000079054 001__ 79054
000079054 005__ 20230914083225.0
000079054 0247_ $$2doi$$a10.3389/fnins.2019.00267
000079054 0248_ $$2sideral$$a111367
000079054 037__ $$aART-2019-111367
000079054 041__ $$aeng
000079054 100__ $$0(orcid)0000-0001-6148-0667$$aNavarro, J.$$uUniversidad de Zaragoza
000079054 245__ $$aPlausibility of a Neural Network Classifier-Based Neuroprosthesis for Depression Detection via Laughter Records
000079054 260__ $$c2019
000079054 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079054 5203_ $$aThe present work explores the diagnostic performance for depression of neural network classifiers analyzing the sound structures of laughter as registered from clinical patients and healthy controls. The main methodological novelty of this work is that simple sound variables of laughter are used as inputs, instead of electrophysiological signals or local field potentials (LFPs) or spoken language utterances, which are the usual protocols up-to-date. In the present study, involving 934 laughs from 30 patients and 20 controls, four different neural networks models were tested for sensitivity analysis, and were additionally trained for depression detection. Some elementary sound variables were extracted from the records: timing, fundamental frequency mean, first three formants, average power, and the Shannon-Wiener entropy. In the results obtained, two of the neural networks show a diagnostic discrimination capability of 93.02 and 91.15% respectively, while the third and fourth ones have an 87.96 and 82.40% percentage of success. Remarkably, entropy turns out to be a fundamental variable to distinguish between patients and controls, and this is a significant factor which becomes essential to understand the deep neurocognitive relationships between laughter and depression. In biomedical terms, our neural network classifier-based neuroprosthesis opens up the possibility of applying the same methodology to other mental-health and neuropsychiatric pathologies. Indeed, exploring the application of laughter in the early detection and prognosis of Alzheimer and Parkinson would represent an enticing possibility, both from the biomedical and the computational points of view.
000079054 536__ $$9info:eu-repo/grantAgreement/ES/FEDER/Una manera de hacer Europa$$9info:eu-repo/grantAgreement/ES/ISCIII/PI12-01480$$9info:eu-repo/grantAgreement/ES/MICINN/EXPLORAINGENIO Subprogram
000079054 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000079054 590__ $$a3.707$$b2019
000079054 592__ $$a1.554$$b2019
000079054 591__ $$aNEUROSCIENCES$$b96 / 270 = 0.356$$c2019$$dQ2$$eT2
000079054 593__ $$aNeuroscience (miscellaneous)$$c2019$$dQ1
000079054 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000079054 700__ $$aFernandez Rosell, M.
000079054 700__ $$aCastellanos, A.
000079054 700__ $$adel Moral, R.
000079054 700__ $$aLahoz-Beltra, R.
000079054 700__ $$aMarijuan, P.C.
000079054 7102_ $$14008$$2623$$aUniversidad de Zaragoza$$bDpto. Estruc.Hª Econ.y Eco.Pb.$$cÁrea Métodos Cuant.Econ.Empres
000079054 773__ $$g13, 267 (2019), [12 pp]$$pFront. neurosci.$$tFrontiers in neuroscience$$x1662-4548
000079054 8564_ $$s374836$$uhttps://zaguan.unizar.es/record/79054/files/texto_completo.pdf$$yVersión publicada
000079054 8564_ $$s22638$$uhttps://zaguan.unizar.es/record/79054/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000079054 909CO $$ooai:zaguan.unizar.es:79054$$particulos$$pdriver
000079054 951__ $$a2023-09-13-10:42:53
000079054 980__ $$aARTICLE