000079079 001__ 79079
000079079 005__ 20191126134632.0
000079079 0247_ $$2doi$$a10.1021/acsnano.8b00196
000079079 0248_ $$2sideral$$a106445
000079079 037__ $$aART-2018-106445
000079079 041__ $$aeng
000079079 100__ $$aZhang, C.
000079079 245__ $$aMimicking Pathogenic Invasion with the Complexes of Au22(SG)18-Engineered Assemblies and Folic Acid
000079079 260__ $$c2018
000079079 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079079 5203_ $$aBiological systems provide the richest spectrum of sophisticated design for materials engineering. We herein provide a paradigm of Au22(SG)18-engineered (SG, glutathione thiolate) and hydrogen bonds engaged assemblies for mimicking capsid protein self-assembly. The water-evaporation-induced self-assembly method allows discrete ultrasmall gold nanoclusters (GNCs) to be self-assembled into super-GNCs assemblies (SGNCs) ranging from nano-, meso- to microscale in water-dimethyl sulfoxide binary solvents in a template-free manner. After removing free and hydration layer water molecules, the formation of SGNCs is engaged by the collective cohesion of hydrogen bonds between glutathione ligands of gradually approaching GNCs. Then, a series of tightly orchestrated cellular events induced by the complexes of Au22(SG)18-engineered assemblies and folic acid are demonstrated to mimic the invasion of eukaryotic cells by pathogens. First, the activation of macropinocytosis mimics the macropinocytic entry used by the pathogens to invade host cells. Then the cytoplasmic vacuolization is a mimicry of vacuolating effects induced by the oligomeric vacuolating toxins secreted by some bacteria. Lastly, the escaping from macropinosomes into cytosol is in a vacuolating toxin''s strategy. The findings demonstrate the capabilities of artificial pathogens to emulate the structures and functions of natural pathogens.
000079079 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000079079 590__ $$a13.903$$b2018
000079079 591__ $$aCHEMISTRY, PHYSICAL$$b9 / 148 = 0.061$$c2018$$dQ1$$eT1
000079079 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b9 / 94 = 0.096$$c2018$$dQ1$$eT1
000079079 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b14 / 172 = 0.081$$c2018$$dQ1$$eT1
000079079 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b18 / 293 = 0.061$$c2018$$dQ1$$eT1
000079079 592__ $$a6.214$$b2018
000079079 593__ $$aEngineering (miscellaneous)$$c2018$$dQ1
000079079 593__ $$aPhysics and Astronomy (miscellaneous)$$c2018$$dQ1
000079079 593__ $$aNanoscience and Nanotechnology$$c2018$$dQ1
000079079 593__ $$aMaterials Science (miscellaneous)$$c2018$$dQ1
000079079 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079079 700__ $$aZhang, A.
000079079 700__ $$aHou, W.
000079079 700__ $$aLi, T.
000079079 700__ $$aWang, K.
000079079 700__ $$aZhang, Q.
000079079 700__ $$0(orcid)0000-0003-1081-8482$$aMartínez de la Fuente, J.$$uUniversidad de Zaragoza
000079079 700__ $$aJin, W.
000079079 700__ $$aCui, D.
000079079 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000079079 773__ $$g12, 5 (2018), 4408-4418$$pACS Nano$$tACS Nano$$x1936-0851
000079079 8564_ $$s803627$$uhttps://zaguan.unizar.es/record/79079/files/texto_completo.pdf$$yPostprint
000079079 8564_ $$s72051$$uhttps://zaguan.unizar.es/record/79079/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079079 909CO $$ooai:zaguan.unizar.es:79079$$particulos$$pdriver
000079079 951__ $$a2019-11-26-13:41:42
000079079 980__ $$aARTICLE