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• Analysis of iterativity properties of means through functional equations.
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Abstract

In this paper we analyze the notion of a finite mean from an axiomatic point
of view. We discuss several axiomatic alternatives, with the aim of establishing
a universal definition reconciling all of them and exploring theoretical links to
some branches of Mathematics as well as to multidisciplinary applications.

Keywords: Means; Axiomatics; Iterativity; Totally ordered sets; Lattices;
Semigroups; Topological spaces; Binary operations; Functional equations;
Social choice; Ranking sets of objects; Fuzzy set theory.

1. Introduction

The search for a suitable definition of a mean is indeed an old question
(see e.g. [44, 6, 28, 16, 31, 24]), on which we want to analyze new trends and
possibilities, coming from several branches of Mathematics (see e.g. [40, 41, 23])
as well as from a miscellaneous wide set of interdisciplinary applications (e.g.:
aggregation of individual preferences into a social one, in Mathematical Social
Choice, see [20, 15, 17, 29, 14], or the study of aggregation operators in Fuzzy
Set Theory, see [26, 46, 22, 3, 12, 35]).

Several miscellaneous examples of contexts where some kind of a mean plays
a crucial role are: descriptive statistical studies, where centralization measures
(means of n real numbers, in particular) as well as dispersion measures constitute
a key notion; ordered sets; topological spaces where a continuous topological
mean can be defined (see e.g. [6]); divisible groups, where an algebraic mean
makes sense (see e.g. [40]); sets of profiles of individual preferences, arising
in Social Choice; extensions of orderings from a set to its power set following
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different criteria (see e.g. [7]); aggregation operators arising in fuzzy set theory
(e.g.: triangular norms and conorms, fuzzy integrals, ordered weighted functions
and so on, see e.g. [26, 52, 45, 8, 9, 27]).

One may wonder why a so high number of different definitions are encoun-
tered in the literature. At this extent, we should notice that, depending on the
contexts, there are operations that can not be done, or particular features that
can not be assumed a priori. Notice, as an evident example, that the definition
of a mean on n-real numbers (where we can perform algebraic operations, there
is a linear order, etc.) could actually be much more demanding that the notion
of an n-mean on an abstract set where there is no structure (neither algebraic
nor topological) given a priori. In a sense, each context has a strong influence
on the definition of an n-mean that we may consider on it.

A glance at the jungle of (existing and possibly new) definitions of the con-
cept of a mean naturally suggests to try putting some order in the field, by
showing links and hierarchies among the corresponding contexts and definitions,
and finally looking for a unified theory.

In our approach we will consider a nonempty set X, as well as the set X =⋃∞
n=1X

n and a map F : X → X, studying the restrictions Fn of F to each
Xn. Having this in mind, we will talk about finite means (see Remark 3.1 (ii)
in Section 3). Only finite means will be considered in this paper.

The structure of the paper goes as follows. After a section of Preliminaries
in which we discuss some known definitions of an n-mean in different contexts,
in Section 3 we introduce some systems of axioms to define means, starting with
the classical definitions on the real line and paying a particular attention to the
classical Kolmogorov’s approach. Then we extend the study to totally ordered
sets, lattices, and other topological or algebraic settings. In Section 4 we study
additional properties of means, using iterativity and some functional equations
involved. In Section 5 we describe miscellaneous applications in different con-
texts. To conclude, Sections 6 and 7 discuss the results obtained and contain
further comments and remarks.

2. Preliminaries

In this section we recall different definitions of the concept of an n-mean,
which have already appeared in various mathematical contexts. Then we discuss
the hierarchy among different definitions, and recall some central results.

2.1. Towards a definition of a mean for n elements

The idea of a mean for n elements that belong to a given set (henceforward,
an n-mean) naturally depends on the context involved. Thus, it can be under-
stood from the point of view of order as suitable choices, made on finite subsets
with n elements of a set endowed with some ordering (e.g.: a lattice). From
the point of view of topology we may think about a suitable continuous map
defined on the Cartesian product of n copies of a topological space (X, τ), and
taking values on X. From an algebraic approach, we may consider some n-ary
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operation defined on a set. Working in the framework of functional equations,
an n-mean could be interpreted as a solution of a suitable set of simultaneous
functional equations (e.g.: anonymity). Needless to say, many other possible
approaches might be explored.

In this section, we give an account of some of the typical definitions of
an n-mean, arising in different settings. Bearing these definitions in mind, in
next Section 3 we will introduce several notions of finite means, following the
presentation and relationship of these approaches introduced now, and looking
for a universal definition valid for all of them. This will finally lead to the
concept of a general mean (see Definition 3.39).

To start with, we analyze different possible definitions of the notion of an
n-mean, which arise when dealing with contexts related to Order.

Definition 2.1. Let (L,∨,∧) be a nonempty lattice (i.e., a partially ordered set
(L,�) with the property that any two elements x, y ∈ L have both a supremum
x ∨ y and an infimum x ∧ y in (L,�)). The binary operation ∨ (respectively,
∧) is usually called the join (respectively, the meet). An n-mean is a map
F : Ln → L such that y1 ∧ . . . ∧ yn � F (y1, . . . , yn) � y1 ∨ . . . ∨ yn, for every
(y1, . . . , yn) ∈ Ln.

Remark 2.2. This Definition 2.1 is an extension of a very old one (see Definition
2.3). A very important particular case of Definition 2.1 is Definition 2.5 (see
below), provided that the nonempty set is endowed with a total order.

Definition 2.3. Let A ⊆ R be a nonempty subset of real numbers. An n-
mean is a map F : An → A such that min{a1, . . . , an} ≤ F (a1, . . . an) ≤
max{a1, . . . , an}, for every (a1, . . . , an) ∈ An.

Remark 2.4. This Definition 2.3 is indeed very old. It dates back to A.L.
Cauchy, who introduced it in 1821 (see [19]). The property involved in it is
usually called internality (see e.g. [36]).

Definition 2.5. Let X be a nonempty set endowed with a total order � (i.e.:
the binary relation � defined on X is antisymmetric, transitive and total). An
n-mean is a map F : Xn → X such that min{x1, . . . , xn} � F (x1, . . . xn) �
max{x1, . . . , xn}, for every (x1, . . . , xn) ∈ Xn.

Now we recall a classical definition of an n-mean naturally arising in Topol-
ogy .

Definition 2.6. (Aumann [6]; Chichilnisky [20])
Let (X, τ) be a topological space (i.e.: X is a nonempty set endowed with a

topology τ). A topological n-mean is an n-variate map F : Xn → X such that
the following conditions hold:

(i) (Anonymity-neutrality) F (x1, . . . , xn) = F (xσ(1), . . . , xσ(n)) holds true for
any (x1, . . . , xn) ∈ Xn and every permutation σ of the set {1, . . . , n}.

(ii) (Unanimity) F (t, . . . (n times) . . . , t) = t, for every t ∈ X.
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(iii) (Continuity) F is a continuous map, considering the topology τ on X and
the corresponding product topology on Xn.

Remark 2.7. The property (i) of anonymity-neutrality is also known as sym-
metry in the specialized literature, whereas the property (ii) of unanimity is
sometimes called idempotence (see e.g. [36]).

Now, we examine some definitions of the notion of an n-mean, coming from
Algebra.

Definition 2.8. Let (S, ∗) be a semigroup (i.e.: S is a nonempty set with an
associative binary operation ∗). A semigroup n-mean is a map F : Sn → S
such that s1 ∗ . . . ∗ sn = F (s1, . . . , sn) ∗ . . . (n− times) . . . ∗F (s1, . . . , sn) for any
(s1, . . . , sn) ∈ Sn.

Definition 2.9. (Candeal and Induráin [16]) Let G be a nonempty set endowed
with a binary operation ∗. An algebraic n-mean is an n-ary operation F : Gn →
G such that the following conditions hold:

(i) (Anonymity-neutrality) F (g1, . . . , gn) = F (gσ(1), . . . , gσ(n)) holds for every
(g1, . . . , gn) ∈ Gn and every permutation σ of the set {1, . . . , n}.

(ii) (Unanimity) F (t, . . . (n times) . . . , t) = t, for every t ∈ G.

(iii) (Algebraic stability) F (g1∗h1, . . . , gn∗hn) = F (g1, . . . , gn)∗F (h1, . . . , hn),
for every (g1, . . . , gn), (h1, . . . , hn) ∈ Gn.

It is plain that Definition 2.3 is a particular case of Definition 2.5. Besides,
Definition 2.5 is a particular case of Definition 2.1.

In addition, n-means in the sense of Definitions 2.3 to 2.1 satisfy the con-
dition of unanimity stated in Definitions 2.6, 2.8 and 2.9. However, n-means
in the sense of Definitions 2.3 to 2.1 do not satisfy, in general, the condition of
anonymity-neutrality . Observe that in Definitions 2.3 to 2.1 the order of the
elements in an n-tuple could be relevant.

Now we mention some deeper results, also related to the previous definitions.

Theorem 2.10. (Eckmann [28]) Let (Y, τ) be a connected topological space. If
Πk(Y ) stands for the k-th homotopy group of Y , the existence of a topological
n-mean on Y immediately induces an algebraic n-mean on Πk(Y ).

Similar results to that furnished by Theorem 2.10 hold if we consider homol-
ogy or cohomology groups instead of homotopy groups.

Theorem 2.11. (Keesling [41]) A connected, compact and Hausdorff topological
group (G, ∗, τ) admits a topological n-mean if and only if it admits an algebraic
n-mean.

Theorem 2.12. (see e.g. Candeal and Induráin [16]) Let (G, ∗) be a group,
and suppose that an algebraic n-mean F : Gn → G exists. Then, the group
G must be Abelian (i.e.: x ∗ y = y ∗ x, for every x, y ∈ X) and n-divisible
(i.e., for every x ∈ G there exists a unique element y ∈ G such that yn =
y ∗ . . . (n−times) . . . ∗ y = x). Moreover, F is also a semigroup n-mean.
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Theorem 2.13. (Aumann [6]; Chichilnisky [20]) Let (X, τ) be a finite CW-
complex. Then X admits a topological n-mean for every n if and only if (X, τ)
is contractible. The n-means here can be interpreted as retractions of the arith-
metic mean defined on some Euclidean space Rk, such that X ⊆ Rk.

Theorem 2.14. (see Candeal and Induráin [16]) Let (G, ∗) be a group. If G
admits an algebraic n-mean for every n, then (G, ∗) is isomorphic to a vector
space over the field (Q,+, ·) of rational numbers. In particular, if (G, ∗) is not
trivial it must, a fortiori, be infinite.

2.2. From bivariate means to n-variate means

We wonder if we can get n-variate means from m-variate ones, if n 6= m. In
particular, we ask ourselves about the possibility of defining n-means for any
n ≥ 2 just from bivariate means, using some suitable procedure, when possible.
A crucial particular case, namely iterativity, will be analyzed in Section 4 for
general finite means.

Here we introduce a list of miscellaneous results relating n-means and m-
means provided that n 6= m.

Proposition 2.15. In the context of Definitions 2.6 to 2.9, the existence of
an n-mean Fn implies the existence of an m-mean Fm provided that m divides
n. Also, the existence of an n-mean Fn and a k-mean Fk with k = m!

n!·(m−n)!
implies the existence of an m-mean.

Proof. To prove the first fact, if n = k · m we may define Fm(x1, . . . , xm) =
Fn(x1, . . . , xm, . . . (repeated k times), . . . x1, . . . , xm) for any (x1, . . . , xm) ∈
Xm. To prove the second one, for any (x1, . . . , xm), we define Fm(x1, . . . , xm) =
Fk(Fn(ā1), . . . , Fn(āk)), where {ā1, . . . , āk} is the family of all the combinations
of n elements taken from the set {x1, . . . , xm}.
Theorem 2.16. (see Campión et al. [14]) Let X be a nonempty set. Suppose
that X admits a 2-mean F : X2 → X in some of the contexts of Definitions 2.5,
2.7 and 2.8. Assume in addition that F is associative, that is F (x, F (y, z)) =
F (F (x, y), z) for every x, y, z ∈ X. Then F induces an n-mean Fn for every
n ∈ N in the corresponding context, through the recurrence Fn(x1, . . . , xn) =
F (Fn−1(x1, . . . , xn−1), xn) ((x1, . . . , xn) ∈ Xn).

Moreover, in the context of Theorem 2.16, F can be viewed here as an al-
gebraic binary operation ∗ defined by F (x, y) = x ∗ y, for every x, y ∈ X. This
operation ∗ is associative, commutative, and such that every element is idem-
potent. Indeed, ∗ is a semilatticial operation, i.e.: ∗ acts as the join operation
of a lattice. Notice also that the n-means so obtained can directly be expressed
in terms of the 2-mean we had at hand.

3. Axiomatics for finite means

Before introducing several sets of axioms, we discuss how the axioms should
be, paying attention to several remarkable aspects (e.g.: the possibility of reck-
oning means through a computer algorithm).
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3.1. Some helpful results based on functional equations

Let X be a nonempty set. Roughly speaking, we understand an n-mean as
a map Fn : Xn → X. Thus, we intend to define those n-means for every n,
looking for some sort of compatibility between n-means and m-means if n 6= m.
Bearing in mind some idea of recurrence or compatibility, so that we could
someway use the computation of an n-mean to that of an m-mean if n < m, we
will directly consider maps defined on X =

⋃∞
n=1X

n and taking values on X.

Remarks 3.1. (i) The idea of working directly on X is not new. It comes
back at least to 1930, when A. Kolmogorov introduced a system of axioms
to define a mean in the real line R, disregarding the amount of numbers
involved (see [44]). Many other authors have used this idea in recent works
(see e.g. [32, 35, 18]).

(ii) The term finite is used here to distinguish this approach to other ones
that involve an infinite set of elements of which a certain mean or average
value is computed. A typical example here is the concept of gravity center
of a body, arising in Physics.

In this direction, first we introduce some definitions.

Definition 3.2. Let X be a nonempty set and X =
⋃∞
n=1X

n. Consider a map
F : X → X. Let Fn be the restriction of F to Xn. The map F is said to satisfy
the condition of:

(i) anonymity-neutrality1, if for every n ∈ N and (x1, . . . , xn) ∈ Xn it holds
true that Fn(x1, . . . , xn) = Fn(xσ(1), . . . , xσ(n)) for any permutation σ of
the set {1, . . . , n},

(ii) unanimity , if for every n ∈ N and x ∈ X it holds true that Fn(x, . . . (n
times) . . . , x) = x,

(iii) compatibility , if for any m,n ∈ N and (x1, . . . , xm+n) ∈ Xm+n, it holds
that Fm+n(x1, . . . , xm+n) = Fm+n(x̄, . . . (m times) . . . , x̄, xm+1, . . . , xm+n),
where x̄ = Fm(x1, . . . , xm),

(iv) generalized bisymmetry2, if for every (x1, . . . , xk, x11, . . . , xnn) ∈ Xn2+k,
it holds that Fn+k(Fn(x11, . . . , x1n), . . . , Fn(xn1, . . . , xnn), x1, . . . , xk) =
Fn+k(Fn(x11, . . . , xn1), . . . , Fn(x1n, . . . , xnn), x1, . . . , xk),

(v) associativity , if for every x1, x2, x3 ∈ X it holds that F2(x1, F2(x2, x3)) =
F2(F2(x1, x2), x3),

1As already commented in Remark 2.7, this property is also called symmetry by some
authors.

2A function F : R2 → R is said to be bisymmetric if F (F (a, b), F (c, d)) = F (F (a, c), F (b, d))
holds true for every a, b, c, d ∈ R.
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(vi) selection, if for every n ∈ N and (x1, . . . , xn) ∈ Xn it holds true that
Fn(x1, . . . , xn) ∈ {x1, . . . , xn},

(vii) replicability , if F1(x) = x for every x ∈ X and, in addition, for every n, k ∈
N and (x1, . . . , xn) ∈ Xn it holds true that Fn(x1, . . . , xn) = Fnk(x1, . . . (k
times) . . . , x1, . . . , xn, . . . (k times) . . . , xn).

Theorem 3.3. Let X be a nonempty set, X =
⋃∞
n=1X

n. Let F : X → X be
a map that satisfies anonymity-neutrality. The following statements are equiv-
alent:

(i) F satisfies replicability and compatibility.

(ii) F satisfies unanimity and generalized bisymmetry.

(iii) F satisfies unanimity and compatibility.

(iv) F satisfies replicability and generalized bisymmetry.

Proof. We will follow the schema: (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).
First we prove that (i) ⇒ (ii):
Let z̄ = (Fn(x11, . . . , x1n), . . . , Fn(xn1, . . . , xnn), x1, . . . , xk) ∈ Xn+k. By

replicability, we have that Fn+k(z̄) = Fn2+kn(z̄, . . . (n2 +kn times) . . . , z̄). Call-
ing x̄i = Fn(xi1, . . . , xin) (1 ≤ i ≤ n), and using systematically the hypotheses
of anonymity-neutrality and compatibility, it follows that: Fn2+kn(z̄, . . . (n2+kn
times) . . . , z̄) = Fn2+kn(x̄1, . . . (n times) . . . , x̄1, . . . , x̄n, . . . (n times) . . . , x̄n, x1
. . . (n times) . . . , x1, . . . , xk, . . . (n times) . . . , xk) = Fn2+kn(x11, . . . , x1n, . . . , xn1,
. . . , xnn, x1 . . . (n times) . . . , x1, . . . , xk, . . . (n times) . . . , xk).

In the same way, if t̄ = (Fn(x11, . . . , xn1), . . . , Fn(x1n, . . . , xnn), x1, . . . , xk),
we will also arrive at Fn+k(t̄) = Fn2+kn(x11, . . . , xn1, . . . , x1n, . . . , xnn, x1, . . . (n
times) . . . , x1, . . . , xk, . . . (n times) . . . , xk) = Fn2+kn(x11, . . . , x1n, . . . , xn1, . . . ,
xnn, x1, . . . (n times) . . . , x1, . . . , xk, . . . (n times) . . . , xk).

Then we prove the implication (ii)⇒ (iii), where the assumption of anonymity-
neutrality is not necessary:

Let m,n ∈ N. Let (x1, . . . , xm+n) ∈ Xm+n. Then, by the unanimity condi-
tion, we get that Fm+n(x1, . . . , xm+n) = Fn+m(Fn(x1, . . . (n times) . . . , x1), . . . ,
Fn(xn, . . . (n times) . . . , xn), xn+1, . . . , xn+m). Using now the generalized bisym-
metry condition, we finally arrive at Fn+m(Fn(x1, . . . , xn), . . . (n times) . . . ,
Fn(x1, . . . , xn), xn+1, . . . , xn+m).

Now we prove that (iii) ⇒ (iv): On the one hand, given x ∈ X, F1(x) =
x follows from unanimity. On the other hand, by anonymity-neutrality and
compatibility, given n, k ∈ N and (x1, . . . , xn) ∈ Xn it follows that Fnk(x1, . . . (k
times) . . . , x1, . . . , xn, . . . (k times) . . . , xn) = Fnk(x1, . . . , xn, . . . (k times) . . . ,
x1, . . . , xn) = Fnk(Fn(x1, . . . , xn), . . . (nk times) . . . , Fn(x1, . . . , xn)). Then, by
unanimity, this yields Fn(x1, . . . , xn).

Finally, the implication (iv) ⇒ (i) is entirely analogous to (ii) ⇒ (iii).
This finishes the proof.
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Remark 3.4. The conditions in Definition 3.2 depend on functional equations.
This is the approach followed by some authors as, e.g., J. Aczél in [1].

Now we introduce a new definition for the particular case in which the set
X is endowed with a total (also known as linear) order �. In this case, some
kind of compatibility between the order � and the mean is usually demanded.
This gives rise, in particular, to different notions of monotonicity that play a
crucial role in this setting (see e.g. next subsection 3.2, devoted to analyze the
Kolmogorov’s approach to define finite means on real numbers).

Definition 3.5. Let X be a nonempty set endowed with a total order �. Let
X =

⋃∞
n=1X

n. A map F : X → X is said to satisfy the condition of:

(viii) monotonicity , if the restriction of F to Xn, that we denote Fn, is mono-
tone in each variable as regards �, for every natural number n: that is,
x1 � y1, . . . , xn � yn ⇒ Fn(x1, . . . , xn) � Fn(y1, . . . yn) holds for every
(x1, . . . , xn, y1, . . . , yn) ∈ X2n.

(ix) strict monotonicity , if the restriction of F to Xn, that we denote Fn,
is strictly monotone in each variable as regards �, for all n ∈ N: that
is, x1 � y1, . . . , xn � yn ⇒ Fn(x1, . . . , xn) � Fn(y1, . . . yn) holds for
every (x1, . . . , xn, y1, . . . , yn) ∈ X2n, and if in addition (x1, . . . , xn) 6=
(y1, . . . , yn), then Fn(x1, . . . , xn) 6= Fn(y1, . . . , yn) holds, too.

(x) internality , when, for any n ∈ N, and any (x1, . . . , xn) ∈ Xn, the restric-
tion of F to Xn, that we denote Fn, accomplishes that min{x1, . . . , xn} �
Fn(x1, . . . , xn) � max{x1, . . . , xn}. Here the minima and maxima are
taken as regards the total order �.

The proof of next Theorem 3.6 is similar to that of Proposition 2.54 in [36].
We just include it here with the aim of providing an easier reading.

Theorem 3.6. Let X be a nonempty set endowed with a total order �. Let
X =

⋃∞
n=1X

n. Let F : X → X be a map that satisfies monotonicity. Then F
satisfies unanimity if and only if it satisfies internality.

Proof. Again, let Fn stand for the restriction of F to Xn. First notice that if
F satisfies monotonicity and unanimity, then, given (a1, . . . , an) ∈ Xn and
a = min {a1, . . . , an}; b = min {a1, . . . , an}, we have that a = Fn(a, . . . (n
times) . . . , a) � Fn(a1, . . . , an) � Fn(b, . . . (n times) . . . , b) = b. Conversely, if F
satisfies internality and monotonicity, then x = min{x, . . . (n times) . . . , x} �
F (x, . . . (n times) . . . , x) � max{x, . . . (n times) . . . , x} = x. So F (x, . . . (n
times) . . . , x) = x holds for every x ∈ X.

3.2. Kolmogorov’s approach

Now we pass to discuss some aspects of the classical Kolmogorov’s setting
to define means on the real line R.

Endowing the real line R with the usual Euclidean topology τu, we may
introduce an idea of continuity for means defined on R.

9
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Definition 3.7. Let R =
⋃∞
n=1 Rn. A function M : R → R is said to satisfy

the condition of

(xi) continuity , if, for every n ∈ N, the restriction of M to Rn is a continu-
ous function with respect to the usual topology on the real line, and the
corresponding product topology on Rn.

Definition 3.8. (Kolmogorov, 1930 [44]) Let R =
⋃∞
n=1 Rn. A function

M : R → R is said to be a regular mean on R if it satisfies the conditions
of anonymity-neutrality, unanimity, compatibility, strict monotonicity (with re-
spect to the usual order ≤ on R), and continuity. In Kolmogorov’s notation, M
is a sequence (Mn)∞n=1 of functions Mn : Rn → R.

Example 3.9. For any n ∈ N, define mn : Rn → R by mn(x1, . . . , xn) =
min{x1, . . . , xn}, for all (x1, . . . , xn) ∈ Rn. Let M : R → R be defined as the
sequence of functions M = (mn)∞n=1. It is straightforward to see that M satisfies
the conditions of anonymity-neutrality, unanimity, compatibility, monotonicity,
and continuity. But it fails to be a regular mean, since it is not strictly monotone.
To see this just observe that m2(0, 1) = 0 = m2(0, 2), whereas (0, 1) 6= (0, 2).

Theorem 3.10. (Kolmogorov, 1930 [44]; Nagumo, 1930 [48]; Aczél, 1948 [1])
If M = (Mn)∞n=1 is a regular mean, then there exists a continuous and strictly

increasing function f : R → R such that Mn(a1, . . . , an) = f−1[ f(a1)+...+f(an)n ]
holds true for every n ∈ N and (a1, . . . , an) ∈ Rn.

Remarks 3.11.

(i) In an independent way, and simultaneously to Kolmogorov’s work, M.
Nagumo also introduced a system of axioms for means involving real num-
bers. (See [48]). That axiomatics is almost identical to Kolmogorov’s
one. The main difference is that Kolmogorov worked on the real line, and
Nagumo worked on a real interval. In fact, the regular means given as
stated in Theorem 3.10 are usually known as Nagumo-Kolmogorov means.

Kolmogorov defined a mean as a map M : ∪∞n=1Rn → R that obeys the fol-
lowing axioms: K1) M is continuous and increasing in each variable; K2)
M is symmetric (i.e., it satisfies anonymity-neutrality); K3)M(x, . . . , x) =
x; K4)M(x1, . . . , xn) = M(M(x1, . . . , xr), . . . (r times) . . . ,M(x1, . . . , xr),
xr+1, . . . , xn) for any 1 ≤ r,≤ n.

Nagumo defined a mean as a function µ : ∪∞n=1[a, b]n → [a, b] accomplish-
ing the following conditions: N1) µ satisfies anonymity-neutrality; N2)
µ(x1, . . . , xn) = µ(µ(x1, . . . , xr), . . . (r times) . . . , µ(x1, . . . , xr, xr+1, . . . ,
xn) for any 1 ≤ r,≤ n; N3) µ is continuous; N4) if x1 < x2, then
x1 < µ(x1, x2) < x2; N5) µ(a, . . . , a) = a.

Comparing both systems of axioms, we see that K1 is equivalent to N3
plus N4. Also, K2 (respectively, K3, K4) is identical to N1 (respectively,
to N5, N2).

10
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(ii) Kolmogorov’s approach was then extended to the infinite case, to deal
with distributions of probability, by B. De Finetti in 1931 (see [30, 47]).

(iii) Theorem 3.10 still remains true if we adopt Definition 3.8 to similarly
define the concept of a regular mean (Mn)∞n=1 on the set

⋃∞
n=1 J

n, where
J is an interval of R. The functions Mn go now from Jn into J . A typical
situation, encountered in the study of aggregation operators in fuzzy set
theory, appears when J = [0, 1] (see e.g. [36, 35]).

(iv) Regular means can be used to define suitable means on topological spaces
that are homeomorphic to R, as follows: Let (X, τ) be a topological space,
homeomorphic to the real line endowed with the usual topology τu. LetH :
(X, τ) → (R, τu) be an homeomorphism. Let M = (Mn)∞n=1 be a regular
mean on the real line. Given n ∈ N, define the map Fn : Xn → X as
Fn(x1, . . . , xn) = H−1(Mn(H(x1), . . . ,H(xn)) for any (x1, . . . , xn) ∈ Xn.
The sequence of maps (Fn)∞n=1 can be now considered as a “regular mean”
on X. It is straightforward to see that the analogous of the properties
in Definition 3.10 are now accomplished by the function F = (Fn)∞n=1,
defined on X =

⋃∞
n=1X

n and taking values on X, provided that on Xn

we consider the product topology induced by τ , and X is endowed with
the linear order � given by x � y ⇔ H(x) ≤ H(y) (x, y ∈ X).

3.3. Finite means on totally ordered sets

Let us analyze now what could happen if we adopt Kolmogorov’s axioms
to work in a more general setting. Instead of dealing with real numbers (and
consequently with the set R), suppose that we start with an abstract nonempty
set X endowed with a total order �. Obviously, we cannot expect an analogous
of Theorem 3.10 to be true here, since operations as addition or dividing by a
natural number n are not defined a priori on the abstract set X. Moreover, to
handle some kind of continuity, X should also be endowed with a topology.

However, depending on the topology considered on a nonempty set X, it
could happen that no regular mean satisfying Kolmogorov’s axioms exists on X.
In fact, as commented in Theorem 2.13 above, continuity can be incompatible
with anonymity-neutrality plus unanimity. This happens, for instance, in a
special kind of topological spaces known in the literature as non-contractible
finite cellular CW-complexes3 (see [6, 20]).

To start with, we may define a mean “à la Kolmogorov” on a nonempty set
endowed with a total order �, as follows:

3Roughly speaking, a CW-complex is made of cells, such that each of them is homeomorphic
to the interior of a sphere in the Euclidean k-dimensional space Rk, for some k ∈ N. The precise
definition prescribes how the cells may be topologically glued together. The C stands for
“closure-finite”, and the W for “weak topology”. They were introduced by J.H.C. Whitehead
to meet the needs of homotopy theory. In addition, contractibility means that the whole space
could be continuously deformed to become a single point.
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Definition 3.12. Let X be a nonempty set endowed with a total order �. Let
X =

⋃∞
n=1X

n. A map F : X → X is said to be a universal mean on X if
it satisfies the conditions of anonymity-neutrality, unanimity, compatibility and
monotonicity (with respect to the total order � on X).

Remark 3.13. We may wonder why in Definition 3.12 we have used the con-
dition of monotonicity instead of the strict monotonicity that is inherent to
Kolmogorov’s Theorem 3.10. The reason is that strict monotonicity is an enor-
mously restrictive condition. Notice, for instance, that given two elements x 6=
y ∈ X such that x � y, if strict monotonicity is imposed we should have a priori
an infinite and order dense-in-itself4 set of elements inX located between x and y
as regards the linear order �. To see this we may just notice that, for any n ∈ N,
x = F (x, . . . (n times) . . . , x) - F (x, . . . (n−1 times) . . . , x, y) - F (x, . . . (n−2
times) . . . , x, y, y) - . . . - F (y, . . . (n times) . . . , y) = y, but all the interme-
diate elements should be pairwise different because of strict monotonicity. In
particular, the set X must a fortiori be infinite. In spite of the real line R,
endowed with its usual linear order, allowing the existence of all these interme-
diate elements, we may not expect this to happen on a general total ordered set
(X,�). An evident example of this situation appears when X is finite.

Definition 3.14. Given a nonempty set X, a total preorder - on X is a binary
relation that is transitive and total. The binary relation ∼ defined by x ∼ y ⇔
x - y - x (x, y ∈ X) is said to be the symmetric part (also known as the
indifference) associated to -.

Now we furnish a characterization of the existence of a universal mean on a
totally ordered set (X,�) in terms of a suitable extension of the total order �
to a total preorder - defined on X =

⋃∞
n=1X

n and satisfying some properties
ad hoc.

Theorem 3.15. Let (X,�) be a totally ordered set. Let X =
⋃∞
n=1X

n. Then
there exists a universal mean F on X if and only if the total order � admits
an extension to a total preorder - defined on X and satisfying the following
properties:

(i) For every x, y ∈ X it holds true that x � y ⇔ x - y.

(ii) For every n ∈ N and (x1, . . . , xn) ∈ Xn, there exists a unique x ∈ X such
that (x1, . . . , xn) ∼ x).

(iii) For any n ∈ N, and (x1, . . . , xn) ∈ Xn it holds true that (x1, . . . , xn) ∼
(xσ(1), . . . , xσ(n)) for any rearrangement σ of the set {1, . . . , n}.

(iv) For every x ∈ X, and n ∈ N, it holds true that (x, . . . (n times) . . . , x) ∼ x.

4A totally ordered set (X,�) is said to be order dense-in-itself if given x 6= y ∈ X with
x � y, there exists z ∈ X such that x 6= z, y 6= z and x � z � y holds true.
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(v) For any n, k ∈ N, x ∈ X, and (x1, . . . , xn+k) ∈ Xn+k it holds true that
(x1, . . . , xn) ∼ x ⇒ (x, . . . (n times) . . . , x, xn+1 . . . , xn+k) ∼ (x1, . . . ,
xn+k).

(vi) For any n ∈ N, and (x1, . . . , xn), (y1, . . . , yn) ∈ Xn it holds true that
xi � yi (1 ≤ i ≤ n)⇒ (x1, . . . , xn) - (y1, . . . , yn).

Proof. To prove the direct implication, let F be a universal mean on X. Denote
by Fn the restriction of F to Xn (n ∈ N). Given n, k ∈ N, (x1, . . . , xn) ∈
Xn and (y1, . . . , yk) ∈ Xk, we declare that (x1, . . . , xn) - (y1, . . . , yk) ⇔
F (x1, . . . , xn) � F (y1, . . . , yk). It is straightforward to check that - is a to-
tal preorder on X that accomplishes the properties (i)-(vi) of the statement.

To prove the converse implication, we define a map F : X → X as follows:
Given n ∈ N and (x1, . . . , xn) ∈ Xn, we take the unique element x ∈ X such
that (x1, . . . , xn) ∼ x and declare that F (x1, . . . , xn) = x. With this definition,
it is now routine to see that F is a universal mean on X.

Examples 3.16.

(i) Let X = {a, b, c}, with the total order � given by a � b � c. We may
extend this linear order � to a total preorder - defined on X =

⋃∞
n=1X

n

by declaring that for any n ∈ N, x ∈ X, and (x1, . . . xn) ∈ Xn it holds true
that (x, . . . (n times) . . . , x) ∼ x and (x1, . . . , xn) ∼ b if b ∈ {x1, . . . , xn}
or a, c ∈ {x1, . . . , xn}. It is straightforward to see that - satisfies the
conditions (i)-(vi) of the statement of Theorem 3.15. In addition, the
corresponding mean F is associative. However, it fails to be a selection
because F (a, c) = b. Finally, notice also that neither F is given by “taking
maxima” nor by “taking minima” (see Remark 3.26 (ii) below).

(ii) Once more, let X = {a, b, c}, with the total order � given by a � b � c.
We may extend this linear order � to a total preorder - defined on X =⋃∞
n=1X

n by declaring that for any n ∈ N, x ∈ X, and (x1, . . . , xn) ∈ Xn

it holds true that (x, . . . (n times) . . . , x) ∼ x, (x1, . . . , xn) ∼ a if a ∈
{x1, . . . , xn}, and (x1, . . . , xn) ∼ c if c ∈ {x1, . . . , xn}, a /∈ {x1, . . . , xn}.
Again, it is straightforward to see that - satisfies the conditions (i)-(vi)
in Theorem 3.15. Moreover, the corresponding mean F is an associative
selection. But F is not given by taking maxima or else by taking minima,
since F (a, b) = a whereas F (b, c) = c.

Proposition 3.17. Let X be a nonempty set endowed with a total order �. Let
X =

⋃∞
n=1X

n. Let F : X → X be a universal mean on X. Denote by Fn the
restriction of F to Xn (n ∈ N). If F is a selection, then it is impossible to find
a, b, c ∈ X such that a 6= b, a 6= c, b 6= c, a � b � c, and F2(a, b) = b = F2(b, c).

Proof. If there exist a, b, c ∈ X such that a 6= b, a 6= c, b 6= c as well as a � b � c
and F2(a, b) = b = F2(b, c), then F2(a, c) must be a or c because F is a selection.
However, if F2(a, c) = a we could not have that F2(a, b) = b since F is monotone
by hypothesis. So F2(a, c) 6= a. But, if F2(a, c) = c, again by monotonicity of
F we could not have that F2(b, c) = b. Thus we arrive to a contradiction.
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Last Examples 3.16 show that on a totally ordered set (X,�) an associative
selection that is a universal mean might still not coincide with the mean given
by taking maxima nor with the one given by taking minima. To characterize
these two special means, we introduce next definition.

Definition 3.18. Let (X,�) be a totally ordered set. Let F : X×X → X be a
selection (i.e: F (x, y) ∈ {x, y} holds true for every x, y ∈ X). Then F is said to
agree with the total order � if either F (x, y) = x for every x, y ∈ X with x � y
or F (x, y) = y for every x, y ∈ X with x � y.

Remark 3.19. In Examples 3.16 (ii) we show a universal mean F on a totally
ordered set (X,�) such that F is a selection, but F2 does not agree with � since
F (a, b) = a, F (b, c) = c and a 6= b, a 6= c, b 6= c, whereas a � b � c.

Theorem 3.20. Let X be a nonempty set endowed with a total order �. Let
X =

⋃∞
n=1X

n. Let F : X → X be a universal mean on X. Denote by Fn the
restriction of F to Xn (n ∈ N). The following statements are equivalent:

(i) F is a selection such that F2 agrees with the total order �.

(ii) Either Fn(x1, . . . , xn) = min{x1, . . . , xn} holds true for every n ∈ N and
(x1, . . . , xn) ∈ Xn or else, alternatively, Fn(x1, . . . , xn) = max{x1, . . . , xn}
holds for all n ∈ N and (x1, . . . , xn) ∈ Xn. In particular, the universal
mean F is associative.

Proof. Since the converse implication follows directly from definitions, we only
prove the direct implication (i) ⇒ (ii). To do so, we follow an iterative process.
Let n ∈ N and (x1, . . . , xn) ∈ Xn. Assume without loss of generality that
x1 � . . . � xn. Let xk be the first element (if any) that is different from x1 in
{x1, . . . , xn}. (If all the elements were equal, then obviously Fn(x1, . . . , xn) =
x1). Suppose that F2(x1, xk) = x1. Let xj be the first element (if any) that is
different from both x1 and xk. Then F2(xk, xj) = xk, because F is a selection
compatible with �. (Here, if xk = xk+1 = . . . = xn, then obviously F2(xk, xl) =
xk if k < l). Thus using the property of compatibility of the universal mean F , it
follows that F3(x1, xk, xj) = F3(x1, xk, xk) = F3(x1, x1, xk) = F3(x1, x1, x1) =
x1. Following an inductive process, we obtain that Fn(x1, . . . , xn) = x1 =
min{x1, . . . , xn}. In an entirely analogous way, if F2(x1, xk) = xk we would
finally arrive at Fn(x1, . . . , xn) = xn = max{x1, . . . , xn} (alternatively, we may
also use Proposition 3.17 to easily prove this last claim).

To conclude the proof, suppose that there exist n,m ∈ N, (x1, . . . , xn) ∈
Xn, (y1, . . . , ym) ∈ Xm such that x1 � . . . � xn and also y1 � . . . � ym.
Suppose also that x1 6= xn and y1 6= ym. Finally assume, by way of con-
tradiction, that Fn(x1, . . . , xn) = x1 but Fm(y1, . . . , ym) = ym. Notice that
F2(x1, xn) = x1 by compatibiliy of F , and the agreement of F2 with �. Sim-
ilarly F2(y1, ym) = ym. But this contradicts the fact of F2 agreeing with the
linear order �.
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Next battery of Definitions 3.21 to 3.23 and Theorem 3.24 will be used to
prove that in some particular cases of total orders, universal means can always
be defined following the steps of Remark 3.11 (iv) above.

Definition 3.21. Let X be a nonempty set endowed with a total order �. The
total order � is said to be representable if there exists a function u : X → R,
known as a utility function, such that x � y ⇔ u(x) ≤ u(y) holds true for
every x, y ∈ X. The asymmetric part of �, that we denote ≺, is defined by
a ≺ b ⇔ a � b; a 6= b (a, b ∈ X). The total order � is said to be perfectly
separable if there exists a countable subset D ⊆ X such that for every x, y ∈ X
with x ≺ y, there exists an element d ∈ D such that x � d � y holds true.

Definition 3.22. Let X be a nonempty set endowed with a total order �.
Given x ∈ X, the sets Lx = {z ∈ X : z ≺ x} and Rx = {t ∈ X : x ≺ t}
are respectively said to be the left and right contour set of x as regards �. A
pair of elements a, b ∈ X such that a ≺ b and Ra ∩ Lb = ∅ is said to define
a gap. The topology τ� on X, a subbasis of which is given by the family
{∅} ∪ {X}⋃{Lx : x ∈ X}⋃{Ry : y ∈ X}, is called the order topology on X.

Definition 3.23. Let X be a nonempty set endowed with a total order �. A
nonempty subset Y ⊆ X is said to be bounded by above with respect to � if there
exists some element a ∈ X such that y � a holds for every y ∈ Y . The element
a is said to be an upper bound of a. If a smallest upper bound of y exists, it
is said to be the supremum of Y . Finally, X is said to be Dedekind-complete if
every subset Y ⊆ X that is bounded by above has a supremum.

Theorem 3.24. Let X be a nonempty set endowed with a total order �. The
following statements are equivalent:

(i) The total order � is perfectly separable.

(ii) The total order � is representable.

(iii) The total order � is representable through a real-valued utility function U :
(X, τ�) → (R, τu) which is continuous with respect to the order topology
τ� on X and the usual topology τu on the real line.

In addition, (X, τ�) is homeomorphic to an interval of the real line endowed with
the usual topology if and only if � is perfectly separable, Dedekind-complete and
without gaps.

Proof. These results are classic in the theory of numerical representations of
ordered structures. See e.g. [25], the first three chapters in [11], p.3 in [34] and
p. 52 in [38] for several proofs and further details.

Corollary 3.25. Let X be a nonempty set endowed with a total order � that
is perfectly separable, Dedekind-complete and without gaps. Then there exists a
universal mean on X.
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Proof. By Theorem 3.24, the topological space (X, τ�) is homeomorphic to an
interval J of the real line endowed with the usual topology τu. On the interval
J we can consider a regular mean in the sense of Remark 3.11 (iii) (for instance,
the classical arithmetic mean suffices). Then a universal mean can be obtained
on X following the ideas of Remark 3.11 (iv).

Remarks 3.26.

(i) Coming back to the search for universal means on a general totally or-
dered set (X,�), we cannot expect things to be as easy and direct as in the
previous corollary, even in case of representability through a utility func-
tion u. Despite identifying each x ∈ X to the real number u(x), it may
happen that, given x1, . . . , xn ∈ Xn, a typical “mean” of the real numbers

u(x1), . . . , u(xn) ∈ R as, for instance, its arithmetic mean u(x1)+...+u(xn)
n ,

does not belong to u(X), so that we are impeded to identify it to an ele-
ment of the set X. An appealing particular case appears when the set X
is finite.

(ii) Fortunately, universal means always exist on a totally ordered set (X,�).
Perhaps the most evident examples are the selections of minima and max-
ima. Thus, for any n ∈ N and x1, . . . , xn ∈ Xn, we definemn(x1, . . . , xn) =
min{x1, . . . , xn}, and Mn(x1, . . . , xn) = max{x1, . . . , xn}. The map m
(respectively, the map M), from X into X, whose restriction to Xn is mn

(respectively, Mn) is actually a universal mean on X. By the way, both
of them are selections.

(iii) The existence of a universal mean F = (Fn)∞n=1 on a representable totally
ordered set (X,�) extends the total order � on X to a total preorder
on X , as stated in Theorem 3.15. But now, since � is representable, an
alternative way to extend � is the following: if u is a utility function that
represents X, then the binary relation - on X defined by (x1, . . . , xm) -
(y1, . . . , yn) ⇔ u(Fm(x1, . . . , xm)) ≤ u(Fn(y1, . . . , yn)), for all m.n ∈ N
and (x1, . . . , xm, y1, . . . , yn) ∈ Xm+n, is indeed a total preorder on X , and
it is clear that - extends �. In particular, this idea can straightforwardly
be also used to extend the linear order � in X to a total preorder -∗ on
the power set of X. The study of extensions of rankings from a set to its
power set accomplishing some criteria previously established is typical in
Mathematical Economics and Social Choice (see e.g. [7]).

3.4. Finite means on lattices

Generalizing a further step the ideas analyzed in the previous subsection for
total orders, now we discuss the definition of suitable means on lattices.

Definition 3.27. Let (L,∨,∧) be a nonempty lattice, whose associated partial
order is �. Let L =

⋃∞
n=1 L

n. A function F : L → L is said to be a latticial
mean on L if it satisfies the conditions of anonymity-neutrality, unanimity, com-
patibility and, in addition, its restriction to each Ln is monotone in each variable
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with respect to the partial order � that generates the latticial operations ∨ and
∧.

First we may notice that, as in Remark 3.26 (ii), we have at least two suitable
means on any lattice.

Remark 3.28. Observe that if (L,∨,∧) be a nonempty lattice whose associated
partial order is �, and L =

⋃∞
n=1 L

n, then the function
∨

: L → L (respectively
and dually, the function

∧
: L → L), given by

∨
(l1, . . . , ln) = l1 ∨ . . . ∨ ln

(respective and dually, given by
∧

(l1, . . . , ln) = l1 ∧ . . . ∧ ln) for any n ∈ N and
(l1, . . . , ln) ∈ Ln, is a latticial mean on L.

At this stage, it is important to pay attention to the following key fact:
Unlike the case of a total ordered set, now latticial means, defined through the
operations ∨ (meet) or ∧ (join) on a nonempty lattice (L,∨,∧), may fail to be
selections. Notice that given n ∈ N and (l1, . . . , ln) ∈ Ln, it may happen that∨

(l1, . . . , ln) or
∧

(l1, . . . , ln) could be different from any element in {l1, . . . , ln}.

3.5. Finite means on semigroups

A lattice (L,∨,∧) can, in particular, be considered as an algebraic structure,
in which the nonempty set L is endowed with two binary operations, namely
the join ∨ and the meet ∧. Both of them are associative, and, of course, they
are related between them (e.g: each of them is distributive with respect to the
other one). From an algebraic point of view, we may pass to consider weaker
structures, in which a nonempty set X is endowed with a binary operation ∗
that satisfies some structural properties. We will focus here on the structure of
a semigroup.

Definition 3.29. Let (S, ∗) be a semigroup. If there exists an element e ∈ S
such that e ∗ s = s ∗ e = s holds for every s ∈ S, then the semigroup is said
to be a monoid , and the element e (which is unique) is called the neutral (or
“identity”) element of the monoid. If the operation ∗ is commutative, then the
semigroup is also said to be commutative (or “Abelian”).

Given a semigroup (S, ∗) we had already given a definition of a semigroup
n-mean in the previous section (see Definition 2.8 above). But each n-mean is
only defined for a fixed n. So, we pass to consider S =

⋃∞
n=1 S

n, and define the
concept of a semigroup (global) mean, as follows.

Definition 3.30. Let (S, ∗) be a semigroup. Consider a map F : S → S. Let
Fn stand for the restriction of F to Sn (n ∈ N). The function F is called a
semigroup mean on S if it satisfies the conditions of anonymity-neutrality and
unanimity, and, in addition, for every n ∈ N, and (s1, . . . , sn) ∈ Sn, it holds
true that s1 ∗ . . . ∗ sn = s ∗ . . . (n times) ∗ s, with s = Fn(s1, . . . , sn).

Examples 3.31.

(i) The arithmetic mean on the additive real line (R,+) is a semigroup mean
on the structure (R,+), which is, in particular, a semigroup.
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(ii) If (L,∨,∧) is a lattice, both the structures (L,∨) and (L,∧) are semi-
groups. Moreover, the meet latticial mean (respectively, the join latticial
mean) is a semigroup mean as regards (L,∨) (respectively, as regards
(L,∧)).

Proposition 3.32. Let (S, ∗) be a semigroup. If there exists a semigroup mean
F on S, then the semigroup (S, ∗) is commutative.

Proof. Let s, t ∈ S. Let x ∈ S be such that F (s, t) = x = F (t, s). Notice that,
by definition of a semigroup mean, we have that s ∗ t = x ∗ x = t ∗ s.

The definition of a semigroup mean inspires a new concept of a general
associative mean on nonempty sets, without any structure given a priori.

Definition 3.33. Let X be a nonempty set. Let X =
⋃∞
n=1X

n. A map
F : X → X is said to be a general associative mean on X if it satisfies the
conditions of anonymity-neutrality, unanimity, compatibility and associativity.

Remark 3.34. Let X be a nonempty set and X =
⋃∞
n=1X

n. Let F : X → X
be a general associative mean on X. Denote by Fn the restriction of F to
Xn (n ∈ N). Then X becomes a commutative semigroup when equipped with
the binary operation ∗ given by x ∗ y = F2(x, y) = F2(y, x) (x, y ∈ X).

Definition 3.35. Let X be a nonempty set and X =
⋃∞
n=1X

n. Let F :
X → X be a map that satisfies the conditions of anonymity-neutrality, una-
nimity and compatibility. Then F is said to be iterative if for every n ≥
2 ∈ N and every (x1, . . . , xn) ∈ Xn, it holds true that Fn(x1, . . . , xn) =
F2(Fn−1(x1, . . . , xn−1), xn)

Theorem 3.36. Let X be a nonempty set and X =
⋃∞
n=1X

n. Let F : X → X
be an iterative general associative mean on X. Denote by F2 the restriction
of F to X2, and endow X with the binary operation ∗ defined by x ∗ y =
F2(x, y) (x, y ∈ X). Then F is actually a semigroup mean on the semigroup
structure (X, ∗).

Proof. We only need to check that for every n ∈ N, and (x1, . . . , xn) ∈ Xn, it
holds true that x1 ∗ . . . ∗ xn = s ∗ . . . (n times) ∗ s, with s = Fn(s1, . . . , sn). To
see this, notice that by iterativity we inductively obtain that Fn(x1, . . . , xn) =
x1 ∗ . . . ∗ xn. Let s = Fn(x1, . . . , xn). By compatibility of F we obtain
Fn(x1, . . . , xn) = Fn(s, . . . (n times) . . . , s). And, again by iterativity, we con-
clude that Fn(s, . . . (n times) . . . , s) = s ∗ . . . (n times) ∗ s.

3.6. Other miscellaneous kinds of finite means

In Section 2 we already mentioned some definitions of n-means in various
contexts. Now we may directly pass to consider the corresponding means as
functions M defined on X =

⋃∞
n=1X

n and taking values on X.
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Definition 3.37. Let (X, τ) be a topological space and X =
⋃∞
n=1X

n. A map
F : X → X is said to be a topological mean if it satisfies the conditions of
anonymity-neutrality and unanimity, and, in addition, the restriction Fn of F
to Xn is a continuous map for every n ∈ N, as regards the topology τ on X and
the corresponding product topology on Xn.

Definition 3.38. Let X be a nonempty set endowed with a binary opera-
tion ◦. Let X =

⋃∞
n=1X

n. A map F : X → X is said to be an alge-
braic mean if it satisfies the conditions of anonymity-neutrality and unanim-
ity, and, in addition, for every n ∈ N, the restriction Fn of F to Xn accom-
plishes that F (x1 ◦ y1, . . . , xn ◦ yn) = F (x1, . . . , xn) ◦ F (y1, . . . , yn), for every
(x1, . . . , xn), (y1, . . . , yn) ∈ Xn.

A method based on a recursive application of a bivariate mean in a binary
tree construction has been explored in [9] and [27] for extending that bivariate
mean to n-variated weighted means.

3.7. General means on a nonempty set

To conclude this Section 3 we may try to choose a definition of a suitable
mean for the general case of a nonempty set X with no additional structure
given a priori.

Definition 3.39. Let X be a nonempty set and X =
⋃∞
n=1X

n. A map F :
X → X is said to be a general mean if it satisfies the conditions of anonymity-
neutrality, unanimity and compatibility.

The reasons that support this last definition are the following: On the one
hand, the conditions imposed to a general mean in Definition 3.39 appear in
the definitions of regular means in the real line, universal means on totally
ordered sets, and latticial means. On the other hand, a general mean is also a
semigroup mean if we endow S with a “trivial” operation ∗ defined as follows:
choose an element e ∈ S and declare that x ∗ e = e = e ∗ x holds true for every
x ∈ X. In addition, with that operation ∗, a general mean is also an algebraic
mean in the sense of Definition 3.37. Furthermore, if X is endowed with the
discrete topology, a general mean also becomes a topological mean, again in
the sense of Definition 3.37. Finally, in order to give a definition as abstract
as possible, we should keep to a minimum the restrictions imposed a priori.
Anonymity-neutrality, unanimity and compatibility provide a clear account of
what we should require to any finite mean, independently from the context.

4. Iterativity and related properties

Despite having considered in Section 3 several kinds of a mean on a nonempty
set X as maps F from X =

⋃∞
n=1X

n taking values in X and satisfying suitable
properties, a priori, the restrictions Fn and Fm of F to Xn and Xm might
be unrelated if n 6= m. Perhaps only the condition of compatibility, when
available for F , establishes a first relationship between different restrictions of
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F to Cartesian products of several copies of X. Nevertheless, no way to obtain
an Fn from other Fk with k 6= m is given at first hand. Already in Section 2
we gave some ideas about how to obtain Fn from F2, when possible. Also, in
Definition 3.35 we introduced a concept of iterativity for means. In this Section
4 we pay a deeper attention to this key concept.

Matching Definitions 3.35 and 3.39, a general iterative mean on a nonempty
set X, is a map F from X =

⋃∞
n=1X

n into X that satisfies the conditions of
anonymity-neutrality, unanimity, compatibility and iterativity. Now we intro-
duce new conditions that are equivalent to iterativity of a general mean defined
on a nonempty set X, so giving rise to alternative definitions or versions of that
key property.

Definition 4.1. Let X be a nonempty set and X =
⋃∞
n=1X

n. Let F : X → X
be a general mean on X. Denote by Fn the restriction of F to Xn (n ∈ N).
The map F is said to be:

(i) reducible if for every a ∈ X, n, k ∈ N and (x1, . . . , xk) ∈ Xk it holds true
that Fn+k(a, . . . , (n times) . . . , a, x1, . . . , xk) = Fk+1(a, x1, . . . , xk),

(ii) shrinking if for every n ∈ N and a, b ∈ X it holds true that Fn+1(a, . . . , (n
times) . . . , a, b) = F2(a, b),

(iii) compressible if for every k, n ∈ N and (x1, . . . , xn+k) ∈ Xn+k it holds true
that Fn+k(x1, . . . , xn+k) = Fk+1(Fn(x1, . . . , xn), xn+1, . . . , xn+k).

Remark 4.2. Notice that the definition of compressibility extends that of it-
erativity, that corresponds to the case k = 1 in the definition of compressibility.
(See Definition 3.35).

Theorem 4.3. Let F be a general mean on a nonempty set X. The following
statements are equivalent:

(i) F is reducible,

(ii) F is shrinking,

(iii) F is iterative,

(iv) F is associative,

(v) F is compressible.

Proof. We will follow the schema: (i) ⇒ (ii) ⇒ (iii) ⇒ (i) ⇒ (v) ⇒ (iii) ⇒ (iv)
⇒ (ii).

The implication (i) ⇒ (ii) is trivial. Just take k = 1.

Let us prove now that (ii) ⇒ (iii): Assume that F is shrinking. Let n ∈ N
and (x1, . . . , xn) ∈ Xn. By compatibility, it follows that Fn(x1, . . . , xn) =
Fn(Fn−1(x1, . . . , xn−1), . . . (n−1 times) . . . , Fn−1(x1, . . . , xn−1), xn). Since F is
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shrinking, we get Fn(Fn−1(x1, . . . , xn−1), . . . (n−1 times) . . . , Fn−1(x1, . . . , xn−1),
xn) = F2(Fn−1(x1, . . . , xn−1), xn). So F is iterative.

To prove the implication (iii) ⇒ (i), assume that F is iterative. We will
prove that F is reducible by induction on k ∈ N. If k = 1, given n ∈ N
and a, b ∈ X, by iterativity it follows that Fn+k(a, . . . (n times) . . . , a, b) =
F2(Fn(a, . . . (n times) . . . , a), b) = F2(a, b). Therefore F is, in particular, re-
ducible. Assume now that for a ∈ X, n, k ∈ N and (x1, . . . , xk) ∈ Xk it holds
true that Fn+k(a, . . . (n times) . . . , a, x1, . . . , xk) = Fk+1(a, x1, . . . , xk). To con-
clude, it is enough to prove now that for any xk+1 ∈ X it also holds that
Fn+k+1(a, . . . (n times) . . . , a, x1, . . . , xk, xk+1) = Fk+2(a, x1, . . . , xk, xk+1). To
see this, notice that by iterativity we have that Fn+k+1(a, . . . (n times) . . . , a,
x1, . . . , xk, xk+1) = F2(Fn+k((a, . . . (n times) . . . , a, x1, . . . , xk), xk+1). By the
induction hypothesis, Fn+k((a, . . . (n times) . . . , a, x1, . . . , xk) = Fk+1(a, x1, . . . ,
xk), so that F2(Fn+k((a, . . . (n times) . . . , a, x1, . . . , xk), xk+1) = F2(Fk+1(a, x1,
. . . , xk), xk+1). Finally, by iterativity again, F2(Fk+1(a, x1, . . . , xk), xk+1) =
Fk+2(a, x1, . . . , xk, xk+1). Therefore F is reducible.

To see that (i) ⇒ (v), just take a = Fn(x1, . . . , xn) and notice that, by
compatibility, Fn+k(x1, . . . , xn+k) = Fn+k(a, . . . (n times) . . . , a, xn+1, xn+k).
Then use that F is reducible.

To see that (v) ⇒ (iii), just take k = 1 in the definition of compressibility,
as already commented in Remark 4.2.

Let us prove now that (iii)⇒ (iv): Given a, b, c ∈ X we have that F3(a, b, c) =
F2(F2(a, b), c) by iterativity. Also F3(a, b, c) = F3(b, c, a) by anonymity-neutrality.
By iterativity again we get F3(b, c, a) = F2(F2(b, c), a). Finally, once more
by anonymity-neutrality, F2(F2(b, c), a) = F2(a, F2(b, c)). We conclude that
F2(F2(a, b), c) = F2(a, F2(b, c)). So F is associative.

Finally, let us see that (iv) ⇒ (ii): Let a, b, c ∈ X. Having Theorem 3.3 in
mind, we have that F3(a, b, c) = F12(a, a, a, a, b, b, b, b, c, c, c, c) = F12(a, b, c, a, b,
a, c, b, c, a, b, c) = F12(a, F2(b, c), F2(b, c), a, b, F2(a, c), F2(a, c), b, c, F2(a, b),
F2(a, b), c) = F12(F2(a, F2(b, c)), F2(a, F2(b, c)), F2(a, F2(b, c)), F2(a, F2(b, c)),
F2(b, F2(a, c)), F2(b, F2(a, c)), F2(b, F2(a, c)), F2(b, F2(a, c)), F2(c, F2(a, b),
F2(c, F2(a, b)), F2(c, F2(a, b)), F2(c, F2(a, b))). By associativity and anonymity-
neutrality, this yields F12(F2(a, F2(b, c)), . . . (twelve times). . . , F2(a, F2(b, c))) =
F2(a, F2(b, c)) by unanimity. Hence F3(a, b, c) = F2(a, F2(b, c)). So F3(a, b, c) =
F2(F2(a, b), c)) by associativity. Using this we can inductively prove that F
is shrinking. Notice that for n = 3, F3(a, a, b) = F2(F2(a, a), b)) = F2(a, b)
by unanimity. For a given n we have that Fn+1(a, . . . (n times)a, . . . , b) =
Fn+1(a, . . . (n−1 times) . . . , a, F2(a, b), F2(a, b)) = Fn+1(a, . . . (n−2 times) . . . ,
a, F2(a, F2(a, b)), F2(a, F2(a, b)), F2(a, b)) = Fn+1(a, . . . (n − 2 times) . . . , a,
F3(a, a, b), F3(a, a, b), F2(a, b)) = Fn+1(a, . . . (n−2 times) . . . , a, F2(a, b), F2(a, b),
F2(a, b)). Proceeding in this way we easily arrive to Fn+1(a, . . . (n times) . . . , a,
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b) = Fn+1(F2(a, b), . . . (n+ 1 times) . . . , F2(a, b)) = F2(a, b) by unanimity.

This concludes the proof.

Example 4.4. As already commented in Remark 3.13, the condition of strict
monotonicity that appears in Kolmogorov’s approach in the definition of the
concept of a regular mean in the real line is too restrictive. Another key
fact that comes from strict monotonicity of regular means is that none of
them is associative. Let us see why: If F is a regular mean on the real
line, and F2 is the restriction of F to the real plane R2, we observe that
1 = F2(1, 1) < F2(1, 2) < F2(2, 2) = 2 < F2(2, 3) < F2(3, 3) = 3 holds true by
unanimity and strict monotonicity. Moreover F2(1, F2(2, 3)) < F2(F2(1, 2), 3)
by strict monotonicity, since 1 < F2(1, 2) and also F2(2, 3) < 3. Therefore
F2(1, F2(2, 3)) 6= F2(F2(1, 2), 3), so that F fails to be associative.

Now we show some other (more restrictive) sufficient conditions for iterativ-
ity. To do so, we introduce the following definition.

Definition 4.5. Let X be a nonempty set and X =
⋃∞
n=1X

n. Let F : X → X
be a general mean on X. Let Fn stand for the restriction of F to Xn (n ∈ N).
An element e ∈ X is said to be:

(i) reducive as regards F , if Fn(x, . . . (n − 1 times). . . , x, e) = x holds true
for every x ∈ X and n ∈ N,

(ii) neutral as regards F , if Fn(x, e, . . . (n− 1 times). . . , e) = x holds true for
every x ∈ X and n ∈ N.

Proposition 4.6. Let X be a nonempty set and X =
⋃∞
n=1X

n. Let F be a
general mean on X. As regards F , an element e ∈ X is reducive if and only if
it is neutral.

Proof. Suppose that e is reducive. Given n ∈ N and x ∈ X, it follows that
Fn(x, e, . . . (n−1 times). . . , e) = Fn(Fn−1(x, e, . . . (n−2 times) . . . , e), . . . (n−1
times) . . . , Fn−1(x, e, . . . (n−2 times) . . . , e), e) = Fn−1(x, e . . . (n−2 times) . . . ,
e) = . . . = F2(x, e) = x. Therefore e is neutral.

Conversely, let us assume that e is neutral. Given now n ∈ N and x ∈
X, it follows that Fn(x, . . . (n − 1 times). . . , x, e) = Fn(Fn−1(x, e, . . . (n − 2
times). . . , e), . . . (n− 1 times). . . , Fn−1(x, e, . . . (n− 2 times). . . , e), e). By gen-
eralized bisymmetry, Fn(Fn−1(x, e, . . . (n − 2 times). . . , e), . . . (n − 1 times). . . ,
Fn−1(x, e, . . . (n−2 times). . . , e), e) = Fn(Fn−1(x, . . . (n−1 times). . . , x), Fn−1(e,
. . . (n− 1 times). . . , e), . . . (n− 2 times). . . , Fn−1(e, . . . (n− 1 times). . . , e), e) =
Fn(x, e, . . . (n− 1 times) . . . , e) = x. Hence e is reducive.

Theorem 4.7. Let X be a nonempty set and X =
⋃∞
n=1X

n. Let F : X → X
be a general mean on X. If F has a reducive element e, then it is iterative.

Proof. Given n ∈ N and (x1, . . . , xn) ∈ Xn, we get Fn(x1, . . . , xn−1, e) =
Fn(Fn−1(x1, . . . , xn−1), . . . (n − 1 times) . . . , Fn−1(x1, . . . , xn−1), e) = Fn−1(x1,
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. . . , xn−1). Furthermore, Fn(x1, . . . , xn) = Fn(x1, Fn−1(x2, . . . (n−2 times) . . . ,
x2, e), . . . , Fn−1(xn, . . . (n − 2 times) . . . , xn, e). By generalized bisymmetry,
Fn(x1, Fn−1(x2, . . . (n−2 times) . . . , x2, e), . . . , Fn−1(xn, . . . (n−2 times) . . . , xn,
e)) = Fn(x1, Fn−1(x2, . . . xn), . . . (n− 2 times) . . . , Fn−1(x2, . . . , xn), Fn−1(e, . . .
(n − 1 times) . . . , e)) = Fn(x1, Fn−1(x2, . . . , xn), . . . (n − 2 times) . . . , Fn−1(x2,
. . . , xn), e)) = Fn−1(x1, Fn−1(x2, . . . , xn), . . . (n−2 times) . . . , Fn−1(x2, . . . , xn)).
Calling a = Fn−1(x2, . . . , xn), we have that Fn−1(x1, Fn−1(x2, . . . , xn), . . . , (n−
2 times) . . . Fn−1(x2, . . . , xn)) = Fn−1(x1, a, . . . , (n−2 times) . . . , a) = Fn−2(x1,
Fn−2(a, . . . , (n−2 times) . . . , a), . . . , (n−3 times) . . . , Fn−2(a, . . . , (n−2 times)
. . . , a)) = Fn−2(x1, a, . . . , (n− 3 times). . . , a). So, proceeding in the same way,
we finally arrive at Fn(x1, . . . , xn) = F2(x1, a) = F2(x1, Fn−1(x2, . . . , xn)). By
anonymity-neutrality Fn(x1, . . . , xn) = Fn(xn, x1, . . . , xn−1). Hence Fn(x1, . . . ,
xn) = F2(xn, Fn−1(x1, . . . , xn−1)) = F2(Fn−1(x1, . . . , xn−1), xn). Therefore F
is iterative.

Remark 4.8. The converse of Theorem 4.7 is not true. To see that, we consider
again Example 3.16 (i). Notice that the general mean F built there has no
neutral element. As a matter of fact, the element a cannot be neutral because
F2(c, a) = b 6= c. The element b can not be neutral, either, because F2(a, b) =
b 6= a. And the element c fails to be neutral because F2(a, c) = b 6= a. However,
it is straightforward to see that F is iterative by its own definition.

5. Miscellaneous applications

It is clear that the use of means in different contexts gives rise to a wide
sort of applications. We outline here some of them, in the light of the results
achieved in the previous sections.

Depending on the context, perhaps some classical concepts do not correspond
exactly to the notion of a general mean on a nonempty set introduced before
in Definition 3.39. Some conditions as, e.g., unanimity or anonymity-neutrality
are sometimes dropped. This is made in order to study, for instance, situations
of lack of symmetry or commutativity. However, many of the ideas and results
introduced till this point can also be adapted someway to these new settings.

5.1. Social Choice

Suppose that a finite set of individuals, say X = {x1, . . . , xn}, establish
rankings on a finite set of objects, say Y . Each individual xi ∈ X defines an
ordering or ranking on Y . Let us assume that the ordering defined by the indi-
vidual Xi is a linear ordering �i on the set Y . A social aggregation rule tries to
fuse the set of linear orders {�1, . . . ,�n} into a new one, say �S called social
ordering that tries to reflect someway the main features of the individual order-
ings �1, . . . ,�n. If R denotes the set of all the possible rankings or linear orders
on Y , that can obviously be identified to S(Y ), namely the set of permutations
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of the elements of Y , a social aggregation rule, provided that X has n elements,
will be a map from Rn into R.

We could go further, and suppose that each individual is a potential voter
in a poll. Each voter has to define a whole ranking on the elements of Y , that
could actually be interpreted as the set of candidates. If we do not know a priori
how many persons will finally vote since people in a society could refuse to give
their opinion voting, in order to define a good social aggregation rule we should
take into consideration a map F from R =

⋃∞
n=1R

n into R.
Obviously, F should also accomplish some conditions, that perhaps could

be understood as “common sense restrictions”. Among them, quite probably
anonymity-neutrality and unanimity will actually be imposed to F .

More or less this is the theoretical setting of the Arrovian models arising in
the 1950’s, that gave rise to the famous Arrow’s impossibility theorem in Social
Choice (see [5, 42, 14]). Using mainly combinatorial techniques, Kenneth J.
Arrow proved in 1951 that under a few, mild and apparently “common sense”
restrictions, no social aggregation rule exists.

Since the appearance of this impossibility results, some other alternative
models (e.g.: the ones introduced by Gibbard and Satterthwaite, see [33, 50])
using different sets of “common sense restrictions” were also considered in the
specialized literature, mainly in the 1970’s. However, they also lead to impossi-
bility results.

Then, in the early 1980’s new models based on topological considerations
were introduced by G. Chichilnisky and G. Heal (see e.g. [20, 21]). The
means in these model are called topological means and just use the conditions
of anonymity-neutrality and unanimity, plus an extra condition of continuity
as regards a given topology (see Definition 3.37 above). Unlike the previous
models, these ones could lead to possibility results, depending on the topologies
considered (for further information see e.g. [14]).

5.2. Ranking sets of objects

A typical problem arising in Decision Theory consists in the search for a
suitable extension to the power set of a total order defined on a finite set X.

Extensions of a linear order from a finite set to its power set actually ex-
ist. Perhaps the most common and well-known is the lexicographic one. (For
instance, if X = {a, b} and a � b, the lexicographic order �l on the power set
P(X) is ∅ �l {a} �l {a, b} �l b).

However, in many contexts, the extension required should accomplish dif-
ferent “common sense” criteria stated a priori. This is typical, for instance,
when a firm wants to hire new people -no matter how many new workers-. To
do so, the firm puts an exam to the individuals or candidates. How can the
firm, based on the individual ranking of individuals that comes from the re-
sults got in the exam, compare different sets -with more than one element, in
general- of candidates? This kind of problems were deeply studied in the 1980’s
in contexts of Mathematical Economics (see e.g., [39, 10]). There are results in

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

this direction that show that under some mild and apparently “common sense”
criteria, the required extension is never possible. Of course, this will depend on
the criteria chosen, that actually are not mild, but too restrictive and leading
to impossibility, instead (for a further account, see e.g. [7]).

Sometimes some criterion reminds us a hidden idea of a mean. For instance,
a typical criterion is the following one: x � y ⇒ {x} � {x, y} � {y}(x, y ∈ X).
Criteria of this kind (those that remind some sort of a mean) could be incompat-
ible with criteria of another nature, so immediately giving rise to impossibility
results. To put a trivial example, let us consider a criterion that depends on
cardinality as card(A) < card(B) ⇒ A ≺ B (A,B ⊆ X). This criterion is
obviously incompatible with the one shown above.

Moreover, we may also point out at this stage that extensions of a linear
order on a finite set X, to its power set P(X), could also derive from suitable
universal means, according to Theorem 3.15 (see also Remark 3.26 (iii) above).

5.3. Fuzzy Set Theory

In Fuzzy Set Theory, initiated by L.A. Zadeh in 1965 (see [53, 49]), a fuzzy set
of a universe X is defined as a function µX : X → [0, 1], called the membership
function (or the indicator) of the fuzzy set. Given an element t ∈ X, µX(t)
is interpreted as the degree on which the element t belongs to the fuzzy set
X. Unlike the classical (also called crisp) set theory, where the characteristic
function χ of a subset X of a universe U takes values in {0, 1} so that either an
element t ∈ U belongs to X if χ(t) = 1 or it does not belong when χ(t) = 0,
now the idea of set membership is graduable between 0 and 1, both included,
by means of the indicator µX .

In order to deal with fuzzy systems, making operations with them, and
having in mind an idea of aggregation of several fuzzy sets on the same universe
into a new one, it is typical to use n-dimensional operators Fn from the unit
cube [0, 1]n into the unit interval [0, 1]. In this way, if we are given n different
fuzzy sets {X1, . . . , Xn}, whose corresponding indicators are {µX1

, . . . , µXn
},

we may build a new fuzzy set Y , which fuses or aggregates the given fuzzy sets
X1, . . . , Xn, through the membership function µY given by µY (t) = Fn(µX1(t),
. . . , µXn

(t)) for all t ∈ U .
Among classical operators in this theory we may consider triangular norms,

triangular conorms and copulas (see e.g. [32, 43, 2, 37, 36, 51, 35]).
Thus, in particular, the following well-known definition is often encountered

in this setting:

Definition 5.1. A (bidimensional) triangular norm is defined as a map T :
[0, 1]2 → [0, 1] satisfying the following properties:

(i) T (x, 1) = x, for every x ∈ [0, 1].

(ii) T (x, y) = T (y, x), for every x, y ∈ [0, 1].

(iii) If x ≤ x′ then T (x, y) ≤ T (x′, y), for every x, x′, y ∈ [0, 1].

(iv) T is a continuous map.
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Perhaps surprisingly, most of the typical operators in this framework are
defined for the bidimensional case, that is, as functions from the unit plane
[0, 1]2 into the unit interval [0, 1]. There are some exceptions, as for instance,
the n-dimensional copulas analyzed in [51]. But these are scarce if compared
when the common use of bidimensional aggregation operators.

We may wonder why this happens, that is, why there is a general lack of
definitions of high dimensional operators and a totally common general use
of bidimensional ones. At this stage, a possible answer comes to our mind:
the key is iterativity . An attempt to define higher dimensional operators that
generalize, say, triangular norms, could lead to iterative “means” that can be
expressed iteratively in terms of bidimensional ones, in the spirit of the results
introduced here in Section 4 (and Theorem 4.7 in particular). To see a clear
example of this situation, suppose that we define tridimensional means, and let
us see what happens.

Definition 5.2. A tridimensional triangular norm is defined as a map T :
[0, 1]3 → [0, 1] satisfying the following properties:

(i) T (x, 1, 1) = x, for every x ∈ [0, 1].

(iii) T satisfies the anonymity-neutrality condition.

(iii) T satisfies a generalized condition of associativity, namely it holds true
that T (T (x, y, z), u, v) = T (x, T (y, z, u), v) = T (x, y, T (z, u, v)) for every
x, y, z, u, v ∈ [0, 1].

(iv) If x ≤ x′ then T (x, y, z) ≤ T (x′, y, z), for every x, x′, y, z ∈ [0, 1].

(v) T is a continuous map.

In [13], Proposition 2.8, the following overwhelming result appears.

Theorem 5.3. If T is a tridimensional triangular norm, there exists a (bidi-
mensional) triangular norm F such that T (x, y, z) = F (F (x, y), z), for every
x, y, z ∈ [0, 1].

Remark 5.4. Notice that in the definition of triangular norms and conorms
no condition of unanimity as T (x, x) = x has been given a priori. Observe
also the existence of the neutral element 1 in the case of triangular norms,
since T (x, 1) = x, for every x ∈ [0, 1] (and T (x, 1, 1) = x, for every x ∈ [0, 1]
if we consider tridimensional norms as defined before). This fact is a key for
iterativity, more or less mimicking the steps of Theorem 4.7 (see also [13] for
further details).

6. Discussion

Due to the wide set of contexts where some idea of a “mean” has been
introduced, the task of adopting one general abstract definition is not easy,
and can actually lead to controversy. Throughout this manuscript we have
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tried to find some “common factors” in most of the typical definitions. We
have started by considering means that could directly act on any amount of
elements. This is the reason why, beginning with a nonempty set X, we pass
to consider functions directly defined on X =

⋃∞
n=1X

n and taking values in
X, instead of working differently with maps from Xn into X, with n varying.
Then we have considered the classical Kolmogorov’s setting in the real line,
analyzing the restrictions involved. We have seen that the condition of strict
monotonicity is enormously restrictive. It can by no means be adapted to other
situations, as, e.g., finite totally ordered sets. Thus, we have then considered
means defined on totally ordered sets, but dealing with monotonicity instead of
strict monotonicity. Further, we have considered means on lattices. And this
gives rise to the consideration of means on semigroups, too. Other miscellaneous
kinds of means, defined on topological spaces or on nonempty sets endowed
with some algebraic operation and structure have been defined, too. Looking at
what all these concepts have in common, we finally introduce the condition of a
general mean on a nonempty set. Different characterizations, and/or equivalent
definitions in each particular case, have been obtained. We have mainly used
techniques based on functional equations.

7. Conclusion

Bearing in mind the idea of computability when reckoning means, we have
analyzed in depth the concept of iterativity, and some other related items as,
e.g., associativity. This has also been made, mainly, with techniques of func-
tional equations. In particular, we have proved that classical means as the
Kolmogorov’s ones in the real line give rise to bad news from the point of view
of algorithmic computability and iterativity. Again, this could be a reason to
go further than just considering Kolmogorov’s means on the real line (or on real
intervals), and, consequently, to explore many other possibilities.

In addition, and perhaps as a by-product, some explanation about why in
some contexts only bidimensional aggregations are often defined (instead of n-
dimensional ones for any n ∈ N) has been outlined. The key here is again
iterativity, so that from bivariate maps we can reach n-bivariate ones following
a standard iterative process. A typical important case is that of triangular
norms on the unit interval.

There is a wide room for further research studies. To put only one exam-
ple, in next future we could try to analyze “means” in which the condition of
anonymity-neutrality is dropped. In the particular case of the real line, and per-
haps working “à la Nagumo-Kolmogorov”, this could lead to characterizations
of, say, quasi-linear means (see e.g., [4]). A possible application of this setting
could arise in theoretical computer sciences, when different operations made by
a computer can be aggregated in a way, but not permuted, since the order in
which they are performed could be relevant (and maybe some operations need
be finished before starting new ones). This could give rise to different new defi-
nitions related to the concepts we have introduced throughout the paper. To put
just one example, in order to deal with aggregations of fuzzy sets, and perhaps
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dropping the anonymity-neutrality conditions, concepts as left-recursivity and
right-recursivity have been defined and analyzed (see e.g. [22, 3, 12, 35]). These
conditions would agree with iterativity under anonymity-neutrality. They give
also rise to functional equations that lie in the orbit of associativity (see e.g.
[46]).
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[28] B. Eckmann: Räume mit Mittelbildungen, Comment. Math. Helv. 28, 329-
340, 1954.

[29] B. Eckmann: Social choice and topology: a case of pure and applied math-
ematics, Expo. Math. 22, 385-393, 2004.

[30] B. De Finetti: Sul concetto di media. Giornale dell’ Istituto Italiano degli
Attuari 2, 369-396, 1931.

[31] J. Fodor, J.L. Marichal: On nonstrict means, Aequationes Math. 54, 308-
327, 1997.

[32] J. Fodor, M. Roubens: Fuzzy Preference Modelling and Multicriteria De-
cision Support, Kluwer Academic Publishers, Dordrecht, 1994.

[33] A. Gibbard: Manipulation of voting schemes: A general result, Economet-
rica 41, 587-602, 1973.

[34] L Gillman, M. Jerison: Rings of Continuous Functions, Springer-Verlag,
New York. 1960.
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