000078936 001__ 78936 000078936 005__ 20210820090344.0 000078936 0247_ $$2doi$$a10.1007/s10237-019-01136-2 000078936 0248_ $$2sideral$$a111274 000078936 037__ $$aART-2019-111274 000078936 041__ $$aeng 000078936 100__ $$0(orcid)0000-0001-8324-5596$$aHervas-Raluy, S.$$uUniversidad de Zaragoza 000078936 245__ $$aModelling actin polymerization: the effect on confined cell migration 000078936 260__ $$c2019 000078936 5060_ $$aAccess copy available to the general public$$fUnrestricted 000078936 5203_ $$aThe aim of this work is to model cell motility under conditions of mechanical confinement. This cell migration mode may occur in extravasation of tumour and neutrophil-like cells. Cell migration is the result of the complex action of different forces exerted by the interplay between myosin contractility forces and actin processes. Here, we propose and implement a finite element model of the confined migration of a single cell. In this model, we consider the effects of actin and myosin in cell motility. Both filament and globular actin are modelled. We model the cell considering cytoplasm and nucleus with different mechanical properties. The migration speed in the simulation is around 0.1 µm/min, which is in agreement with existing literature. From our simulation, we observe that the nucleus size has an important role in cell migration inside the channel. In the simulation the cell moves further when the nucleus is smaller. However, this speed is less sensitive to nucleus stiffness. The results show that the cell displacement is lower when the nucleus is stiffer. The degree of adhesion between the channel walls and the cell is also very important in confined migration. We observe an increment of cell velocity when the friction coefficient is higher. 000078936 536__ $$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 737543-IMAGO$$9info:eu-repo/grantAgreement/EC/H2020/737543/EU/Image Analysis Online Services for in-vitro experiments/IMAGO$$9info:eu-repo/grantAgreement/EC/FP7/306571/EU/Predictive modelling and simulation in mechano-chemo-biology: a computer multi-approach/INSILICO-CELL$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2015-64221-C2-1-R 000078936 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000078936 590__ $$a2.527$$b2019 000078936 591__ $$aENGINEERING, BIOMEDICAL$$b42 / 87 = 0.483$$c2019$$dQ2$$eT2 000078936 591__ $$aBIOPHYSICS$$b34 / 71 = 0.479$$c2019$$dQ2$$eT2 000078936 592__ $$a0.85$$b2019 000078936 593__ $$aMechanical Engineering$$c2019$$dQ1 000078936 593__ $$aModeling and Simulation$$c2019$$dQ1 000078936 593__ $$aBiotechnology$$c2019$$dQ2 000078936 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000078936 700__ $$0(orcid)0000-0002-9864-7683$$aGarcia-Aznar, J.M.$$uUniversidad de Zaragoza 000078936 700__ $$0(orcid)0000-0002-1878-8997$$aGomez-Benito, M.J.$$uUniversidad de Zaragoza 000078936 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est. 000078936 773__ $$g18, 4 (2019), 1177-1187$$pBiomech. model. mechanobiol.$$tBIOMECHANICS AND MODELING IN MECHANOBIOLOGY$$x1617-7959 000078936 8564_ $$s507287$$uhttps://zaguan.unizar.es/record/78936/files/texto_completo.pdf$$yVersión publicada 000078936 8564_ $$s8683$$uhttps://zaguan.unizar.es/record/78936/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000078936 909CO $$ooai:zaguan.unizar.es:78936$$particulos$$pdriver 000078936 951__ $$a2021-08-20-08:36:54 000078936 980__ $$aARTICLE