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In this paper we treat the following partial differential equation, the quasigeostrophic equation: (𝜕/𝜕𝑡 + 𝑢 ⋅ ∇)𝑓 = −𝜎(−𝐴)𝛼𝑓, 0 ≤𝛼 ≤ 1, where (𝐴,𝐷(𝐴)) is the infinitesimal generator of a convolution 𝐶0-semigroup of positive kernel on 𝐿𝑝(R𝑛),with 1 ≤ 𝑝 < ∞.
Firstly, we give remarkable pointwise and integral inequalities involving the fractional powers (−𝐴)𝛼 for 0 ≤ 𝛼 ≤ 1. We use these
estimates to obtain 𝐿𝑝-decayment of solutions of the above quasigeostrophic equation. These results extend the case of fractional
derivatives (taking 𝐴 = Δ, the Laplacian), which has been studied in the literature.

1. Introduction

In oceanography and meteorology, the quasigeostrophic
equation,

( 𝜕𝜕𝑡 + 𝑢 ⋅ ∇)𝑓 = −𝜎 (−Δ)𝛼 𝑓, for 0 ≤ 𝛼 ≤ 1, (1)

where 𝑓 represents the temperature, 𝑢 the velocity, and 𝜎 the
viscosity constant, has a great importance (see for example
[1, 2]). In the last years, a large number of mathematical
papers are dedicated to this equation. For example, in [3, 4],
A. Córdoba and D. Córdoba studied regularity and 𝐿𝑝-decay
for solutions. In [5] the well-posedness of quasigeostrophic
equation was treated on the sphere, on general riemannian
manifolds in [6] or the 2D stochastic quasigeostrophic equa-
tion on the torus T2 in [7].

This equation is also denominated as advection-fractional
diffusion; see for example [8], or it may be classified as a
fractional Fokker-Planck equation [9]. However we follow
the usual terminology of quasigeostrophic equation which
has appeared in our main references [1–7].

Here we replace the Laplacian operator Δ for an arbi-
trary infinitesimal generator (𝐴,𝐷(𝐴)) of a convolution 𝐶0-
semigroup of positive kernel on Lebesgue spaces 𝐿𝑝(R𝑛),

with 1 ≤ 𝑝 < ∞. The abstract framework of 𝐶0-sem-
igroups of linear bounded operators in Banach spaces was
introduced by Hille and Yosida in the last fifties; see for exam-
ple the monographies [10–13]. Some classical 𝐶0-semigroups,
as Gaussian, Poisson, fractional, or the backward semigroups
in classical Lebesgue spaces, fit in this approach; see for
example [12, Chapter 2]. Note that in particular the LaplacianΔ generates the Gaussian (also called heat or diffusion)
semigroup [10, Chapter II, Section 2.13].

The main aim of this paper is to show the decreasing
behavior for suitable solutions of

( 𝜕𝜕𝑡 + 𝑢 ⋅ ∇)𝑓 = −𝜎 (−𝐴)𝛼 𝑓, 0 ≤ 𝛼 ≤ 1. (2)

Some classical asymptotic behavior of solutions of abstract
Cauchy problem,

𝜕𝜕𝑡𝑓 = 𝐴𝑓, 𝑓 ∈ 𝐷 (𝐴) , (3)

is presented in [11, Section 4.4] and for parabolic case of
evolution systems in [11, Section 5.8]. Note that for 𝑢 = 0 in
(2), we recover the classical Cauchy problem for the fractional
power −𝜎(−𝐴)𝛼.
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We emphasize the key role played by the Balakrishnan
integral representation of fractional powers [13, p. 264] in
order to get the following pointwise inequalities:

𝑓 (𝑥) (−𝐴)𝛼 𝑓 (𝑥) ≥ 12 (−𝐴)𝛼 𝑓2 (𝑥) a.e, (4)

for certain infinitesimal generators of convolution 𝐶0-
semigroups on the Lebesgue space 𝐿𝑝(R𝑛) (Theorem 1).
From such pointwise inequalities, and assuming convolution
kernels of real symbol, one gets integral inequalities (Theo-
rem 4 and Lemma 6), which extend [3, Lemma 1] and [4,
Lemma 2.4, Lemma 2.5], respectively. For this purpose, we
use Fourier transform, obtaining multiplications semigroups
from convolution ones. Interesting similar pointwise inequal-
ities have been discussed in [14].

The previous results allow getting a maximum principle
for the solutions of (2),

󵄩󵄩󵄩󵄩𝑓 (⋅, 𝑡)󵄩󵄩󵄩󵄩𝑝 ≤ 󵄩󵄩󵄩󵄩𝑓 (⋅, 0)󵄩󵄩󵄩󵄩𝑝 , 𝑡 ≥ 0, (5)

see Corollary 7. Moreover, one of the most important results
along this paper is to estimate the decreasing behavior,

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝑝 ≤ −𝜎 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝑝𝐷(󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝑝) , (6)

for some suitable solutions 𝑓 ∈ S(R𝑛) and nonnegative
functions 𝐷, see Theorem 8. To prove that, we use some
techniques which are based in [15]. In that paper some equiv-
alence between Super-Poincaré and Nash-type inequalities is
shown for nonnegative self-adjoint operators. Some of these
results were proved in the case of fractional powers of the
Laplacian in [3, 4, 16].

In the last section, we apply our results to check esti-
mations about the 𝐿𝑝-decay of some solutions in concrete
quasigeostrophic equations. Our main example is to con-
sider subordinated 𝐶0-semigroups to Poisson or Gaussian
semigroup. This approach is inspirated in [15]. Preliminary
versions of these results were included in [17].

Notation. Through this article (𝐿𝑝(R𝑛), ‖ ‖𝑝) with 1 ≤ 𝑝 ≤ ∞
is the usual Lebesgue space and (𝐿1 (R𝑛), ‖ ‖1, ∗) is the Banach
algebra where

𝑓 ∗ 𝑔 (𝑥) fl ∫
R𝑛
𝑓 (𝑥 − 𝑦) 𝑔 (𝑦) 𝑑𝑦, 𝑥 ∈ R

𝑛. (7)

The space 𝐶0(R𝑛) is formed by the continuous functions 𝑓
such that lim|𝑥|󳨀→∞𝑓(𝑥) = 0, and ‖𝑓‖∞ fl max𝑥∈R𝑛 |𝑓(𝑥)|;
the set S(R𝑛) is the Schwartz space and Γ is the Gamma
function.

2. Pointwise and Integral Estimates for
Fractional Powers

Let (𝑘𝑡)𝑡>0 ⊂ 𝐿1(R𝑛) be a one-parameter continuous
semigroup in the Banach algebra 𝐿1(R𝑛); i.e., 𝑘𝑡 ∗ 𝑘𝑠 = 𝑘𝑡+𝑠
for 𝑡, 𝑠 > 0; 𝑘𝑡∗𝑓 󳨀→ 𝑓when 𝑡 󳨀→ 0 for any 𝑓 ∈ 𝐿1(R𝑛) and
such that ‖𝑘𝑡‖1 = 1 for 𝑡 > 0; see for example [12, Chapter 1].

Then the one-parameter family of linear bounded operators
K = (𝐾(𝑡))𝑡≥0, defined by

𝐾 (𝑡) 𝑓 fl 𝑘𝑡 ∗ 𝑓, 𝑓 ∈ 𝐿𝑝 (R𝑛) , 𝑡 > 0;
𝐾 (0) = 𝐼, (8)

is a convolution 𝐶0-semigroup on 𝐿𝑝(R𝑛), with 1 ≤ 𝑝 <∞. Recall that the infinitesimal generator (𝐴,𝐷(𝐴)) of K is
defined by

𝐴𝑓 = lim
𝑡󳨀→0+

𝑘𝑡 ∗ 𝑓 − 𝑓𝑡 , 𝑓 ∈ 𝐷 (𝐴) , (9)

that is, the domain of the operator𝐴 is the closed and densely
defined subspace where the above limit exists on 𝐿𝑝(R𝑛),
see for example [10, Definition 1.2]. Note that these 𝐶0-
semigroups (𝐾(𝑡))𝑡≥0 are contractive since ‖𝑘𝑡‖1 = 1 for all𝑡 > 0. We also assume that (𝑘𝑡)𝑡>0 is a positive kernel. Below,
there are several examples of convolution 𝐶0-semigroups of
positive kernel:

(1) The Gaussian kernel, 𝑔𝑡(𝑥) = (4𝜋𝑡)−𝑛/2𝑒−|𝑥|2/4𝑡, whose
generator is the Laplacian operator Δ ([12, Theorem
2.15]).

(2) The Poisson kernel, 𝑝𝑡(𝑥) = (Γ((𝑛 + 1)/2)/𝜋(𝑛+1)/2)(𝑡/(𝑡2 + |𝑥|2)(𝑛+1)/2), whose infinitesimal generator is−√−Δ ([12, Theorem 2.17]).
(3) Subordinated semigroups in 𝐿1(R𝑛). In [18], new

convolution 𝐶0-semigroups are defined by subor-
dination principle, i.e., using the bounded algebra
homomorphism Θ𝑎 : 𝐿1(R+) 󳨀→ 𝐿1(R), with

Θ𝑎 (𝑓) = ∫∞
0
𝑓 (𝑡) 𝑎𝑡 𝑑𝑡, 𝑓 ∈ 𝐿1 (R+) , (10)

where 𝑎 = (𝑎𝑡)𝑡>0 is an uniformly bounded continu-
ous semigroup on 𝐿1(R); in particular 𝑎𝑡 = 𝑔𝑡 or 𝑝𝑡
for 𝑡 > 0. Now, we take the fractionary semigroup on𝐿1(R+),

𝐼𝑠 (𝑡) fl 𝑡𝑠−1Γ (𝑠) 𝑒−𝑡, 𝑡 > 0, (11)

with 𝑠 > 0, and new type kernels are obtained by

Θ𝑎 (𝐼𝑠) (𝑥) = ∫∞
0
𝐼𝑠 (𝑡) 𝑎𝑡 (𝑥) 𝑑𝑡

= ∫∞
0

𝑡𝑠−1Γ (𝑠) 𝑒−𝑡𝑎𝑡 (𝑥) 𝑑𝑡, 𝑥 ∈ R
𝑛,

(12)

see additional details in [18, Theorem 2.1, Corollary
2.2].

In the following, (−𝐴)𝛼 denotes the fractional powers of
the infinitesimal generator of these semigroups; see [13, p.
264]:

(−𝐴)𝛼 𝑓 = Γ (−𝛼)−1 ∫∞
0
𝑡−𝛼−1 (𝐾 (𝑡) − 𝐼) 𝑓 𝑑𝑡, (13)
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for all 𝑓 ∈ 𝐷(𝐴) and 0 < 𝛼 < 1. Our first result gives a
pointwise inequality for these fractional powers. The main
ingredient is to represent the𝐶0 -semigroup (𝐾(𝑡))𝑡>0 in terms
of the positive kernel functions. Compare with [3, Theorem
1] and [4, Proposition 2.3] in the case of 𝐴 = Δ.

Theorem 1. Let (𝐴,𝐷(𝐴)) be the infinitesimal generator of a𝐶0-semigroup (𝐾(𝑡))𝑡≥0 as above. Then, for all 𝑓 ∈ 𝐷(𝐴) real-
valued with 𝑓2 ∈ 𝐷(𝐴) and 0 ≤ 𝛼 ≤ 1, the inequality

𝑓 (𝑥) (−𝐴)𝛼 𝑓 (𝑥) ≥ 12 (−𝐴)𝛼 𝑓2 (𝑥) 𝑎.𝑒 (14)

holds.

Proof. We use equality (13), almost everywhere 𝑥 ∈ R𝑛, and0 < 𝛼 < 1 to get

𝑓 (𝑥) (−𝐴)𝛼 𝑓 (𝑥) = Γ (−𝛼)−1 ∫∞
0
𝑡−𝛼−1 (∫

R𝑛
𝑘𝑡 (𝑥 − 𝑟)

⋅ 𝑓 (𝑟) 𝑓 (𝑥) 𝑑𝑟 − 𝑓2 (𝑥)) 𝑑𝑡 = Γ (−𝛼)−1

⋅ ∫∞
0
𝑡−𝛼−1 (∫

R𝑛
𝑘𝑡 (𝑥 − 𝑟)

⋅ (𝑓 (𝑟) 𝑓 (𝑥) − 𝑓2 (𝑥)) 𝑑𝑟) 𝑑𝑡.

(15)

Note that

− (𝑓2 (𝑥) − 𝑓 (𝑟) 𝑓 (𝑥))
= −(12 (𝑓 (𝑥) − 𝑓 (𝑟))2 + 12 (𝑓2 (𝑥) − 𝑓2 (𝑟)))
≤ −12 (𝑓2 (𝑥) − 𝑓2 (𝑟)) ,

(16)

since Γ(−𝛼) < 0 if 0 < 𝛼 < 1, and then

𝑓 (𝑥) (−𝐴)𝛼 𝑓 (𝑥) ≥ Γ (−𝛼)−12
⋅ ∫∞
0
𝑡−𝛼−1 (∫

R𝑛
𝑘𝑡 (𝑥 − 𝑟) (𝑓2 (𝑟) − 𝑓2 (𝑥)) 𝑑𝑟) 𝑑𝑡

= 12 (−𝐴)𝛼 𝑓2 (𝑥) a.e.
(17)

If 𝛼 = 0, it is trivial, and for 𝛼 = 1 we use the definition of the
infinitesimal generator.

Given 𝑓 ∈ 𝐿1(R𝑛), the usual Fourier transform is given
by

𝑓 (𝜂) fl ∫
R𝑛
𝑓 (𝑥) 𝑒−2𝜋𝑖𝜂⋅𝑥𝑑𝑥, 𝜂 ∈ R

𝑛, (18)

and then𝑓 ∈ 𝐶0(R𝑛). LetK = (𝐾(𝑡))𝑡≥0 be a convolution 𝐶0-
semigroup of positive kernel on 𝐿𝑝(R𝑛), with kernel (𝑘𝑡)𝑡>0.
Note that 𝑘𝑡 ∈ 𝐶0(R𝑛), with ‖𝑘𝑡‖∞ ≤ ‖𝑘𝑡‖1 = 1. Then, it is
well known that TK ≪ (𝑇(𝑡))𝑡≥0 with

𝑇 (𝑡) : 𝐶0 (R𝑛) 󳨀→ 𝐶0 (R𝑛)
𝑔 󳨃󳨀→ 𝑘𝑡𝑔, 𝑡 > 0, (19)

is a contractive multiplication 𝐶0-semigroup. We obtain the
following result as a consequence of [10, p. 28].

Proposition 2. Let K = (𝐾(𝑡))𝑡≥0 be a 𝐶0-semigroup as
above. Then there is a 𝑞 : R𝑛 󳨀→ C continuous function with
Re(𝑞(𝑥)) ≤ 0 for all 𝑥 ∈ R𝑛, such that 𝑘𝑡 = 𝑒𝑡𝑞 for 𝑡 > 0 and(𝐵,𝐷(𝐵)) is the infinitesimal generator of TK, with 𝐵 = 𝑞𝐼
and

𝐷(𝐵) = {𝑓 ∈ 𝐶0 (R𝑛) | 𝑞𝑓 ∈ 𝐶0 (R𝑛)} . (20)

Definition 3. We say that a convolution 𝐶0-semigroup of
positive kernel on 𝐿𝑝(R𝑛), K = (𝐾(𝑡))𝑡≥0, is of real symbol
when the infinitesimal generator of the semigroup TK is a
real function; i.e., 𝑞 : R𝑛 󳨀→ (−∞, 0].
Theorem 4. Let K = (𝐾(𝑡))𝑡≥0 be a convolution 𝐶0-
semigroup of positive kernel and real symbol on 𝐿𝑝(R𝑛), with
kernel (𝑘𝑡)𝑡>0, and infinitesimal generator (𝐴,𝐷(𝐴)) satisfying
S(R𝑛) ⊂ 𝐷(𝐴) and for all ℎ ∈ S(R𝑛), 𝑞ℎ̂ ∈ 𝐿2(R𝑛). If𝑓 ∈ S(R𝑛) is a real function, then

∫
R𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝−2 𝑓 (𝑥) (−𝐴)𝛼 𝑓 (𝑥) 𝑑𝑥
≥ 1𝑝 ∫

R𝑛

󵄨󵄨󵄨󵄨󵄨(−𝐴)𝛼/2 𝑓𝑝/2 (𝑥)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥,
(21)

for 0 ≤ 𝛼 ≤ 1 and 𝑝 = 2𝑗 with 𝑗 positive integer.
Proof. We apply equation (14) to get

∫
R𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝−2 𝑓 (𝑥) (−𝐴)𝛼 𝑓 (𝑥) 𝑑𝑥
≥ 12 ∫R𝑛 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨

𝑝−2 (−𝐴)𝛼 𝑓2 (𝑥) 𝑑𝑥
≥ 1
2𝑙 ∫R𝑛 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨

𝑝−2𝑙 (−𝐴)𝛼 𝑓2𝑙 (𝑥) 𝑑𝑥,
(22)

with 𝑙 ∈ N0. Taking 𝑙 = 𝑗 − 1, then for 0 ≤ 𝛼 ≤ 1 the following
inequality holds:

∫
R𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝−2 𝑓 (𝑥) (−𝐴)𝛼 𝑓 (𝑥) 𝑑𝑥
≥ 2𝑝 ∫

R𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝/2 (−𝐴)𝛼 𝑓𝑝/2 (𝑥) 𝑑𝑥.
(23)

On the other hand, for 0 < 𝛼 < 1
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̂(−𝐴)𝛼 𝑓 (𝜂) = ∫
R𝑛
𝑒−2𝜋𝑖𝜂⋅𝑥Γ (−𝛼)−1

⋅ (∫∞
0
𝑡−𝛼−1 (𝑘𝑡 ∗ 𝑓 (𝑥) − 𝑓 (𝑥)) 𝑑𝑡) 𝑑𝑥

= Γ (−𝛼)−1
⋅ ∫∞
0
𝑡−𝛼−1 (∫

R𝑛
𝑒−2𝜋𝑖𝜂⋅𝑥 (𝑘𝑡 ∗ 𝑓 (𝑥) − 𝑓 (𝑥)) 𝑑𝑥) 𝑑𝑡

= Γ (−𝛼)−1∫∞
0
𝑡−𝛼−1 (𝑘𝑡 ∗ 𝑓 (𝜂) − 𝑓 (𝜂)) 𝑑𝑡.

(24)

Therefore

̂(−𝐴)𝛼 𝑓 (𝜂) = (−𝐵)𝛼 𝑓 (𝜂) = (−𝑞 (𝜂))𝛼 𝑓 (𝜂)
∈ 𝐿2 (R𝑛) ∩ 𝐶0 (R𝑛) .

(25)

Note that, for 𝛼 = 0, the previous equality is trivial, and, for𝛼 = 1, it is well known. Finally, by Plancherel and Parseval
theorems for Fourier Transform, we obtain

∫
R𝑛

󵄨󵄨󵄨󵄨󵄨(−𝐴)𝛼/2 𝑓𝑝/2 (𝑥)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
= ∫

R𝑛
𝑓𝑝/2 (𝑥) (−𝐴)𝛼 𝑓𝑝/2 (𝑥) 𝑑𝑥,

(26)

and then

∫
R𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨𝑝−2 𝑓 (𝑥) (−𝐴)𝛼 𝑓 (𝑥) 𝑑𝑥
≥ 1𝑝 ∫

R𝑛

󵄨󵄨󵄨󵄨󵄨(−𝐴)𝛼/2 𝑓𝑝/2 (𝑥)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥.
(27)

Then we conclude the proof.

In the conditions of the previous theorem, we give the
following examples where also the function 𝑞 is identified:

(1) For the Gaussian semigroup 𝑞(𝑥) = −4𝜋2|𝑥|2.
(2) For the Poisson semigroup 𝑞(𝑥) = −2𝜋|𝑥|.
(3) For the subordination semigroups defined in [18],𝑞(𝑥) = −log(1 + 4𝜋2|𝑥|2) using the Gaussian kernel

and 𝑞(𝑥) = −log(1 + 2𝜋|𝑥|) using the Poisson kernel.

Note that all these examples provide kernels and functions 𝑞
which depend on the norm |𝑥|.
3. 𝐿𝑝-Decay of Solutions of

Quasigeostrophic Equation

Let (𝐴,𝐷(𝐴)) be the infinitesimal generator of a convolution𝐶0-semigroup of positive and radius dependent kernel of real
symbol on 𝐿𝑝(R𝑛), with 1 ≤ 𝑝 < ∞, and (−𝐴)𝛼 the fractional
power defined by (13) for 0 < 𝛼 < 1.

Let 𝑓 be a solution of the following:

( 𝜕𝜕𝑡 + 𝑢 ⋅ ∇)𝑓 = −𝜎 (−𝐴)𝛼 𝑓, (28)

where 0 ≤ 𝛼 ≤ 1 and 𝑢 satisfies either ∇ ⋅ 𝑢 = 0 or 𝑢𝑖 = 𝐺𝑖(𝑓),
together with the necessary conditions about regularity and
decay at infinity. Existence results on 𝐿𝑝 for (28) with smooth
initial conditions have been studied in [16] using a functional
approach. Note that we use several notations 𝑓, 𝑓(𝑥, 𝑡), 𝑓(⋅, 𝑡)
through this section.

We want to study the decline in time of the spatial 𝐿𝑝-
norm solutions of (28), and, to do this, we will work with its
derivatives, as the following lemma shows. Although the next
lemma is known, we include it for the sake of completeness.

Lemma 5. Let (𝐴,𝐷(𝐴)) be under the above conditions and𝑓
be a solution of (28). If the function 𝑢 satisfies that ∇ ⋅ 𝑢 = 0 or𝑢𝑖 = 𝐺𝑖(𝑓) with 𝐺𝑖 ∈ S(R𝑛) for 1 ≤ 𝑖 ≤ 𝑛, then

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝑝 = −𝜎𝑝∫R𝑛 󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨
𝑝−2 𝑓 (−𝐴)𝛼 𝑓𝑑𝑥. (29)

Proof. Note that
𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝑝 = 𝑝∫R𝑛 󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨

𝑝−2 𝑓𝜕𝑓𝜕𝑡 𝑑𝑥
= 𝑝∫

R𝑛

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝−2 𝑓 (−𝑢 ⋅ ∇𝑓 − 𝜎 (−𝐴)𝛼 𝑓) 𝑑𝑥.
(30)

On the one hand, we suppose that 𝑢 satisfies that ∇ ⋅ 𝑢 = 0.
Then

∫
R𝑛

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝−2 𝑓 (𝑢 ⋅ ∇𝑓) 𝑑𝑥 = ∫
R𝑛

𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝−2 𝑓 𝜕𝑓
𝜕𝑥𝑗 𝑢𝑗𝑑𝑥

= 𝑛∑
𝑗=1

∫
R𝑛−1

(∫
R

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝−1 𝜕
󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝜕𝑥𝑗 𝑢𝑗𝑑𝑥𝑗)𝑑𝑥

= − 𝑛∑
𝑗=1

∫
R𝑛−1

(∫
R

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝𝑝
𝜕𝑢𝑗𝜕𝑥𝑗 𝑑𝑥𝑗)𝑑𝑥

= −∫
R𝑛

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝𝑝 ∇ ⋅ 𝑢 𝑑𝑥 = 0,

(31)

where we have integrated by parts, and 𝑑𝑥 = 𝑑𝑥1𝑑𝑥2. . . 𝑑𝑥𝑗−1𝑑𝑥𝑗+1 . . . 𝑑𝑥𝑛.
On the other hand, we suppose that 𝑢𝑖 = 𝐺𝑖(𝑓) with 𝐺𝑖 ∈

S(R𝑛) and 1 ≤ 𝑖 ≤ 𝑛. Similarly,

∫
R𝑛

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝−2 𝑓𝑢 ⋅ ∇𝑓 𝑑𝑥 = ∫
R𝑛

𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝−2 𝑓𝐺𝑗 (𝑓) 𝜕𝑓𝜕𝑥𝑗 𝑑𝑥

= 𝑛∑
𝑗=1

∫
R𝑛−1

[
[
(󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝−2 𝑓𝐺𝑗 (𝑓))22 ]

]
∞

−∞

𝑑𝑥 = 0.
(32)

The following positivity lemma is a natural extension of
[4, Lemma 2.5].

Lemma 6. Let (𝐴,𝐷(𝐴)) be under the above conditions. Then
for all 𝑓 ∈ 𝐷(𝐴) and 0 ≤ 𝛼 ≤ 1 we have

∫
R𝑛

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝−2 𝑓 (−𝐴)𝛼 𝑓𝑑𝑥 ≥ 0. (33)

Proof. For 0 < 𝛼 < 1, a change of variables yields
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∫
R𝑛

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝−2 𝑓 (−𝐴)𝛼 𝑓𝑑𝑥 = ∫∞
0

𝑡−𝛼−1Γ (−𝛼) (∫R𝑛 ∫R𝑛 󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨
𝑝−2 𝑓 (𝑥) 𝑘𝑡 (𝑥 − 𝑟) (𝑓 (𝑟) − 𝑓 (𝑥)) 𝑑𝑟 𝑑𝑥) 𝑑𝑡

= −∫∞
0

𝑡−𝛼−1Γ (−𝛼) (∫R𝑛 ∫R𝑛 󵄨󵄨󵄨󵄨𝑓 (𝑟)󵄨󵄨󵄨󵄨𝑝−2 𝑓 (𝑟) 𝑘𝑡 (𝑥 − 𝑟) (𝑓 (𝑟) − 𝑓 (𝑥)) 𝑑𝑟 𝑑𝑥) 𝑑𝑡.
(34)

Then, we obtain

2Γ (−𝛼) ∫
R𝑛

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨𝑝−2 𝑓 (−𝐴)𝛼 𝑓𝑑𝑥
= ∫∞
0

1𝑡𝛼+1 (∫R𝑛 ∫R𝑛 (󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨
𝑝−2 𝑓 (𝑥) − 󵄨󵄨󵄨󵄨𝑓 (𝑟)󵄨󵄨󵄨󵄨𝑝−2 𝑓 (𝑟)) 𝑘𝑡 (𝑥 − 𝑟) (𝑓 (𝑟) − 𝑓 (𝑥)) 𝑑𝑟 𝑑𝑥) 𝑑𝑡 ≥ 0,

(35)

since (|𝑓(𝑥)|𝑝−2𝑓(𝑥) − |𝑓(𝑟)|𝑝−2𝑓(𝑟))(𝑓(𝑟) − 𝑓(𝑥)) ≤ 0 for all𝑥, 𝑟 ∈ R𝑛. For 𝛼 = 0 and 𝛼 = 1 the above inequality is easily
checked.

The previous lemma implies the following maximum
principle, which completes similar approaches; see for exam-
ple [4, Corollary 2.6] and [16, Theorem 1,2].

Corollary7 (maximum principle). Let𝑓 ∈ 𝐷(𝐴) be a smooth
solution of (28). Then for 1 ≤ 𝑝 < ∞ we have

󵄩󵄩󵄩󵄩𝑓 (⋅, 𝑡)󵄩󵄩󵄩󵄩𝑝 ≤ 󵄩󵄩󵄩󵄩𝑓 (⋅, 0)󵄩󵄩󵄩󵄩𝑝 , (36)

for all 𝑡 ≥ 0.
Proof. It is a trivial consequence of Lemma 5 and (33).

From now on, we focus on study the decay of (𝑑/𝑑𝑡)‖𝑓‖𝑝𝑝.
Applying Theorem 4, we have

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝑝 ≤ −𝜎∫R𝑛
󵄨󵄨󵄨󵄨󵄨(−𝐴)𝛼/2 𝑓𝑝/2󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥, (37)

for 𝑝 = 2𝑗 with 𝑗 positive integer. For 𝛼 = 0 we have(𝑑/𝑑𝑡)‖𝑓‖𝑝𝑝 ≤ −𝜎‖𝑓‖𝑝𝑝, then solving this differential inequal-
ity we obtain

󵄩󵄩󵄩󵄩𝑓 (⋅, 𝑡)󵄩󵄩󵄩󵄩𝑝𝑝 ≤ 𝑒−𝜎𝑡 󵄩󵄩󵄩󵄩𝑓 (⋅, 0)󵄩󵄩󵄩󵄩𝑝𝑝 . (38)

Below we see what happens to the case 0 < 𝛼 ≤ 1.
Theorem 8. Assuming that the symbol −𝑞 is an increasing
function in the radius, with lim|𝑥|󳨀→∞𝑔(𝑥) = ∞, then

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝑝 ≤ −𝜎 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝑝𝐷(󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝑝) , (39)

for 𝑝 = 2𝑗 with 𝑗 ∈ N, 𝑓 ∈ S(R𝑛) real-valued solution of (28),
and𝐷 a continuous, nonnegative and nondecreasing function.

Proof. For 0 < 𝛼 ≤ 1, we consider the bijection

(0, +∞) 󳨀→ (0, +∞)
𝑢 󳨃󳨀→ 𝑢𝛼 (40)

with inverse function 𝑢1/𝛼. Thus for all 𝑡 > 0 and ℎ ∈ S(R𝑛)
one gets

‖ℎ‖22 = 󵄩󵄩󵄩󵄩󵄩ℎ̂󵄩󵄩󵄩󵄩󵄩22
= ∫
{𝑥∈R𝑛:1≤𝑡(−𝑞(𝑥))𝛼}

󵄨󵄨󵄨󵄨󵄨ℎ̂󵄨󵄨󵄨󵄨󵄨2 (𝑥) 𝑑𝑥
+ ∫
{𝑥∈R𝑛 :1>𝑡(−𝑞(𝑥))𝛼}

󵄨󵄨󵄨󵄨󵄨ℎ̂󵄨󵄨󵄨󵄨󵄨2 (𝑥) 𝑑𝑥
≤ 𝑡∫

R𝑛
(−𝑞 (𝑥))𝛼 󵄨󵄨󵄨󵄨󵄨ℎ̂󵄨󵄨󵄨󵄨󵄨2 (𝑥) 𝑑𝑥

+ 󵄩󵄩󵄩󵄩󵄩ℎ̂󵄩󵄩󵄩󵄩󵄩2∞𝑚𝑛 ({𝑥 ∈ R
𝑛 : 1𝑡 > (−𝑞 (𝑥))𝛼})

≤ 𝑡 ⟨(−𝑞)𝛼 ℎ̂, ℎ̂⟩
+ ‖ℎ‖21𝑚𝑛 ({𝑥 ∈ R

𝑛 : 1
𝑡1/𝛼 > (−𝑞 (𝑥))}) ,

(41)

where 𝑚𝑛 denotes the usual Lebesgue measure on R𝑛.
Note that 𝑞(𝑥) = 𝑞(|𝑥|) is a bijection from R+ to itself. So

𝑚𝑛 ({𝑥 ∈ R
𝑛 : 1

𝑡1/𝛼 > (−𝑞 (𝑥))})
= ∫
{|𝑥|<(−𝑞)−1(1/𝑡1/𝛼)}

𝑑𝑥 = ((−𝑞)−1 ( 1
𝑡1/𝛼 ))

𝑛 𝑤𝑛
(42)

where 𝑤𝑛 is the measure of the unit sphere in R𝑛. We define𝛽(𝑡) fl ((−𝑞)−1(1/𝑡1/𝛼))𝑛𝑤𝑛, for 𝑡 > 0, and we rewrite

‖ℎ‖22 ≤ 𝑡 ⟨(−𝐴)𝛼 ℎ, ℎ⟩ + ‖ℎ‖21 𝛽 (𝑡) , (43)

where 𝛽 is a nonnegative and decreasing function.
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The operator (−𝐴)𝛼 is a nonnegative and symmetric
operator, which satisfies a Super-Poincaré inequality with rate
function 𝛽, then by [15, Proposition 2.2] this is equivalent to
a Nash-type inequality

‖ℎ‖22𝐷(‖ℎ‖22) ≤ ⟨(−𝐴)𝛼 ℎ, ℎ⟩ , (44)

with rate function

𝐷(𝑠) = sup
𝑡>0

(𝑡 − 𝑡𝛽 (1/𝑡)
𝑠 ) , 𝑠 > 0. (45)

Note that the function 𝐷 is continuous, nonnegative and
nondecreasing. So, applying this argument to 𝑓𝑝/2, with 𝑝 =2𝑗, we obtain

󵄩󵄩󵄩󵄩󵄩(−𝐴)𝛼/2 𝑓𝑝/2󵄩󵄩󵄩󵄩󵄩22 ≥ 󵄩󵄩󵄩󵄩󵄩𝑓𝑝/2󵄩󵄩󵄩󵄩󵄩22𝐷(󵄩󵄩󵄩󵄩󵄩𝑓𝑝/2󵄩󵄩󵄩󵄩󵄩22) , (46)

and therefore inequality (39) follows from (37).

4. Examples and Applications

In this last section, we check the 𝐿𝑝-decay of solutions
in some concrete examples of quasigeostrophic equations.
This approach illustrates our results. To do that, we need to
calculate the function 𝐷 (and also the function 𝛽) which
appears in Theorem 8 for concrete examples. In [15, section
8], general properties of functions 𝛽 and 𝐷 are studied using
N-functions; see also [19].

Let 𝑟 : [0,∞) 󳨀→ [0,∞) be a right continuous,
monotone increasing function with

(1) 𝑟(0) = 0;
(2) lim𝑡󳨀→∞𝑟(𝑡) = ∞;
(3) 𝑟(𝑡) > 0 whenever 𝑡 > 0;

then, the function defined by 𝑅(𝑥) fl ∫|𝑥|
0
𝑟(𝑡) 𝑑𝑡 for 𝑥 ∈ R

is called an N-function. Alternatively, the function 𝑅 : R 󳨀→[0,∞) is an N-function if and only if 𝑅 is continuous, even
and convex with

(1) lim𝑥󳨀→0(𝑅(𝑥)/𝑥) = 0;
(2) lim𝑥󳨀→∞(𝑅(𝑥)/𝑥) = ∞;
(3) 𝑅(𝑥) > 0 if 𝑥 > 0.

Given an N-function 𝑅, we define the function 𝐺(𝑥) fl∫𝑥
0
𝑔(𝑡) 𝑑𝑡 for 𝑥 > 0 where 𝑔 is the right inverse of the right

derivative of 𝑅, 𝑟. The function 𝐺 is an N-function called the
complement of 𝑅. Furthermore it is straightforward to check
that the complement of 𝐺 is 𝑅.

Now suppose that functions 𝛽 and 𝐷 are complementary
N-functions. Then functions ℎ and ℎ∗, defined by ℎ(𝑡) fl𝑡𝛽(1/𝑡) for 𝑡 > 0, and ℎ∗(𝑥) fl 𝑥𝐷(𝑥) for 𝑥 > 0, are also
complementary N-functions.

(1) We consider the Laplace operator and 𝑞(𝑥) =−4𝜋2|𝑥|2, see Section 2. Then

(−𝑞)−1 (𝑡) = 𝑡1/22𝜋 ,
and 𝛽 (𝑡) = 𝑤𝑛𝑡−𝑛/2𝛼(2𝜋)𝑛 ,

𝑡 > 0,
(47)

where 𝑤𝑛 is the measure of the unit sphere in R𝑛.
Now we have a couple of N-functions, ℎ(𝑡) =𝑤𝑛𝑡1+𝑛/2𝛼/(2𝜋)𝑛 and ℎ∗(𝑥) = 𝑐𝑛𝑥𝑞, with 1/𝑞 + 1/(1 +𝑛/2𝛼) = 1 and 𝑐𝑛 a positive constant; see [15, Section
8]. Then 𝐷(𝑥) = 𝑐𝑛𝑥2𝛼/𝑛, and we get

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝑝 ≤ −𝐶𝑛 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝(1+2𝛼/𝑛)𝑝 , (48)

for 𝑝 = 2𝑗. Solving this differential inequality, one
obtains

󵄩󵄩󵄩󵄩𝑓 (⋅, 𝑡)󵄩󵄩󵄩󵄩𝑝𝑝 ≤
󵄩󵄩󵄩󵄩𝑓 (⋅, 0)󵄩󵄩󵄩󵄩𝑝𝑝

(1 + 𝜀𝐶𝑛𝑡 󵄩󵄩󵄩󵄩𝑓 (⋅, 0)󵄩󵄩󵄩󵄩𝑝𝜀𝑝 )1/𝜀
, (49)

with 𝜀 = 2𝛼/𝑛 and 𝑝 = 2𝑗.
(2) For the subordinated semigroup through Poisson

semigroup with 𝑞(𝑥) = −log(1 + 2𝜋|𝑥|), we get that

(−𝑞)−1 (𝑡) = 𝑒𝑡 − 12𝜋 ,
and ℎ (𝑡) = 𝑡𝛽 (1𝑡 ) = 𝑐𝑛𝑡 (𝑒𝑡1/𝛼 − 1)𝑛 ,

𝑡 > 0,
(50)

with 𝑐𝑛 = 𝑤𝑛/(2𝜋)𝑛. Then ℎ(𝑡) = ∫𝑡
0
𝑢(𝑠)𝑑𝑠, with

𝑢 (𝑡) = 𝑐𝑛 (𝑒𝑡1/𝛼 − 1)𝑛 + 𝑛𝛼𝑒𝑡
1/𝛼 (𝑒𝑡1/𝛼 − 1)𝑛−1 𝑡1/𝛼,

𝑡 > 0,
(51)

so ℎ∗(𝑥) = ∫𝑥
0
𝑢−1(𝑡)𝑑𝑡. Note that

𝑢 (𝑡) ≤ 𝑐𝑛 (𝑒𝑡1/𝛼 − 1)𝑛 + 𝑛𝛼𝑒2𝑡
1/𝛼 (𝑒𝑡1/𝛼 − 1)𝑛−1

≤ (𝑐𝑛 + 𝑛𝛼) (𝑒(𝑛+1)𝑡
1/𝛼 − 1)

≤ (𝑐𝑛 + 𝑛𝛼) ((𝑛 + 1)𝛼 𝑡)(1−𝛼)/𝛼 𝑒((𝑛+1)
𝛼𝑡)1/𝛼

š 𝑔 (𝑡) ,

(52)

for 𝑡 > 0.
According to [15, Section 8], we consider ℎ4(𝑡) =
𝑒𝑡𝑝 − 1, with 𝑝 > 1. If we take 𝑝 = 1/𝛼, then ℎ󸀠4(𝑡) =(1/𝛼)𝑡(1−𝛼)/𝛼𝑒𝑡1/𝛼 , and so

𝑔−1 (𝑡) = [(𝑐𝑛 + 𝑛𝛼) 𝛼]
−1 (ℎ󸀠4)−1 ((𝑛 + 1)𝛼 𝑡) , 𝑡 > 0. (53)

Therefore
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ℎ∗ (𝑥) = ∫𝑥
0
𝑢−1 (𝑡) 𝑑𝑡 ≥ ∫𝑥

0
𝑔−1 (𝑡) 𝑑𝑡

≥ 𝑐𝑛,𝛼 ∫(𝑛+1)
𝛼𝑥

0
ℎ−14 (𝑦) 𝑑𝑦

= 𝑐𝑛,𝛼ℎ∗4 ((𝑛 + 1)𝛼 𝑥) ,
(54)

with 𝑐𝑛,𝛼 a positive constant.

Now we apply Theorem 8 in the case of 𝑝 = 2𝑗 with𝑗 ∈ N. If we suppose that the solution of (28) is stable;
i.e., lim𝑡󳨀→∞‖𝑓(⋅, 𝑡)‖𝑝𝑝 = 0, then

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝𝑝 ≲ −𝐶𝑛,𝛼 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝(1/(1−𝛼))𝑝 , (55)

for 𝑡 large enough, where we have used that ℎ∗4 (𝑥) ∼𝑐𝑞𝑥𝑞, as 𝑥 󳨀→ 0+ with 1/𝑞 + 𝛼 = 1. We conclude that

󵄩󵄩󵄩󵄩𝑓 (⋅, 𝑡)󵄩󵄩󵄩󵄩𝑝𝑝 ≤
󵄩󵄩󵄩󵄩𝑓 (⋅, 0)󵄩󵄩󵄩󵄩𝑝𝑝

(1 + 𝜀𝐶𝑛,𝛼𝑡 󵄩󵄩󵄩󵄩𝑓 (⋅, 0)󵄩󵄩󵄩󵄩𝑝𝜀𝑝 )1/𝜀
, (56)

for 𝜀 = 𝛼/(1 − 𝛼), and 𝑡 large enough.

For other 𝑝 ̸= 2𝑗 and 1 < 𝑝 < ∞, we obtain the decayment by
interpolation property: if 1 ≤ 𝑝1 < 𝑝 < 𝑝2 < ∞, with 1/𝑝 =(1 − 𝜃)/𝑝1 + 𝜃/𝑝2 and 0 < 𝜃 < 1, then ‖𝑓‖𝑝 ≤ ‖𝑓‖1−𝜃𝑝1 ‖𝑓‖𝜃𝑝2 .
When 𝑝 > 2, we have 2𝑗 < 𝑝 < 2𝑗+1 for any integer 𝑗 ≥ 1, and
if 1 < 𝑝 < 2 we also use that ‖𝑓(⋅, 𝑡)‖1 ≤ ‖𝑓(⋅, 0)‖1.
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[3] A. Córdoba and D. Córdoba, “A pointwise estimate for frac-
tionary derivatives with applications to partial differential
equations,” PNAS, vol. 100, no. 26, pp. 15316-15317, 2003.
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[8] L. Silvestre, “Hölder estimates for advection fractional-diffusion
equations,”Annali della ScuolaNormale Superiore di Pisa, vol. 11,
no. 4, pp. 843–855, 2012.

[9] I. Tristani, “Fractional Fokker-Planck equation,” Communica-
tions inMathematical Sciences, vol. 13, no. 5, pp. 1243–1260, 2015.

[10] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear
Evolution Equations, vol. 194 of Graduate Texts in Mathematics,
Springer, 2000.

[11] A. Pazy, Semigroups of Linear Operator and Applications to
Partial Differential Equations, vol. 44 of Applied Mathematical
Sciences, Springer, New York, NY, USA, 1983.

[12] A. M. Sinclair,Continuos Semigroups in Banach Algebras, vol. 63
of LondonMathematical Society Lecture Note Series, Cambridge
University Press, 1982.

[13] K. Yosida, Functional Analysis, vol. 123 of A Series of Compre-
hensive Studies in Mathematics, Springer, Berlin, Germany, 5th
edition, 1978.

[14] L. A. Caffarelli and Y. Sire, “On some pointwise inequalities
involving nonlocal operators,” in Harmonic Analysis, Partial
Differential Equations And Applications, Appl. Numer. Harmon.
Anal., pp. 1–18, Springer, Cham, Switzerland, 2017.

[15] I. Gentil and P. Maheux, “Super-Poincaré and Nash-type
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