000078968 001__ 78968
000078968 005__ 20221202151028.0
000078968 0247_ $$2doi$$a10.1117/12.2265816
000078968 0248_ $$2sideral$$a101125
000078968 037__ $$aART-2017-101125
000078968 041__ $$aeng
000078968 100__ $$0(orcid)0000-0001-6899-1005$$aMarín-Sáez, Julia
000078968 245__ $$aEnergy analysis of holographic lenses for solar concentration
000078968 260__ $$c2017
000078968 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078968 5203_ $$aThe use of volume and phase holographic elements in the design of photovoltaic solar concentrators has become very popular as an alternative solution to refractive systems, due to their high efficiency, low cost and possibilities of building integration. Angular and chromatic selectivity of volume holograms can affect their behavior as solar concentrators. In holographic lenses, angular and chromatic selectivity varies along the lens plane. Besides, considering that the holographic materials are not sensitive to the wavelengths for which the solar cells are most efficient, the reconstruction wavelength is usually different from the recording one. As a consequence, not all points of the lens work at Bragg condition for a defined incident direction or wavelength. A software tool that calculates the direction and efficiency of solar rays at the output of a volume holographic element has been developed in this study. It allows the analysis of the total energy that reaches the solar cell, taking into account the sun movement, the solar spectrum and the sensitivity of the solar cell. The dependence of the recording wavelength on the collected energy is studied with this software. As the recording angle is different along a holographic lens, some zones of the lens could not act as a volume hologram. The efficiency at the transition zones between volume and thin behavior in lenses recorded in Bayfol HX is experimentally analyzed in order to decide if the energy of generated higher diffraction orders has to be included in the simulation.
000078968 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T76$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-48325-R
000078968 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000078968 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000078968 700__ $$0(orcid)0000-0002-3299-253X$$aCollados, M.Victoria$$uUniversidad de Zaragoza
000078968 700__ $$aChemisana, Daniel
000078968 700__ $$0(orcid)0000-0001-9804-990X$$aAtencia, Jesús$$uUniversidad de Zaragoza
000078968 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000078968 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica
000078968 773__ $$g10233 (2017), [12 pp.]$$tProceedings of SPIE - The International Society for Optical Engineering$$x1996-756X
000078968 8564_ $$s533573$$uhttps://zaguan.unizar.es/record/78968/files/texto_completo.pdf$$yVersión publicada
000078968 8564_ $$s96062$$uhttps://zaguan.unizar.es/record/78968/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000078968 909CO $$ooai:zaguan.unizar.es:78968$$particulos$$pdriver
000078968 951__ $$a2022-12-02-14:36:51
000078968 980__ $$aARTICLE