000079013 001__ 79013
000079013 005__ 20240104111812.0
000079013 0247_ $$2doi$$a10.3390/math7030294
000079013 0248_ $$2sideral$$a111511
000079013 037__ $$aART-2019-111511
000079013 041__ $$aeng
000079013 100__ $$0(orcid)0000-0002-0117-7655$$aAltuzarra, A.$$uUniversidad de Zaragoza
000079013 245__ $$aHomogeneous groups of actors in an AHP-local decision making context: A Bayesian analysis
000079013 260__ $$c2019
000079013 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079013 5203_ $$aThe two procedures traditionally followed for group decision making with the Analytical Hierarchical Process (AHP) are the Aggregation of Individual Judgments (AIJ) and the Aggregation of Individual Priorities (AIP). In both cases, the geometric mean is used to synthesise judgments and individual priorities into a collective position. Unfortunately, positional measures (means) are only representative if dispersion is reduced. It is therefore necessary to develop decision tools that allow: (i) the identification of groups of actors that present homogeneous and differentiated behaviours; and, (ii) the aggregation of the priorities of the near groups to reach collective positions with the greatest possible consensus. Following a Bayesian approach to AHP in a local context (a single criterion), this work proposes a methodology to solve these problems when the number of actors is not high. The method is based on Bayesian comparison and selection of model tools which identify the number and composition of the groups as well as their priorities. This information can be very useful to identify agreement paths among the decision makers that can culminate in a more representative decision-making process. The proposal is illustrated by a real-life case study.
000079013 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ECO2015-66673-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ECO2016-79392-P
000079013 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000079013 590__ $$a1.747$$b2019
000079013 591__ $$aMATHEMATICS$$b28 / 323 = 0.087$$c2019$$dQ1$$eT1
000079013 592__ $$a0.299$$b2019
000079013 593__ $$aMathematics (miscellaneous)$$c2019$$dQ3
000079013 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000079013 700__ $$0(orcid)0000-0003-1205-1756$$aGargallo, P.$$uUniversidad de Zaragoza
000079013 700__ $$0(orcid)0000-0002-5037-6976$$aMoreno-Jiménez, J.M.$$uUniversidad de Zaragoza
000079013 700__ $$0(orcid)0000-0002-5788-6661$$aSalvador, M.$$uUniversidad de Zaragoza
000079013 7102_ $$14008$$2623$$aUniversidad de Zaragoza$$bDpto. Estruc.Hª Econ.y Eco.Pb.$$cÁrea Métodos Cuant.Econ.Empres
000079013 773__ $$g7, 3 (2019), 294 [13 pp.]$$pMathematics (Basel)$$tMathematics$$x2227-7390
000079013 8564_ $$s468550$$uhttps://zaguan.unizar.es/record/79013/files/texto_completo.pdf$$yVersión publicada
000079013 8564_ $$s108068$$uhttps://zaguan.unizar.es/record/79013/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000079013 909CO $$ooai:zaguan.unizar.es:79013$$particulos$$pdriver
000079013 951__ $$a2024-01-04-11:02:41
000079013 980__ $$aARTICLE