Magnetic separation and high reusability of chloroperoxidase entrapped in multi polysaccharide micro-supports
Resumen: Enzyme immobilization on magnetic supports represents a great advantage for the industrial application of enzymatic catalysis since it allows an easy recovery of the catalyst, avoiding any contamination of the product by residual enzyme. Iron oxide nanoparticles are very useful for this purpose. Using a polymer to diminish the interaction between the magnetic cores themselves, can improve the colloidal stability of the support and prevent any interaction with the environment that would affect both support properties and enzyme stability. For this reason, in this work different magnetic micro-supports, based on polydopamine-coated iron oxide nanoparticles with a multi polysaccharide shell, have been developed. These supports have been used to immobilize chloroperoxidase, a very interesting enzyme, able to catalyze many reactions of large-scale interest, but whose application is limited by its sensitivity to reaction conditions. The multi polysaccharide shells of the supports were obtained through a combination of chitosan and alginate. An in-depth analysis of physicochemical and catalytic properties of all the developed magnetic supports is reported. CPO was successfully immobilized with an efficiency of entrapment between 92% and 100% in the case of supports with chitosan in the interior or outer shell respectively. A very good chemical stability of the support under reaction conditions was observed in the case of an interior shell of alginate and an outer coating of chitosan, together with an excellent reusability of the immobilized enzyme, that was recycled to catalyze up to 25 consecutive reaction cycles.
Idioma: Inglés
DOI: 10.1016/j.apcata.2018.04.029
Año: 2018
Publicado en: APPLIED CATALYSIS A-GENERAL 560 (2018), 94-102
ISSN: 0926-860X

Factor impacto JCR: 4.63 (2018)
Categ. JCR: ENVIRONMENTAL SCIENCES rank: 41 / 250 = 0.164 (2018) - Q1 - T1
Categ. JCR: CHEMISTRY, PHYSICAL rank: 41 / 148 = 0.277 (2018) - Q2 - T1

Factor impacto SCIMAGO: 1.211 - Process Chemistry and Technology (Q1) - Catalysis (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/Fondo Social DGA-grupos DGA
Financiación: info:eu-repo/grantAgreement/EUR/ERASMUS/Programme LLP-2015-2016
Financiación: info:eu-repo/grantAgreement/ES/MEC/FPU015-04482
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Química Orgánica (Dpto. Química Orgánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2019-11-26-13:40:28)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2019-05-15, last modified 2019-11-26


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)