussed above, these terms decay exponentially with speed n and since
kn
n → λ > 0, as n→∞, we conclude that

lim sup
n→∞

1

np/2
log T2 + lim sup

n→∞

1

np/2
log T3 = −∞ .

Hence,

lim sup
n→∞

1

np/2
logP

(∣∣∣√kn
n

( 1

n

n∑
i=1

Z2
i

)1/2

− ‖n
1
p−

1
2PE(n)X(n)‖

∣∣∣ > δ
)

≤ lim sup
n→∞

1

np/2
log T1.

Sending ε→ 0, the above LDP for the sequence Z̃ (recall (5)) shows that this limit

exists and is equal to −∞. We have thus proved that the random sequences Z̃ and
‖PEX‖ are exponentially equivalent. So, by Proposition 2.7 they satisfy the same
LDP. This completes the proof of Theorem 1.2. �

6. Appendix

Let us present the proof of Proposition 2.6.

Proof. For every m ∈ N, any δ > 0 and any x ∈ Rm, let us denote by

B∞(x, δ) := {y ∈ Rm : ‖x− y‖∞ < δ} ,

the cube in Rm centered at x with side length 2δ. Let d1, d2 ∈ N.

Lower bound. Let A ∈ L (Rd1 ×Rd2) with non-empty interior. Let z = (x, y) ∈ A◦
and δ > 0 such that B∞(z, δ) = B∞(x, δ)×B∞(y, δ) ⊂ A. From the independence
of X(n) and Y (n), we conclude that

1

s(n)
log
(
P
(
Z(n) ∈ A◦

))
≥ 1

s(n)
log
(
P
(
Z(n) ∈ B∞(x, δ)×B∞(y, δ)

))
=

1

s(n)
log
(
P
(
X(n) ∈ B∞(x, δ)

))



LDPS FOR PROJECTIONS OF `np -BALLS 25

+
1

s(n)
log
(
P
(
Y (n) ∈ B∞(y, δ)

))
.

Consequently, for every z = (x, y) ∈ A◦ and δ > 0 such that B∞(z, δ) ⊂ A◦,

lim inf
n→∞

1

s(n)
log
(
P
(
Z(n) ∈ A◦

))
≥ − inf

y1∈B∞(x,δ)
IX(y1)− inf

y2∈B∞(y,δ)
IY(y2)

and, since this inequality is true for every such x and δ > 0,

lim inf
n→∞

1

s(n)
log
(
P
(
Z(n) ∈ A◦

))
≥ − inf

(x,y)∈A◦

[
IX(x) + IY(y)

]
.

Upper bound. Since we are considering the σ-algebra L (Rd1×Rd2), by Proposition
2.2 it is enough to prove the upper bound for subsets A ⊂ Rd1 × Rd2 such that
Ā is compact together with the exponential tightness for Z. In such a case, for
every cover of Ā by subsets of the form B∞(zi, δi), zi = (xi, yi) ∈ Rd1 × Rd2 we

can extract a finite number of sets such that Ā ⊂
N⋃
i=1

B∞(zi, δi) and for every such

finite cover we have

1

s(n)
log
(
P
(
Z(n) ∈ Ā

))
≤ 1

s(n)
log
( N∑
i=1

P
(
Z(n) ∈ B∞(xi, δi)×B∞(yi, δi)

))
≤ 1

s(n)
log
(
N max

1≤i≤N
P
(
Z(n) ∈ B∞(xi, δi)×B∞(yi, δi)

))
=

logN

s(n)
+ max

1≤i≤N

{
1

s(n)
log
(
P
(
X(n) ∈ B∞(xi, δi)

))
+

1

s(n)
log
(
P
(
Y (n) ∈ B∞(yi, δi)

))}
.

Now, taking the lim sup
n→∞

, since N is a fixed number depending on the cover of Ā we

extracted, the first term tends to 0 and, since the lim sup
n→∞

of the maximum equals

the maximum of the lim sup
n→∞

, we have

lim sup
n→∞

1

s(n)
log
(
P
(
Z(n) ∈ Ā

))
≤ max

1≤i≤N

{
− inf
x∈B∞(xi,δi)

IX(x)− inf
y∈B∞(yi,δi)

IY(y)

}
− min

1≤i≤N

{
inf

x∈B∞(xi,δi)
IX(x) + inf

y∈B∞(yi,δi)
IY(y)

}
.

Since this is true for any cover of Ā and every finite cover we extract from it, we
obtain

lim sup
n→∞

1

s(n)
log
(
P
(
Z(n) ∈ Ā

))
≤ − inf

(x,y)∈Ā

[
IX(x) + IY(y)

]
,

which proves the upper bound for subsets of Rd1 × Rd2 such that Ā is compact.
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Exponential tightness. To show the exponential tightness of Z, let α > 0 be any
positive number. Since X and Y are assumed to satisfy a (full) LDP, by Proposition
2.2, X and Y are exponentially tight and, thus, there exist compact sets K1,α ⊂ Rd1
and K2,α ⊂ Rd2 such that

lim sup
n→∞

1

s(n)
logP(X(n) /∈ K1,α) < −α

2

and

lim sup
n→∞

1

s(n)
logP(Y (n) /∈ K2,α) < −α

2
.

Thus, for any α > 0, taking Kα := K1,α ×K2,α ⊂ Rd1 × Rd2 , we obtain that

lim sup
n→∞

1

s(n)
logP(Z(n) /∈ Kα) < −α.

Consequently, Z is exponentially tight and the proof is thus complete. �
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