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We say that a finite set of red and blue points in the plane in general position can be K1,3-covered if the set can be
partitioned into subsets of size 4, with 3 points of one color and 1 point of the other color, in such a way that, if at
each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set
of all segments has no crossings. We consider the following problem: Given a set R of r red points and a set B of
b blue points in the plane in general position, how many points of R ∪ B can be K1,3-covered? and we prove the
following results:

(1) If r = 3g + h and b = 3h + g, for some non-negative integers g and h, then there are point sets R ∪ B, like
{1, 3}-equitable sets (i.e., r = 3b or b = 3r) and linearly separable sets, that can be K1,3-covered.

(2) If r = 3g + h, b = 3h + g and the points in R ∪ B are in convex position, then at least r + b − 4 points can
be K1,3-covered, and this bound is tight.

(3) There are arbitrarily large point sets R ∪ B in general position, with r = b + 1, such that at most r + b − 5
points can be K1,3-covered.

(4) If b ≤ r ≤ 3b, then at least 8
9
(r+ b− 8) points of R∪B can be K1,3-covered. For r > 3b, there are too many

red points and at least r − 3b of them will remain uncovered in any K1,3-covering.
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Furthermore, in all the cases we provide efficient algorithms to compute the corresponding coverings.

Keywords: Non-crossing geometric graph, star, covering, red and blue points.

1 Introduction
1.1 Description of the problem
Given sets R of red points and B of blue points in the plane, such that R ∪B is in general position (there
are no three collinear points), we say that a graph G covers R ∪ B if: (i) The vertex set of G is R ∪ B,
(ii) every edge of G is a straight line segment connecting a red point and a blue point, and (iii) no two
edges intersect except in their endpoints. Analogously, for a fixed graphG of k vertices, we say thatR∪B
has a G-covering, or can be G-covered, if |R ∪ B| = t · k for some integer t, and the graph Gt resulting
from the union of t copies of G covers R ∪ B. (Note the difference between this notion, of covering a
point set with copies of a graph, and the classical vertex cover problem in graphs [4]).

Let us consider as graphG the complete bipartite graphK1,n, which we will call the star of order n+1
centered at the partition of size 1. It is well known that, for S = R∪B in general position with |R| = |B|, a
K1,1-covering always exists: Using recursively the Ham-Sandwich theorem allows to find a non-crossing
geometric alternating perfect matching [33]. Furthermore, such a matching can be extended, adding
edges, to a non-crossing geometric alternating spanning tree [22].

It is also known that, for S = R ∪ B in general position with |R| = 2g + h and |B| = g + 2h, a
K1,2-covering always exists. Moreover, this covering uses g stars centered at a blue point and h stars
centered at a red point. The result follows from this theorem

Theorem 1 (Kaneko, Kano, and Suzuki [28]). Let g and h be non-negative integers. If n is an even integer
such that 2 ≤ n ≤ 12, then any set of (n/2)g red points and (n/2)g blue points in the plane in general
position can be Pn-covered. If n is an odd integer such that 3 ≤ n ≤ 11, then any set of dn/2eg+bn/2ch
red points and bn/2cg + dn/2eh blue points in the plane in general position can be Pn-covered.

which also provides a sufficient condition for a given set of red and blue points to have a Pn-covering,
being Pn the (non-crossing alternating) path of length 2 ≤ n ≤ 12. These bounds are the best possible,
since when n = 13 or n ≥ 15, there exist configurations of dn/2e red points and bn/2c blue points for
which there does not exist any Pn-covering [28]. In addition, one can build point configurations with m
red points and m blue points in convex position such that the longest non-crossing alternating path can
cover at most 4

3m+ o(m) of the 2m points [2, 32]. Therefore, for n large in relation to the total number
of red and blue points, a big portion of the points could be left uncovered when trying to cover the points
with paths of size n.

Knowing that K1,1- and K1,2-coverings do always exist, this paper goes one step further and considers
the problem for K1,3-coverings. It turns out that such coverings are not always possible: In Section 2 we
exhibit some bicolored point sets which do not admit a K1,3-covering, although we also show that there
exist bicolored point sets which can always be K1,3-covered. Hence, we study the problem of given a set
of R red points and B blue points in the plane in general position, how many points of R ∪ B can be
K1,3-covered? See Figure 1. In Section 3, we prove that, for any set R of red points and any set B of blue
points in the plane in general position such that |B| ≤ |R| ≤ 3|B|, at least 8

9 (|R|+ |B| − 8) points can be
K1,3-covered. Furthermore, for the configurations studied in these sections, we show efficient algorithms
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(1)

(2)Red points Blue points (3)

Figure 1: (1) At most 4 points of given 8 points can be K1,3-covered. (2) A set of 15 red points and 13 blue points.
(3) There is a subdivision of the plane into three convex regions that induces a partition of the 14 red points and 13
blue points into three sets containing either 5 red and 4 blue points, or 4 red and 5 blue points; inside each set, 8
points can be K1,3-covered. Note that point set in (3) is obtained from (2) by removing one red point.

for computing the corresponding coverings. Finally, in Section 4 we detail some concluding remarks and
open problems.

1.2 Related work
A considerable amount of research about discrete geometry on red and blue points in the plane has been
done. Questions about how to cover the points using specific geometric structures, or how to partition the
plane into convex pieces such that each piece contains roughly the same number of red and blue points,
have been widely studied in the literature. The reader is referred to [27] (and the references therein) for a
survey on this topic.

One of the more challenging problems on covering red and blue points, proposed by Erdős [14] in 1989
(see also [3]), is that of determining the largest number s(n) such that, for every set of n red and n blue
points on a circle, there exists a non-crossing geometric alternating path consisting of s(n) vertices. Erdős
conjectured that s(n) = 3

2n+2+o(n), but one can find point configurations for which s(n) < 4
3n+o(n),

as described in [2, 32]. The best bounds up to date for s(n) are due to Kynčl, Pach and Tóth [32], and valid
for bicolored point sets in general position. However, the conjecture that |s(n) − 4

3n| = o(n) remains
open, even for points in convex position.

If crossings are allowed, Kaneko et al. [29] proved that, forR andB in general position with |R| = |B|,
there exists a geometric Hamiltonian alternating cycle on R∪B that has at most |R|−1 crossings. More-
over, this bound is best possible. Claverol et al. [10] obtain the same result, but requiring the geometric
Hamiltonian alternating cycle to be 1-plane (that is, every edge is crossed at most once). They also give
an upper bound on the number of crossings of such a cycle, which depends on the number of runs of the
points of S = R∪B on the boundary of the convex hull of S (a run is a maximal set of consecutive points
of the same color). Garcı́a and Tejel [18] give a polynomial algorithm to find the shortest Hamiltonian
alternating cycle for a bicolored bipartite graph G(R ∪B,E) satisfying the quadrangle property, as turns
out to be the case for a bicolored point set R ∪B in the plane in convex position.

While trying to cover a bicolored point set in the plane with a non-crossing geometric Hamiltonian
alternating path or cycle is not always possible, this is not the case for non-crossing geometric alternating
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spanning trees. One only needs to take any red point and connect it to all the blue points. Then, extending
the resulting edges from the blue endpoints to partitioning the plane into cones, the remaining red points
in each cone can be connected to a suitable blue point on the boundary of that cone. One can even
bound the maximum vertex degree: Abellanas et al. [1] proved that, if |R| = |B|, then there exists a
non-crossing geometric alternating spanning tree onR∪B having maximum degree at mostO(log(|R|)),
and Kaneko [25] proved a bound of at most 3. Recently, Biniaz et al. [7] proved the existence of a non-
crossing geometric alternating spanning tree of degree at most max{3, d |R|−1|B| e + 1}. As a counterpart
to covering problems with alternating graphs, in [12, 37] covering problems with monochromatic graphs
(paths, matchings or trees) are studied. We also refer the reader to [5, 9, 15, 16, 19, 23] for other related
problems about covering red and blue points in the plane and to [31] for coverings involving points colored
with more than two colors.

A related family of problems is that of balanced subdivision problems, in which one would like to par-
titioning the plane (or Rd) into convex regions in such a way that some desired properties on the number
of red and blue points in each region are achieved. Perhaps, the most celebrated result in this family of
problems is the Ham-Sandwich theorem which states that, for any d point sets in Rd (in general, d mea-
sures), there is a hyperplane bisecting each of these sets (measures). Apart from the intrinsic theoretical
interest of these partitioning problems, the relevance of many of the results obtained for these problems
relies on the fact that they have a lot of applications. For instance, some of the results given in Theorem 1
are based on particular partitions of the plane. As we explain in the forthcoming sections, we also apply
some of these partitions to obtain some of our results. For a wide range of geometric partitioning results,
the reader is referred to [6, 21, 24, 26, 27, 28, 30, 36] and the references therein.

1.3 Some notation and useful lemmas
Throughout this paper, we will always assume that no three points are collinear. We denote by R a set
of red points in the plane and by B a set of blue points in the plane. The convex hull of any point set
S is denoted by conv(S) and a finite point set S in the plane is in convex position if the points of S are
the vertices of conv(S). Abusing the notation, when no confusion can arise we will also use conv(S)
to denote the boundary of the convex hull. Throughout the paper, we deal with directed lines in order to
define the right side of a line and the left side of it. Thus, a line will mean a directed line. A line ` dissects
the plane into three pieces: ` and two open half-planes left(`) and right(`), where left(`) and right(`)
denote the open half-planes to the left of ` and to the right of `, respectively. Notice that, if `∗ denotes a
line on ` with the opposite direction of `, then left(`∗) = right(`) and right(`∗) = left(`).

For a set S = R ∪ B of red and blue points in general position, if R consists of exactly r red points
and B consists of exactly b blue points, we say that S is an (r, b)-set. We define C(S) as the maximum
number of points in S that can beK1,3-covered. For non-negative integers r and b, we define C(r, b) as the
minimum of C(S) over all (r, b)-sets S in general position. Sometimes it is better to look at the number
of points that are left uncovered. Hence, we define U(S) = |S| − C(S) and U(r, b) = r + b − C(r, b).
Then, U(r, b) is the maximum of U(S) over all (r, b)-sets S in general position.

To finish this section, we present two lemmas which might be useful also in a more general context.
They are similar to other well-known results of this type and their proofs are based on a simple continuity
argument. The first one is an intermediate value result on red and blue points.

Lemma 2. Let S = R∪B be a bicolored point set in the plane. If there exist two directed lines `1 and `2
such that |left(`1) ∩ (R ∪B)| = |left(`2) ∩ (R ∪B)| = m and |left(`1) ∩B| < |left(`2) ∩B|, then:
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(i) For every integer j, |left(`1) ∩ B| ≤ j ≤ |left(`2) ∩ B|, there exists a directed line `3 such that
|left(`3) ∩ (R ∪B)| = m and |left(`3) ∩B| = j.

(ii) There is a directed line `4 through a blue point such that |left(`4) ∩ (R ∪ B)| = m − 1 and
|left(`4) ∩B| = |left(`1) ∩B|.

Moreover, `3 and `4 can be found in O(N
4
3 log(N)) time, where N = |S|.

Proof: For each direction θ, let `θ(m) be a directed line with direction θ such that |left(`θ(m)) ∩ (R ∪
B)| = m, if it exists. The line `θ(m) does not exist precisely when there is a line `′θ(m) = −→xy in
direction θ through two points x and y in R ∪ B such that |left(`′θ(m)) ∩ (R ∪ B)| = m − 1. Let
Sθ(m) = left(`θ(m)) ∩ (R ∪ B) if `θ(m) exists, and Sθ(m) = {x} ∪ (left(`′θ(m)) ∩ (R ∪ B))
otherwise.

As θ changes continuously from 0 to 2π (counterclockwise), the set Sθ changes finitely many times,
precisely each time that `θ(m) does not exist. So every time Sθ changes, it does so only by one point.
Namely, if the change happens at `′θ(m) = −→xy, then for ε > 0 small enough Sθ(m) = Sθ−ε(m) ∪
{x} \ {y}. At that point, |Sθ(m) ∩ B| and |Sθ(m) ∩ R| do not change when x and y have the same
color; |Sθ(m) ∩ B| increases by one and |Sθ(m) ∩ R| decreases by one when x is blue and y is red;
and |Sθ(m) ∩ B| decreases by one and |Sθ(m) ∩ R| increases by one when x is red and y is blue. So
|Sθ(m) ∩B| achieves all possible values between |left(`1) ∩B| and |left(`2) ∩B|.

In particular, if `′θ(m) = −→xy and at this moment |Sθ(m) ∩B| is decreasing from |left(`1) ∩B|+ 1 to
|left(`1) ∩ B|, then x is red, y is blue, and for some ε > 0 small enough, the line `4 in direction θ − ε
passing through y satisfies that |left(`4) ∩ (R ∪B)| = m− 1 and |left(`4) ∩B| = |left(`1) ∩B|.

Observe that, in the rotation process, we are building a subset of the m-sets of S. For n(k) denoting
the number of k-sets of a point set S, Edelsbrunner and Welzl [13] gave an O(N log(N)+n(k) log2(N))
algorithm to find all k-sets. Their algorithm is based on the dynamic algorithm by Overmars and van
Leeuwen [35] that maintains a convex hull in O(log2(N)) time per update. Using the algorithm given
by Brodal and Jacob in [8], that maintains a convex hull in O(log(N)) time per update, the algorithm
from Edelsbrunner and Welzl can be directly improved to O(N log(N) + n(k) log(N)) time. As n(k) =
O(Nk

1
3 ) [11], lines `3 and `4 can be found in O(N

4
3 log(N)) time.

Lemma 3. Let S be a point set in the plane (not necessarily bicolored) and let m be an integer such that
m ≤ 1

2 |S|. If there is a directed line ` through a point x ∈ S such that |left(`) ∩ S| ≤ m, then there is a
directed line, say `′, through x such that |left(`′) ∩ S| = m. Moreover, `′ can be found in O(N log(N))
time, where N = |S|.

Proof: Suppose that |left(`) ∩ S| = i ≤ m ≤ 1
2 |S|. A continuous π-rotation of ` through x starts with

|left(`) ∩ S| = i ≤ m and ends with |left(`) ∩ S| ≥ |S| − i ≥ 1
2 |S| ≥ m. Then, at some point during

the rotation |left(`) ∩ S| = m. To find such a rotation `′ of the original line `, we only need to order by
slope the N − 1 lines passing trough x and each one of the remaining N − 1 points of S (this requires
O(N log(N)) time), and to explore these lines in order until finding `′ (this only requires linear time
because when passing from a line to the next one, only a point passes from left to right of the explored
line or vice versa).
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2 Particular configurations
In this section, we study some particular configurations of (r, b)-sets. As a first observation, notice that,
if an (r, b)-set S admits a K1,3-covering consisting of h ≥ 0 stars centered in red points and g ≥ 0 stars
centered in blue points, then r = 3g+h, b = 3h+g and |S| = 4(g+h). But this condition on the number
of red and blue points is not sufficient to assure that a K1,3-covering exists, as we show in Sections 2.3
and 2.5. In Sections 2.1, 2.2 and 2.4, we study some (r, b)-sets admitting a K1,3-covering.

2.1 Equitable sets
Let S be an (r, b)-set such that either r = 3b or b = 3r. In each of these cases we say that S is a {1, 3}-
equitable set. The following theorem, which is a generalization of the Ham-Sandwich theorem, allows us
to show that any {1, 3}-equitable set can be K1,3-covered.

Theorem 4 (Equitable Subdivision [6, 8, 24, 36]). Let c, d and g be positive integers. If cg red points and
dg blue points are given in the plane in general position, then there exists a subdivision of the plane into
g convex regions such that each region contains precisely c red points and d blue points. This subdivision
can be computed in O(N

4
3 log2(N) log(g)) time, where N = (c+ d)g.

Note that, in fact, the running time stated in [6] is O(N
4
3 log3(N) log(g)), because the authors used

the dynamic algorithm by Overmars and van Leeuwen [35] tho maintain a convex hull in O(log2(N))
time per update. This was later improved by Brodal and Jacob [8] to O(log(N)) time per update.
Therefore, the algorithm from Bespamyatnikh et al. [6] is directly improved by a logarithmic factor to
O(N

4
3 log2(N) log(g)) time.

Theorem 5. If an (r, b)-set S is {1, 3}-equitable, then all the points of S can be K1,3-covered, and a
K1,3-covering can be computed in O(N

4
3 log3(N)) time where N = r + b.

Proof: Without loss of generality, we can assume that S consists of 3b red points and b blue points.
We apply directly Theorem 4 by taking c = 3, d = 1 and g = b, so there exists a subdivision of the
plane into b convex regions such that each region contains precisely 3 red points and 1 blue point. The
points in each region can be trivially K1,3-covered and the union of these coverings is a K1,3-covering
of S without crossings. As finding an equitable subdivision requires O(N

4
3 log2(N) log(b)) time, then

building a K1,3-covering takes O(N
4
3 log3(N)) time.

2.2 Linearly separable sets
An (r, b)-set S = R ∪ B is linearly separable if there exists a line ` that separates R and B, say R ⊂
left(`) and B ⊂ right(`). For r = 3g + h and b = 3h + g, any linearly separable set admits a K1,3-
covering, as the following theorem shows.

Theorem 6. If S = R ∪ B is a linearly separable (3g + h, 3h + g)-set, then all the points of S can be
K1,3-covered.

Proof: Without loss of generality, assume g > 0. The proof is by induction on h. If h = 0, then S is a
{1, 3}-equitable set, which can be K1,3-covered by Theorem 5. Assume h > 0, and suppose that R and
B are separable by the line `. Then, there are lines `b and `r parallel to ` such that `b separates 4 blue
points from the rest of S and `r separates 4 red points from the rest of S. See Figure 2.
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`′

`

`r

`b

Figure 2: Illustration for the proof of Theorem 6.

For these `b and `r, by Lemma 2, there is a line `′ that separates 4 points of S, exactly 3 of them blue,
from the rest of S. This set of 4 points can clearly beK1,3-covered. The rest of S is a (3g+(h−1), 3(h−
1) + g)-set, still linearly separable, and thus, since `′ separates the relevant four points from S, it can
also be K1,3-covered by induction. The two covers are separated by `′ and, thus, they together form a
K1,3-cover of S.

Next, we show how to compute a K1,3-covering for a linearly separable (3g + h, 3h + g)-set in
O(N log(N)) time, where N = 4(g+h). The algorithm first computes h stars centered in red points and
then g stars centered in blue points. The algorithm computes conv(S) and takes the leftmost edge which
joins a red point p1 with a blue point q1 (see Figure 3). Then, it removes q1, computes conv(S \ q1),
takes the new leftmost edge p2q2 connecting the red point p2 to the blue point q2 (p2 can coincide with
p1), removes q2 and computes conv(S \ {q1, q2}). The new leftmost edge is then p3q3, being p3 red and
q3 blue (p3 can coincide with p2). Observe that the line `′ supporting the edge p3q3 separates q1 and q2
from the rest of the points, so the star centered in p3, connecting p3 to q1, q2 and q3, will not cross any
other star formed with the rest of the points. This step finishes by defining the star formed by p3, q1, q2
and q3 and removing p3 and q3. Redefining R := R \{p3}, B := B \{q1, q2, q3}, the algorithm proceeds
recursively building h stars centered in red points. The g stars centered in blue points are computed in a
similar manner.

The algorithm runs in O(N log(N)) time. Computing conv(S) requires O(N log(N)) time. Be-
sides, in the overall process, the algorithm removes the N points, updating the convex hull after each
removal. This process of updating N times the convex hull requires O(N log(N)) time, using the semi-
dynamic data structure by Hershberger and Suri [20], which allows to process a sequence of N deletions
in O(log(N)) amortized time per deletion. Let us see that, when building the stars centered in red points,
all leftmost edges can be computed in linear time. Suppose that piqi is the leftmost edge in a generic
step and pi+1qi+1 is the leftmost edge after removing qi. Computing pi+1 can be done by exploring in
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`′

`

p1

p2

p3

q1 q2 q3

Figure 3: Illustration of the algorithm to build a K1,3-covering for a linearly separable set.

order the points from pi to pi+1 on the boundary of the convex hull of the current set at this step of the
algorithm, which are necessarily red. Moreover, if pi+1qi+1 is the leftmost edge after removing pi and qi,
then pi+1 can be computed by exploring again in order the points on the boundary of the convex hull of
the current set from the point preceding pi to pi+1. Then, computing all the leftmost edges only depends
on the number of times that red points are explored by the algorithm: A red point is explored once if it
appears on the boundary of the convex hull, another time if it is removed, and several times in the different
steps if it belongs to the current leftmost edge or it is the red point previous to a removed red point. As the
number of leftmost edges required to define the h stars centered in red points is the number of removed
points (4h), then the number of times that red points are explored is O(N). Using a similar reasoning, all
the leftmost edges to build the g stars centered in blue points can be computed in O(N) time. Therefore,
we have the following theorem.

Theorem 7. If S = R ∪ B is a linearly separable (3g + h, 3h + g)-set, then a K1,3-covering can be
computed in O(N log(N)) time, where N = 4(g + h).

2.3 Convex point sets
In the previous subsections, we have shown some (3g + h, 3h + g)-sets which always admit a K1,3-
covering. Now we show that this is not always the case for (3g + h, 3h+ g)-sets in convex position.

Theorem 8. If S = R ∪B is a (3g + h, 3h+ g)-set in convex position, then at least 4(g + h)− 4 points
of S can be K1,3-covered and this bound is tight.

Proof: The proof is again by induction on |R ∪ B|. If g = 0 or h = 0, which includes the base case
|R ∪ B| = 4, then S is a {1, 3}-equitable set, which can be K1,3-covered by Theorem 5. Thus, we
assume g, h > 0, |R ∪B| ≥ 8 and the elements of R ∪B are ordered clockwise along (the boundary of)
conv(R ∪B).
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(i) Suppose that there exists a set X ⊂ S of four consecutive points cyclically on conv(S) such
that 3 of them have the same color and the remaining one has a distinct color. Then, the four
points of X can be K1,3-covered, and 4(g + h − 1) − 4 points of (R ∪ B) \X , which is either a
(3g+(h− 1), 3(h− 1)+ g)-set or a (3(g− 1)+h, 3h+(g− 1))-set, can be K1,3-covered because
of the induction hypothesis. Note that, by convexity, these two K1,3-coverings do not cross, so the
desired covering is obtained.

(ii) Suppose that such a set X does not exist. By a simple counting argument, this implies one of these
two cases: One red point and one blue point alternately lie on conv(S), or two red points and two
blue points alternately lie on conv(S) (see Figure 4). Therefore, in both cases, |R| = |B|, g = h,
|R| = 4g = |B|, and |S| = |R| + |B| = 8g. Assume that the n = 8g points of S are numbered
from 1 to n clockwise around conv(S).

(1) If one red point and one blue point alternate on conv(S), we obtain the desired K1,3-covering
as follows: For k = 1, . . . , 2g − 1, we take the points with numbers 3k − 2, 3k − 1, 3k,
and n − k and cover them with a K1,3 (see Figure 4, left). Doing this, we leave uncovered
precisely the four points numbered 6g − 2, 6g − 1, 6g, and n.

(2) If two red points and two blue points alternate on conv(S), we can obtain the desired K1,3-
covering as follows: For k = 1, . . . , 2g − 1, we take the points with numbers 3k − 2, 3k − 1,
3k, and n − k − 1 and cover them with a K1,3 (see Figure 4, right). Doing this, we leave
uncovered precisely the four points numbered 6g − 2, 6g − 1, n− 1, and n.

(1) (2)

Figure 4: Two configurations of points in convex position not admitting a K1,3-covering.

The fact that the bound 4(g + h) − 4 is the best possible comes from the two previous particular
configurations in (1) and (2). In any full covering of a (monochromatic) convex point set, there is always
a star that covers four consecutive points. However, in either of the configurations in (1) and (2), among
any four consecutive points two are red and two are blue, hence they cannot be K1,3-covered.

We can cover at least 4(g + h) − 4 points in linear time as follows: Explore the points in order along
(the boundary of) conv(S), looking for four consecutive points, say i, i + 1, i + 2, and i + 3, three of
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one color and one of the other color. If such a set exists, then define a star with these four points, remove
them, and continue the process from point i − 3, checking points i − 3, i − 2, i − 1, and i + 4. If such
a set does not exist, then either one red point and one blue point alternately lie on conv(S) or two red
points and two blue points alternately lie on conv(S), and the covering is built as shown in Figure 4. If,
during the process, h (resp. g) stars centered in red (resp. blue) points are defined, then the resulting
configuration after removing all the stars defined is a {1, 3}-equitable set formed by 3g′ red points and g′

blue points (3h′ blue points and h′ red points). In this case, the process continues looking only for subsets
X consisting of four consecutive points, three of them red and the other blue (resp. three blue and one red
if the equitable set is formed by 3h′ blue points and h′ red points). Such subsets X always exist using the
following observation that easily follows from a simple counting argument.

Observation 1. Let (a1, a2, . . . , an) be a cyclic sequence consisting of b blue elements and 3b red ele-
ments. Then, there exist four consecutive elements in the sequence such that three of them are red and the
other is blue.

In addition to the two special configurations shown in Figure 4 not admitting a K1,3-covering, there are
many more. For instance, take the configuration where one red point and one blue point alternately lie on
conv(S) and add four points in the order red, blue, red, red between a blue point and a red point. The new
configuration does not admit a K1,3-covering, and this operation can be repeated several times.

1
2

3

4

5

6
7

8

9

10

11

12
1

2

3

4

5

6
7

8

9

10

11

12

Figure 5: If a star is defined using points 12, 1, 2 and 3 (left), then it is not possible to cover the rest of the points.
But if the star is defined using points 9, 10, 11 and 12 (right), then the rest of the points can be covered.

On the other hand, given a bicolored convex point set, depending on the order in which the stars are
computed using the previous algorithm, sometimes a K1,3-covering is found and sometimes not. See
Figure 5. This leads to the problem of deciding if a bicolored convex point set admits a K1,3-covering
or not. Using a standard dynamic programming algorithm, this decision problem can be solved in O(n3)
time. Assume that the points are numbered clockwise from 1 to n. For an interval [i, j] of consecutive
points (mod n), define c(i, j, ur, ub), for non-negative integers ur and ub such that ur + ub ≤ 2, to be
true if we can K1,3-cover the points from i to j leaving ur red and ub blue points from [i, j] uncovered
and in such a way that no edge from the K1,3-covering crosses any segment between one of those ur+ub
uncovered points and a point outside [i, j].

To calculate c(i, j, ur, ub) we need to consider the following possibilities:
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1. The point i is left uncovered. Then, c(i, j, ur, ub) = c(i+ 1, j, ur − 1, ub), if the point i is red and
ur > 0, or c(i, j, ur, ub) = c(i+ 1, j, ur, ub − 1), if the point i is blue and ub > 0.

2. The point i is part of a K1,3-star contained in [i, j]. Let k be the last vertex of that star when going
from i to j in the direction of increasing indexes. We will connect i with k, and ask for a solution
of the subproblem from i + 1 to k − 1 which leaves two of the vertices free to be connected with
points i and k.

(a) If we take the point i or the point k to be the center of the star, then

c(i, j, ur, ub) =

j−(ur+ub)∨
k = i+ 3

i, k different colors

(
c(i+ 1, k − 1, 2, 0) ∨ c(i+ 1, k − 1, 0, 2)

)
∧ c(k + 1, j, ur, ub)

(b) If we take both points i and k to be leaves of the star, then

c(i, j, ur, ub) =

j−(ur+ub)∨
k = i+ 3

i, k same color

c(i+ 1, k − 1, 1, 1) ∧ c(k + 1, j, ur, ub)

There are O(n2) subproblems in total, and solving each of them takes O(n) time, yielding an O(n3)
algorithm. Therefore, we have the following theorem.

Theorem 9. If S = R ∪ B is a (3g + h, 3h + g)-set in convex position, deciding if S admits a K1,3-
covering can be done in O(n3) time and O(n2) space. Moreover, at least 4(g+ h)− 4 points of S can be
K1,3-covered in linear time.

2.4 Double chain
In this section we show that, by combining two bicolored convex point sets in a special way, it becomes
possible to cover all points. A double chain [17] is formed by two (non-empty) convex chains C1 and C2

such that every edge (p, q) with p ∈ C1 and q ∈ C2 does not cross neither conv(C1) nor conv(C2). See
Figure 6.

Points in C1 are denoted by p1, . . . , ps counter-clockwise along conv(C1) and points in C2 are denoted
by q1, . . . , qt counter-clockwise along conv(C2). Let us denote by circ(C1), circ(C2), and circ(C1∪C2)
the circular sequences p1, . . . , ps; q1, . . . , qt; and p1, . . . , ps, q1, . . . , qt, respectively. For a bicolored
double chain, there is always a K1,3-covering, as the following theorem shows.

Theorem 10. IfR∪B is a double chain, with |R| = 3g+h and |B| = g+3h for some integers g, h ≥ 0,
then R ∪B can be K1,3-covered.

Proof: We prove the theorem by induction on |R ∪ B|, so that in any inductive step we guarantee that
R ∪ B is a double chain. If g = 0 or h = 0, which includes the case |R ∪ B| = 4, then R ∪ B is a
{1, 3}-equitable set, which can be K1,3-covered by Theorem 5. Then, assume g, h > 0, |R∪B| ≥ 8, and
without loss of generality 0 < |C1| ≤ |C2| and p1 is red.
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p1 p2
ps

q1q2
qt

C1

C2

Figure 6: A double chain.

As |R ∪ B| ≥ 8, then |C2| ≥ 4. If circ(C2) has a set X consisting of 4 consecutive points, 3 of
them having the same color and the remaining one having a distinct color, then X can be K1,3-covered
and the set (R ∪ B) \ X is a double chain with four points less (except if |C2| = 4) which can also be
K1,3-covered by the induction hypothesis. Note from the definition of double chain that any edge in the
covering of (R∪B) \X is disjoint from any edge in the covering of X , thus R∪B can be K1,3-covered.
If |C2| = 4 and circ(C2) has such a set X , then C1 has exactly four points, three having the same color
and the fourth having the other color, and these points can be K1,3-covered without crossing conv(C2).

p1

qt q1

qt−1

p1

qt q1
qt−1

qt−2

p1

qt q1
qt−1

qt−2

p1

qt q1
qt−1

p1

qt q1

q2

p1

qt q1
qt−1

qt−2

Figure 7: Constructing a K1,3-covering for the first point of C1 and 3 consecutive points of C2, including the last
point of C2.

Assume, to the contrary, that circ(C2) does not have any such set X . Then, either the colors of
the points in circ(C2) alternate as described in the proof of Theorem 8 (see also Figure 4) or C2 con-
sists of points of the same color. If the colors alternate in circ(C2), there are six possible ways of
coloring {qt, qt−1, qt−2} in red and blue, namely: (red, red, blue), (red, blue, red), (red, blue, blue),
(blue, blue, red), (blue, red, blue) and (blue, red, red), see Figure 7. Moreover, |C2| is even, implying
that |C1| ≥ 2 since |R ∪ B| = |C1| + |C2| is also even. In any case, it is always possible to ensure
that one point set, denoted by Z, among {p1, qt, qt−1, qt−2}, {p1, qt, qt−1, q1}, and {p1, qt, q1, q2}, can
be K1,3-covered and satisfies that any segment connecting points in (R ∪ B) \ Z and any edge of the
covering are disjoint. Figure 7 shows the K1,3-coverings for the different sets Z. Then, we can apply
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induction on (R ∪B) \ Z to obtain a K1,3-covering for R ∪B.
Finally, assume that C2 consists of points of the same color. As g, h > 0, then |R| ≥ 4 and |B| ≥ 4,

so |C1| ≥ 4 because C2 is monochromatic. Suppose first that C2 is red, so there are at least four blue
points in C1. If pi is the first blue point in circ(C1 ∪ C2), starting the exploration at p1, then the three
points appearing in circ(C1 ∪ C2) before pi are red, so the set X consisting of these four points can be
K1,3-covered. Note that (R ∪ B) \X is a double chain and that the K1,3-covering of X does not cross
any K1,3-covering of (R ∪B) \X which exists by induction. Suppose now that C2 is blue. As p1 is red,
then X = {p1, qt, qt−1, qt−2} can be K1,3-covered without crossing a K1,3-covering of the double chain
(R ∪B) \X that exists by induction.

From an algorithmic point of view, one can design a linear time algorithm to find a K1,3-covering for
a double chain as follows. We omit the details and give only a general idea on how the algorithm works.
Let R′ and B′ be the sets of red and blue points forming a double chain in a generic step of the algorithm,
with |R| = 3g′ + h′, |B| = g′ + 3h′, g′ ≤ g and h′ ≤ h. The algorithm controls if either g′ = 0 or
h′ = 0. If this is the case, then the double chain is a {1, 3}-equitable set. By Observation 1, circ(C1∪C2)
necessarily contains a setX consisting of 4 consecutive points, three of them red (resp. blue) and the other
one blue (resp. red). Therefore, the linear algorithm described in the convex case can be easily adapted to
the circular sequence circ(C1 ∪ C2) to find a K1,3-covering for R′ ∪B′.

From the beginning, the algorithm runs twice the linear time algorithm described for the convex case,
once to control a possible set X of 4 consecutive points, three of one color and one of the other color,
in C ′1 and a second time to control such a set X in C ′2. One of these two algorithms is activated in each
step, depending on the sizes of C ′1 and C ′2. If such a set X does not exist, then the algorithm has to apply
two different procedures: One to define the different stars when C ′2 is monochromatic (as described in the
proof of Theorem 10) and the other one to define the stars when the points in C ′2 alternate (looking for
stars involving p′1 and q′t as described in Figure 7).

2.5 Some (r, b)-sets with U(r, b) ≥ 5

In this section we give some particular configurations of (r, b)-sets for which U(r, b) ≥ 5 and prove that,
except for {1, 3}-equitable sets, U(r, b) > 0 for any values of r and b. Recall that U(r, b) is the maximum
of U(S) over all (r, b)-sets S in general position, being U(S) the minimum number of points in S that
cannot be K1,3-covered.

Theorem 11. Let r and b be nonnegative integers.

(a) U(r, b) = 0 if, and only if, r = 3b or b = 3r.

(b) U(2k + 1, 2k) ≥ 5 for any k ≥ 4.

Proof: (a) Assume that r ≥ b and r 6= 3b. If r > 3b, a perfect covering of any (r, b)-set is numerically
impossible as there are too many red points (even using only stars with blue center would leave red
points uncovered). If r < 3b, the following (r, b)-set S cannot completely be K1,3-covered: Draw a
color-alternating convex 2b-gon together with a set Q of r − b almost collinear red points as illustrated
in Figure 8. The set Q is not split by any bichromatic diagonal and its points are almost along a line
` through the midpoints of two antipodal sides. Note that in a perfect K1,3-covering there must be at
least one star T with red center, since r < 3b. If this center of T is in Q, then T must have at least two
consecutive edges on the same side of ` (see Figure 9, left). But these two edges isolate an odd number
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b even b odd

Figure 8: Cases b even and b odd in the proof of Theorem 11(a).

of points in S and, therefore, these points cannot be K1,3-covered. If the red center of T is not in Q,
then the set Q must be either to the left or to the right of at least two edges of T (see Figure 9, right). As
before, two consecutive such edges isolate an odd number of points in S from the rest and so they cannot
be completely K1,3-covered. If r = 3b, then Theorem 5 guarantees U(r, b) = 0.

x

y2

y1
x

y2

y1

Figure 9: Red center in Q (left) or on the convex hull (right).

(b) Consider the (2k + 1, 2k)-set S formed by the color-alternating vertices of a regular 4k-gon and one
red point x near the center of the polygon. Since U(2k + 1, 2k) ≡ 1 (mod 4), it is enough to show that
U(S) > 1. Note that in a K1,3-covering of S leaving only one point uncovered, there must be exactly
bk/2c ≥ 2 stars with red center. If there is a star T whose center is x, each of the sectors determined by
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x

y1

y2

y3

x x

Figure 10: Red center in Q or two on the convex hull.

the edges of T contains an odd number of points (see Figure 10, left). Thus, each of these subsets of S
cannot be completely K1,3-covered.

If there are two stars with red centers that are not x, then two cases appear depending on whether x is
between the two stars (Figure 10, center) or it is in one of the regions delimited by two consecutive edges
(diagonals) of one of the stars (Figure 10, right). In the first case, each star defines a region isolating an
odd number of points. In the second case, one of the stars defines a region with an odd number of points
and the region delimited by the two stars contains 2j + 2 points, for some j, which is not a multiple of 4.
In either case there are at least two points that are not covered.

3 General configurations of points
Given an (r, b)-set S, the main goal of this section is to give a lower bound on the number of points of
S that can always be K1,3-covered. Assume that b ≤ r and let α = b

r . Notice that, if α < 1/3, then
r > 3b and there are too many red points to be covered, even by stars centered in blue points. In this case,
at least r − 3b red points will necessarily remain uncovered in any K1,3-covering. Moreover, the bound
is tight because, by removing r− 3b red points, we obtain a {1, 3}-equitable set that can be K1,3-covered
by Theorem 5.

When 1/3 ≤ α ≤ 1, our first attempt to obtain a “good covering” was trying to divide the plane into
disjoint convex regions such that every region contained either three red points and one blue point or
vice versa. If such a partition exists, then the four points in each region can be trivially K1,3-covered.
Unfortunately, this is not always possible. For instance, a color-alternating convex point set does not
admit this kind of partition. Using a different (but in same way similar) approach, we prove that, when
1/3 ≤ α ≤ 1, at least 8

9 (r+ b− 8) points can always be K1,3-covered. The proof of this result is divided
into two parts: Section 3.1 proves the result for 1/3 ≤ α ≤ 4/5 and Section 3.2 for 4/5 ≤ α ≤ 1. Finally,
in Section 3.3, we show an efficient algorithm for computing at least 8

9 (r+b−8) points that can be always
K1,3-covered.

3.1 Lower bound when 1/3 ≤ α ≤ 4/5

In this case, the general idea to prove that at least 8
9 (r + b − 8) points can always be K1,3-covered is

the following. We first exhibit a special family of (r, b)-sets such that for any member of this family it
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is possible to bound the number of uncovered points (Theorem 12 and Lemma 15). Then, we show that
any (r, b)-set can be transformed into a member of this family by removing some red and blue points,
so that a bound on the number of uncovered points can be given for any (r, b)-set (Theorem 13). Using
this result, we show that at least 8

9 (r + b − 8) points can always be K1,3-covered when 1/3 ≤ α ≤ 4/5
(Corollary 14). Let us go into the details.

Given a bicolored point set S = R ∪ B, the following theorem gives an upper bound on the number
of points that will remain uncovered, under certain constrains on the number of red and blue points. This
theorem is the main result of this section and its proof, included in Section 3.1.1, requires the two lemmas
in Section 1.3 together with a new one (Lemma 15).

Theorem 12. Let t be a integer, t ≥ 0. Then, U(3k − t, k + 2t) ≤ t for any integer k ≥ 5
8 t.

Theorem 12 implies the following lower bound on C(r, b) for all α with 1
3 ≤ α ≤ 1. We use this bound

to prove the general lower bound C(r, b) ≥ 8
9 (r + b)− 4 for any 1

3 ≤ α ≤
4
5 as stated in Corollary 14.

Theorem 13. Let r and b be positive integers, r ≥ b, and let α = b
r . If 1

3 ≤ α ≤ 1, then

C(r, b) ≥ 4

7

(
α+ 2

α+ 1

)
(r + b)− 4.

Proof: Write 3b − r = 7t + s for some integers t ≥ 0 and s with 0 ≤ s ≤ 6. Let k = b − 2t − d s3e.
Then, r = 3k − t+ 3d s3e − s and b = k + 2t+ d s3e. Also, k ≥ 5

8 t: For t = 0, 3b− r = s ≥ 0, implying
k = b − ds/3e ≥ 0, so k ≥ 5/8t. For t > 0, as b ≤ r, then 3b − r ≤ 2b, implying 7t + s ≤ 2b. Hence,
3t+ s− 2ds/3e ≤ 2b− 4t− 2ds/3e = 2k and k ≥ (3t+ s− 2ds/3e)/2. For 0 ≤ s ≤ 6, the minimum of
s−2ds/3e is reached at s = 1, so k ≥ (3t−1)/2. Since t > 0, (3t−1)/2 ≥ 5/8t. Removing 3ds/3e−s
red and ds/3e blue points,

U(r, b) = U(3k − t+ 3
⌈s
3

⌉
− s, k + 2t+

⌈s
3

⌉
) ≤ U(3k − t, k + 2t) + 4

⌈s
3

⌉
− s

and, by Theorem 12, U(3k − t, k + 2t) + 4
⌈
s
3

⌉
− s ≤ t+ 4

⌈
s
3

⌉
− s. Then,

U(r, b) = U
(
3k − t+ 3

⌈s
3

⌉
− s, k + 2t+

⌈s
3

⌉)
≤ U(3k − t, k + 2t) + 4

⌈s
3

⌉
− s ≤ t+ 4

⌈s
3

⌉
− s,

and, therefore,

C(r, b) = r + b− U(r, b) ≥ r + b− t− 4
⌈s
3

⌉
+ s = 4k

= 4

(
b− 2

7
(3b− r − s)−

⌈s
3

⌉)
=

4

7
(b+ 2r) +

8

7
s− 4

⌈s
3

⌉
≥ 4

7

(
α+ 2

α+ 1

)
(r + b)− 4.

Corollary 14. Let r ≥ b be positive integers such that 1
3 ≤ α ≤ 4

5 . If r red points and b blue points are
given in the plane in general position, then at least 8

9 (r + b)− 4 points can be K1,3-covered.
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Proof: Since the function α+2
α+1 is decreasing, then for 1

3 ≤ α ≤
4
5 we have

C(r, b) ≥ 4

7

(
α+ 2

α+ 1

)
(r + b)− 4 ≥ 4

7

( 4
5 + 2
4
5 + 1

)
(r + b)− 4 =

8

9
(r + b)− 4.

The following lemma extends the range of validity of Theorem 12 and will be used as an extension of
the basis of induction in the proof of Theorem 12.

Lemma 15. If k = d 58 te − 1, then U(3k − t, k + 2t) ≤ min{8, t} ≤ t for any t ≥ 4 or t = 2.

Proof: Let r = 3k − t and b = k + 2t. Since 5
8 t− 1 ≤ k = d 58 te − 1 < 5

8 t, then

21

8
t− 1 ≤ b < 21

8
t ≤ 3r + 9 <

21

8
t+ 9.

Then, b = 3r + i for some 0 ≤ i ≤ 8 and thus U(r, b) = U(r, 3r + i) ≤ U(r, 3r) + i = i ≤ 8. Hence,
the result holds for t ≥ 8. If t=2, then k = d 58 te − 1 = 1, r = 1 and b = 5, implying that i = 2 because
b = 3r+ i. Moreover, if t = 4, 5, 6, or 7, then i = 4, 1, 6, or 3. Therefore U(r, b) ≤ i ≤ t in all cases.

3.1.1 Proof of Theorem 12
We prove the result by induction on t. Theorem 5 shows the result for t = 0. Also, U(2, 3) = 1 shows the
result for t = k = 1. Assume that t ≥ 1, (t, k) 6= (1, 1), and consider the set R ∪ B of points in general
position such that |R| = 3k− t and |B| = k+ 2t for some k ≥ 5

8 t. The following cases arise, depending
on the parity of t and k. The general idea in each case is to divide the original point set into two disjoint
points sets, roughly involving half of the points, and apply induction on them.

1. Suppose that t and k are even.

Let k = 2j for some integer j. By Ham-Sandwich theorem and by induction (since k = 2j ≥ 5
8 t

then j ≥ 5
8 ·

t
2 ), we have

U(3k − t, k + 2t) = U(6j − t, 2j + 2t) ≤ 2 U
(
3j − t

2
, j + 2 · t

2

)
≤ 2 · t

2
= t.

2. Suppose that t is even and k is odd.

Let k = 2j + 1 for some integer j. Consider two parallel lines `1 and `2, with opposite directions,
such that |left(`1) ∩ (R ∪ B)| = |left(`2) ∩ (R ∪ B)| = 4j + t

2 . By Lemma 3, we can further
assume that there is at least one red point in right(`1) ∩ right(`2). (If right(`1) ∩ right(`2) only
contains blue points, Lemma 3 is applied taking x as a red point in left(`1) and m = 4j + t

2 + 1,
and the line ` obtained according to the lemma is moved slightly such that it does not pass through
x.) Since there are at most |R| − 1 = 6j + 2 − t red points in left(`1) ∪ left(`2), then we can
assume without loss of generality that |left(`1)∩R| ≤ 3j+1− t

2 and |left(`2)∩R| ≥ 3j+1− t
2 .
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(a) If |left(`1) ∩R| ≤ 3j − t
2 , and since |left(`2) ∩R| ≥ 3j + 1− t

2 , by Lemma 2 there exists
a directed line ` such that |left(`) ∩ (R ∪ B)| = 4j + t

2 and |left(`) ∩ R| = 3j − t
2 . Then,

|left(`) ∩ B| = j + 2 · t2 , where t
2 is a positive integer and 2j + 1 ≥ 5

8 t implies that either
j + 1 > j ≥ 5

8 ·
t
2 or j + 1 > j ≥ d 58 ·

t
2e − 1 and t

2 6= 1, 3. By induction and Lemma 15,

U(left(`) ∩ (R ∪B)) ≤ U
(
3j − t

2
, j + 2 · t

2

)
≤ t

2
.

(Note that Lemma 15 is necessary, for some values of t and k, to substitute Theorem 12 in the
inductive step. For example, if t = 4 and k = 3, then j = 1 is less than 5/8(t/2) = 10/8,
so Theorem 12 cannot be applied and we need Lemma 15, which can be applied because
j ≥ d(5/8) · (t/2)e − 1 holds.)
Also |right(`) ∩R| = 3(j + 1)− t

2 and |right(`) ∩B| = (j + 1) + 2 · t2 and, by induction,

U(right(`) ∩ (R ∪B)) ≤ U
(
3(j + 1)− t

2
, (j + 1) + 2 · t

2

)
≤ t

2
.

Therefore U(R ∪B) ≤ 2 · t2 = t.
(b) If |left(`1) ∩ R| = 3j + 1 − t

2 = 3j − ( t2 − 1), then |left(`2) ∩ R| = 3j − ( t2 − 1),
|left(`1)∩B| = |left(`2)∩B| = j +2( t2 − 1) + 1, and (right(`1)∩ right(`2))∩ (R∪B)
contains a red point and three blue points. Moreover, 2j + 1 ≥ 5

8 t implies j ≥ 5
8 (

t
2 − 1).

Therefore, by induction,

U(R ∪B) ≤ 2 U
(
3j −

(
t

2
− 1

)
, j + 2

(
t

2
− 1

)
+ 1

)
+ U(1, 3)

≤ 2

((
t

2
− 1

)
+ 1

)
+ 0 = t.

3. Suppose that t is odd and k is even.

Let k = 2j for some integer j. Consider two parallel lines `1 and `2, with opposite directions, such
that |left(`1)∩(R∪B)| = |left(`2)∩(R∪B)| = 4j+ t−1

2 . By Lemma 3, we can further assume that
the unique point in right(`1)∩right(`2) is blue. Since all 6j−t red points are in left(`1)∪left(`2),
then without loss of generality |left(`1) ∩ R| ≤ 3j − t+1

2 and |left(`2) ∩ R| ≥ 3j − t−1
2 . Thus,

Lemma 2 guarantees the existence of a line ` such that |left(`) ∩ (R ∪ B)| = 4j + t−1
2 and

|left(`) ∩ R| = 3j − t−1
2 . Then, |left(`) ∩ B| = j + 2 · t−12 , where t−1

2 is a nonnegative integer
and 2j ≥ 5

8 t implies that j ≥ 5
8 ·

t−1
2 . By induction,

U(left(`) ∩ (R ∪B)) ≤ U
(
3j − t− 1

2
, j + 2 · t− 1

2

)
≤ t− 1

2
.

Also |right(`) ∩R| = 3j − t+1
2 and |right(`) ∩B| = j + 2 · t+1

2 , where t+1
2 is a positive integer

and 2j ≥ 5
8 t implies that either j ≥ 5

8 ·
t+1
2 or t+1

2 6= 1, 3 and j ≥ d 58 ·
t+1
2 e − 1. By induction and

Lemma 15,

U(right(`) ∩ (R ∪B)) ≤ U
(
3j − t+ 1

2
, j + 2 · t+ 1

2

)
≤ t+ 1

2
.
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Therefore U(R ∪B) ≤ t−1
2 + t+1

2 = t.

4. Suppose that t and k are odd.

Let k = 2j+1 for some integer j (recall that (k, j) 6= (1, 1), so j > 0). Consider two parallel lines
`1 and `2, with opposite directions, such that

|left(`1) ∩ (R ∪B)| = |left(`2) ∩ (R ∪B)| = 4j +
t− 1

2
.

(a) If one of |left(`1)∩R| or |left(`2)∩R| is at most 3j− t−1
2 and the other is at least 3j− t−1

2 ,
then Lemma 2 guarantees the existence of a directed line ` such that |left(`) ∩ (R ∪ B)| =
4j + t−1

2 and |left(`) ∩ R| = 3j − t−1
2 . Then, |left(`) ∩ B| = j + 2 · t−12 , where t−1

2 is a
nonnegative integer and 2j + 1 ≥ 5

8 t implies that either j ≥ 5
8 ·

t−1
2 or j ≥ d 58 ·

t−1
2 e − 1 and

t−1
2 6= 1, 3. By induction and Lemma 15,

U(left(`) ∩ (R ∪B)) ≤ U
(
3j − t− 1

2
, j + 2 · t− 1

2

)
≤ t− 1

2
.

Also |right(`) ∩R| = 3(j + 1)− t+1
2 and |right(`) ∩B| = (j + 1) + 2 · t+1

2 , where t+1
2 is

a positive integer and 2j + 1 ≥ 5
8 t implies that j + 1 ≥ 5

8 ·
t+1
2 . By induction,

U(right(`) ∩ (R ∪B)) ≤ U
(
3(j + 1)− t+ 1

2
, j + 1 + 2 · t+ 1

2

)
≤ t+ 1

2
.

Therefore U(R ∪B) ≤ t−1
2 + t+1

2 = t.
Notice that, if there is no direction of `1 such that one of |left(`1) ∩ R| or |left(`2) ∩ R|
is at most 3j − t−1

2 and the other is at least 3j − t−1
2 , then, by Lemma 2, necessarily either

|left(`1) ∩ R| > 3j − t−1
2 and |left(`2) ∩ R| > 3j − t−1

2 for every direction of `1 or
|left(`1) ∩R| < 3j − t−1

2 and |left(`2) ∩R| < 3j − t−1
2 for every direction of `1.

(b) If |left(`1) ∩ R| ≥ 3j + 1 − t−1
2 and |left(`2) ∩ R| ≥ 3j + 1 − t−1

2 for every direction of
`1, then

|right(`1) ∩ right(`2) ∩R| ≤ 3k − t− 2

(
3j + 1− t− 1

2

)
= 6j + 3− t− 6j − 2 + (t− 1) = 0.

That is, all the points in (right(`1)∩ right(`2))∩ (R ∪B) are blue for every direction of `1.
But this is not possible as Lemma 3 guarantees the existence of a direction where a point in
right(`1) ∩ right(`2) is red.

(c) Finally, suppose that |left(`1)∩R| ≤ 3j−1− t−1
2 and |left(`2)∩R| ≤ 3j−1− t−1

2 for every
direction of `1. Since |B| = k+2t ≥ 5 because t and k are odd, t ≥ 1 and k ≥ 3, by Lemma 3
there exists a directed line ` through a blue point x, such that |left(`)∩ (R∪B)| = 4j+ t−1

2 .
In this case, start with `1 in the same direction as `. Hence, at most 4 of the 5 points in
(right(`1) ∩ right(`2)) ∩ (R ∪B) are red (x is one of these 5 points and x is blue) and so
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|left(`1) ∩R| = |left(`2) ∩R| = 3j − 1− t− 1

2
= 3j − t+ 1

2
.

Then, (left(`)∩ (R∪B))∪ {x} is a (3j − t+1
2 , j +2 · t+1

2 )-set and right(`)∩ (R∪B) is a
(3(j + 1)− t−1

2 , (j + 1) + 2 · t−12 )-set, where t±1
2 are nonnegative integers and 2j + 1 ≥ 5

8 t
implies that j + 1 ≥ 5

8 ·
t−1
2 and either j ≥ 5

8 ·
t+1
2 or j ≥ d 58 ·

t+1
2 e − 1 and t+1

2 6= 1 or 3.
By induction and Lemma 15,

U(R ∪B) ≤ U
(
3j − t+ 1

2
, j + 2 · t+ 1

2

)
+ U

(
3(j + 1)− t− 1

2
, (j + 1) + 2 · t− 1

2

)
≤ t+ 1

2
+
t− 1

2
= t.

3.2 Lower bound when 4/5 ≤ α ≤ 1

Now, let us prove the lower bound 8
9 (r+ b− 8) on the number of points that can be always K1,3-covered,

when 4/5 ≤ α ≤ 1. To this end, we use the following result.

Theorem 16 (Kaneko, Kano and Suzuki [28]). Let s ≥ 1, g ≥ 0 and h ≥ 0 be integers such that
g + h ≥ 1. Assume that |R| = (s+ 1)g + sh and |B| = sg + (s+ 1)h. Then, there exists a subdivision
X1 ∪ · · · ∪Xg ∪ Y1 ∪ · · · ∪ Yh of the plane into g+ h disjoint convex regions such that every Xi contains
exactly s+1 red points and s blue points and every Yj contains exactly s red points and s+1 blue points.

In order to obtain the upper bound, we now remove some red and blue points to build a point set with
5g+4h red points and 4g+5h blue points, for some values g and h. Then, applying the previous theorem,
we divide the plane into convex regions such that each of them contains either 5 red points and 4 blue
points or 4 red points and 5 blue points. Using Theorem 12, in each region 8 of the 9 points can be
covered.

Theorem 17. Let r and b be positive integers and α = b
r . If 4

5 ≤ α ≤ 1, then

C(r, b) ≥ 8

9
(r + b− 8)

Proof: Assume r + b ≥ 9, otherwise there is nothing to prove. Because 4
5 ≤ α ≤ 1, it follows that

4r ≤ 5b ≤ 5r. Write the nonnegative integer 5b − 4r = 9n + m for nonnegative integers n and m,
0 ≤ m ≤ 8. Define

(h, g) =

{
(n, r − b+ n) if 0 ≤ m ≤ 4

(n+ 1, r − b+ n) if 5 ≤ m ≤ 8

Observe that if 0 ≤ m ≤ 4, then 5h + 4g = b − m and 4h + 5g = r − m; and if 5 ≤ m ≤ 8, then
5h + 4g = b − (m − 5) and 4h + 5g = r − (m − 4). In either case, after removing m blue points and
m red points (in the first case) or m − 5 blue points and m − 4 red points (in the second case), we end
up with a set having 5h + 4g blue points and 4h + 5g red points. According to Theorem 16 with s = 4
(note that h + g ≥ 1 since r + b ≥ 9), the plane can be partitioned into g + h disjoint convex regions
X1 ∪ · · · ∪ Xg ∪ Y1 ∪ · · · ∪ Yh such that every Xi contains exactly 5 red points and 4 blue points, and
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every Yj contains exactly 4 red points and 5 blue points. Finally, by Theorem 12 (with k = 2 and t = 1),
eight points in every Xi and Yj can be K1,3-covered. Thus C(r, b) ≥ C(4h+ 5g, 5h+ 4g) ≥ 8(h+ g) ≥
8
9 (r + b− 8).

3.3 Computing a covering of at least 8
9
(r + b− 8) points

In this section we show how to compute a covering of at least 8
9 (r + b − 8) points for an (r, b)-set S

using an algorithm whose running time is O(N
4
3 log3(N)), where N = r+ b. In particular, we prove the

following theorem.

Theorem 18. Let r ≥ b be positive integers such that 1
3 ≤

b
r ≤ 1. If r red points and b blue points

are given in the plane in general position, then at least 8
9 (r + b) − 4 points can be K1,3-covered in

O(N
4
3 log3(N)) time, where N = r + b.

The proof of the theorem follows from the discussion in Subsections 3.3.1 and 3.3.2. In these subsec-
tions, we study the complexity of finding such a covering when 1/3 ≤ α ≤ 4/5 and when 4/5 ≤ α ≤ 1,
respectively.

3.3.1 Computing a covering when 1/3 ≤ α ≤ 4/5

Let 1/3 ≤ α ≤ 4/5. Theorem 13 guarantees that at least 4
7

(
α+2
α+1

)
(r + b) − 4 points are covered, and

this amount is at least 8
9 (r + b − 8) when 1/3 ≤ α ≤ 4/5 (Corollary 14). The bound of the theorem is

obtained by transforming the (r, b)-set into a (3k − t, k + 2t)-set by removing 3d s3e − s red points and
d s3e blue points, where k, t and s are defined according to the formulas given in the proof of the theorem.
Therefore, we only need to show how to cover with stars a (3k− t, k+2t)-set leaving uncovered at most
t points.

The proofs of Theorem 12 and Lemma 15 provide methods to obtain such coverings for (3k−t, k+2t)-
sets. The proof of Lemma 15, that corresponds to the particular case k = d 58 te − 1, is based on removing
i ≤ 8 blue points to transform the (r, b)-set into a {1, 3}-equitable set. By Theorem 5, a K1,3-covering
can be found in O(N

4
3 log3(N)) time.

In the proof of Theorem 12, induction is applied in the four cases, dividing the original problem into two
(disjoint) subproblems roughly involving half of the points each. Thus, a covering for a (3k − t, k + 2t)-
set can be found by building coverings for the corresponding subproblems. Note that, if t = 0, then the
(3k − t, k + 2t)-set is a {1, 3}-equitable set and, by Theorem 5, a K1,3-covering can be computed in
O(N

4
3 log3(N)) time.

Let T (k, t) denote the complexity of finding a covering for a (3k− t, k+ 2t)-set, leaving uncovered at
most t points. According to Theorem 12,

T (k, t) ≤ T (k1, t1) + T (k2, t2) +O(N
4
3 log(N)) +O(N log(N))

where N = 4k + t. Summands O(N
4
3 log(N)) and O(N log(N)) appear when Lemmas 2 and 3 are ap-

plied, respectively, and k1, k2 ∈ {bk2 c, d
k
2 e} and t1, t2 ∈ { t2 − 1, b t2c, d

t
2e}. The exact values depend on

the parity of k and t. As T (k, t) = O(N
4
3 log3(N)) when t = 0 and k = d 58 te − 1, using standard tech-

niques we can easily solve the recurrence, whose solution with equality is also T (k, t) = O(N
4
3 log3(N)).
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3.3.2 Computing a covering when 4/5 ≤ α ≤ 1

Now, let 4/5 ≤ α ≤ 1. Given an (r, b)-set, by removing at most 4 red points and 4 blue points (as
in the proof of Theorem 17), we obtain a (4h + 5g, 4g + 5h)-set, for some integers h and g. Applying
Theorem 16, we obtain g + h convex regions containing 5 points of one color and 4 points of the other
color each. Note that the 9 points in one these regions form a (3k− t, k+2t)-set (or a (k+2t, 3k− t)-set)
with k = 2 and t = 1. Instead of applying Theorem 12 to cover 8 of the 9 points for each one of these
(3k − t, k + 2t)-sets, such particular case allows us to provide an alternative method.

Assume we are given 5 red points and 4 blue points. Take a blue point q and add a new blue point
q′ very close to q. By the Ham-Sandwich theorem, there is a bisector ` passing through one red point p
and one blue point q′′, which can be found in linear time [34]. Suppose that q′′ = q and that, without
loss of generality, q′ is in right(`). By deleting q′, the 4 points in right(`) ∪ {p} can be K1,3-covered,
3 blue points and 1 red point in left(`) ∪ {q} can be K1,3-covered, and these two K1,3-coverings have
no crossings. Similar reasonings apply to find the two stars when q′′ = q′ or q′′ 6= q, q′. As a conse-
quence, building all stars covering at least 8

9 (r + b− 8) points only requires linear time, after computing
a partition of the plane as described in Theorem 16. Therefore, the overall complexity depends on the
complexity of computing such a partition. The rest of this subsection is devoted to compute this partition
in O(N

4
3 log3(N)) time.

Kaneko et al. [28] proved the existence of the partition, but do not provide any algorithm to find it.
Following their proof and using the results from Bespamyatnikh et al. [6] and from Brodal and Jacob [8],
we show how to compute the partition in O(N

4
3 log3(N)) time.

First of all, we recall some definitions and results given in [6]. Let S = R∪B be a bicolored point set.
A 2-cutting is a partition of the plane by a line ` into two halfplanes. Given a line ` and two integers r and
b, a 2-cutting is equitable (or (r, b)-equitable) if |left(`) ∩ R| = r and |left(`) ∩ B| = b. A 3-cutting
is a partition of the plane into three convex wedges W1,W2 and W3 by three rays with a common point
called the apex of the 3-cutting. Given six integers r1, r2, r3, b1, b2, b3 such that r1 + r2 + r3 = |R|
and b1 + b2 + b3 = |B|, a 3-cutting is equitable (or (r1, r2, r3, b1, b2, b3)-equitable) if each wedge Wi

contains exactly ri red points and bi blue points. An equitable 2-cutting can be seen as a special case of
an equitable 3-cutting, taking r2 = b2 = 0, r3 = |R| − r1, and b3 = |B| − b1.

Choose |R| vertical lines `i such that, for each line `i, 1 ≤ i ≤ |R|, |left(`i) ∩ R| = i. Given two
integers i and j, we define sign(i, j) = −, if |left(`i)∩B| < j, and sign(i, j) = +, if |left(`i)∩B| > j.
This function controls whether the number of blue points to the left of `i is less than j or not, when the
number of red points to the left of `i is precisely i. Note that if |left(`i)∩B| = j, then `i defines an (i, j)-
equitable 2-cutting. The following theorem, which characterizes the existence of an equitable 3-cutting,
was originally proved in [6] under the assumption that r1b1 = r2

b2
= r3

b3
. However, as mentioned in [27, 28],

this condition can be removed without changing the arguments in the proof given in [6]. Moreover, their
algorithm to build an equitable 3-cutting also works in this more general setting.
Theorem 19 ([6, 8]). Let r1, r2, r3, b1, b2, b3 be positive integers such that |R| = r1 + r2 + r3 and |B| =
b1+ b2+ b3. If sign(r1, b1) = sign(r2, b2) = sign(r3, b3), then there exists either a (r1, r2, r3, b1, b2, b3)-
equitable 3-cutting or a (ri, bi)-equitable 2-cutting for some i = 1, 2, 3. Moreover, an equitable 3-cutting
(2-cutting) can be computed in O(N

4
3 log2(N)) time, with N = |R|+ |B|.

As in Theorem 4, the running time of the Bespamyatnikh et al. [6] algorithm to find a 3-cutting can be
improved from O(N

4
3 log3(N)) to O(N

4
3 log2(N)) by using the Brodal and Jacob [8] maintenance of a

convex hull in O(log(N)) time per update.
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In addition, Theorem 9 in [6] shows how to compute in linear time values r1, r2, r3, b1, b2, b3 satisfying
sign(r1, b1) = sign(r2, b2) = sign(r3, b3) (with the additional constraint that r1b1 = r2

b2
= r3

b3
) such that

ri ≤ b 2|R|3 c and bi ≤ b 2|B|3 c.
Now we can go back to Theorem 16. Recall that given |R| = (s+ 1)g + sh and |B| = sg + (s+ 1)h,

with s ≥ 1, g ≥ 0 and h ≥ 0 integers such that g + h ≥ 1, we are interested in finding a subdivision
X1 ∪ · · · ∪Xg ∪ Y1 ∪ · · · ∪ Yh of the plane into g+ h disjoint convex regions such that every Xi contains
exactly s+1 red points and s blue points and every Yj contains exactly s red points and s+1 blue points.
We use P to denote such a partition. The proof of Theorem 16 given in [28] is based on proving the
existence of either an equitable 2-cutting, with r = (s + 1)g′ + sh′ and b = sg′ + (s + 1)h′ for some
integers 0 ≤ g′ ≤ g and 0 ≤ h′ ≤ h such that g′ + h′ < g + h, or an equitable 3-cutting such that each
wedgeWi contains exactly (s+1)gi+shi red points and sgi+(s+1)hi blue points, with g1+g2+g3 = g
and h1 + h2 + h3 = h. Then, induction is applied to each of the subproblems defined by the cutting.

Therefore, to build a 2-cutting or a 3-cutting, we need to show how to find values r1, r2, r3, b1, b2, b3
such that sign(r1, b1) = sign(r2, b2) = sign(r3, b3) (to guarantee that such a cutting exists as in Theo-
rem 19), with the additional constraint that ri = (s+ 1)gi + shi, bi = sgi + (s+ 1)hi, g1 + g2 + g3 = g
and h1 + h2 + h3 = h (as required in the proof of Theorem 16 in [28]). To this end, we define a new set
of signs and prove Theorem 20.

Observe first that if h = 1, then by coloring a blue point q in red, we have a set consisting of (s+1)(g+
1) red points and s(g + 1) blue points. Thus, by Theorem 4, we can obtain an equitable subdivision in
O(N

4
3 log2(N) log(g)) time such that each of the g + 1 convex regions contains s + 1 red points and s

blue points. Coloring q again in blue, the desired partition P is obtained. Using a similar reasoning when
g = 1, we can assume that g, h ≥ 2.

Given two integers g′ ≤ g and h′ ≤ h, we define sg(g′, h′) = −, if |left(`i) ∩ B| < sg′ + (s+ 1)h′,
sg(g′, h′) = 0, if |left(`i)∩B| = sg′+(s+1)h′, and sg(g′, h′) = +, if |left(`i)∩B| > sg′+(s+1)h′,
where i = (s + 1)g′ + sh′. Note that, if sg(g′, h′) = 0, then `i defines an equitable 2-cutting with
(s + 1)g′ + sh′ red points and sg′ + (s + 1)h′ blue points to the left of `i. Henceforth, we assume
that there is no equality unless otherwise stated. By exchanging the colors if necessary, we may assume
sg(1, 0) = −. Given two integers g′ and h′, the amounts (m+1)g′+mh′ and (m+1)(g′−1)+m(h′+1)
differ only by one, implying the following trivial observation.

Observation 2. If sg(g′, h′) = − then sg(g′ − 1, h′ + 1) = −.

In particular, sg(0, 1) = −. Suppose now that sg(g′, h′) = sg(g − g′, h− h′) = −. If `i and `j are the
two lines such that |left(`i)∩R| = (m+1)g′+mh′ and |left(`j)∩R| = (m+1)(g−g′)+m(h−h′),
respectively, then |left(`i)∩B| < mg′+(m+1)h′, |right(`j)∩B| > mg′+(m+1)h′ and |right(`j)∩
R| = (m+ 1)g′ +mh′. By Lemma 2, there is a line defining an ((m+ 1)g′ +mh′,mg′ + (m+ 1)h′)-
equitable 2-cutting, and the same happens if sg(g′, h′) = sg(g − g′, h − h′) = +. In the spirit of
Theorem 9 in [6], the following theorem shows how to find two couples or three couples with the same
sign (according to the definition of sg(g′, h′)), bounding some of the sizes. Therefore, a 2-cutting or a
3-cutting exists with sizes as required in the proof of Theorem 16.

Theorem 20. For any sequence of signs sg(g′, h′), there exist two couples (g1, h1), (g3, h3), with g1 +
g3 = g and h1 + h3 = h, or three couples (g1, h1), (g2, h2), (g3, h3), with g1 + g2 + g3 = g and
h1 + h2 + h3 = h, such that they have the same sign and gi ≤ b 2g3 c for any i or hi ≤ b 2h3 c for any i.

Proof: Depending on the parity of g and h, we have four cases. If g and h are even, then (g/2, h/2) and
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(g/2, h/2) satisfy the statement. We explain in detail the case of g and h being odd. The other two cases,
g even and h odd and vice versa, can be analyzed in a similar and simpler way.

Let g = 2i+ 1 and h = 2j + 1 for some integers i and j. As g, h ≥ 2, then i, j ≥ 1. If sg(i+ 1, j) =
sg(i, j+1), we are done. Thus, we may assume that sg(i+1, j) and sg(i, j+1) are different and, without
loss of generality sg(i+ 1, j) = − and sg(i, j + 1) = +. If sg(i, j) = −, then (0, 1), (i, j) and (i+ 1, j)
satisfy the theorem, so we may assume that sg(i, j) = +. We distinguish two cases: sg(1, j) = + or
sg(1, j) = −.

Suppose first that sg(1, j) = +. If sg(i, 0) = +, then we are done, as sg(i, j + 1) = +. Therefore, we
may assume that sg(i, 0) = −. Let k1 < j be the integer such that sg(i, k1) = − and sg(i, k′) = + for all
k′, k1 < k′ ≤ j. Note that sg(i, 0) = − and sg(i, j) = +, so k1 must exist. Suppose that k1 ≥ bh3 c = k2.
Then, either (i, k1+1), (g− i, h−k1−1) or (0, 1), (i, k1), (g− i, h−k1−1) satisfy the theorem. Hence,
we may suppose that k1 < k2 and sg(i, k′) = + for k2 ≤ k′ ≤ j. Take the couples (1, j1), (i, j2), (i, j3),
where 1 ≤ j1 ≤ k2, j2 = bh−j12 c and j3 = dh−j12 e. Observe that k2 ≤ j2, j3 ≤ j, so sg(i, j2) = + and
sg(i, j3) = + for all possible values of j2 and j3. If there exists a value of j1 such that sg(1, j1) = +,
then the theorem holds. Therefore, we may assume that sg(1, j1) = − for j1 = 1, . . . , k2. Again, if
j > k′1 ≥ k2 is an integer (which necessarily exists as sg(1, j) = +) such that sg(1, k′1) = − and
sg(1, k′1+1) = +, then, either (1, k′1+1), (g−1, h−k′1−1) or (0, 1), (1, k′1), (g−1, h−k′1−1) satisfy
the statement.

Suppose now that sg(1, j) = −. Let k1 < i be the integer such that sg(k1, j) = − and sg(k′, j) = +
for all k′ with k1 < k′ ≤ i. Recall that sg(i, j) = +. Suppose that k1 ≥ b g3c = k2. Then, either
(k1 +1, j), (g− k1− 1, h− j) or (1, 0), (k1, j), (g− k1− 1, h− j) satisfy the statement. Hence, we may
suppose that k1 < k2 and sg(k′, j) = + for k2 ≤ k′ ≤ i.

By Observation 2, sg(0, j + 1) = sg(1, j) = −. Thus, we can repeat the previous reasoning, as
sg(i, j + 1) = +. Let k′1 < i be the integer such that sg(k′1, j + 1) = − and sg(k′, j + 1) = + for all k′,
k′1 < k′ ≤ i. If k′1 ≥ k2, then either (k′1 + 1, j + 1), (g − k′1 − 1, h − j − 1) or (1, 0), (k′1, j + 1), (g −
k′1 − 1, h − j − 1) satisfy the statement, so we may suppose that k′1 < k2 and sg(k′, j + 1) = + for
k2 ≤ k′ ≤ i.

Now, consider the couples (i1, 0), (i2, j), (i3, j + 1), where 1 ≤ i1 ≤ k2, i2 = b g−i12 c and i3 =

d g−i12 e. Note that k2 ≤ i2, i3 ≤ i, so sg(i2, j) = + and sg(i3, j + 1) = + for all possible values of
i2 and i3. If there exists a value of i1 such that sg(i1, 0) = +, then the statement holds. Therefore, we
may assume that sg(i1, 0) = − for i1 = 1, . . . , k2. Suppose that sg(i, 0) = +. Let k′′1 ≥ k2 be the
integer such that sg(k′′1 , 0) = − and sg(k′′1 + 1, j) = +. Then, either (k′′1 + 1, 0), (g − k′′1 − 1, h) or
(1, 0), (k′′1 , 0), (g − k′′1 − 1, h) satisfy the statement. On the contrary, suppose that sg(i, 0) = −. By
Observation 2, sg(i− 1, 1) = −, so (i− 1, 1), (i+ 1, j), (1, j) satisfy the statement as sg(i+ 1, j) = −
and sg(1, j) = −.

Now, we briefly explain the recursive algorithm to build a partition P: Using Theorem 20, we find
couples (g1, h1), (g3, h3) or couples (g1, h1), (g2, h2), (g3, h3) with the same sign, and using Lemma 2 or
Theorem 19, we compute an equitable 2-cutting or an equitable 3-cutting. For each of the disjoint regions
defined by the cutting, we continue recursively. Presorting the points according to their x-coordinates,
which takes O(N log(N)) time, couples (g1, h1), (g3, h3) or couples (g1, h1), (g2, h2), (g3, h3) can be
clearly computed in linear time. Building an equitable 2-cutting requiresO(N

4
3 log(N)) time (Lemma 2),

and an equitable 3-cutting O(N
4
3 log2(N)) time (Theorem 19). By Theorem 20, at most O(log(g) +

log(h)) iterations are required so that each of the obtained subproblems has g or h equals 1. Thus,
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Lemma 2 and Theorem 19 are applied at most O(log(g) + log(h)) times. Moreover, as all subproblems

defined by the cuttings are disjoint, and building a partition P when g = 1 or h = 1 takesO(n
4
3
i log3(ni))

time for a subproblem of size ni, we have proved the following theorem.

Theorem 21. Let s ≥ 1, g ≥ 0 and h ≥ 0 be integers such that g+h ≥ 1. Assume that |R| = (s+1)g+sh
and |B| = sg + (s + 1)h. Then, a subdivision X1 ∪ · · · ∪ Xg ∪ Y1 ∪ · · · ∪ Yh of the plane into g + h
disjoint convex regions such that every Xi contains exactly s + 1 red points and s blue points and every
Yj contains exactly s red points and s + 1 blue points can be computed in O(N

4
3 log3(N)) time, where

N = |R|+ |B|.
We remark that, in order to apply Theorem 20, we assumed sg(g′, h′) 6= 0 for all g′, h′. But recall

that, if sg(g′, h′) = 0 for some values g′, h′, the corresponding vertical line defines an equitable 2-cutting.
Therefore, if sg(g′, h′) = 0 for some values g′, h′ when applying Theorem 20, then we have directly
found a 2-cutting, and we do not need to apply either Lemma 2 or Theorem 19.

4 Concluding remarks and open problems
We have considered the problem of covering a bi-colored point set S = R ∪ B by graphs K1,3, called
stars, with straight legs and different colors in each class of the bipartition. First, in Sections 2.1, 2.2,
and 2.4 we have shown that some sets can be fully covered, provided that |R| = r and |B| = b allow
it, like {1, 3}-equitable sets, linearly separable sets, and double chains. In Sections 2.3 and 2.5 we have
shown that there are sets for which a full cover is not possible, even if r and b allow it, like all sets in
convex position, but also some sets in general position. Finally, in Section 3, we have proved that 8/9 of
the points can always be covered, if r and b allow it. The following question remains open:

Open Problem 1. Given a red-blue point configuration with b ≤ r ≤ 3b, is it always possible to K1,3-
cover at least r + b− o(r + b) points?

As a collateral contribution, in Table 1 we provide, for some values of r and b, the exact or possible
values of U(r, b), which denotes the maximum over all point sets in general position with |R| = r and
|B| = b of the minimum number of points uncovered.

First note that, by Theorem 11, all entries except those of the form (r, 3r) or (3b, b) are positive.
Also, clearly U(r, b) ≡ r + b (mod 4). The blue cells come from Theorem 12. The yellow cells are an
application of Theorem 16 in the same way that Theorem 17 was proved. For instance, if (r, b) = (19, 17),
then because 19 = 3 · 5+ 4 and 17 = 3 · 4+ 5; it follows by Theorem 16 that the plane can be partitioned
into 4 convex regions such that three of them have 5 red points and 4 blue points, and the other has 4
red points and 5 blue points. By Theorem 12, U(5, 4) = 1, thus in each region 8 of the 9 points can be
covered. Thus U(19, 17) ≤ 4, and by our previous remarks, U(19, 17) = 4. The other yellow cells are
proved similarly. The white cells use the fact that

U(r, b+ 1) =

 U(r, b) + 1
or
U(r, b)− 3

(1)

The green cells come from (1), and from Theorem 11 in the case of the entries that are 4 or 5. Finally, the
orange cell is justified by the next result.

Lemma 22. U(11, 11) = 2.
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r
b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2
2 3 4
3 0 1 2
4 1 2 3 4
5 2 3 4 1 2
6 3 0 1 2 3 4
7 4 1 2 3 4 5 2
8 5 2 3 4 1 2 3 4 use the symmetry
9 6 3 0 1 2 3 4 5 2

10 7 4 1 2 3 4 1,5 2 3 4
11 8 5 2 3 4 1 2 3 4 5 2
12 9 6 3 0 1 2 3 4 1,5 2,6 3 4
13 10 7 4 1 2 3 4 1,5 2 3 4 5 2,6
14 11 8 5 2 3 4 1 2 3 4 1,5 2,6 3 4
15 12 9 6 3 0 1 2 3 4 1,5 2,6 3 4 5 2,6
16 13 10 7 4 1 2 3 4 1,5 2 3 4 1,5 2,6 3,7 4,8
17 14 11 8 5 2 3 4 1 2 3 4 1,5 2,6 3,7 4 5 2,6
18 15 12 9 6 3 0 1 2 3 4 1,5 2,6 3 4 1,5 2,6 3,7 4
19 16 13 10 7 4 1 2 3 4 1,5 2 3 4 1,5 2,6 3,7 4 5 2,6
20 17 14 11 8 5 2 3 4 1 2 3 4 1,5 2,6 3,7 4 1,5 2,6 3,7 4,8

Table 1: Exact values (or possible values) of U(r, b) for small r and b.

Proof: Consider two parallel lines `1 and `2 with opposite directions such that |left(`1) ∩ (R ∪ B)| =
|left(`2) ∩ (R ∪ B)| = 9. First, suppose that |left(`1) ∩ B| ≥ 6. It follows that |left(`2) ∩ B| ≤ 5
and so, by Lemma 2, there is a line `3 such that |left(`3) ∩ (R ∪ B)| = 9 and |left(`3) ∩ B| = 6.
Then left(`3) ∩ (R ∪B) is a (3, 6)-set and right(`3) ∩ (R ∪B) is an (8, 5)-set. By Theorems 4 and 12,
U(3, 6) = U(8, 5) = 1. Thus, it is possible to K1,3-cover all but two points in R ∪ B. The case
|left(`2) ∩ B| ≥ 6 is symmetric and, by exchanging the roles of R and B, the previous reasoning holds
as well for |left(`1) ∩R| ≥ 6 or |left(`2) ∩R| ≥ 6.

Hence, the following cases remain. First, if |left(`1)∩B| = |left(`2)∩B| = 5, then both left(`1)∩
(R ∪B) and left(`2) ∩ (R ∪B) are (4, 5)-sets, and (R ∩B) ∩ (right(`1)) ∩ (right(`2)) is a (3, 1)-set.
Again by Theorem 12, U(4, 5) = 1, so all but 2 points in R ∪ B can be K1,3-covered. The symmetric
situation exchanging the roles of R and B is proved analogously. Second, if |left(`1) ∩ B| = 4 and
|left(`2)∩B| = 5 then, by Lemma 2 (ii), there is a line `4 through a blue point such that `4 leaves exactly
4 blue points and 4 red points to its left. As in the proof of Lemma 2, it can be assumed that the line `5
in the opposite direction of `4 that has 9 points of R ∪ B to its left satisfies that |left(`5) ∩ B| = 5 just
as `2. Thus, in this direction we have exactly the situation of the previous case. Therefore U(11, 11) = 2.
The symmetric situation exchanging the roles of `1 and `2 is proved analogously.

Let us finish the present work with the remark that the proofs of Theorems 5 and 6, for equitable sets and
for linearly separable sets, can be extended to obtain, given a s ≥ 4, K1,s-coverings of (sg + h, sh+ g)-
sets, where g and h are non-negative integers. Thus, an interesting problem is that of studying the number
of points that can be K1,s-covered for an (r, b)-set.
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[21] A.F. Holmsen, J. Kynčl and C. Valculescu. Near equipartitions of colored point sets. Computational
Geometry, Vol. 65, (2017), 35–42.

[22] F. Hurtado, M. Kano, D. Rappaport and C.D. Tóth.. Encompassing colored planar straight line
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