000079042 001__ 79042
000079042 005__ 20230519145342.0
000079042 0247_ $$2doi$$a10.1080/03081087.2019.1598931
000079042 0248_ $$2sideral$$a111535
000079042 037__ $$aART-2021-111535
000079042 041__ $$aeng
000079042 100__ $$0(orcid)0000-0002-6497-2162$$aElduque, A.$$uUniversidad de Zaragoza
000079042 245__ $$aEvolution algebras, automorphisms, and graphs
000079042 260__ $$c2021
000079042 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079042 5203_ $$aThe affine group scheme of automorphisms of an evolution algebra e with e 2 is shown to lie in an exact sequence ¿ D ¿ Aut(E) ¿ S, where D, diagonalizable, and S, constant, depend solely on the directed graph associated to e. As a consequence, the Lie algebra of derivations Der(e) (with e 2 = E)is shown to be trivial if the characteristic of the ground field is 0 or 2, and to be abelian, with a precise description, otherwise.
000079042 536__ $$9info:eu-repo/grantAgreement/ES/AEI-FEDER/MTM2017-83506-C2-1-P$$9info:eu-repo/grantAgreement/ES/DGA/E22-17R
000079042 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000079042 590__ $$a1.178$$b2021
000079042 591__ $$aMATHEMATICS$$b116 / 333 = 0.348$$c2021$$dQ2$$eT2
000079042 594__ $$a2.7$$b2021
000079042 592__ $$a0.625$$b2021
000079042 593__ $$aAlgebra and Number Theory$$c2021$$dQ2
000079042 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079042 700__ $$aLabra, A.
000079042 7102_ $$12006$$2005$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Algebra
000079042 773__ $$g69, 2 (2021), 331-342$$pLinear multilinear algebra$$tLinear and Multilinear Algebra$$x0308-1087
000079042 8564_ $$s177399$$uhttps://zaguan.unizar.es/record/79042/files/texto_completo.pdf$$yPostprint
000079042 8564_ $$s62262$$uhttps://zaguan.unizar.es/record/79042/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079042 909CO $$ooai:zaguan.unizar.es:79042$$particulos$$pdriver
000079042 951__ $$a2023-05-18-13:15:56
000079042 980__ $$aARTICLE