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Resumen 

Conseguir una economía mundial libre de carbono es de vital importancia para evitar el aumento 

de las temperaturas del planeta y sus fatales consecuencias para la humanidad. Para lograr ese 

objetivo se están llevando a cabo grandes avances en el desarrollo tanto de energías renovables 

como de vehículos más limpios. En el caso de los vehículos esos avances se están centrando 

principalmente en mejorar la eficiencia de los motores combustión, reducir la emisión tanto de 

gases de efecto invernadero como de otros perjudiciales para la salud y en el desarrollo de 

vehículos libres de emisiones directas, como los vehículos eléctricos. 

Estos avances hacía la obtención de automóviles más limpios está provocando un cambio en la 

actual flota de vehículos y se espera que en las próximas décadas habrá una renovación total de 

la misma. La nueva generación de vehículos reducirá en gran parte su dependencia con relación 

a los combustibles fósiles, sin embargo a cambio demandará una gran cantidad de recursos 

naturales, tan valiosos e incluso más escasos en ocasiones que el petróleo. Algunos de estos 

recursos serán: Co, Ni, Mn o Li para fabricar baterías; Ga, Ge, Y para hacer sistemas de 

iluminación tipo LEDs; Nd, Dy, Pr para construir imanes permanentes de motores eléctricos; Pt, 

Pd, Zr para hacer catalizadores que reduzcan la contaminación; Au, Ag, Sn, Ta, Yb para fabricar 

unidades electrónica; Ce, Tb, Se, La para hacer sensores o Nb, Mo, Cr, Ti, V, Sc, W para hacer 

aleaciones de acero de alta resistencia. Lamentablemente, estos recursos son finitos y algunos de 

ellos incluso ya son considerados como críticos por la Comisión Europea y otras instituciones 

internacionales.  

Una de las soluciones para mejorar la sostenibilidad en la fabricación de vehículos desde el punto 

de vista de los materiales que se emplean es el reciclaje. Sin embargo hay dos grandes problemas 

en torno al mismo. Por un lado los ratios de reciclaje no están avanzando tan rápidamente como 

la demanda de materiales y por otro lado las políticas de reciclaje no incentivan la recuperación  

de metales escasos. En la actualidad, los objetivos de reciclaje de vehículos se fijan en alcanzar 

un porcentaje de reciclabilidad sobre la masa total del vehículo. Para conseguir esas cuotas de 

reciclaje se llevan a cabo convencionalmente procesos mecánicos de separación de materiales. 

Estos procesos son de baja intensidad energética y a la vez muy eficaces para recuperar los metales 

que se emplean en mayores cantidades (acero, aluminio o cobre) pero resultan ineficaces para 

recuperar metales empleados en pequeñas proporciones (metales críticos o escasos). Como 

consecuencia, los metales críticos terminan subciclados en los procesos de fabricación de 

aleaciones de acero o aluminio y en el peor de los casos dispersos en un vertedero. 

Esta tesis se desarrolla con el objetivo principal de mejorar la eficiencia en el uso de los recursos 

necesarios para la fabricación de automóviles. Para conseguir dicho propósito se presenta una 

metodología que mide la eficiencia en el uso de los recursos e identifica posibles restricciones de 

suministro de metales.  



La metodología desarrollada se basa en la aplicación de la segunda ley termodinámica y el 

concepto de rareza termodinámica. Este enfoque cuantifica el valor real físico de todos los metales 

empleados y destaca en especial la aportación de aquellos cuya contribución al peso total del 

vehículo es pequeña, pero cuya escasez y por tanto su valor para el planeta es elevada. Este 

método evalúa la calidad de los materiales en función de su abundancia en la naturaleza y la 

energía útil (exergía) requerida tanto para extraerlos como para procesarlos y ponerlos a 

disposición de las industrias. 

Además del enfoque termodinámico, en esta Tesis se analizan las posibles restricciones de 

metales que puedan surgir en las próximas décadas. Para ello se aplica un modelo que considera 

la disponibilidad geológica de materiales (reservas y recursos), la capacidad de producción anual 

de los metales, la demanda anual estimada de cada metal, la demanda acumulada hasta 2050, la 

evolución de las cuotas de reciclaje y el impacto de la demanda de materiales de otros sectores.  

Los métodos desarrollados se aplican a diferentes tipos de vehículos (ICEV1, PHEV2 y BEV3) y 

han permitido alcanzar entre otros los siguientes resultados principales: (1) Desde el punto de 

vista del valor mineral de los recursos empleados, un vehículo eléctrico demanda 2.2 veces más 

recursos que un vehículo de combustión; (2) Hay 31componentes críticos en un vehículo 

convencional desde la perspectiva de los materiales que emplean; (3) Se han definido  

recomendaciones de ecodiseño para esos componentes basadas en reducir la demanda de metales 

escasos y mejorar tanto su reciclabilidad como su reusabilidad; (4) En los actuales procesos de 

reciclaje de vehículos un 27 % del valor mineral de los metales no se recicla funcionalmente; (5) 

Se han propuesto recomendaciones para la reducción de dichas pérdidas; (6) Se ha definido un 

ranking de los metales más estratégicos para el sector de la fabricación de vehículos siendo los 

10 más estratégicos los siguientes: Ni, Li, Tb, Co, Dy, Sb, Nd, Pt, Au y Ag.  

Las contribuciones de esta Tesis son de gran valor para mejorar la sostenibilidad del sector de la 

fabricación de vehículos desde la perspectiva de los materiales que se emplean y están 

principalmente dirigidas a los siguientes grupos de interés: (1) Los diseñadores de vehículos, 

porque les ayudará a identificar propuestas de ecodiseño desde la perspectiva de los materiales; 

(2) Los responsables de desarrollar políticas en torno a la eficiencia en el uso de los recursos, ya 

que demuestra la debilidad de las políticas actuales basadas en el peso de los materiales y ofrece 

como alternativa un método que evalúa tanto la cantidad como la calidad de los materiales; (3) 

Los ejecutivos de las empresas, porque les presenta la dependencia y vulnerabilidad de la 

tecnología sobre ciertos materiales y les ayudará a planificar con antelación líneas de I+D+i 

basadas en la eficiencia en el uso de los recursos. 

  

                                                      
1 Vehículo de combustión interna (en versiones diésel y gasolina) 
2 Vehículo híbrido 
3 Vehículo eléctrico 



Abstract 

Decarbonizing world economies is necessary to avoid the continuous increase of global 

temperature and its negative consequences for humanity. To get this ambitious target new 

advances in the fields of power generation with renewables and mobility with cleaner vehicles 

are being made. In the case of vehicles, these advances are being mainly focused on improving 

the performance of combustion engines, to reduce greenhouse and polluting emissions and the 

development of free direct emission vehicles like the electric ones. 

Advances towards cleaner vehicles are encouraging the continuous renovation of vehicle fleet so 

it is expected that in the following decades a complete renovation will take place. This new 

generation of vehicles will significantly reduce its fossil dependency. But in contrast, it will 

demand a huge quantity of other kinds of natural resources being some of them even scarcer than 

oil. Some of these resources will be necessary to manufacture the following components: batteries 

(Co, Ni, Mn or Li); LEDs for lighting (Ga, Ge, Y); permanent magnets for motors (Nd, Dy, Pr); 

catalytic converters (Pt, Pd, Zr); electronic units (Au, Ag, Sn, Ta, Yb), different kinds of sensors 

(Ce, Tb, Se, La), infotainment screens (In); automotive high performance steel or aluminum alloys 

(Nb, Mo, Cr, Ti, V, Sc, W) or injectors (Tb).  Unfortunately these resources are finite and some 

of them are very scarce being even considered as critical for the European Commission and other 

institutions from several perspectives such as vulnerability, economic importance, supply, or 

ecological risks.  

One of the solutions to improve resource efficiency in vehicles is to recycle these valuable metals. 

Nevertheless, there are two main problems around the recycling situation. On one hand, recycling 

rates are not growing up as faster as metal demand. On the other hand, current recycling policies 

define targets based on mass weight approaches, and even if they are ambitious, they fail in 

enhancing the recycling of minor but critical metals. The legislation compliance is achieved by 

means of applying mechanical separation techniques. These processes are effective to recycle 

those metals with the highest contribution in the vehicle weight (steel, aluminum and copper) but 

they are not effective for the recovery of minor metals like those that are scarce and/or critical. 

Consequently, minor metals end downcycled during steel or aluminum smelting or in the worst 

case they finish dispersed in landfills. 

This Thesis is presented with the main aim to improve the resource efficiency in the vehicle 

manufacturing sector. To accomplish with this aim, a novel method for measuring the resource 

efficiency and to identify possible shortages in the supply of metals is presented. 

 

 

 

 



The resource efficiency is analyzed through the second law of Thermodynamics through the 

concept of thermodynamic rarity. This method takes into account the quality of mineral 

commodities as a function of their relative abundance in Nature and the energy intensity required 

to extract and process them. The application of the thermodynamic approach allows not only to 

recognize the physical value of materials with a low weight contribution but also to identify those 

components that use them.  

As it has been mentioned before this Thesis also assesses possible metal shortages. This activity 

is made by means of an own method which combines geological data (reserves and resources), 

annual capacity production, annual expected demand, cumulative expected demand to 2050, 

recycling rates evolutions and future resource demand of other technologies.  

The methodology is applied to different types of vehicles (ICEV4, PHEV5 and BEV6) and it has 

been useful to achieve the following main results: (1) From a thermodynamic point of view an 

electric vehicle demands 2.2 times more quality resources than a combustion one; (2) 31 critical 

components were identified in a conventional vehicle from the perspective of the materials used 

to manufacture them; (3) Eco-design recommendations for these components have been defined. 

These recommendations are based on: reducing the demand of scarce metals and to increase both 

the recyclability and the reusability; (4) In current End of Life Vehicle (ELV) processes 27 % of 

the mineral capital (measured in rarity terms) is not functionally recycled; (5) Recommendations 

to reduce these losses have been proposed; (6) A strategic metal ranking for the automobile sector 

has been produced, being the top 10 most strategic metals the following: Ni, Li, Tb, Co, Dy, Sb, 

Nd, Pt, Au and Ag. 

The contributions of this Thesis are valuable to improve the sustainability of the vehicle 

manufacturing sector from the raw materials point of view. These contributions are mainly 

valuable for the following stakeholders: (1) Designers because it helps them to apply eco-design 

proposals from a raw materials point of view; (2) Policy makers because it evidences the weakness 

of mass based approach recycling policies and it proposes an alternative method that takes into 

considerations not only quantity but also quality; (3) Company’s executives because it confronts 

them with the metal dependency and vulnerability of technology and it helps them to plan with 

enough time R+D+i lines based on resource efficiency. 

4 Internal combustion engine vehicle (in diesel and petrol versions) 
5 Plug hybrid engine vehicle 
6 Battery electric  vehicle 
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Nomenclature 

A Automobile manufacturing sector demand of each metal with respect to the total

production1 (-) 

A Vehicle part2 (-) 

B Available reserves with respect to cumulative demand from 2018 to 2050 (-) 

b Exergy (kJ/kg) 

C Metal known resources with respect to cumulative demand from 2018 to 2050 (-) 

D Production capacity and annual demand ratio for each metal from 2018 to 20501 (-) 

D Downcycling2 (kJ) 

D Cumulative material demand3 (t) 

d Material demand (t) 

E Economic Importance (-) 

ERC Exergy Replacement Cost (kJ/kg) 

F Supply Risk (-) 

i Metal assessed (-) 

k Unit exergy cost (-) 

m Mass (g) 

m Studied technologies3 

N Manufactured units (-) 

p Production (t) 

R Thermodynamic Rarity (kJ/kg) 

r Material share from recycling (%) 

R Resources or Reserves3 (t) 

R Universal gas constant (kJ/kgK) 

Re Recycling quote (%) 

T Temperature (K) 

t Year (-) 

x Mineral concentration (-) 

1 This nomenclature is used in Paper III. 

2 This nomenclature is used in Paper IV. 

3 This nomenclature is used in Paper I. 
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Greek letters 

 

α Weighting coefficient of variable A4 (-) 

β Weighting coefficient of variable B4 (-) 

γ Weighting coefficient of variable C4 (-) 

δ Weighting coefficient of variable D4 (-) 

ε Weighting coefficient of variable E4 (-) 

ζ Weighting coefficient of variable F4 (-) 

∆ Difference (-) 

 

Subscripts and superscripts 

 

0 Reference conditions 

a commodity 

ave_metal_scrap Car part manufactured with average metal scrap 

c Earth´s crust 

i Substance 

m Mineral deposit 

ngt Green technologies manufactured 

ns New units added to the global market 

ori_metal_comp Car part manufactured with the original metal composition 

r Commercial grade 

rgt Green technologies to renew older installations 

rn Vehicle sales to replace older ones 

  

 

  

                                                      

4 This nomenclature is used in Paper III. 
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Abbreviations 

AMS Automobile sector 

ASR Automotive Shredding Residue 

ATS Advance Technologies Scenario 

BAU Business As Usual 

BEV Battery Electric Vehicle 

BP British Petroleum 

B2DS Beyond 2º Scenario 

CCS Carbon capture storage 

CdTe Cadmium telluride solar cell 

CIGS Copper indium gallium diselenide solar cell 

CRM Critical Raw Materials 

CRS Central Receiver System 

ECU Electronic Control Unit 

EIA Energy Information Administration 

ELV End of Life Vehicle 

 EoL End of Life 

Equi Equitative 

EV Electric Vehicle 

Exp Experts 

FU Functional Unit 

GEO Geological 

GHG Greenhouse gas 

ICEV Internal Combustion Engine Vehicle 

IDIS International Dismantling Information System 

IEA International Energy Agency 

IEEEJ Institute of Energy Economics Japan 

LCA Life Cycle Assessment 

LDV Light Duty Vehicle 

LED Light Emitting Diode 

LFP/C Lithium Iron Phosphate (LiFePO4) 

LIS Lithium ion-sieve technology 

Li/air Lithium air battery 

Li/S Lithium-sulfur battery 
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MDBAU Business As Usual Development Model 

MDH Hubbert peak Development Model 

MDP Population Development Model 

 

 

NCA/C Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) 

NMC/C Lithium Nickel Cobalt Manganese Oxide (LiNicoMnO2) 

NGO Non-governmental organizations 

NiMH Nickel metal hydride 

PGM Platinum Group Metal 

PHEV Plug Hybrid Electric Vehicle 

PT Parabolic Through 

PV Photovoltaics 

REE Rare Earth Elements 

RES Resources 

RSV Reserves 

RTS Reference Technology Scenario 

SMI Strategic Metal Index 

SUV Sport Utility Vehicle 

UHSS Ultra-High Strength Steel 

USGS United States Geological Survey 

WEC World Energy Council 

WEEE Waste Electrical Electronic Equipment 

WWF World Wildlife Fund 

2DS IEA 2º Scenario 
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1.1. Objectives 

The general objective of this Thesis is to understand and provide tools to improve the resource 

efficiency in the vehicle manufacturing sector from a metals point of view. Overall, this research 

aims at identifying current weaknesses and define recommendations for improving the 

sustainability of the sector.  

Specifically, the thesis has the following goals: 

 To develop a method for assessing the resource efficiency in passenger vehicles from a 

physical point of view. 

 To identify the most critical metals demanded to manufacture vehicles from a physical 

point of view. 

 To identify the most critical components used in a vehicle from the raw materials point 

of view. 

 To analyze the role of future vehicles such as Battery Electric Vehicles (BEV) in the 

energy transition and the availability of resources to be manufactured. 

 To identify possible future metal shortages (bottlenecks) affecting the manufacture of 

vehicles. 

 To estimate functional recycling rates of each metal to avoid such identified metal 

bottlenecks. 

 To compare three types of vehicles (internal combustion engine ICEV, plug hybrid 

electric vehicle PHEV and BEV) from the point of view of the raw materials demanded. 

 To build a vehicle metal ranking based on a holistic vision where both physical and non-

physical variables are taken into consideration.  

 To quantify the mineral capital that is lost associated to the wastes appearing in current 

ELV recycling processes as a consequence of downcycling. 

 To propose recommendations from a thermodynamics perspective to reduce the 

downcycling degree in automobile recycling processes. 

 To define eco design recommendations to improve the resource efficiency in vehicles. 

 To give recommendations for policy makers to reduce the weaknesses concerning weight 

based approach regulations. Current approaches do not incentivize the recycling of minor 

but scarce metals. 

 To define future research lines to face future challenges concerning resource efficiency 

in the automobile sector.  
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1.2. Thesis Structure 

This Thesis is presented as a compilation of five scientific publications. These works were 

published following a research line which was mainly focused on analyzing the resource 

efficiency of the use of metals in passenger vehicles.  

A revision about the state of the art has been undertaken with the aim to put into scientific context 

the main contributions of this Thesis with respect to other authors. This activity is presented in 

Chapter 2, where previous scientific contributions concerning resource efficiency in vehicles are 

presented, including shortcomings in End of Life Vehicle (ELV) legislation, possible resources 

shortages or eco-design methodologies. Subsequently, the methodological fundamentals applied 

in this Thesis are presented in Chapter 3. The fundamentals are divided into two main sections: 

The method used for the identification of future shortages or bottlenecks (applied in Papers I and 

III) and the thermodynamic approach used to measure resource efficiency (applied in Papers II, 

IV and V).  

Subsequently in Chapter 4, different vehicle metal compositions used in the Thesis are shown. 

This work has been done by means of a scientific review of previous publications and an own 

research using internal IT Systems that belong to SEAT S.A.   

The research line itself, which is based on the papers compilation begins in Chapter 5. This is 

addressed by means of giving first an overview about how resource demand will evolve as a 

consequence of the energy transition to a low carbon economy. As will be seen, a rapid 

deployment of renewables and electric vehicles will be key to meet Paris commitments, i.e. 

limiting global warming to well below 2°C. Chapter 5 is thus devoted to analyze the availability 

of resources to guarantee the required development of green technologies, with special emphasis 

on vehicles. This overview points to the important demand of metals that will be faced in the 

coming years in the vehicle manufacturing sector and the reason why this Thesis deeply analyzes 

this challenge.  

Accordingly, in Chapter 6, the resource efficiency of three different types of vehicles (ICEV, 

PHEV and BEV) is studied through a methodology based on thermodynamics that also allows to 

identify the most critical car subsystems from a raw materials point of view. The results serve to 

show some weaknesses regarding current weight-based approaches used in recycling and reuse 

regulations for the car industry and about the electric vehicle sustainability. 

As it has been mentioned, Chapter 6 gives a physical (thermodynamic) approach to identify the 

most critical metals and components in a vehicle. However, there are also some relevant non-

physical variables that makes a metal critical (or strategic) for a given industry. For example: 

supply risks, sector dependency or economic importance. This is why in Chapter 7, a holistic view 

to identify the most strategic metals for the automobile sector is presented. As main contribution, 

a so-called Strategic Metal Ranking is developed, which classifies all metals demanded to 
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manufacture vehicles according to their global strategic value to the sector. This classification 

takes into consideration both physical like non-physical variables and it serves to demonstrate the 

reliability of the results offered by the thermodynamic method previously presented in Chapter 6.  

As is well known, recycling is considered one of the solutions to guarantee the sustainability of 

raw materials. Yet, as will be seen in Chapter 8, there are no specific recycling processes for 

minor metals like Co, Au, Sn or Ta in ELV and as a consequence they end downcycled in steel 

or aluminum recovery processes, thereby losing their functional use for which they were 

originally produced. Chapter 8 addresses this issue and quantifies the loss of these materials at 

the End of Life (EoL) of vehicles along with several recommendations to reduce these losses. 

The effectiveness of reuse and recycling processes increases dramatically when products are 

properly eco-designed considering the EoL. Chapter 9 presents a method to identify the most 

critical components where valuable metals are lost after common recycling processes. 

Subsequently, it provides eco-design recommendations classified into the following categories: 

Facilitate the disassembly; Substitutability; Retrofitting; New approaches. Finally, Chapter 10 

summarizes the main contributions of the Thesis and presents the future research lines that have 

been identified after this work. This chapter is also presented in Spanish according to the 

University of Zaragoza requirements. 
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2.1. Introduction to the chapter 

For a better understanding about the novelty and scientific context of this Thesis, a review about 

the state of the art concerning resource efficiency in the automobile sector has been carried out. 

This chapter presents this revision with the following structure: (1) Possible bottlenecks in metals 

demanded in the energy transition; (2) Global situation and outlook about vehicle sustainability 

from a raw materials point of view; (3) Shortcomings in vehicle recycling processes and (4) Eco-

design of vehicles from a raw materials point of view. 

2.2. Possible bottlenecks in metals demanded in the energy transition 

In the 21st United Nations Framework convention on Climate Change celebrated in December 

2015 in Paris, it was agreed to hold the increase in the global average temperature to well below 

2ºC above pre-industrial levels. Besides, it was proposed that global peaking of greenhouse gas 

emissions (GHG) should be reached as soon as possible [1]. In this respect, the European 

Commission, via the Joint Research Centre (JRC), is exploring the most effective way to make 

the European economy more climate friendly. As it was published by the European low carbon 

economy roadmap, GHG emissions must be cut to at least 80% below 1990 levels and to 

accomplish this goal, all sectors must contribute [2].  

Both the electric generation and transport sectors have a great potential to achieve the European 

targets. According to the European Commission, the electricity power generation sector has 

actually the biggest potential for cutting emissions and it could almost totally eliminate CO2 

emissions by 2050 [3]. On the other hand and considering the European white paper of transport, 

the transport sector, and especially private mobility, could reduce its CO2 emissions by up to 60% 

in the same time frame [4]. These changes will imply a renovation in the energy sector towards 

using renewable sources and zero direct emission transport technologies such as electric vehicles. 

During this transition period, green technologies like wind power, solar photovoltaic or electrical 

vehicles will grow. According to International Energy Agency projections [5], in 2050, wind 

power and solar power technologies5 will have more than 2,400 GW and 4,500 GW of installed 

power, respectively.  Yet this transition must be carefully accomplished as huge amounts of raw 

materials are going to be required, increasing the pressure on raw material availability. 

As Alonso et al. [6] and Elshkaki and Graedel [7] published, wind power will demand important 

amounts of rare earth elements (REE) like neodymium and dysprosium to build permanent 

magnets for electric generators. Additionally as it was published by Grandell et al. [8]; 

                                                      

5 Solar power technologies include solar photovoltaic and solar thermal power. 
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Ravikumar. and Malghan [9] and Elshkaki and Graedel [10] solar photovoltaics demands high 

quantities of silver for electricity connections, and other materials like cadmium, tellurium, or 

indium for manufacturing p-n junctions in solar cells used in thin film technologies like CIGS or 

CdTe. As in the case of Solar Thermal Power (STP), Pihl et al. [11] demonstrated that it requires 

silver for manufacturing reflectors or nickel and molybdenum for manufacturing high strength 

steel alloys needed in structures.  

In the field of mobility, Light Duty Vehicles (LDV) based on polluting internal combustion 

engines, will be progressively replaced by vehicles based on electro mobility. Regarding the 

concern about the future impact that large capacity batteries required by electric vehicles will 

have, Miedema and Moll [12] and Mohr, Mudd and Giurco [13] researched the case of lithium 

and possible constraints to manufacture electric vehicles. 

It is well known that one of the solutions to guarantee a sustainable raw material supply is 

recycling. However, the current situation of recycling has a lot of improving potential. As 

Redlinger, Eggert and Woodhouse [14] demonstrated, current recycling rates of some of these 

materials are almost negligible because sometimes recycling processes are more expensive than 

primary raw material costs, as it happens with the use of indium, gallium, cadmium and tellurium 

in solar modules. This argument can be also extracted from Ayres, Villalba and Talens [15] which 

indicate that many metals are used in very small amounts in each individual product. Indeed, and 

even if it has been demonstrated that recycling has a huge improving potential by including pre-

recycling processes to recover the metals, Wang, Gaustad and Babbit [16] affirm that current 

recycling rates are still very low. For instance, Vikström, Davidsson and Höök [17] demonstrated 

that less than 3 % of the lithium contained in a battery is currently recycled  and Richa et al. [18] 

that only 42 % of the total battery waste mass can be recycled with current available technology.  

As a result, the concern regarding the impact of green technologies on raw material availability 

is becoming an important issue for countries with the aim to guarantee their sustainability and 

many authors and institutions such as Grandell et al. [8]; Silberglitt et al. [19]; The U.S 

Department of Energy [20]; Moss et al. [21] and Graedel et al. [22] among others are researching 

this issue.  

The importance of some rare materials for the future development has caused that some of them 

are considered as critical. Nevertheless, there is a discussion related to the definition of raw 

material criticality. The criticality of materials has been extensively studied using different points 

of view. According to Alonso et al. [23]; Achzet et al. [24]; The European Commission [25] and 

Kamei [26], the assessment includes several dimensions related to vulnerability, economic 

importance, supply or ecological risks. But most of these factors are very influenced by 

geopolitical and socioeconomic elements, what makes that critical raw materials (CRM) lists must 
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be frequently updated. This is why the term critical evolves so fast and it is difficult to have a 

clear long-term perspective about criticality. An example about this situation is the case of the 

critical raw material list developed by the European Commission. This list was published for the 

first time in 2011 where 14 raw materials were considered as critical. In 2014 this list was updated 

identifying up to 20 critical raw materials. Finally the last updating of this list appeared in 2017 

and included the following 27 CRMs [27]: antimony, fluorspar, LREEs, phosphorus, barite, 

gallium, magnesium, scandium, beryllium, germanium, natural graphite, silicon metal, bismuth, 

hafnium, natural rubber, tantalum, borate, helium, niobium, tungsten, cobalt, HREEs, PGMs, 

vanadium, coking coal, indium, phosphate rock. 

As it was proposed by Calvo, Valero and Valero [28] the term criticality should include an 

additional dimension to economic importance or supply risks. They proposed to include a third 

dimension named thermodynamic rarity, which accounted for the scarcity in the crust of the given 

raw material and the energy intensity associated with extracting and refining the material. As 

main result they proposed to update the 2014 critical raw material list published by the European 

Commission including also: Li, Ta, Te, V, and Mo. In this regard, it is worth mentioning that in 

the last update of the European CRM list published in 2017 (which again only considered 

economic importance and supply risks) with the exception of Mo, all additional CRM proposed 

by Calvo, Valero and Valero [28] were included. So the economic importance and the supply 

risks (which are non-physical characteristics) of the commodities have also, at least in the medium 

to long term, a relationship with the thermodynamic value of metals which only depends on 

physical characteristics and can be useful to predict future vulnerabilities of some technologies or 

nations. It is the thermodynamic rarity approach the one mainly used in this Thesis to assign a 

value to the metals contained in a car. 

In addition to the definition of metal criticality, an important issue is the identification of 

bottlenecks for the development of a given technology. According to Moss et al. [29] and Elshkaki 

and Graedel [30], material constraints can be assessed by comparing future demand with current 

production capacity. In contrast, Sohn [31] suggests that this should be done by comparing 

reserves with production capacity. These approaches consider that production is static and that it 

does not change over time, a trend that has been proven wrong over the years. Moreover, as 

reserves are dynamic because they actually depend on demand, exploration efforts and 

technological progress, all of which very related to economic interest of the commodities, reserve-

based approaches also present a high level of incertitude. Thus, even if they constitute a valuable 

first approach, the analysis must incorporate a dynamic behavior to provide more realistic values.  
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For instance, in the case of the energy sector, models that provide dynamic data, like TIMES-

MARKAL6 or LEAP7 can be used to assess the impacts on fossil fuel supply, emissions and 

encourage the development of energy policies. Such models were applied by Grandell et al. [8]; 

Emodi et al. [32]; Kuldna, Peterson and Kukhi-Thalfeldt [33] and Nadejda, Nichols and Balash. 

[34], among others. 

As for non-fossil fuels, Sverdrup, Ragnarsdottir and Koca [35–37] have developed several 

dynamic models for specific minerals (copper, lithium, aluminum, etc.) that rely on information 

regarding ore grade, production rates or market prices among other factors to make future 

predictions. It should be stated that these models need very specific data and definition of 

variables and functions to estimate future projections, which partly need to be based on important 

assumptions. Indeed, creating a model that estimates future raw material production is a 

challenge. That said, in the case of fossil fuels, the Hubbert peak methodology, proposed by 

Marion King Hubbert [38] in the fifties to estimate oil production behaviour in the US, was 

addmitted by many different authors such as Murray and King [39]; Capellan-Perez et al. [40] 

and Chapman [41] among others, as a useful and reliable model to predict production peaks. This 

approach considers that production evolution follows an exponential behaviour until it reaches a 

peak which is constrained by the available reserves, therefore production is not considered as a 

constant. This model was applied by Calvo, Valero and Valero [42] to predict future capacity 

production of different commodities. Obviously the model has weaknesses related with data 

availability and to unpredictable changes in future production, as it relies on a business as usual 

scenario. That said, the reliability of its output is greater than of those models which consider 

yearly production as constant.  

For this reason, in the identification of possible bottlenecks for the energy transition and in 

particular in the vehicle manufacturing sector, the constraints will be identified in this Thesis by 

combining expected demand with the expected annual capacity production based on a Hubbert-

like behaviour. 

 

  

                                                      

6 Model developed by the IEA. More information: https://iea-etsap.org/index.php/etsap-tools/model-

generators/times 

7 Model developed by the Stockholm Environment Institute. More information: 

https://www.energycommunity.org/default.asp?action=introduction 
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2.3. Global situation and outlook about vehicle sustainability from a raw materials 

point of view 

The vehicle manufacturing sector is one of the most intensive in raw materials use (Wells [43]). 

Indeed, vehicles constitute a very significant stock in use of materials. Considering USGS data, 

steel and aluminum stock in US vehicles amount to 4,070 Mt (5.3 % over the total steel stock in 

that country) [44] and 19.1 Mt (13.8 % over the total Al stock) [45], respectively. This is partly 

due to the increasing amount of vehicles being sold. As published by the International 

Organization of Motor Vehicle Manufacturers [46], global car sales have more than doubled over 

the past thirty years, from about 29 million in 1980 to 65 million in 2014. This is why Arda et al.. 

[47] state that a stable supply of raw materials is crucial for the transition to a sustainable and 

circular economy. For Simic and Dimitrijevic [48] this becomes even more important considering 

that, by 2030, up to 1.85 billion vehicles are expected to be added to the current fleet, what will 

undoubtedly require massive amounts of raw materials, as stated by  Hernandez et al. [49]. 

Yet the number of vehicles is not only increasing, but also the models are continuously changing 

and so the raw materials incorporated in cars. These changes are made because new requirements 

are constantly demanded by users. According to Schipper [50], this evolution has caused that 

from mid-1980´s vehicles have become heavier. This weight increment was mainly caused by the 

increase of power and the inclusion of technical progresses towards energy-efficiency in engines 

and safety standards in the body in white, as it was demonstrated by Zachariadis [51].  

On the other hand, more equipment and environmental requirements are being demanded and 

accordingly the need of materials to manufacture catalyst converters, glass, flat panel displays, 

electronic equipment, electrical motors, batteries, super alloys or communication technologies, is 

rapidly increasing. Specific reasons for the changes in vehicle material composition over time 

from different author opinions include among others the following:  

 The replacement of Fe by Al alloys for parts such as the head cylinder or gearbox case, 

body-in-white, and wheels. Hatayama al [52]; Lovik, Modaresi and Müller [53] and Van 

Schaik et al. [54]. 

 The increase in the use of plastics for the interior of the car. Juska [55].  

 The use of hybrid-electric or fully electric powertrains. Eurostat [56]. 

 The evolution from manual to automated control of vehicle functions owing to an 

increased number of car electronics. Restrepo et al. [57].  

As consequence of this evolution, current vehicles require more electrical and electronic devices 

that demand an increasing amount of different metals such as Li, Co, Mn, Ni, and different rare 

earths to manufacture batteries (Simon, Ziemann and Weil [58]); Nd, Pr, and Dy to build 

permanent magnets (Riba et al. [59]) or Ag, In, Ta, or La to manufacture electronic components 
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(Andersson et al. [60]). So as demonstrated by Ortego et al. [61] a conventional vehicle demands 

more than 50 different types of metals.  

Steel can be used as an example of how its use in cars evolved. In the past, the primary attributes 

required from automotive steel were strength and corrosion resistance. However, and as stated by 

Kawaguchi [62], now steel grades have to satisfy also other requirements such as fuel efficiency 

or safety performance. For instance, Belanger, Walps and Milititsky [63] demonstrated that only 

in the body in white 9 different steel grades, including high strength and ultra-high strength steels 

are used. 

On top of this, as stated in the previous section, for achieving European greenhouse gas emissions 

targets, a change in vehicle powertrains is expected. The use of electric vehicles is one of the 

proposed solutions to reduce transport environmental impacts. As it is established by the 

Transport White Paper, internal combustion engine vehicles (ICEV) fleet must be reduced by at 

least 50 % before 2030 and must be avoided by 2050. This leads to a strong increase in electric 

vehicle sales. According to sales projections by type of vehicle published by different entities 

(European Commission [5], European environmental Agency [61], International energy Agency 

[62] and Spanish Automobile Manufacturers Association [63]) by 2029 PHEV world sales will 

overpass ICEV sales and by 2038 BEV world sales will also overpass ICEV sales. As a 

consequence, ICEV world sales share will presumably decrease from 2018 in favor of PHEV. 

BEV share sales will mainly grow from 2025 onwards and in 2045 they will be even greater than 

PHEV sales.  

Considering these forecasts, PHEV and BEV share in world fleet will be even greater than ICEV 

in 2045. This new generation of vehicles based on electromobility will require more electrical and 

electronic devices, which will need materials to manufacture batteries, permanent magnets and 

electronic components.  

Focusing only on the situation of critical metals, according to Cullbrand and Magnusson [67], in 

a conventional diesel hybrid vehicle, 31 CRM can be found. Yet according to Andersson et al. 

[68], only 1 % of the vehicle mass includes more than 25 metals, being the most part of them 

critical as stated by Alonso et al. [69]. 

As it has been mentioned in the previous section, the term critical has different definitions, 

however the term in itself has become a topic of concern in the automobile sector independently 

of the approach used. As demonstrated by Du et al. [70] and Modaresi and Müller [71], critical 

metals in passenger vehicles are mainly found in the embedded electrical and electronic devices. 

Moreover, Lovik, Modaresi and Müller [53] affirmed that critical metals are also used as alloying 

elements in aluminum and steel alloys constituting the body-in-white and powertrain of the 

vehicle. According to Modaresi and Muller [68], the number of embedded electrical and 
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electronic devices and the alloy types depend on different characteristics such as vehicle 

equipment, power source, and model, which define the vehicle type. Moreover, and according to 

some authors like Kushnir and Sanden [69], Scrosati and Garche [70] and Grosjean et al.  [71], 

the future widespread adoption of electrical powertrains will encourage the development of large-

capacity batteries which will also increase the demand of some critical metals such as lithium 

(Schmidt, Buchert and Schebek [72]) or cobalt (Väyrynen and Salminen [73]). 

A raw material assessment of passenger vehicles is thus a key topic to understand the 

sustainability of the sector and as a consequence it has been already studied by different authors. 

Batista, Freire and Silva [77] presented an overview of different methodologies to calculate the 

environmental rating of a vehicle, but no identification of critical materials was made. In the field 

of using critical raw materials Alonso et al. [69] made an assessment of different types of vehicles 

(ICEV, PHEV and BEV) and the use of REE contained in them to compare REE´s vehicle demand 

with REE´s reserves values. Du et al. [70] assessed the distribution of critical metals in 

conventional LDV. This study was made by combining input and output driven approaches. A 

revision of previous studies was made and in total 57 elements were analyzed. Cullbrand and 

Magnusson [67] made an assessment of potentially critical materials in passenger cars. The 

approach used a top-down methodology using manufacturer´s databases from the International 

Material Data System (IMDS). The study assessed 31 critical materials in 4 different car models 

with different equipment level and powertrain. The selection of these materials was made 

according to geological availability or supply risk information. Du and Graedel [78] assessed the 

global demand of REE (including automobile sector) and quantified the amount of Ce, Nd, La, 

Pr, Y, Gd, Sm, Tb and Eu stock in use in vehicles.   

Beyond providing the raw material composition of vehicles, this Thesis proposes to apply a 

quality weighting factor to each material used in vehicles. Such weighting factor is based on a 

novel indicator called thermodynamic rarity, as used by Calvo, Valero and Valero [28] to define 

thermodynamic criticality of metals. The advantage of doing so is that minor but scarce materials 

even if used in low quantities in the car, will obtain a much greater relative weight, when measured 

in rarity terms. This will allow to identify those car parts where the most valuable metals are 

placed. 
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2.4. Shortcomings in vehicle recycling processes 

According to the European Automobile Manufacturers Association [79] in 2014 the European 

passenger car fleet amounted to 250 million of units, of which around 45 % were more than 10 

years old. Andersson, Ljunggren and Sanden  [68] stated that the size and the age of the European 

fleet makes that each year around 7 million of end of life vehicles must be treated and as a 

consequence between 8 and 9 million tons of wastes are generated.  

To get a global vision about the impact of ELV the following data must be taken into 

consideration:  

 According to European Commission data [80], ELV account for up to 10 % of the total 

amount of hazardous wastes that each year are generated in Europe. 

 According to Zorpas and Inglezakis [81], the vehicle sector generates approximately 5% 

of the world’s industrial waste. 

In this respect, Simic and Dimitrijevic [82] indicate that the treatment of ELV and the impact of 

discarding their residues are subject of worldwide concern. To encourage the recycling of 

materials and to prevent waste generation from ELV, the European Commission published the 

EU Directive 2000/53/EC. This regulation established that from January 2006, the recovering and 

reusing rate of all end of life vehicles should be as minimum as 85 % and reusing and recycling 

rate must be 80 % per vehicle and year. Moreover, from January 2015 these targets were increased 

to 95 % and 85 %, respectively [83]. In that respect, Millet, Yvars and Tonnelier [84] proposed a 

methodology based on impact of module recycling rate to set the a reference vehicle and so 

demonstrate the feasibility of the compliance of the EU ELV recycling Directive. This 

methodology considered the material composition of vehicles and component´s recyclability 

approaches to identify the reference vehicle. Meanwhile, the impact of ELV legislation was 

analyzed by Inghels et al. [85], who published a method based on system dynamic models and 

applied it to the case of Belgium. This assessment was focused on the potential of plastics to be 

reused and recycled to meet ELV legislation targets. 

Focusing on ELV recycling processes, Andersson, Ljunggren and Sanden [60] consider that they 

are typically aimed at isolating hazardous content, selling spare parts, recovering and recycling 

some regulated parts such as batteries, tires, or catalytic converters, and recycling the metallic 

compounds existing in the largest quantities such as steel and aluminum alloys.  

For metals contained in ELVs, recycling plants (shredders) are mainly designed to separate 

ferrous (steel) and non-ferrous (aluminum, copper and zinc) fractions, which are subsequently 

sent to smelters as secondary sources. According to Ohno et al. [86], these operations entail the 

loss of most alloy elements  either because they are downcycled or because they end up in the 

automobile shredder residue (ASR), ultimately becoming landfilled.  
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The concept of downcycling is understood as “to recycle something in such a way that the 

resulting product is of a lower value than the original item” [87]. Metal downcycling in ELV 

processes is a topic of concern; as demonstrated by Andersson, Ljunggren and Sanden [60] from 

a total of 17 metals investigated, only Pt from catalytic converters is functionally recycled.  

Moreover, as demonstrated by Ohno et al. [88], approximately 60% of Ni, Cr, and Mo contained 

in light duty vehicles unintentionally end up as the metal source in steel-making process. As a 

result, Amini et al. [89] demonstrated that these metals are lost during smelting;  dissolved in the 

molten metal during smelting; or diluted as contaminants when they exceed the maximum content 

allowed for a specific alloy. According to Nickel Institute data [90] only 40% of the automobile 

content is reused for its nickel content in steel plate rolls; another 40% is downcycled into other 

metals and becomes unavailable to the nickel recycling loop and finally around a 20% ends up in 

landfills. According to Maurice, Niero and Bey [91], this fact happens because metals are recycled 

in open/cascade recycling loops where dilution and quality losses occur.  

Similarly, Andersson, Ljunggren and Sanden [60], based on an analysis of Swedish ELV 

concluded that only Pt was functionally recycled in its main application and for other 16 metals 

(Y, Li, Au, Dy, Er, Ga, Gd, Pr, Rh, Sm, Tb, Yb, Co, Nd, La and Ta) functional recycling was 

absent. For their part, Pan and Li [92] studied the case of ELV in China. They used emergy8 as 

an indicator for measuring the efficiency of ELV processes and identified that the most important 

non-renewable input are raw materials (93.98 % over the total) and the most important output 

waste is the battery (42.56 % over the total waste). This method demonstrated that other kinds of 

approaches could be used for measuring resource efficiency instead of weight.  

In summary, there is a huge improving potential in ELV recycling processes. As Hatayama et al. 

[52] stated for the case of aluminum, an appropriate scrap sorting in the future could mitigate the 

generation of unrecyclable scrap and reduce the consumption of primary aluminum by up to 15–

25%. For their part, Ohno et al. [93] assessed alternative processes to recover alloying steel 

elements (Mn, Cr, Ni and Co) from ELV. The important gap that exists between steel producers 

and ELV recyclers is the main reason why proper recovery of such valuable elements is hindered 

in practical terms. 

With respect to specific car components, Belboom et al. [94] focused on the recycling of hybrid 

vehicles in which different scenarios were compared according to the treatment of specific vehicle 

parts like batteries, Electronic Control Unit (ECU) and big plastics. From their point of view the 

dismantling of these components before shredding was not significant benefits from LCA 

                                                      

8 Emergy is defined as “the amount of direct and indirect solar energy needed to produce any product or 

service” Odum [142].   



Chapter 2. Resource efficiency in the automobile sector. State of the art. 

Thermodynamic assessment of raw material use in passenger vehicles 

24 

perspective. In this respect, Tian and Chen [95] proposed several disassembly processes for 

encouraging the dismantling of vehicles at the end of life. The method was applied to a dashboard 

and plastic polymer used layers. 

Dismantling and appropriate material sorting is so important because, as demonstrated by van 

Schaik and Reuter [96], commercial recycling systems never achieves 100 % material recovery 

during physical separation, high temperature metal production or thermal processing. According 

to several authors such as Ignatenko, van Schaik and Reuter [93], Gutowski and Dahmus [94–

95], Nakajima et al. [96] and Valero and Valero [97], these losses are intrinsic to any process and 

many of them are unavoidable as stated by the second law of thermodynamics. The physical 

limitations posed by the combination of materials, together with the intrinsic efficiency of the 

current recycling technologies have been previously analyzed by Reuter et al. [98], Ignatenko, 

van Schaik and Reuter [99] or Castro et al. [100–101]. According to Reuter [106], one of the key 

drivers of a true circular economy is metallurgy and the understanding of entropy in each of its 

facets is essential. 

In depth recyclability assessments of vehicles have been performed by van Schaik et al. 

[54,96,107], who developed dynamic and fuzzy rule models to predict the liberation behavior and 

therefore the quality of e.g. recycles as a function of design choices. This in turn provides a 

technology based feedback to the designer on the consequences of material combinations, 

connections and joints as defined in the design stage of the product. A useful software to undertake 

such analyses is HSC Sim 9 simulator [108], which also allows to quantify the environmental 

impact via Life Cycle Assessments as well as through exergy. 

It should be stressed that recyclability assessments are intricate and work intensive because as it 

was published by van Schaik et al. [103] and Mesker et al. [104] products are complex 

combinations of materials changing rapidly and continuously over time and  have an effect on the 

metals and other materials obtained after their recycling. This is why, considering that a car is 

made up of over 1,000 different car parts, it is advisable to rank them according to the intrinsic 

value of the materials contained in the given component, as proposed in this Thesis. Once ranked, 

recyclability assessments can be subsequently performed to those car parts selected as more 

valuable from a material point of view and so find ways to improve the eco-design of the product.  
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2.5. Eco-design of vehicles from a raw materials point of view 

The development of products with improved environmental performance is regarded as a crucial 

component of companies’ commitment towards sustainable development (Rodrigues, Pigosso and 

McAloone [110]). This is why in recent decades the sustainability concept has acquired growing 

importance and a large number of methodologies, tools, standards and regulations have been 

developed to promote the implementation of its principles inside industrial companies (Plouffe et 

al. [111] ).  

In this respect and as demonstrated by Luttropp and Lagerstedt [112] acting in the design phase 

is the most important moment inside a product lifetime. As van Schaik and Reuter [96] state, 

during this phase not only the specifications are set, but also the quality of recycling, which is 

conditioned by the liberation of materials during shredding which in turn strongly depends on the 

design. In the industrial field, eco-design can be defined as an approach to consider and integrate 

environmental aspects in the product development process through the application of strategies 

aimed at reducing the negative environmental impact along the product lifetime (Rossi, Germani 

and Zamagni [113]). According to Hollander, Bakker and Hultink [114] and Luttropp and 

Lagerstedt [112] eco-design provides product designers with a range of guiding principles, 

strategies and methods  and encourages better environmental product performance by means of: 

closing resource loops, minimizing resource consumption, promoting repair and upgrading, 

product long life and recycling. 

In Europe, eco-design requirements are defined by the European Directive 2009/125/EC, but this 

legislation applies to all products related to energy with the exception of vehicles [115]. For the 

latter, eco-design approaches are focused on ensuring that the requirements established by the 

ELV EU Directive [116] and polluted emissions EU regulations [117] are met. In addition to 

complying with these requirements, vehicle manufacturers can also implement in their products 

eco-design approaches according to ISO 14006, as has been the case of some vehicle companies 

like SEAT S.A [118]. According to Aran-Landin and Heras-Saizarbitoria [119], ISO 14006 has 

as main aim to reduce the environmental impact of companies along the following phases: product 

design, manufacturing, transport, operation, maintenance and EoL. 

In the light of the increasing environmental impacts and raw material pressure of the vehicle 

sector, it becomes crucial to apply eco-design approaches and so increase the resource efficiency 

throughout a car’s life cycle. Common methods used by different authors such as Hernandez et 

al. [84], Lee et al. [124], Mayyas, Mayyas and Omar [125], Delegu et al. [126], Ozbilen, Dincer, 

and Hosseini [127] and Viñoles-Cebolla, Bastante-Ceca and Capuz-Rizo [128] for the eco-design 

of vehicle components is through Life Cycle Assessment (LCA). They are aimed at assessing 

products impacts from a cradle to grave perspective, considering material production, product 
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production, product use and product End of Life (EoL). LCA also serve to assess the 

environmental performance of products. This way, for instance, Tagliaferri et al. [125] undertook 

a Life Cycle Assessment (LCA) with Ecoinvent [126] data and compared an ICEV and a BEV. 

Meanwhile, Domingues et al. [127] applied a multi-criteria decision and a LCA methodology to 

classify different LDV (ICEV, PHEV, BEV) according to their environmental impacts. Similarly, 

Bauer et al. [128] made an evaluation of the environmental performance of current and future 

LDV, assessing four types of vehicles: ICEV, PHEV, BEV and fuel cell vehicles (FCV). 

In the case of the material production phase, Song and Lee [129] state that common methods are 

based on assessing the impacts related to the acquisition of natural resources and their later 

processing by means of using specific LCA tools such as GaBi or SimaPro [130]. Yet according 

to Amini et al. [89] there is an open debate whether these methods reflect well the depletion of 

natural resources.  In this respect, this thesis proposes an alternative method based on the second 

law of thermodynamics through rarity indicator to identify critical components and so advise for 

eco-design approaches.  
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2.6. Conclusions 

After an analysis of the state of the art of resource efficiency in the automobile sector the 

following conclusions serve as arguments to develop this Thesis:  

 In the literature, there are already assessments of raw material use in vehicles. Yet these 

are still very coarse and in any case they do not provide information regarding where 

these materials are found in the car. This is why, to the author’s knowledge, this Thesis 

provides the most detailed analysis of metals and components used in vehicles (Chapter 

4). 

 There is a concern about the availability of raw materials for the next decades and some 

studies have addressed the issue of possible supply shortages for certain technologies. 

That said, an in-depth assessment about how will be the vehicle sector affected by metal 

shortages is missing. This Thesis addresses this gap, Chapter 5 and Chapter 7 possible 

bottlenecks and the most strategic metals for the automobile sector until 2050 are 

presented.  

 The common approach for measuring resource efficiency in the literature is through 

weight, thereby ignoring the quality of raw materials. For this reason, in this Thesis 

(Chapter 6) an alternative unit of measure called thermodynamic rarity (explained in 

Chapter 3) is used to assess the resource efficiency of vehicles. This method takes into 

account not only the quantity but also the quality of any material and it allows to measure 

the resource efficiency of vehicle components or vehicles as a whole. 

 From the literature review it has become evident that current recycling processes do not 

incentivize the recycling of scarce metals. Yet an assessment of what is the loss of the 

mineral capital due to the downcycling of these metals is missing. This is why in this 

Thesis (Chapter 8) an analysis of the most downcycled metals and components in a car is 

done, giving a global vision about the huge amount of valuable raw materials that become 

lost. Some recommendations to reduce such losses are also provided.  

 Eco-design of vehicles is key to improve their sustainability. That said, if resource 

efficiency does not consider the quality of all raw materials used, eco-design cannot be 

properly done. So in this Thesis (Chapter 9) eco-design recommendations are proposed 

for the most critical components identified in the vehicle using a thermodynamic 

approach.
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3.1. Introduction to the chapter 

Chapter Fundamentals presents some basic principles required to obtain a global vision about the 

methods applied in each Paper. For this endeavor, this Chapter is divided into the followings two 

main sections: 

 Bottlenecks identification: This section will be useful to understand the method to assess 

the possible raw material bottlenecks in the vehicle manufacturing sector until 2050. 

 Exergy approach and reference state to quantify the physical value of metals: This 

section will explain how resource efficiency can be assessed from a physical and 

universal point of view by means of thermodynamics. 

3.2. Bottlenecks identification 

One of the most important contributions of this Thesis is the possibility to identify possible metal 

shortages for the future vehicle manufacturing sector. This method has been applied in Paper I 

and Paper III to identify possible bottlenecks for the development of green technologies9 and to 

create a metal strategic ranking, respectively. The identification of bottlenecks has been done 

using a combination of bottom-up and top-down approaches, as defined as follows: 

 Bottom-up approach: assessment, on a global basis, of reserves, resources and estimated 

production trends from 2016 to 2050 (assuming a Hubbert-like production trend) for each 

commodity.  

 Top-down approach: assessment of material requirements in the 2016-2050 time period 

for 1) manufacturing green technologies, assuming state of the art developments and for 

2) manufacturing products for the rest of economic sectors.  

3.2.1. Resources and Reserves 

As extraction is ultimately limited by the amount of minerals present in the crust with sufficient 

concentration, it is important to know raw material availability in terms of reserves and resources. 

Resources (RES) are concentrations of naturally occurring materials on the Earth’s crust in such 

a way that economic extraction is feasible, currently or at some future time. Reserves (RSV) in 

turn are the portion of resources which can be economically extracted or produced at the time of 

determination. Reserves are thus lower than resources and more dynamic, since identified 

resources can be reclassified as reserves when commodity prices rise or a decrease in production 

costs takes place. Different sources have been compared and those considered more accurate have 

                                                      

9 In this Thesis the term Green technologies refers to: wind power, solar photovoltaics, solar thermal power 

and electric vehicles. 
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been used for the methodology in this Thesis: USGS [131]; Sverdrup and Ragnarsdottir [132]; 

Emsley [133]; Frenzel et al. [134] and Frenzel, Ketris and Gutzmer [135]. Information regarding 

reserves and resources of rare earth elements (REE) comes from Haque et al.  [136] and USGS 

[131].  

3.2.2. Annual capacity production 

As annual production rates need to be synchronized with the rising demand of materials, 

projections regarding future raw material production are equally required. To accomplish this task 

it is assumed that material production will follow the Hubbert peak model. Hubbert [38,137] 

showed that trends in fossil fuels production always followed the same pattern. The curve of 

production started slowly before rising steeply and tending towards an exponential increase over 

time.  

This trend goes on until reaching an inflection point, upon which the curve starts to decrease, 

generating a bell-shaped curve of normal distribution. The area below the curve depends on the 

combination of the available reserves or resources and the historic production data of the 

commodity. Production of commodity a (pa) in year t is given by Equation 1: 

𝑝𝑎(𝑡) =
𝑅

𝑏0√2𝜋
𝑒

−
1
2

(
𝑡−𝑡0

𝑏0
)

2

 (1) 

Where R are the reserves (RSV) or resources (RES) of the commodity and the parameters b0 and 

t0 are the unknowns. The function's maximum is given by parameter t0, and it verifies that: 

𝑝𝑎(𝑡0) =
𝑅

𝑏0√2𝜋
 (2) 

With this approach, the maximum production peak of the commodity can be obtained, meaning 

the year when production starts to decrease. Additionally, future yearly projections of production 

can be obtained using a business-as-usual scenario. It is presumed that production will continue 

rising with an exponential trend, as it has been the case for most commodities. Yet geological 

availability in form of reserves or resources prevents at some point this continuing growth.  

The model has uncertainty, for this reason the coefficient of determination (R2) for each metal 

production capacity has been calculated. This coefficient is used to correct the value of the lineal 

interpolation always extending the maximum capacity year and thus keeping the criteria of a best 

case scenario. 
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3.2.3. Material demand 

Metal demand must be calculated to identify future metal shortages. This was done by assessing 

the metal composition to manufacture different green technologies through data compilation 

published in the literature in the case of green technologies (Paper I) and by means of direct data 

from a car manufacturer in the case of vehicles (Paper III).  

It was considered that a certain amount of raw materials comes from secondary sources (recycling 

processes). As the available information on recycling rates is usually very aggregated or general, 

recycling rates used in this study come from a global assessment published by the United Nations 

Environmental Program [138]. Eq. 3 shows how material demand in the studied technologies is 

calculated for a given year for each commodity: 

𝑑𝑎_𝑡𝑡 = [𝑁 ∗ 𝑀 ∗ (1 − 𝑟)] (3) 

Where da_tt is the quantity of primary material a demanded for the analyzed type of technology 

(tt) during a given year; N is the number of yearly manufactured units of each type of technology; 

M is the quantity of material a demanded by each type of technology to manufacture one 

functional unit - FU (FU=1 vehicle or FU=1 MW in the cases of vehicles and renewables, 

respectively); r is the share of material which comes from recycling. The impact of recycling on 

primary production is assumed as one to one displacement because reprocessing does not change 

material properties. It should be stated though that as Geyer, Kuczenski, Zink et al. [139] 

demonstrated, this approach is not a rule because rebound effects in demand could appear, so 

robust models to predict the impact of recycling on primary demand must be yet developed. As 

the projections used in Papers I and III go until 2050 and the technology lifetime is lower, 

material demand from fleet renovation and repowering effects was considered. This effect is taken 

into consideration using Equation 4.  

𝑁 = 𝑁𝑛𝑔𝑡 + 𝑁𝑟𝑔𝑡 (4) 

Where Nngt is the number of new green technologies manufactured which are added to the global 

fleet and Nrgt is the number of green technologies to renew old ones. Nevertheless, it must be also 

considered that these technologies (renewables and the automobile manufacturing industry) will 

need to compete for materials with many sectors, such as construction, chemicals, metal industry 

or electronics. Unfortunately, in the case of the rest of the sectors, the information on material 

consumption is scattered and in many cases unavailable. This is why it is assumed that material 

demand for other sectors (𝑑𝑎_𝑜𝑠) will be kept constant until 2050 and equal to the difference 

between total material production in 2018 (Pa)2018 and material demand for green technologies for 
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the same year (𝑑𝑎_𝑔𝑡)2018 (Eq. 5). Obviously, this is a very conservative assumption as 

historically material demand for other sectors has usually increased year by year. That said, this 

assumption allows us to identify the lower bound for potential material constraints regarding 

material competition of green technologies with other sectors. 

𝑑𝑎_𝑜𝑠 = (𝑃𝑎)2018 − (𝑑𝑎_𝑔𝑡)2018 (5) 

Accordingly, total demand for a given commodity a in year t (𝑑𝑎_𝑇) is calculated by means of Eq. 

6, whereas the total cumulative material demand for commodity a (𝐷𝑎_𝑇) from 2018 to 2050 is 

obtained through Eq. 7. 

    (𝑑𝑎_𝑇)𝑡 = (𝑑𝑎_𝑔𝑡)𝑡 + (𝑑𝑎_𝑜𝑠)𝑡 (6) 

𝐷𝑎_𝑇 = ∑ [(𝑑𝑎_𝑇)𝑡]

𝑡=2050

𝑡=2018

 (7) 

3.2.4.  Recycling improvements 

How can one avoid a potential bottleneck? This is one of the main questions when a bottleneck 

has been identified.  Certainly, there are many ways to overcome them. In addition of increasing 

material supply (i.e. investment in exploration efforts to increase reserves and eventually 

resources), from the demand side, change of technologies, improving material efficiency or 

substitution of materials for a given application or technology (i.e. bio-based materials for metals) 

are some possible options. It should be though not forgotten that substitution can in some cases 

reduce product performance or even increase the price, as it was demonstrated by Graedel et al. 

[22]. 

In this Thesis, we focus on one of the possible solutions, increase functional recycling. To that 

end, the objective is to calculate the annual recycling growth that should be achieved to avoid the 

given bottleneck. This is than with equation 8. 

𝑅𝑒𝑓 = 𝑅𝑒𝑖 ∗ (1 +
𝑟

100
)

𝑓−𝑖

                                         (8) 

Where Re is the recycling quote of a given metal in a year, f and i are final and initial years of the 

assessment period and r is the annual growth recycling rate (%) with respect to the previous year. 

It should be stated that in reality, a combination of all above mentioned options will likely take 

place. That said, this method gives an indication of where to enhance recycling efforts. 
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3.3. Exergy approach and reference state to quantify the physical value of metals 

Once the method to identify possible bottlenecks has been explained, the present section shows 

the thermodynamic approach used in this Thesis. But before that, it is important to understand 

why it was decided to use thermodynamics. As it has been explained in Section 1.1 (Objectives) 

one of the main aims of this work is to identify the most critical metals and components used in 

a vehicle from a raw materials point of view. The most obvious approach to account for resources 

is through their weight (i.e. a mass-based approach). This is straightforward and is always 

required. Yet if one stays at this level and compares different types of resources, we need to face 

the problem of mixing apples with oranges. Beyond this mass-based approach, one could evaluate 

resources through prices. However the monetary value of resources is very volatile and depends 

on many factors alien to the physical reality of the resource. As stated by Oers and Guinée [140], 

prices are influenced by particular economic markets, national social conditions reflected in labor 

costs, the power of mining companies with a monopoly, the costs of identifying new reserves. 

Moreover, money is subject to speculation, devaluation, geopolitical interests, trust in an 

economy, etc. On top of this, it is not a universal numeraire, and a dollar might change its value 

with respect to a euro or to a yen at a given time. So the challenge is to find a universal numeraire 

that serves to account and measure resource efficiency of products. 

Other physical-based indicators that could eventually come into play are “the ecological 

footprint”, which consists of converting equivalent global hectares to the direct and indirect 

consumption of resources (Wackernagel and Rees [141]) or “emergy”, expressing the amount of 

direct and indirect solar energy needed to produce any product or service Odum [142].  The 

problem with the first is that the environmental impact on mining is hardly measurable with 

biologically productive area and is consequently insensitive to depletion problems. The use of 

emergy in turn is questionable for mineral resource assessment, as the sun has not played a central 

role in their creation. 

In this respect, thermodynamics might have a better answer to the challenge of mineral resource 

accounting. Thermodynamics can be used to quantify the value of a natural resource through a 

property called exergy. Exergy can be defined as the minimum amount of work necessary to 

produce a given resource with a specific structure and concentration from common materials in 

the environment (Stanek et al.  [143]). Accordingly, this property is a measure about the 

usefulness of a system with respect to its surrounding environment. This usefulness is due to being 

at a different state than the environment that surrounds it. The fact of being in non-equilibrium 

with the environment makes it distinguishable and consequently useful and valuable. Thus, the 

exergy of a system gives an idea of its evolution potential for not being in thermodynamic 

equilibrium or “dead state” with the reference environment. At the dead state, a system is at the 
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temperature and pressure of its surroundings; it has no kinetic or potential energy and it does not 

react with the surroundings. All substances have a definable and calculable exergy content, with 

respect to a defined external environment. Once the environment is specified, exergy can be 

regarded as a property of the system. 

Taking into consideration this statement a a mineral deposit can be considered a natural resource 

with an exergy content (Valero, Valero and Vieillard [144]). This exergy content is attributed to 

the chemical composition, cohesion degree and concentration (ore grade) which is different from 

its environment surroundings. Certainly, the own fact of having minerals concentrated in mines 

instead of being dispersed throughout the crust makes them especially valuable (Valero and 

Valero [145]), because this saves huge amounts of energy when compared if one would need to 

extract and concentrate minerals from much lower ore grades or in the limit, from barerock.  

To quantify the physical value in exergy terms of any substance, it is necessary to define the 

reference environment, i.e. the starting baseline with respect to which any system can be 

compared. For mineral resources, Valero, Valero and Gómez [146] proposed a reference 

environment of minimum exergy, called Thanatia, representing a mineral exhausted Earth. 

Thanatia was defined as “a hypothetical state of the Earth where all minerals are dispersed along 

the crust and all fossil fuels have been burned” (Valero and Valero [101]).  

In Thanatia, there are no high grade deposits and the mineralogical composition is constant 

throughout the entire crust and is approximately equal to the current planetary average upper 

crust. Consequently, all the elements of the periodic table are dispersed in the form of minerals at 

very small concentrations.  

The starting point to develop the model was the mineralogical composition proposed by Grigor´ev 

[147], which was further improved considering the chemical composition in terms of elements 

proposed by Rudnick and Gao [148]. Accordingly, Thanatia’s crust incorporates information 

regarding composition and crustal concentration of the nearly 300 most abundant minerals in the 

upper crust. With Thanatia as the reference environment, one can now calculate the exergy of a 

given mineral, by means of the concentration exergy (bci) as expressed in Eq.9 (Faber and Proost 

[149]): 

 

(9) 
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Being R the universal gas constant (8.314 kJ/kmolK), T0 is the temperature of the reference 

environment (298.15 K) and xi is the concentration of substance i. The difference of the 

concentration exergy obtained with xi being the ore grade of a given mine and with xi being 

Thanatia’s concentration of the mineral is called “replacement exergy” and represents the 

minimum energy (exergy) required to form the mineral from the concentration in the Earth’s crust 

(xc) to the concentration in the mineral deposits (xm). In this way, the average exergy of different 

substances was obtained, considering global average ore grades (xm), mainly derived from Cox 

and Singer [150]. 

3.3.1.  Exergy Replacement Cost 

It should be noted that exergy only provides minimum values which are far removed from societal 

perception of value. This is because as per definition, it considers that all involved processes are 

reversible.  Yet man-made processes are very irreversible and in reality, one would need k-times 

the minimum exergy (Eq. 10): 

𝑏𝑐𝑖
∗ = 𝑘 ∙ 𝑏𝑐𝑖 (10) 

Accordingly, instead of replacement exergy, we need to resort to exergy replacement costs, which 

are defined as the exergy required to concentrate a given mineral from Thanatia’s dispersed 

conditions to the current concentration found in the mines with prevailing technology. Variable k 

is a constant called unit exergy cost. It is the ratio between a) the real cumulative exergy required 

to accomplish the real process to concentrate the mineral from the ore grade xm to the commercial 

grade xr and b) the minimum thermodynamic exergy required to accomplish the same process. 

An implicit assumption in the methodology is thus that the same technology applies for 

concentrating a mineral from xm to xr than from xc to xm.  

Exergy replacement costs can be seen as an avoided cost or “bonus” that Nature provides for free 

for having minerals concentrated in mines and not dispersed throughout the crust. This bonus is 

related to mineral scarcity in Nature. Note that scarcity is here referred as the relative low 

concentration of the given mineral in the crust, in contrast to the more anthropogenic definition 

by Oers and Guineé [140] where a specific mineral is scarce if “the amount available for use is, 

or will soon be, insufficient”. 
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3.3.2. Embodied Exergy  

It should be stated that exergy replacement costs are an important part of the physical value of a 

substance but not the only one. A mineral resource from which useful materials are obtained can 

be regarded as valuable from a physical point of view when 1) It is scarce in Nature and/or 2) It 

is costly to obtain.  

The second part refers to the energy associated to extract, beneficiate and refine the mineral to 

produce the useful element or commodity. In other words, the embodied exergy cost incurred by 

companies in mining and metallurgical processes. These costs increase as ore grades decline and 

so the Earth approaches to Thanatia.  

From a Life Cycle Assessment (LCA) point of view, this part corresponds to a cradle to gate 

approach, whereas exergy replacement costs to a grave to cradle approach as it is related to the 

exergy required to restore natural mines from the grave, i.e. Thanatia [151]. Using embodied 

exergy and not embodied energy as commonly done in conventional LCA has an additional 

advantage: cost allocation among simultaneously produced materials or energy flows is carried 

out according to the quality of the streams, i.e. through exergy and not through tonnage or 

monetary costs.  

Moreover, as demonstrated by Valero and Valero [152], exergy allocation brings the advantages 

of monetary allocation (resulting costs are close to societal perception of value) and those of 

tonnage allocation (stable and absolute value independent of market fluctuations). 

3.3.3. Thermodynamic Rarity 

The sum of exergy replacement cost and embodied exergies is what Valero and Valero [101] 

named thermodynamic rarity of minerals. Thermodynamic rarity can be thus defined as the 

amount of exergy resources needed to obtain a mineral commodity from ordinary rock (Thanatia), 

using the prevailing technology. Hence, it allows taking Nature into account as it apprehends both 

ideas: 1) conservation, because it advices to preserve those minerals that are scarce through exergy 

replacement costs and 2) efficiency, because embodied exergies indicate real energy expenditures 

that should be decreased in order to be cost-effective. Thermodynamic rarity varies from mineral 

to mineral, as a function of absolute scarcity in Nature and the state of technological development 

(see Figure 1).  
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Figure 1: Thermodynamic rarity represents the exergy cost (kWh) needed for producing a 

given mineral commodity from bare rock to market,  i.e., from Thanatia to the mine and 

then to post beneficiation. Source Valero and Valero [153] .  

Note that if technology does not change, rarity can be assumed to be constant. Before effective 

mining appeared, mineral deposits were abundant and highly concentrated (the natural bonus was 

high and so the exergy replacement costs). In turn, it was very easy to mine and beneficiate 

minerals (embodied exergy costs were low). Throughout history, the low hanging fruits have been 

already mined, steadily resulting in exploitation of lower ore grade mines. Nowadays, the mining 

industry needs to go deeper, further and more energy intensively than before (the natural bonus 

has been decreased), i.e. exergy replacement costs have been converted into embodied exergies. 

In some cases, technology improvements could partially offset decreasing ore grades (Swart and 

Dewulf [154]). Yet, as demonstrated by Calvo et al. [155] for the case of copper, ore grades have 

generally declined throughout history leading to greater energy costs. 
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In short, this Thesis proposes to evaluate resource efficiency in vehicles through the 

thermodynamic rarity indicator. It should be mentioned that measuring resource efficiency of 

products would be impossible with other criticality assessments such as the one defined by the 

European Commission, based on supply risk or economic importance, since both indicators are 

dimensionless. This is why Calvo, Valero and Valero [28] proposed rarity as a new dimension in 

the criticality assessment of minerals. Thermodynamic rarity values used in this Thesis are shown 

in Table 1. 

Table 1: Embodied Exergy, Exergy Replacement Cost and Thermodynamic Rarity values 

of different metals . Valero and Valero [101]  

Metal 
Embodied 

Exergy 

Exergy 

Replacement Cost 

 

Thermodynamic 

Rarity 

Ag 1,566 7,371 8,937 

As 28 399.84 427.84 

Au 108,626 546,057 654,683 

Ba 1 38.34 39.34 

Be 457.20 252.73 709.93 

Bi 56.40 489.22 545.62 

Cd 542.40 5,898 6,440.40 

Ce 523 97 620 

Co 138 10,872 11,010 

Cr 36.40 4.50 40.90 

Cu 56.70 291.70 348.40 

Dy 384 348 732 

Er 384 348 732 

Eu 384 348 732 

Ga 610,000 144,828 754,828 

Gd 3,607 478 4,085 

Ge 498 23,749 24,247 

Hf 0 32,364.36 32,364.36 

Hg 409 28,298 28,707 

In 3,320 360,598 363,918 

Ir 2,870,013.09 2,870,013.09 

La 297 39 336 

Li 432 546 978 

Mg 0 145.73 145.73 

Mn 57 16 73 
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Mo 148 908 1,056 

Nb 360 4,422 4,782 

Nd 592 78 670 

Ni 234 524 758 

Pb 4 37 41 

Pd 2,870,013.09 2,870,013.09 

Pr 296 577 873 

Pt 2,870,013.09 2,870,013.09 

Rh 156 102,931 103,087 

Ru 2,870,013.09 2,870,013.09 

Sb 13.40 474.49 487.89 

Sm 384 348 732 

Sn 26.60 426.35 452.95 

Ta 3,083 482,828 485,911 

Tb 384 348 732 

Te 589,405.30 2,235,699 2,825,104.30 

Ti 196.45 6.67 203.12 

U 188.80 901.40 1,090.20 

V 517 1,055 1,572 

W 594 7,429 8,023 

Y 1,198 159 1,357 

Yb 384 348 732 

Zn 41.90 155.03 196.93 

Zr 1,371.50 654.43 2,025.93 
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3.4. Conclusions 

This chapter has served to provide an overview of the methodological tools used in this Thesis to 

assess 1) potential bottlenecks found for the car industry and 2) resource efficiency in vehicles. 

For the first, several equations have been proposed which should account for future demand trends 

in green technologies and other sectors. 

For measuring resource efficiency, a novel indicator called thermodynamic rarity has been 

proposed as an alternative unit of measure than mass for material assessment, as it gives a greater 

weight to those substances that are more valuable from a physical point of view. Thermodynamic 

rarity is a universal and much more stable unit of measure than money, reflecting physical 

criticality of mineral resources.  

The methodology does not incorporate energy costs associated to the manufacturing and use 

phases of the products where the materials are contained, something that can be assessed through 

conventional LCA. It only focuses on the physical value of the substances per se.  

It is also important to state that rarity should not be confused with recyclability. Rarity measures 

the exergy impact of materials contained in a component, considering the scarcity of these 

materials in Nature, by means of the ore grade in mines and the exergy required to extract them 

from a hypothetical bare rock to post-beneficiation conditions.  

With this approach, one does not take into account how these materials are found in the specific 

component. Truly, it is not the same if Co is found homogeneously spread all over the vehicles, 

or if it is found almost pure in some components. This will not affect the results of the rarity 

assessment, but will affect recyclability significantly.  

Recyclability in turn depends on the components where materials are contained and hence for 

each metal a myriad of options appear. Recyclability assessments are out of the scope of this 

Thesis, but are indeed a natural follow up of it. Next chapter is devoted to provide an in depth 

analysis of metal content in vehicles which will serve to subsequently analyze their resource 

efficiency through rarity indicator.  
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Chapter 4. Metal composition of passenger 

vehicles. 
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4.1. Introduction to the chapter 

The aim of this chapter is to provide an analysis of the metal content in different types of passenger 

vehicles. Such compositions will be used in this Thesis to carry out resource efficiency analyses. 

Beyond being useful for this Thesis, the data generated is valuable on its own for further research. 

This is because, to the author’s knowledge, such a detailed raw material composition of vehicles 

was never published before. The data compilation was undertaken through a combined approach. 

On one hand a scientific review of literature data was performed and on the other hand an internal 

IT system from SEAT S.A was used. Data from literature was useful to define the metal 

composition of hybrid and electric vehicles (PHEV and BEV), while the IT system was valuable 

for internal combustion engine vehicles - ICEV (petrol and diesel).  

4.2. Foreword to the data collection process 

Data collection from SEAT S.A IT system allowed to build a matrix with the metal composition 

of the following models:  

 SEAT Leon 35010 Petrol: 1.4 TSI FR 5d.  

 SEAT Leon 350 Diesel: 2.0 CR FR 5d.  

 SEAT Leon 37011 Petrol: 1.4 ACT FR 5d.  

 SEAT Leon 370 Diesel: 2.0 CR FR 5d.  

Table 2 shows a compilation of the main data generated and assessed along this process: 

Table 2: Data generated and assessed. Own elaboration by means of an IT System from SEAT S.A 

 Petrol 350 Diesel 350 Petrol 370 Diesel 370 

No. of components assessed 1,207 1,153 1,094 1,052 

No.  of data generated 82,076 78,132 74,392 71,536 

This analysis was the first step to have a reliable set of data for the following activities developed 

in the Thesis: 

 To identify what are the most strategic metals of the automobile sector (Paper III). 

 To calculate the downcycling degree of any vehicle component at the EoL recycling 

processes and the later definition of recommendations to reduce this downcycling (Paper 

IV)  

                                                      

10 SEAT Leon 350 is the model II version (sold from 2005 to 2012) 

11 SEAT Leon 370 is the model III version (sold from 2012 to nowadays)  
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 To identity the most critical components from a resource efficiency point of view and the 

definition of eco-design recommendations for these components (Paper V).  

It is obvious that all vehicles which are in the world automobile fleet have not the same metal 

composition used in this Thesis. Nevertheless it must be highlighted that the vehicle used (a 

Hatchback model of segment C) is a very representative one because according to ANFAC data 

[156] it has been the most sold vehicle in Spain in 2018 and according to ACEA [157] the medium 

segment has covered between 46 % to 49 % of the total European sales from 1995 to 2017.  

Finally, it must be mentioned that because of confidential issues, vehicle metal compositions 

published in this Thesis and in its associated papers contains aggregated data. These data are 

presented for the vehicle as a whole and for the following vehicle subsystems: (engine, wheels 

and brakes, fuel tank and exhaust system, transmission, body, front axle, rear axle, accessories, 

electrical equipment and frames). 

4.3. Vehicle metal composition 

To identify what materials are used by different types of vehicles, initially a state of the art 

obtained from a revision of scientific bibliography has been undertaken. Table 3 summarizes 

aluminum, steel, copper and cast iron vehicle contents compilations as published by different 

authors. 

Table 3. Common materials used in passenger car vehicles through different authors (in kg). 

Author Aluminum Steel Copper Cast iron 

Gonzalez Palencia et al. 

[158] 

100 (FCHEV) 

200 (BEV) 

50 (ICEV) 

760 (FCHEV) 

770 (BEV) 

740 (ICEV) 

25 (FCHEV) 

150 (BEV) 

25 (ICEV) 

20 (FCHEV) 

20 (BEV) 

50 (ICEV) 

Spielmann, Althaus [159] 52.41    

Castro, Remmerswaaland, 

Reuter [160] 
31.24    

Schmidt et al. [161] 198    

Well [162] 88.4    

Amatayakul, Ramnas 

[163] 
96 624   

Lewis, Keoleian, Kelly 

[164] 

90 (ICEV) 

100 (HEV) 

100 (PHEV) 

710 (ICEV) 

710 (HEV) 

750 (PHEV) 

50 (HEV) 

50 (PHEV) 

20 (ICEV) 

20 (HEV) 

20 (PHEV) 
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Author Aluminum Steel Copper Cast iron 

USGS [45], [44] 88.45 975.22   

As can be seen, such compilations only show major metals found in a car. Yet as stated in previous 

chapters, the impact of critical materials is becoming gaining more and more importance in the 

sector. For this reason, a revision of specific works focused on critical materials was undertaken. 

Table 4 shows these studies. 

Table 4. Compilation of critical materials used in passenger car vehicles (in g). 

 Author and type of vehicle assessed 

Material 

Cullbrand and 

Magnusson [67] 
Du and Graedel [165] Du et al. 

[70] 

Alonso et al. 

[69] 

Grandell et al. 

[8] 

ICEV PHEV max min ave PHEV BEV12 

Cerium 12.91 0.31 80 6 6 0.02 81  

Cobalt   160 5 6    

Dysprosium 1.96 129.66 25 5 6 0.03 27.45 210 336 

Erbium 0 0.18       

Europium <0.01 <0.01     0.45  

Gadolinium <0.01 <0.01 0.36 0.01 0.12 0.05 0.36  

Gallium 0.42 0.57 11 0.1 0.25   1.05 1.68 

Germanium        0.05 0.08 

Gold   0.21 0.01 0.15   0.2 0.32 

Indium 0.38 0.08 0.42 0.01 0.15   0.05 0.08 

Lanthanum 0 6.68 12 0.8 5.2 12 8.1  

Lithium 1.36 6,256.55       

Molybdenum   170 5 5    

Neodymium 27.6 531.88 300 5 7 2.16 297 360 576 

Niobium 89.81 109.14 150 5 10    

Palladium 1.24 1.81 10 0.1 0.25    0.12 

Platinum 7.85 5.51 5.5 0.1 0.25    

Praseodymium 2.47 4.01 25 5 6 0.07 30.6 120 192 

                                                      

12 Original values are published for a 50 kW motor. 
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 Author and type of vehicle assessed 

Material 

Cullbrand and 

Magnusson [67] 
Du and Graedel [165] Du et al. 

[70] 

Alonso et al. 

[69] 

Grandell et al. 

[8] 

ICEV PHEV max min ave PHEV BEV12 

Rhodium <0.01 <0.01       

Samarium 0.73 1.4 3.2 0.1 0.25 0 3.24  

Scandium       1.13  

Silver 17,5 50      6 9.6 

Strontium   180 30 140    

Tantalum 6.99 10.83 6 0.1 0.25    

Terbium 0 19.86 0.01 0.01 0.01 0.01 0 21 34 

Wolfram   3 0.1 0.2    

Ytterbium 0 0.16     0  

Yttrium 0.02 0.23 0.58 0.08 0.4 0.08 0.59  
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Since the storage system is one of the most critical components in PHEV and BEV, a deeper 

analysis of materials demanded by different types of batteries has been undertaken. In the 

following table a classification of current types of batteries and their projections are shown. 

Table 5. Different battery types and vehicle applications. Source: The Association of European Automotive and 

Industrial Battery Manufacturers [166] 

 
Conventional 

vehicles 
Hybrid vehicles 

Full electric 

vehicles 

Lead – Based Batteries 
Only as auxiliary 

battery 

Only as auxiliary 

battery 

Only as auxiliary 

battery 

Nickel – Based Batteries Non expected Expected Non expected 

Lithium – Based Batteries Non expected Expected Expected 

According to the literature review performed, lead based batteries will continue to be used in 

ICEV passenger cars for a long time to supply the energy for auxiliary devices and the starter 

system. NiMH batteries will compete in the market of hybrid vehicles with lithium-ion batteries, 

whereas the latter will be mainly used in full electric vehicles and plug hybrid vehicles. This is 

because of their high energy density and because their relatively greater cost is less of a barrier in 

these higher-end vehicles [166].  Although Li:ion technology is expected to be the reference in 

the following years, from a material point of view there are different types of Li:ion batteries. The 

following table shows an example of materials demanded in different Li:ion batteries: 

Table 6: Metal requirements in kg/kWh of different types of Li:ion batteries.  

Source: Simon, Ziemann and Weil [58] 

 Battery types 

 
NMC/C NCA/C LFP/C Li/S Li/air 

Nickel 0.4 1.55 0 0 0 

Lithium 0.14 0.24 0.18 0.42 0.15 

Cobalt 0.21 0.3 0 0 0 

Iron 0 0 1.25 0 0 

Manganese 0.4 0 0 0 0 

Aluminum 0 0.05 0 0 0 

In Li-ion batteries, NMC/C technology represents the current market availability. Nevertheless, 

an increase of NCA/C is expected due to its higher energy density. Besides, NCA batteries are 

used by the main electrical vehicle manufactures like TESLA [167] so it is expected to become 

the most important technology for electrical vehicles in the coming years. LFP/C, Li/S and Li-air 
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batteries are not considered since the implementation of this technology is not clear in the coming 

years as they are currently on an early development phase.  

Taking into account these facts, a deeper study of NCA chemistry batteries has been done. Table 

7 shows Li, Co and Ni contents of NCA batteries published by different authors13. 

Table 7. Material demand by type of vehicle in gr.  

Source: own elaboration through data from Simon, Ziemann, Weil [58]; Gaines, Sullivan, Burnham [168] 

and U.S Department of Energy [169] 

 [168] [58] [169] Average 

Li 9.01 7.2 9.3 8.50 

Ni 57.40 46.5 58 53.97 

Co 10.91 9 12 10.34 

Taking into consideration the results of this literature review, the following vehicle metal 

compositions were used in Papers I and II. 

Table 8: Vehicle metal composition (in grams) used in Papers I and II 

 

ICEV 
PHEV 

NiMH 

PHEV 

Li:ion 
BEV 

Ag 17.5 28.0 28.0 29.8 

Al 110,544 115,544 141,370 200,000 

Au 0 0.20 0.20 0.32 

Ce 46.95 2,127 49.67 0.15 

Co 0 8,313 2,712 9,330 

Cr 6,510 6,510 6,510 6,031 

Cu 28,500 43,481.92 59,166 150,000 

Dy 14.70 165.72 165.72 224.63 

Er 0 0.18 0.18 0.18 

Eu 0.23 0.23 0.23 0.23 

Fe 806,144 853,826 806,144 746,945 

Ga 0.42 0.81 0.81 1.12 

Gd 0.18 0.17 0.17 0.17 

Ge 0 0.05 0.05 0.08 

In 0.38 0.38 0.38 0.38 

La 4.04 14,555 7.38 7.38 

Li 1.36 1.36 2,242 7,709 

Mn 5,968 5,968 5,968 5,530 

Mo 260 260 260 260 

                                                      

13 Values adapted to a battery autonomy of 200 km. 
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Nb 426.30 426.30 426.30 426.30 

Nd 162 2,631 552.79 749.30 

Ni 1,780 82,832 16,049 55,724 

Pb 5,850 5,850 5,850 5,850 

Pd 1.24 0.94 0.94 0 

Pr 16.53 2,129 51.48 98.00 

Pt 7.85 5.51 5.51 0 

Rh 0.01 0.01 0.01 0 

Sm 1.98 2.32 2.32 3.15 

Ta 6.99 10.83 10.83 10.83 

Tb 0 13.62 13.62 26.93 

V 852.61 852.61 852.61 790 

Yb 0 0.08 0.08 0.16 

Y 0.41 0.41 0.41 0.41 

Weight analyzed (kg) 967 1,145 1,048 1,190 

Weight analyzed (%) 82.5 % 84,7 % 80 % 74.7 % 

Other mat. (kg) 206.1 206.1 263.1 402.4 

Total weight (kg) 1,173 1,351 1,311 1,592 

In Papers III, IV, and V it was possible to use values directly obtained from the car 

manufacturing company SEAT S.A. This fact allowed us on the one hand the use of more reliable 

data for diesel and petrol engines and on the other hand to extend the study to more metals. In 

these papers the following metal compositions were used. In PHEV and BEV cases, the values 

come from the scientific review previously presented in Table 8. 
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Table 9: Vehicle metal composition (in grams) used in Papers III, IV and V 

 
ICEV Diesel ICEV Petrol PHEV BEV 

Ag 10.19 19.47 28 29.80 

Al 61,103 78,343 141,370 200,000 

As 0.14 1.30 0 0 

Au 3.15 3.65 0.20 0.32 

B 23.76 26.37 0 0 

Ba 832.55 777.66 0 0 

Be 0.03 0.02 0 0 

Bi 8.81 8.84 0 0 

Cd 0.15 0.12 0 0 

Ce 2.67 0.37 49.67 0.15 

Co 9.72 8.06 2,712 9,330 

Cr 5,041 5,566 6,510 6,031 

Cu 15,584 15,376 59,166 150,000 

Dy 0.19 0.48 13.81 18.73 

Eu 0 0.0001 0.23 0.23 

Fe 701,095 653,524 806,140 746,945 

Ga 0.27 0.27 0.81 1.12 

Gd 0.0005 0.0005 0.17 0.17 

Ge 0.0036 0.003 0.05 0.08 

Hf 0.0027 0.008 0 0 

Hg 0.047 0.001 0 0 

In 0.216 0.21 0.38 0.38 

Ir 0.018 0 0 0 

La 0.341 0.40 7.38 7.38 

Li 22.06 4.63 2,242 7,709 

Mg 13,622 3,565 0 0 

Mn 4,333 4,211 5,968 5,530 

Mo 240.03 187.97 260 260 

Nb 154.20 145.57 426.30 426.30 

Nd 23.71 18.84 552.79 749.30 

Ni 1,590 2,993 16,049.57 55,724 

Pb 12,527 11,535 9,750 9,750 

Pd 1.99 1.84 0.94 0 

Pr 0.066 0.08 51.48 98 

Pt 3.79 0.13 5.51 0 

Rh 0.12 0.09 0.01 0 

Ru 0.012 0.013 0 0 
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Sb 15.70 35.36 0 0 

Se 0.013 0.02 0 0 

Sm 0.21 0.33 2.32 3.15 

Sn 208.53 234.61 0 0 

Sr 148.84 144.08 0 0 

Ta 4.65 6.53 10.83 10.83 

Tb 0.01 0.02 13.62 26.93 

Te 0.20 0.18 0 0 

Ti 541.41 536.41 0 0 

V 92.81 86.62 852.61 790 

W 9.24 3.17 0 0 

Y 0.07 0.13 0.41 0.41 

Yb 0.0003 0.0002 0.08 0.16 

Zn 6,614 6,502 0 0 

Zr 12.50 78.42 0 0 

4.4. Conclusions 

As mentioned in chapter 2, before this Thesis there was not much data available related to vehicle 

metal compositions (either it was scattered or limited). This is why with the aim to apply the 

methodology, the first step was to make an in depth literature review and a research about vehicle 

metal compositions. Fortunately, after this process a compilation of very reliable data was 

achieved, helping to strengthen the conclusions of this Thesis. 

In addition to vehicle metal contents, the composition of other green technologies, including solar 

photovoltaic, wind power and solar thermal power technologies was analyzed. This is because 

one of the objectives of this Thesis is the identification of possible future metal shortages affecting 

the manufacturing of vehicles, but also for other renewable technologies that will strongly 

compete for the same metals. The information about the metal composition of these technologies 

was published in the appendix of Paper I [170]. 
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5.1. Introduction to the chapter 

As was explained in Chapter 1, the research line of this Thesis begins giving a global overview 

about how metal demand will need to increase as a consequence of the energy transition. This 

period will be led by a global renovation of fleet vehicles where nonpolluting technologies must 

increase its presence to the detriment of fossil fuel based ones. Moreover, the growing electric 

vehicle fleet will need to be developed in parallel with a huge increase of renewable technologies 

to produce clean electricity. As a consequence, all technologies will compete for the materials 

required for their deployment. This is why this study analyzes material demands for vehicles and 

renewables. The conclusions will serve to identify those metals that could put at risk the very 

development of the vehicle sector in the next decades. 

5.2. The role of green technologies for the future development 

As was explained in Chapter 2 green technologies are crucial to achieve Paris agreements. Figure 

2 represents future projections to 2050 and as it can be checked a great growing is expected for 

any technology. 

This situation takes into consideration the repowering effect that happens at the end of life for 

each technology. For this reason, in 2038 a change in the tendency can be observed, when the 

first RES installation built at the beginning of the century has to be repowered. The lifetime 

considered for all renewable technologies is 25 years, as estimated by Raccurt et al. [170]; Bayod-

Rujula, Ortego and Martinez [171]. and EWEA [172]. Projections of cumulative installed power 

for each technology have been built using average values extracted from the following 

information sources: 

 Wind Power: EWEA [173] and IEA [174]. 

 Solar Thermal Power: Greenpeace [175] and IEA [176]. 

 Solar Photovoltaics. IEA [177] and Parrado et al. [178]. 

It is noteworthy that cumulative power will grow linearly up to 2050 for all the studied 

technologies with similar growing rates. The technology that will have a larger share in 2050 will 

be solar photovoltaic with more than 3,500 GW, followed by wind power, with 2,500 GW, and 

finally solar thermal with nearly 900 GW.  
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Figure 2: Demand projections for green technologies: a) yearly installed power, b) 

cumulative power, c) yearly sales of vehicles, d) world fleet evolution.  

For each renewable source, different types of technologies can be selected. In the case of wind 

power two main types of wind turbines have been considered: model 1, with gearbox, and model 

2, gearless, each with a constant market share of 75% and 25%, respectively (Lacal-Arantegui 

[180]). In the case of solar thermal power, today there are two main commercial possibilities: 

parabolic trough (PT) and central receptor system (CRS). The share of each technology in the 

market is considered to be 60% for PT and 40% for CRS according to IEA [177]. In the case of 

solar photovoltaic, a market mainly dominated by crystalline technologies, the share considered 

is 85%, with thin film technologies contributions (CIGS, CdTe and a-Si) of 5% for each one of 

them according to Elshkaki and Graedel [30]. 

In the case of light duty vehicles, the world fleet evolution and the sales projections by type of 

vehicle has been represented according to information published by the Spanish automobile 

manufacturer association [180] and Dulac [181]. In 2050 a world fleet of near 1,500 million of 

LDV is expected. Among them, ICEV will represent 21% of the fleet, PHEV, 45% and BEV, 

33%. ICEV sales will decrease from 2016 in favor of PHEV sales.  
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Additionally, BEV sales will mainly grow from 2025 onwards and in 2045 their sales will be even 

higher than PHEV. Considering these projections PHEV and BEV total share in the world fleet 

will be higher than the share of ICEV from 2041 and 2046, respectively. 

5.3. Types of bottlenecks 

The method developed in Paper I has the aim of identifying metal bottlenecks in green 

technologies which cover also electric vehicles. To accomplish this target this method combines 

reserves, resources, production and demand data, so as to classify possible constraint risks. Three 

risk categories were defined: very high, high and medium. This approach considers the expected 

projections of green technologies, recycling rates of metals initially assumed constant as well as 

metal demand for the rest of sectors, as shown in Table 10. 

Table 10: Risk definitions  

Type Definition 

Very High 2016 – 2050 cumulative demand ≥ current resources (𝐷𝑎_𝑇 ≥ 𝑅𝐸𝑆2015) 

High 2016 – 2050 cumulative demand ≥ current reserves (𝐷𝑎_𝑇 ≥ 𝑅𝑆𝑉2015) 

Medium Annual demand  ≥ annual primary production     ((𝑑𝑎_𝑇)𝑡 ≥  (𝑝𝑎)𝑡) 

The first and most restrictive constraint is associated with cumulative production surpassing 

available resources. This is because, as stated before, the amount of resources is an indication of 

the availability of a given commodity in the crust that could be potentially extracted now or in the 

future. 

The second one is related to reserves instead of resources. Note that reserves relate to that portion 

of resources that can be recovered economically with the application of extraction technology 

available currently or in the foreseeable future. It should be pointed out that reserves data are 

dynamic, as they can change with technology, prices, discovery of new deposits, among other 

factors. Therefore, results obtained with these data have to be considered as an indication rather 

than as a fact. Then, as reserves data are more dynamic, a bottleneck based on reserves can be 

considered less critical than one based on resources. 

The third constraint is associated to isolated supply shortages. This is assessed with the 

information coming from the bottom-up and the top-down approaches, through the intersection 

between future demand and future production estimations. For instance, using nickel expected 

demand in electric vehicles and other sectors, and nickel estimated production using the Hubbert 

model approach, a possible bottleneck can be identified beyond 2027 as shown in Figure 3. 
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Figure 3: Identification of possible bottlenecks using bottom -up (production) and top-

down (demand) combination approaches for the case of nickel.  

As for the previous constraint, it must be pointed out that any successful prediction 

obtained using the model depends on many different factors. According to Valero and 

Valero  [183] the reliability of the estimated reserves and resources is key, because it can 

shift the peak several years if these increase. A conservative approach is considered in 

this study, using resources and not reserves data for fitting Hubbert peaks. The nature of 

the commodities and their production processes are also an important factor in the 

reliability of Hubbert peak analysis. For instance, it was shown by Valero and Valero 

[153] that the production of primary metals such as iron, aluminum or copper can be 

adjusted well to a bell-shaped curve, whereas those obtained as by-products or co-

products have significantly poorer fits. For this reason, from the three mentioned 

constraints, this last one can be considered as the least critical from all, since future 

production trends have a high uncertainty level and as long as there are enough reserves, 

markets can almost always (to a certain level) adjust their production. 
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5.4. Results 

5.4.1. Raw material constraints summary 

Table 11 summarizes all the studied materials and their risk classification. The sole material with 

very high identified availability risk is tellurium. At high risk are in addition to tellurium, silver, 

cadmium, cobalt, chromium, copper, gallium, indium, lithium, manganese, nickel, tin and zinc. 

Finally, materials which only fall in the moderate future availability risk category are dysprosium, 

molybdenum, neodymium, selenium and tantalum, as their annual demand may exceed annual 

production before 2050.   

Table 11: Studied materials and risk  classification .  

 Type of Risk Technology affected 

 Very high High Medium Wind PV CSP LDV 

Ag  ● ●  x x x 

Al    x  x x 

Cd  ●   x   

Ce       x 

Co  ● ●    x 

Cr  ●    x x 

Cu  ●  x x x x 

Dy   ● x    

Fe    x  x x 

Ga  ●   x  x 

Gd       x 

Ge     x   

In  ● ●  x  x 

La       x 

Li  ● ●    x 

Mg     x x  

Mn  ● ●   x x 

Mo   ●  x x x 

Nb       x 

Nd   ● x   x 

Ni  ● ● x x x x 

Pd       x 

Pr    x   x 

Pt       x 

Se   ●  x   

Sn  ● ●  x   

Ta   ●    x 

Te ● ● ●  x   

Ti     x   

V      x x 

Zn  ●  x x   
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In the cases of cadmium, chromium, copper, gallium and zinc it must be mentioned that there are 

classified as belonging to the high risk but not medium risk category. This fact happens in those 

materials in which the difference between reserves and resources is notable. For these mentioned 

metals the ratio between proven resources and reserves are 2.4; 25; 4.2; 192.3 and 8.3, 

respectively. So it happens that cumulative demand is greater than reserves but production 

projections based on available resources is always greater than expected demand. If projection 

demand had been assessed with reserves instead, all medium risk metals would additionally fall 

in the high risk category. Even if the main goal of the Paper I is not to generate a list of critical 

materials, it is interesting to carry out a comparison between the list of elements that could 

generate bottlenecks in the development of green  technologies with already published criticality 

assessment papers and reports (Table 12).  
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Table 12: Comparison between the elements with very high and high ris k in this study 

and their presence in criticality assessment reports.  

● = high risk, ◐ = medium risk, ○ = low risk. When there is no categorization available, the risk has been considered high. In the case 

of the BGS (2015) risk list, values from 4.8 to 6.5 have been considered low risk, 6.6 to 7.5 medium risk, and higher than 7.6 high 
risk. 
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Ag  ●   ● ●  ○  ● ◐ 

Cd      ●  ○   ◐ 

Co ◐ ● ● ● ● ● ○  ● ● ● 

Cr ◐  ●      ●  ○ 

Cu ○ ●         ○ 

Ga ● ● ● ● ● ● ○ ● ● ● ● 

In ● ● ● ● ● ● ○ ● ● ● ● 

Li ●  ○  ● ● ◐   ● ● 

Mn ◐  ●    ○    ○ 

Ni ●  ●    ○ ○   ○ 

Sn  ●      ◐   ○ 

Te     ● ● ◐ ●  ●  

Zn ○          ○ 

All of the 13 identified elements with very high or high risk to generate bottlenecks have been 

classified as critical in some studies, but not all of them altogether. For instance, in the case of the 

risk list carried out by the British Geological Survey [192], all except tellurium are included, but 

the categorization is different for each element. The methodologies used in each criticality 

assessment usually take into account the same factors used by other authors or institutions like 

Moss, Tzimas et al. [21]; European Commission [66,186]; Bae [183]; Angerer et al. [184]; 

JOGMEC [185]; APS Physics [187]; Resnick Institute [188]; DOE [189]; UKERC [190] and 

BSGS [191] but with different weights, production concentration, recycling rates, technologies, 

substitutability, governance, environmental standards of the producing countries, among others.  
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The main difference with the approach used in other works is that we are considering not only the 

use of those elements in green technologies and in other sectors but also the geological availability 

using reserves and resources data compared to the estimated future production trends. Usually 

these aspects are not addressed in criticality assessment reports. 

As an example, chromium, copper, nickel or zinc, which have been identified as presenting high 

risk in this work, are considered to have low risk by the BSGS. Additionally, silver and nickel 

have a high risk in this study, but for Moss, Tzimas et al. [21] they both have a low overall risk. 

Copper is not usually classified as a critical element in any of these studies except for Angerer et 

al. [185] and Bae [184], but it is indeed used in all the green technologies analyzed in this section 

and therefore very important to go towards a low carbon economy. On the other hand, some of 

the elements that were identified to generate bottlenecks, such as cobalt, gallium and indium are 

considered critical in almost all of the analyzed reports, emphasizing their relevance in this and 

other sectors of the economy.  

5.4.2. Recycling improvements 

As stated before, a way to overcome supply bottlenecks is through increasing recycling rates. 

Note that recycling improvement to avoid high and very high risks are not calculated because in 

these cases, the problem is not because of supply shortage but because of a lack of available 

resources in the market due to geological scarcity. In such cases, if expected demand does not 

change, the most effective way is to invest in exploration to increase reserves. This is because 

recycling can never achieve 100% efficiency due to second law of thermodynamics restrictions 

and even if it were possible, exponential growth in demand makes that primary production will 

always be required to offset the rocketing demand. 

Table 13 shows the growing in recycling rates that would need to take place in order to avoid that 

annual demand surpasses annual production in a business as usual scenario (i.e. without 

considering substitution of technologies or materials and considering that reserves and resources 

do not increase). Table 13 also shows the current recycling rate and the value that would be 

reached in 2050 at this growing speed.  

 

 

 

 

 

Table 13: Recycling rates evolution  to avoid medium risk category. Valero et al.  [170]  



Chapter 5. Future material bottlenecks for the green technologies and automobile manufacturing 

sectors (Paper I) 

Thermodynamic assessment of raw material use in passenger vehicles 

60 

 Current Recycling 

Rate 

Annual growing 2050 Recycling Rate 

Ag 30 % 0.6 % 37 % 

Cd 25 % 1.3 % 39 % 

Co 32 % 1.8 % 59 % 

Cr 20 % 2.5 % 47 % 

Dy 10 % 0.9 % 13.7 % 

In 37.5 % 0.5 % 44.7 % 

Li 1 % 4.6 % 4.8 % 

Mn 37 % 0.1 % 38 % 

Mo 33 % 0.7 % 42 % 

Nd 5 % 0.1 % 5.2 % 

Ni 29 % 1 % 41 % 

Se 5 % 2 % 10 % 

Sn 22 % 0.1 % 22.8 % 

Ta 17.5 % 0.1 % 18.2 % 

The highest growths should take place for lithium, chromium, cobalt and cadmium with annual 

growing rates of 4.6 %, 2.5 %, 1.8 % and 1.3 %, respectively. The case of lithium is of special 

relevance because of its notable future importance for storage systems and the low current 

recycling rate which is below 1 %. It is also noteworthy how relatively small recycling efforts 

could avoid the appearing of bottlenecks for certain materials such as manganese, neodymium or 

tin, which would require annual growing’s of around 0.1 %, or silver or dysprosium of less than 

1 %.  

The problem of this is that recycling would be mainly based on minor metals recovery (cobalt, 

REE, lithium, tellurium, indium and silver among others). These minor metals began to be used 

in industrial applications only thirty years ago and there is a lack of information regarding 

recycling process efficiency, Valero and Valero [101]. Indeed, these metals have special 

properties which need complex recovery processes and when mixed, the recovery route of one set 

of metals may impede that of co-existing ones.  

Moreover recycling processes have their own limits from a thermodynamic point of view, a fact 

that was named by Valero and Valero [153] “entropic backfire”. This term describes how in all 

real processes the specific separation of components from a recyclate creates waste which is at 

each successive step, more difficult to salvage.  

Alternative solutions to recycling from the demand side are substitution, dematerialization or 

resource efficiency and most likely a combination of all, together with increases in reserves will 

take place. 
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5.5. Conclusions of Paper I 

To reduce emissions and to move towards a complete low carbon economy, green technologies 

must be promoted. However, to manufacture green technologies many critical elements are 

needed and, as seen in this paper, raw material availability can produce restrictions and 

bottlenecks that should be avoided. Having a better understanding of what materials used in each 

green technology might become critical from a supply side point of view can favor the promotion 

of policies related to recycling, substitution, or material efficiencies able to prevent those 

bottlenecks.  

Analyzing the materials used in the selected green technologies different constraints have been 

identified regarding material demand and available reserves, resources and future primary 

production. 

Current green technologies depend on certain materials whose risks have been classified as very 

high, high or medium. Materials presenting a very high risk are those where cumulative demand 

from 2016 to 2050 is higher than resources (tellurium). With high risk are those where cumulative 

demand surpasses reserves (silver, cadmium, cobalt, chromium, gallium, indium, lithium, 

manganese, nickel, tin and zinc). Medium risk commodities are those whose demand might at 

some point exceed production before 2050 (silver, cobalt, indium, lithium, manganese, 

molybdenum, dysprosium, neodymium, nickel, selenium, tin, tantalum and tellurium). 

Technologies which are affected by these bottlenecks are solar photovoltaic, with indium, 

gallium, selenium, tellurium and silver requirements, electric vehicles, that need cobalt, lithium, 

molybdenum and gallium among others, wind power which demands permanent magnets and 

solar thermal power that requires silver and molybdenum.  

Moreover, considering each specific green technology, it is noteworthy that not all the available 

commercial products have the same impact on raw materials. For instance, for wind power, the 

demand of permanent magnets is lower in the case of turbines with gearbox. Additionally, in solar 

cells the demand of critical materials is lower in crystalline silicon technologies than in thin film 

technologies. Parabolic through contain less “risk materials” than central receiver system in solar 

thermal power systems and so does PHEV with respect to BEV due to the lower material demand 

to manufacture batteries.  

Therefore, if current material demands and recycling quotes continue in a business as usual 

scenario, the transition to a low carbon economy will be threatened by the availability of certain 

substances. This issue should be deeply analyzed to define appropriate strategies that avoid the 

mentioned bottlenecks.  
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These strategies may be focused on: (1) investments in geological exploration to increase current 

reserves and resources; (2) to invest in new technologies able to obtain commodities from 

unconventional sources, i.e. lithium extraction technologies from salt-lake brines and sea water 

using lithium ion-sieve (LIS) technology; (3) research in the design of green technologies with 

lower requirements of critical raw materials such as metal-air batteries, generators without 

permanent magnets or organic photovoltaic solar cells; (4) investing in recycling technologies 

that are able to recover critical materials based on environmental friendly processes; (5) a 

combination of all them by means of defining eco-design strategies that reduce the use of critical 

raw materials and also improve end of life material recovery. This last option would also prevent 

that critical raw materials end up in landfills, where their retrieval is considerably harder.  

A proper strategy must bear in mind the own characteristics of materials and technical 

specifications of products and process. The thermodynamic limits of recycling, rebound effects 

in raw material demand caused by recycling improvements and the fact that substitutability 

between materials may decrease product performance, raise the price, or both must not be 

forgotten. 

Finally, as there are important gaps in the mineral statistics at world level, further studies must be 

made concerting evaluation and characterization of mineral deposits to have better assessments 

of available mineral resources. Having international standards that can be used by the mining 

companies is a first approach, but other problems related with exploration and technology 

development must be solved. 
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6.1. Introduction to the chapter 

In the previous chapter several metals have been identified as possible bottlenecks for the future 

development of green technologies. This assessment has been made according to geological 

availability and future expected demand for the studied metals. However, this first global 

assessment does not give an answer to which are the most critical vehicle components from a raw 

materials point of view. Moreover, metals found in a car are in very different proportions. While 

there are kilograms of Fe or Al in passenger vehicles, one can only find several milligrams of 

other metals such as rare earths. Can these small quantities of minor metals be disregarded? 

According to current recycling ELV policies the response to the previous question is affirmative 

because recycling and reusing targets are defined on a mass basis. This would mean that 1 gr of 

Co is as important as 1 gr of Fe. That said, it is well known that their scarcity and hence physical 

values are different. This is why there is an urgent need to consider the quality factor of raw 

materials in any resource efficiency assessment.  

These questions will find an answer in this chapter. To do it, resource efficiency will be assessed 

from a thermodynamic point of view by applying the concept of thermodynamic rarity which has 

been explained in chapter Fundamentals. The method is applied to different types of vehicles 

(ICEV, PHEV and BEV) and vehicle subsystems. The results will be useful to: (1) identify 

weaknesses of mass based methods applied by current ELV recycling policies; (2) recognize 

advantages or disadvantages of electric vehicles with respect to conventional ones considering 

their compositions; (3) to classify main vehicle subsystem from a resource efficiency point of 

view. 

6.2. Mass and Rarity approaches 

As was explained in the overview section, the accountability of metals can be done on a mass 

basis. Alternatively, an economic approach could be used. However, the economic accounting 

has its weaknesses. One of them is monetary depreciation (the purchasing potential of 1 € of 2017 

is different than that of 1 € of 2003). Another problem of the economic approach relies on its 

fluctuations. For example, cobalt price fell from 90,000 $/ton to 80,000 $/ton in less than one 

month [194]. 

This is why a more appropriate indicator to assess the different resources used in a car must be 

sought. One way to do so is through the thermodynamic rarity approach, which allows to account 

for the quality of each raw material.   
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By means of this thermodynamic approach (thoroughly explained in Chapter Fundamentals), 

those metals which are used in very small quantities (even smaller than 1 gram) will be higher 

rated because of their greater physical value (measured through their Thermodynamic Rarity). 

This methodology will allow to identify those vehicle parts which are most critical taking into 

consideration their metal composition. 

6.3. Results 

6.3.1. Mass and Rarity comparison. Vehicle without batteries. 

Figure 4 and Figure 5 represent the contribution of each metal through mass and rarity. Major 

metals are shown in Figure 4, whereas those with a mass share below 0.1% are represented in 

Figure 5. All values expressed in mass and exergy units for ICEV, PHEV and BEV are detailed 

in the annex of Paper II. 

 

Figure 4: Mass and Rarity for materials with a mass share greater than 0.1 wt%  

From Figure 4, it becomes evident how iron, aluminum and copper together account for over 95 

wt% of the total amount of metals in the three cases (ICEV, PHEV and BEV). This situation 

drastically changes when the assessment is carried out in rarity (rt) terms.  
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Even if iron is the major metal used with mass shares greater than 75 wt%, the rarity share drops 

to around 15 rt%. On the contrary, aluminum’s rarity share increases with respect to a mass 

assessment (40 rt% vs.12 wt%). This means that small quantities of aluminum used for vehicle´s 

light weighting purposes have a negative impact on the sustainability of the car from a rarity point 

of view. Aluminum contribution prevails over iron because of its higher embodied exergy 

associated to the Bayer process. The case of copper is also representative, since its rarity 

contribution doubles that of its mass contribution. Minor metals accounting for below 0.1 wt% 

have significantly greater contributions in rarity terms, i.e. 34.1 rt%, 27.8 rt% and 7.5 rt% for 

ICEV, PHEV and BEV, respectively. Figure 5 shows this fact in more detail. For instance, around 

6 g of platinum and 1 g of palladium are used to build catalytic converters in ICEV and PHEV. 

Yet considering their rarity values (per gram, the highest among all considered materials), they 

are as relevant as iron, aluminum or copper, accounting for 22 rt% and 7 rt%, respectively for 

ICEV, 15 rt% and 5 rt% for PHEV.  

 

Figure 5: Mass and Rarity for materials with a mass share below 0.1 wt%  
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The importance of materials used in high strength steel alloys becomes also more evident when 

using rarity as the unit of measure. Niobium passes from a share of 0.04 wt % to over 1 rt%, 

whereas vanadium from 0.09 wt% to 0.8 rt%. Something similar occurs to important materials 

demanded in electric and electronic components such as tantalum, neodymium, silver or gallium. 

In BEV, tantalum share increases from 0.001 wt% to over 3.5 rt%, neodymium from 0.08 wt% to 

0.3 rt%, while gallium and silver pass from less than 0.01 wt% to around 0.6 rt% and 0.2 rt%, 

respectively.  

As a summary, Table 14 shows the metals where recycling efforts should be placed if the unit of 

measure in the European reuse and recycling target were mass (as it is now) or exergy through 

rarity indicator.  

The situation today is that the target can be achieved if iron and aluminum were fully recycled. 

Yet with rarity, at least platinum, palladium and copper should be additionally considered 

depending on the type of vehicle. Note that this is a simplification, as complete recycling is 

impossible from a thermodynamic point of view, Reuter, Van Schaik, Ignatenko et al. [102] and 

the maximum achievable recycling rates should be analyzed on a case by case basis. In fact, as 

Hagelüken and Meskers [195] or Granata, Moscardini, Furlani et al. [196] state, certain high tech 

metallurgical processes are capable to recover as byproducts precious metals such as PGM from 

automotive catalysts.  

Table 14: Metal contribution to achieve EU Directive 2000/53/EC requirements under 

rarity and mass approaches  

  Reuse and Recycle 85 % 

Type of vehicle Rarity Mass 

ICEV Al, Pt, Fe, Pd Fe, Al 

PHEV  Al, Pt, Fe, Cu Fe, Al 

BEV Al, Cu, Fe Fe, Al 
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6.3.2.  Mass and Rarity comparison. Batteries. 

Figure 6 represents the mass and rarity contribution for all metals required for batteries analyzed: 

Lead based, NiMH and Li:ion.  

 

Figure 6: Mass and Rarity comparison in different batteries  
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from 26 wt% to only 8 rt%. Something similar occurs with iron in NiMH which passes from 30 

wt% to only 1 rt%, while cobalt prevails over the rest, with a 56 rt% rarity share (vs. 5 wt%). 

With these results, one can now identify which would be the metals where more recycling efforts 

should be placed if EU reuse and recycling targets were rarity instead of mass based. This is 

presented in Table 15. In lead batteries both approaches provide the same results. Yet for NiMH 

and Li:ion, cobalt becomes the most relevant metal to be recycled.  

Table 15: Metal contribution to achieve EU Directive 2006/66/EC requirements under 
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6.3.3. Mass and Rarity comparison. Vehicle components. 

One could go a step further and calculate thermodynamic rarity values by component and type of 

vehicle. By doing this, it would be easier to identify which are those car parts with the largest 

material rarity share, and thus advice for improving their eco-design and material recovery at the 

end of life. Rarity values are compared to the same results obtained using mass.  

As can be seen in Figure 7, both approaches point to the BEV as being the most material-intensive 

from all types. While the heaviest parts (body, brakes, suspensions, steering) are similar in the 

four analyzed cases, BEV has an extra weight caused mainly by batteries and electronic 

components. It is also remarkable that PHEV weight grows from 1,048 to 1,145 kg if the NiMH 

instead of the Li:ion battery is used. This is because of the lower power density of metallic 

hydrides with respect to Li:ion.  Besides, electrical and electronic component’s BEV weight is 68 

kg on average, whereas that for PHEV and ICEV only 44 kg and 28 kg, respectively. 

    

 

Figure 7: Mass and Rarity by component and type of vehicle  

Considered as a whole, an average BEV is around 220 and 140 kg heavier than an ICEV and 

PHEV, respectively. Such components are not only heavier, but contain critical materials with 

significant higher rarity contents. Figure 8 shows material contribution to the rarity value for each 

type of component and vehicle. 
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From rarity point of view, even if BEV are also the highest material intensive vehicles, the 

distance to the other two types, especially to the ICEV, is far more pronounced. The rarity of a 

BEV is 2.2 times greater than that of the ICEV, yet it is only 22% heavier. With respect to the 

Li:ion-PHEV, BEV has a rarity content that is 61% greater (but 13% heavier). Again, the 

differences among them are mainly caused by the contribution of batteries and electronic 

components, but also because of the greater aluminum use in the body’s BEV for light weighting 

purposes. Indeed, light weighting constitutes an important challenge for electromobility because 

it is one effective way to increase a vehicle’s autonomy. Nevertheless this is not without 

difficulties because battery autonomy heavily depends on their weight. 

Battery autonomy is in fact the reason why this component is especially relevant for BEV, less so 

in Li:ion –PHEV and almost insignificant for ICEV. Nickel and cobalt account for more than 60 

rt% of the battery’s rarity in BEV and Li:ion-PHEV. Li in turn, accounts for around 3 rt% in both 

cases. The battery’s rarity in NiMH -PHEV case is 2.4 times greater than that of Li:ion –PHEV 

and similar as in BEV although its autonomy is 4 times smaller.  

This is a consequence of the greater Ni and Co demand with respect to the Li:ion battery and the 

need for rarity intensive elements La, Pr and Nd. Finally in the case of ICEV, with a lead base 

battery, Pb demands most of the total rarity. All values expressed in mass and exergy terms for 

batteries are included in Paper II as supporting information. 
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Figure 8: Rarity contribution in different types of vehicles  

This unbalance is also very remarkable for the electric and electronic components. BEV and 

PHEV rarities are 2.2 and 1.7 times greater than in ICEV, respectively. This is mainly due to the 

greater amount of Cu in the first vehicle types (i.e. Cu share for the BEV is near 80 rt%). That 

said, tantalum is also an important element, accounting for around 20 rt% of total electrical and 

electronic rarity.  
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The most critical component in ICEV and PHEV is the powertrain. This is because of the platinum 

and palladium content in the catalyzer, which are elements with the highest rarities per gram of 

all materials considered. Both account for more than 40 rt% of the powertrain’s rarity in ICEV 

and PHEV. Fortunately such elements are also highly recovered getting recycling shares of up to 

90 %, BASF [197]. The fact that they can be separated from the molten metal more easily than 

other elements for their metallurgical properties also helps to achieve the mentioned shares. It 

should be noted that even if BEV do not contain catalyzers, the greater Al content in the power 

train with respect to the other two vehicles (with a contribution of 62 rt%), makes this component 

to have an important rarity’s share. Not surprisingly therefore, Al is the material with the highest 

rarity contribution in the body, with 62 rt% to 68 rt% of the total share depending on the type of 

vehicle.  

Not insignificant either are refractory metals used as steel alloys such as Cr, Mn, Mo, Nb, Ni and 

V, which account all together for 10 rt% of body´s rarity in the case of ICEV and PHEV and 15 

rt% in BEV. Niobium included in the steels of ICEV for instance, contributes to 4 rt% of the 

body´s rarity, but only 0.09 wt% to its mass, i.e. two orders of magnitude more. While Fe is almost 

fully recovered as new Fe source through magnetic processes, other metals contained in the body 

become downcycled or lost. Today there are more than 9 types of steel containing less than 0.5% 

of critical elements, conferring special properties to the body and for satisfying safety standards 

and fuel efficiency requirements. Moreover, the future is moving towards the so-called “high-

entropy” alloys. These consist of four, five or more elements (such as Nb, Sc, Co, Cr, Ni, Ti, Fe, 

Al or any other from the periodic table) mixed together in roughly equal ratios, leading to lighter 

and stronger materials than their conventional counterparts, while being much more resistant to 

corrosion, radiation or severe wear (Lim [198]). As can be inferred from its name, recovering the 

elements from high-entropy allows will be even more difficult than it is now. This is because 

today, when the body goes to the fragmenting process all steel types are mixed together, 

complicating the recovery of valuable materials such as Nb, Cr, Ni or V. In this respect, Ohno et 

al.. (2014) demonstrated how around 60 wt% of Ni, Cr and Mo contained in LDV end 

unintentionally as an iron source in an electric arc furnace steel making process and cannot be 

recovered. The case of Ni losses in shredding processes is so illustrative. According to the Nickel 

Institute [90] approximately only 40 wt% of nickel contained in automobiles is reused for its 

nickel content in steels plate rolls, another 40 wt% is recycled into other metals and becomes 

unavailable to the nickel recycling loop and finally around 20 wt% ends in landfills. 
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6.4. Conclusions of Paper II 

Considering the added value that rarity concept provides with respect to a conventional mass 

accounting, the following outcomes have been obtained: 

 Although the weight increase in PHEV and BEV with respect to the ICEV is not 

remarkable, there is a substantial value increment related to those materials needed for 

electrical - electronic components and batteries. This means that from a thermodynamic 

rarity point of view, ICEV is better than the PHEV and BEV alternatives.  

 If rarity per kilometer of autonomy is assessed, it can be stated that NiMH batteries are 

worse from a thermodynamic rarity point of view than Li:ion batteries. NiMH has a rarity 

of 3.25 GJ/km, while Li:ion only 1.33 GJ/km. 

 In BEV and NiMH-PHEV and contrary to the other cases, electrical and electronic 

components and chemical storage devices together are even more important from a rarity 

point of view than the body and powertrain. Special attention should be paid to: Co, Ni, 

La and Li (batteries) and Cu, La, Mo and In (electrical and electronic components).  

 The powertrain and the body contribute similarly in value in the three cases, yet the first 

is more critical than the latter. This is mainly due to the use of Al in powertrain 

components such as engine parts or suspensions. Refractory metals contained in steel 

alloys contribute substantially to the rarity of the body. 

The application of the rarity approach, allows not only to recognize the physical value of materials 

with a low weight contribution, but also to quantify their specific importance in the vehicle as a 

whole. Particularly, it has been demonstrated that Al, Co, Cu, Ni and La (used in chemical storage 

systems), Nb, Cr, Mo and V (used in steel alloys), Ce, Pt and Pd (used in catalytic converters) or 

Nd, In, Ga and Ta (used in electrical and electronical applications) which weight contribution in 

the vehicle as a whole is small, are not insignificant when considering their rarity. The demand 

of these materials will grow in the transition through zero emission vehicles, making PHEV and 

BEV worse from a thermodynamic rarity point of view than ICEV. This situation will become 

even more acute in the future with the installation of sensors and connectivity devices in 

autonomous vehicles.  

Therefore, if recycling policies use targets based on mass, even if they are ambitious, they fail in 

enhancing the recycling of critical raw materials. This could be solved by using thermodynamic 

rarity as the unit of measure instead. Indeed, even if  Fe, Al and Cu account for more than 95 wt% 

of a vehicle’s metal content, their relative thermodynamic contribution drops to less than 70 rt% 

in ICEV and PHEV cases, what would lead to recover other types of materials. For instance, a 

vehicle’s recycling target should pass from 85 wt% (excluding plastics, rubber and glass) to 90 

wt% if Ta had to be recovered using rarity as the unit of measure. 
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With a detailed rarity analysis, it will be possible to identify which parts of the car should be key 

to recover or to substitute some of their metals (this will be dealt in Chapter 9 – Paper V). As it 

was seen, high-rarity materials are going to form part of the new generation of vehicles. This will 

probably lead to a future supply risk that may hinder the very development of the electric vehicle 

as it has been demonstrated in Chapter 5 (Paper I). 
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7.1. Introduction to the chapter 

The application of thermodynamic rarity approach has been useful to demonstrate that current 

methods used by recycling policies fail from a resource efficiency point of view because they do 

not consider neither the scarcity nor the rarity of each resource. Moreover in the previous chapters 

(Paper I and II) it has been demonstrated how current electric vehicles are not as sustainable as 

they seem because the impact of those materials used to manufacture batteries, electronic 

components or motors is significant from a resource efficiency point of view.  

That said, in the industry certain terms such as “scarce” or “rare” are not commonly used and 

in turn is more common to talk about “strategic” or “business relevant”. Certainly, there are 

other non-physical parameters that go beyond a potential geological scarcity, which are critical 

for the operation of a company: availability from different suppliers (supply risk), substitution 

alternatives or industrial competitors for the same raw materials (economic importance). 

This chapter (paper III) is developed with the aim to bring closer the problems related to resource 

scarcity to the automobile industry. The results will be useful to identify what are the most 

strategic metals for the automobile industry under a holistic vision. It will also serve to check the 

reliability of the thermodynamic approach in the automobile case when other non-physical 

variables are also taken into account. 

7.2. Physical and non-physical approach. Strategic Metal Index.  

Thermodynamic Rarity can be considered as a new dimension to assess the physical value for any 

metal. Nevertheless there are other non-physical but relevant factors for the industry. Some of 

these parameters are the economic importance or supply risks which are used by the European 

Commission [28] to define the metal criticality. With the aim to give a holistic approach about 

criticality and to check the reliability of the Rarity indicator with respect non-physical point of 

view (markets, geopolitics, vulnerability, substitution, dependency) an index named Strategic 

Metal Index (SMI) has been defined in this section. The SMI ranks raw materials in the 

automobile sector according to different criteria (both physical like non-physical). The SMI index 

ranges from 0 to 100 and is calculated considering the following variables: 

 A: Automobile manufacturing sector demand of each metal with respect to total 

production. It is calculated by dividing the cumulative demand (2018 – 2050) of 

automobile manufacturing sector and the total cumulative demand (2018 – 2050) of all 

sectors for each studied metal. It gives an idea of the importance of the automobile sector 

in the world capacity production of this metal. 

 B: Available reserves with respect to cumulative demand (from 2018 to 2050) of this 

metal. It is calculated by dividing the total cumulative demand (2018 – 2050) and the 
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available reserves. It gives an idea of the directly geological availability of this 

commodity. 

 C: Metal known resources with respect to cumulative demand (from 2018 to 2050) of this 

metal. It is calculated by dividing the total cumulative demand (2018 to 2050) and the 

current known resources. As in the previous case it gives an idea of the geological 

availability of each commodity but based on resources instead of reserves (i.e. not 

necessarily economically feasible at the time of determination). 

 D: Production capacity and annual demand ratio for each metal (from 2018 to 2050). It is 

useful because it compares for each studied year the expected demand with the production 

capacity. To do it, the production capacity is modeled by means of the Hubbert theory. 

This model is explained in section 2.3.  

 E: Economic Importance. Value taken from the Critical Raw Material report published 

by the European Commission [27]. This index ranges from 0 to 10 and so it can be used 

in SMI by extrapolating it to a 0 to 100 scale. This variable complements the A variable, 

and offers an idea of the economic dependency of a given metal. 

 F: Supply risk. Value taken from the Critical Raw Material report published by the 

European Commission [27]. This index ranges from 0 to 10 and so to use it in the SMI 

index it is extrapolated to a 0 to 100 scale. It offers a geopolitics vision of dependency for 

each commodity. 

The SMI is calculated as the sum of the six described variables (A – F) by means of using 

weighting coefficients for each one, as follows (equation 11): 

SMI = α*A + β*B + γ*C + δ*D + ε*E + ζ*F (11) 

Where: α + β + γ + δ + ε + ζ = 1 

Once the SMI is assessed for each metal, all of them can be ranked. Nevertheless at this stage the 

challenge is to calculate the required variables. The geological variables (A, B, C and D) are 

calculated as it was explained in section 3.2. The variables E and F comes from the Critical Raw 

Material report published by the European Commission [27]. 
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7.3. Results 

7.3.1. Metal strategic Ranking 

As different variables are needed to calculate the SMI, several scenarios are presented to assess it 

under different possible situations. The following scenarios have been defined: 

 Geo (geological): The higher weight (0.6 over 1) is given to metal geological availability 

variables (B, C and D). The rest of variables are equitably weighted. 

 EU (European Commission): The higher weight (0.6 over 1) is given to the variables 

defined by the European Commission (E and F). The rest of variables are equitably 

weighted. 

 Ams (automobile sector): The higher weight (0.6 over 1) is given to the automobile 

demand with respect to total demand (A). The rest of variables are equitably weighted. 

 Equi (equitative): All variables have the same weight. 

 Exp (experts): It is a scenario based on the common criteria between the authors and the 

car manufacturer. Under this scenario the most weight (30 %) is assigned to the 

automobile dependency of a metal. Moreover the two variables from the European 

Commission cover 40 % of the value. Finally the geological variables are equitably rated 

and cover about 30 % of the total SMI index. 

The values used for the weighting coefficients are presented in Table 16. 

Table 16: Weighting coefficients used for the different scenarios  

Scenario α β γ δ ε ζ 

Geo 0.13 0.2 0.2 0.2 0.13 0.13 

EU 0.1 0.1 0.1 0.1 0.3 0.3 

Ams 0.6 0.08 0.08 0.08 0.08 0.08 

Equi 0.16 0.16 0.16 0.16 0.16 0.16 

Exp 0.3 0.1 0.1 0.1 0.2 0.2 

The selection of these scenarios allows us to have a range of values in the SMI calculation. Figure 

9 represents the SMI ranking and the uncertainty range for each case. Metals are ranked through 

the SMI value calculated for an Average scenario. The average scenario is calculated as the 

average SMI value obtained for each metal from the scenarios represented in Table 2. The SMI 

for the Average scenario is represented with crosses. Color scale means: Red (SMI ≥ 35); Orange 

(35 > SMI ≥ 20); Green (SMI < 20). The most critical metals (those which SMI ≥ 50) are Ni (61), 

Li (57), Tb (56), Co (55), Dy (51) and Sb (51). These metals are followed by Nd (47), Pt (44), Au 

(40), Ag (40) and Te (40).  
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Figure 9: Metal Strategic Ranking . Source: Own elaboration [199] .  

Considering the possible range of results among the studied metals and scenarios, the lowest 

corresponds to the Ams scenario for most cases. This scenario assigns the highest impact to the 

automobile sector demand with respect to the total demand. The opposite case corresponds for 

Geo and EU scenarios. In appendix (Paper III) the values for each metal and scenario are shown. 
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7.3.2. Most strategic metals and vehicle applications 

The next step is to identify the most critical parts considering the metals with an SMI greater than 

35 for the Exp scenario. Table 17 contains this information, showing that the most affected 

components are batteries, which mainly use Ni, Li Co and Mn, all of these metals with an average 

SMI value higher than 40 and in the case of Ni, Li and Co even higher than 55.  

Table 17: Main critical metals and vehicle applications  

Metal SMI range Applications 

Ni From 51.4 to 73.1 Batteries (NMC and NCA) and steel alloys 

Li From 45.2 to 75.3 Batteries  (NMC) 

Tb From 47.5 to 74.1 Lighting and fuel injectors 

Co From 50.0 to 60.3 Batteries  (NMC and NCA) and steel alloys 

Dy From 43.4 to 64.9 Permanent magnets 

Sb From 29.3 to 65.5 Steel alloys and paintings 

Nd From 43.9 to 53.9 Permanent magnets 

Pt From 42.3 to 45.7 Catalytic converters 

Au From 26.7 to 55.9 Electronics (contacts coating) 

Ag From 26.4 to 53.5 Electronics (contacts coating) 

Te From 22.7 to 51.7 Steel and lead alloys and electronics 

Mn From 22.6 to 48.1 Batteries  (NMC) and steel alloys 

Ta From 32.3 to 42.3 Electronics (capacitors) 

In From 21.2 to 45.3 Screens 

Se From 19.9 to 45.1 Lighting sensors and glasses 

The case of Tb stands out, which is mainly used in lightings and fuel injectors. Lighting equipment 

can be affected by Se shortages, an element that is also used to build glasses. Permanent magnets 

are also included among the most affected components. Dy and Nd have SMI values of 51 and 

47, respectively.  High strength steel alloys can also be affected, as Sb and Te are ranked between 

the most strategic metals. Catalytic converters used to treat combustion gases will be also affected 

by critical metals, as Pt is included with an average SMI of 44. Finally electronic components that 

demand Au and Ag for contacts and welding can be affected and also those that use Ta to 

manufacture capacitors or In, which is mainly used in the screens of combi instruments and 

infotainment units. 



Chapter 7. Raw material assessment in vehicles. Global considerations (Paper III) 

Thermodynamic assessment of raw material use in passenger vehicles 

81 

7.4. Conclusions of Paper III 

The SMI is presented as a useful index to rank materials demanded to manufacture vehicles 

according to their possible future strategic importance to the sector and so guide in the formulation 

of possible eco-design alternatives (this will be presented in Chapter 9). The SMI is calculated 

through a holistic approach considering physical variables such as reserves and resources and 

non-physical ones such as supply risks and economic importance of raw materials within and 

outside the sector.  

The SMI should not be understood as a quantitative variable for measuring metal scarcity or 

criticality. If the SMI value of metal A doubles that of metal B, it does not mean that the former 

is twice as critical or scarce as the latter. This is for instance the case of aluminum and germanium 

where the SMI for Al (21.2) is slightly higher than that of Ge (20.4). But in fact germanium is 

scarcer in the crust than aluminum, and contrary to the latter, due to its global economic 

importance and supply risks, germanium is considered critical by the European Commission. The 

SMI rather reflects how scarcity and criticality of a given metal may affect the automotive sector.  

Moreover, and contrary to the thermodynamic rarity indicator explained and used in the previous 

chapter (which uses exergy as the unit of measure to value minerals according to their specific 

physical features in the crust and mining energy intensities), the assumptions considered 

implicitly in this method, make that the SMI cannot be considered either as a universal numeraire 

of metal sustainability in the automobile sector. Such assumptions are: (1) the vehicle composition 

is considered constant throughout the analyzed years; (2) future mineral reserves discoveries are 

not considered; (3) the possible growth in the metal demand of other sectors is not considered; 

(4) Metal production capacity is modeled using a Hubbert approach, which is theoretical; (5) 

Supply risk and economic importance by the EC might change over time (6) the weighting factors 

used for each category composing the SMI is arbitrary.  

Nevertheless, the SMI complements the thermodynamic approach because it provides a different 

dimension for the potential identification of raw material shortages in the automotive sector. This 

dimension incorporates non-physical parameters such as supply risk, sector dependency or 

economic importance which are indeed key for the automobile industry.  
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Particularly, in paper III we have obtained through the SMI that the main identified shortages 

are those concerning the manufacturing of batteries in electric vehicles (Ni, Co, Li and Mn), 

permanent magnets for motors (Nd and Pr), electronic components (Ag, Au, Ta, Te and In), 

catalytic converters (Pt), fuel injectors (Tb) and paintings (Sb). It is highlighted that these 

components form part of the most critical vehicle subsystems identified in Chapter 6 (Paper II) 

by applying the thermodynamic approach.  

This fact ensures that the thermodynamic approach at least in the automobile case can be 

considered as self-sufficient. Yet this may not be the case for other sectors and this is why both 

approaches are always recommended to have a holistic view of the problem.  

For the identified components, automobile manufactures should encourage eco-design strategies 

to reduce the demand of these strategic metals, to find substitutes or to increase their functional 

recyclability. This is why by means of using these conclusions and those from the recycling 

processes research (Chapter 8 – Paper IV), eco-design alternatives will be presented in Chapter 

9 (Paper V). 
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8.1. Introduction to the chapter 

In the previous chapters, resource efficiency in passenger cars has been assessed from the 

manufacturer’s point of view. Accordingly, different outcomes have been obtained: (1) Possible 

shortages related to metal supply might occur in the next decades; (2) A method has been 

proposed to account for resource efficiency in cars; (3) Identification of the most critical vehicle 

subsystems in terms of their metal contents; (4) Shortcoming analysis related to material use in 

electric vehicles; (5) Analysis of the most strategic metals for the automobile industry considering 

both physical and non-physical parameters. 

At this point it is the moment to analyze the end of life of a vehicle. The general belief is that 

there is no problem at sight for the future development of the automobile sector because recycling 

and reusing rates in the vehicle as a whole are greater than 85 % in weight terms. Yet, what occurs 

really with all metals in the recycling process? Are these functionally recycled? Are minor but 

scarce metals recovered to be used again in new vehicles? 

The situation is this. In the manufacturing of vehicles many resources and so efforts (time of 

designers, an enormous mixology of scarce metals, complex manufacturing processes, advance 

logistics…) are intended to manufacture sophisticate devices such as lightings, sensors or 

electronics. Accordingly, a lot of resources are spent to produce a high-tech component resulting 

from a complex mixture of materials. On the contrary when this component ends in a recycling 

plant, the processes used are designed to spend as less resources as possible. These typical 

processes are shredding, magnetic, eddy current and gravity separation, specifically designed to 

consume small quantities of resources while processing an enormous quantity of vehicles each 

day. In conclusion, it can be stated that much fewer resources are put into play to separate than to 

mix.  

At this point the question is… Is it really easier to separate than to mix? Everybody can check 

how easy is it to mix water with sugar (it is only necessary to turn the spoon several times in the 

glass) and how difficult it is to separate them (we need to spend much more energy than before 

for evaporating the water). 

In thermodynamics, this phenomenon is well known: the irreversibility created in any mixing 

process. Indeed, mixing processes are highly entropic so an enormous quantity of exergy must be 

spent to separate. Moreover, in this separation process wastes will be always produced. 

If thermodynamics already demonstrates that segregation of flows is far more resource intensive 

than their mixing, why in current separation (recycling) processes much less resources are spent 

than for mixing (manufacturing)? Are current recycling processes really effective in terms of the 

recovery of scarce metals used in a vehicle?  
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With the aim to analyze the recycling processes at the end of life of vehicles, this chapter is 

presented. To elaborate it and to get a better understanding about ELV recycling, a field study 

phase was set, in which several technical visits to different ELV installations such as ELV 

dismantling centers, shredders, post shredders and steel or aluminum alloy makers’ plants were 

performed. The conclusions will not only serve to answer to the previous questions but also to 

demonstrate quantitatively the loss of scarce metals in current recycling processes. 

8.2. ELV recycling processes 

Figure 10 illustrates the ELV recycling process where red arrows represent the material flow of a 

recycling operation, blue boxes show the destination in a landfill, green boxes show the output of 

recycled material, the yellow boxes show the output to an energy recovery process and the grey 

box shows reusing. According to Vidovic et al. [200], there are mainly five entities involved: (1) 

users who must deliver their vehicle to collection facilities; (2) collection facilities i.e., dealers or 

repair garages, which collect the ELVs; (3) authorized ELV treatment companies, which remove 

hazardous parts of vehicles that cannot be depolluted in landfills such as fuel, oil, tires, batteries, 

or air conditioning cooling gas, and remove reusable parts (called in Figure 10 “other 

components”) such as starters, suspensions or engines; (4) shredding plants, which receive 

decontaminated ELVs and shred them to separate them into three fractions: ferrous metals, non-

ferrous metals, and the rest (a mix of rubber, foam, and plastics called ASR) using magnetic 

processes; (5) post-shredding plants, which receive the non-ferrous metal fraction from shredding 

plants and apply eddy current and density processes to separate mainly aluminum, zinc, and 

copper.  
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Figure 10: Vehicle recycling scheme. (1) operations performed by users; (2) operations 

performed by collection facilities; (3) operations performed by dismantlers; (4) 

operations performed by shredding plants, and (5) operations performed by post-

shredding plants.  Source: own elaboration . 

The scrap resulting from (4) and (5) is sent to smelters to produce steel or aluminum from 

secondary sources. The ASR resulting from (4) and (5) usually ends up in landfill or energy 

recovery plants, although the latter option is more complex owing to the heterogeneity of ASR 

composition, which contains a small fraction of metals that often hinders energy recovery.  

Consequently, in a conventional vehicle recycling process, no specific operations to recycle minor 

but valuable metals is present. According to Ohno et al. [86], this fact entails the loss of most 

alloy elements either because they are downcycled or because they end up in the automobile 

shredder residue (ASR), ultimately becoming landfilled. 
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8.3. Data gathering and downcycling assessment 

Downcycling is calculated in this Thesis as the additional quantity of virgin metals that would be 

required to manufacture a complete vehicle if the starting point were scrap coming from ELV 

recycling facilities. According to this definition, it is assumed that all metals become diluted in 

one of the different scrap types from ELV recycling facilities. This is an idealization, since at it 

was previously explained, a portion of metals (usually below 5% end also in landfill). Yet this 

approach allows us to identify those components that are more critical from a downcycling point 

of view and thus provide automobile manufacturers and policy makers with valuable information 

to improve resource efficiency.  It should be stated that this hypothesis is not very far removed 

from current approaches used by automobile manufacturers. In the homologation of vehicles, 

manufacturers need to assess the recyclability degree of the new car so as to ensure that they meet 

the ELV Directive. To that end, it is considered that all metals incorporated in a vehicle are 

recycled.  

Following the definition provided, downcycling assessment methodology follows the scheme 

illustrated in Figure 11. The starting point is to determine the number of vehicle parts and the 

metal composition of each part. Therefore, it is necessary to disaggregate components into as 

small parts as possible, provided that the composition of each given component is known. This 

activity was performed using two information technology (IT) systems belonging to SEAT S.A. 

The first one includes a list of vehicle parts and the latter assesses the metal composition of each 

part (1). The selected parts are those that incorporate any kind of metal, having excluded those 

made exclusively of plastic, foam, glasses, or rubbers. It is well known that glasses also use some 

valuable metals like Ag, Ce or Mg however its research has been postponed for a future activity. 

The battery, catalytic converter and tires are also excluded since they are disassembled before 

shredding. 
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Figure 11: Data gathering and downcycling assessment methodology . Ortego et al.  

[201] .  

Owing to the large amount of parts constituting a vehicle, they are aggregated into larger 

subsystems for facilitating the assessment of results (2). The used subsystems classification is: 

engine, fuel tank and exhaust system, transmission, front axle, rear axle, wheel-brakes, selector 

mechanism, body, electrical equipment, and accessories. Subsequently, each part is also classified 

depending on the type of metal alloy used (3). The metal alloy classifications are: steel, aluminum, 

copper, and zinc alloys. These groups are used because shredding and post-shredding operations 

are almost exclusively designed to recycle these metals. It must be noted that magnesium has not 

been considered because it is typically fed into a second lifecycle as a secondary alloy, thus 

becoming a part of the aluminum cycle, Ehrenberger et al. [202]. Once the composition of vehicle 

parts is known, the subsequent step is to determine the composition of the steel, aluminum, 

copper, and zinc scraps of the ELV obtained after the recycling process (4). These scraps will be 

used as the input metal in steel, aluminum, copper, or zinc smelting plants. Starting from the scrap 

metal composition, all the vehicle parts are virtually manufactured, considering that the final 

weight and composition of each part must be the same as the corresponding original pieces (5). 

As the composition of scrap (7) differs from that used in original vehicle parts (6), new material 

has to be added.  
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This difference, which represents the downcycling degree (8), is calculated not only by weight, 

but also in terms of thermodynamic rarity for each part. Downcycled parts and metals are finally 

ranked to identify those for which eco-design should be enhanced (9).  

In the case of components manufactured with metals different from those used in steel, aluminum, 

copper, or zinc alloys such as Ag, Au, Co, Li, Sn, or Ta, the loss is assumed to be 100%, as these 

metals either become completely downcycled in minor quantities in alloys, thus completely losing 

the functionality for which they were produced, or are landfilled.  

Notably, by using this method, the thermodynamic rarity of the scrap (7) for some vehicle parts 

is greater than that of the required metal composition. This occurs with parts made of low-quality 

alloys that do not require certain elements or require them in lower quantity than those that have 

been trapped in the scrap. An example of this is martensitic steel whose alloy elements (Al, Nb, 

Ti) are significantly lower than others such as ultra-high strength steel. In the methodology, when 

this occurs, the rarity of the metals not required to manufacture a certain part from scrap is 

assumed to be zero, since this addition, although valuable is unintentional and does not confer 

new properties to the given part.  

To perform the rarity assessment, the first step is to obtain the metal composition for each part of 

the vehicle. Subsequently, the thermodynamic rarity of each part is calculated by means of 

equation 12.  

𝑅 (𝐴) =  ∑ 𝑚(𝑖) · 𝑅(𝑖)

𝑛

𝑖=1

 (12) 

Where: 

R = thermodynamic rarity, expressed in kJ/g (values included in appendix of Paper IV) 

A = vehicle part 

m = mass (g) 

i = metal assessed 

The downcycling degree of each component is calculated as the difference in thermodynamic 

rarity of each part, using the metal composition of the original pieces and the average scrap metal 

composition. The average scrap composition is selected considering the type of alloy used to 

manufacture the vehicle part (steel, aluminum, copper or zinc alloy). Equation 13 shows the 

expression used:  

𝐷 (𝐴) =  ∑ 𝛥 𝑅 (𝑖)

𝑛

𝑖=1

 (13) 
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Where: 

D = downcycling 

A = vehicle part 

i = metal assessed 

Δ R = Rave_metal_scrap – Rori_metal_comp 

Rave_metal_scrap = Thermodynamic rarity of the car part manufactured with average metal 

scrap. 

Rori_metal_comp = Thermodynamic rarity of the car part manufactured with the original metal 

composition. 

Downcycling, as defined in Eq. (13), will always be a negative value as it represents a loss 

incurred from an initial situation to a final situation where quality is lost. A high negative value 

of downycling indicates that an important quantity of the metals contained in the given car part 

are not functionally recycled. On the contrary, a small value of downcycling means that these 

metals are not only recycled but also to a higher degree functionally recycled. It may occur that a 

heavy car part denoted as “A” has a lower downcyclability degree than a lighter one denoted as 

“B”. The reason for this can come from two factors: 1) because A, as opposed to B, is composed 

of mainly fully recyclable materials (such as steel), and/or 2) because B incorporates non-

recyclable materials with a much higher rarity than A. As will be seen in section 4 that is the case 

of the turbo distributor, a much lighter component than for instance the cylinder block, but with 

a higher downcycling degree mainly due to its chromium and niobium contents.  
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8.4. Results 

8.4.1. Downcycling assessment 

Table 18 presents the results obtained by applying the methodology described in the previous 

section. As evident from Table 18, metal downcycling is equal to 32.8 kg, accounting for 4.5 % 

of the total analyzed weight of the car, meaning that 32.8 kg of metals have not been functionally 

recycled. This indicates that the ELV Directive is satisfied, as more than 85 % of the vehicle 

would be recycled. However, a completely different situation occurs when one assigns a quality 

value to metals using the thermodynamic rarity indicator. In such a case, the loss increases to 

21,647 MJ, or equivalently, −26.95 rt% of the total thermodynamic rarity of the analyzed metals 

in the vehicle. If the ELV Directive targets are expressed in terms of rarity, current recycling 

systems would not be enforcing the law.  In order, the most downcycled subsystems are: 

accessories, electrical and electronic equipment, fuel tank, exhaust system, and engine.   

Table 18: Downcycling by vehicle subsystem in mass  and thermodynamic rarity  

 Mass (g/veh) 
Thermodynamic Rarity 

(MJ/veh) 

Engine −6,024.39 −5.34% −10,905.50 −35.64% 

Fuel tank and exhaust system −3,480.60 −19.95% −762.76 −58.79% 

Transmission −696.55 −1.77% −168.27 −5.27% 

Front axle −1,729.59 −3.75% −678.24 −8.23% 

Rear axle −827.91 −3.03% −313.54 −25.40% 

Wheels and brakes −2,907.38 −5.85% −1,246.27 −13.97% 

Selector mechanism −114.48 −3.22% −43.23 −26.82% 

Body −11,602.71 −2.85% −2,369.72 −13.11% 

Electrical and electronic −5,169.93 −20.85% −4,461.13 −57.36% 

Accessories −285.73 −10.90% −698.52 −87.30% 

Total −32,839.28 −4.50% −21,647.22 −26.95% 
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The values listed in Table 18 are calculated using the scrap composition described in Paper IV. 

Nevertheless, the sensitivity of downcycling values has been assessed using two different scrap 

compositions. The results vary in the range of 3.9–4.5 wt.% and 23.7–27.0 rt%. Paper IV includes 

as supporting information the scrap composition used in this sensitivity assessment. 

Figure 12 (a) and Figure 12 (b) show the downcycling values per metal. Figure 12 (a) illustrates 

metals whose downcycling is greater than 1,000 MJ and Figure 12 (b) illustrates those whose 

downcycling is lower than this value. Using the thermodynamic rarity approach, the most 

downcycled metals are Al, Pd, Pt, Cu, Ta, and Au. Aluminum has the highest loss in 

thermodynamic rarity for two main reasons: (1) its greater rarity value (661.64 GJ/ton) with 

respect to other common metal like iron (31.85 GJ/ton) and (2) because aluminum used as an 

alloying element in steel is not functionally recycled (not used as aluminum source). In this model 

the average Al content in the steel is 0.75 %, whereas that in the average steel scrap only 0.08 %. 

This means that on average, 0.67 % of Al would need to be added to the steel alloy.  The difference 

in Al content is a consequence of the use of ultra-high strength steel alloys (UHSS) in the analyzed 

vehicle. UHSS requires a larger aluminum content (2%) than conventional steel alloys (such as 

martensitic high strength steels with an Al content of below 0.02%). The analyzed vehicle uses 

UHSS in several heavy parts such as the floor or cross member footwell. This is why the average 

aluminum content in steel is rather high (0.75%). 

Notably, even if Cu is the most downcycled metal by weight, in terms of rarity, Pd, Pt, and Ta are 

more relevant. In the cases of Pt and Pd, although catalytic converters are disassembled and 

recycled prior to the shredding operation, there are more quantities of these metals in other 

components such as particle filters or rear windscreen cleaner motor. Regarding metals with 

downcycling figures less than 1,000 MJ, the most relevant metal is Zn followed by Ni and Nb; all 

of them are used as steel alloys. Nickel and niobium are relevant because, even if their 

concentrations in the car are low, their specific rarities are high compared to other studied metals 

such as Zn. For Zn, notably, although there are specific post-shredding processes to recover it, 

these are only appropriate for parts made almost exclusively with Zn (i.e., a silent block bracket). 

Zinc contents in steel alloys are, in turn, downcycled or lost. 
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(a) 

 

(b) 

  

Figure 12: Downcycling by metal measured by weight and rari ty. (a) Metals whose 

downcycling is greater than 1 ,000 MJ and (b) metals whose downcycling is lower than 

1,000 MJ. 
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Finally, Table 19  presents the top 3 most downcycled vehicle parts for each subsystem given in 

Table 18, with the three most downcycled metals presented for each case. This type of analysis 

allows identifying the parts where eco-design efforts should be made in order to recover the most 

from valuable raw materials. The list has been made by ordering downcycling in percentage with 

respect to the initial thermodynamic rarity value for each subsystem. In the case of the engine, Pt 

and Pd used in particle filter, Nb and Cr used in turbo distributor, and W and Nb used also in 

turbo guide van housing, are notable. In the matter of fuel tank and exhaust subsystems, the most 

downcycled metals are Ni and Cr used in alloys for exhaust pipe, closing cap, and clamp. In 

relation to transmission, Ni and Mo used to manufacture shafts are the most downcycled metals. 

In the front axle, the steering wheel is highlighted, owing to the use of Au, Ta, and Cu in the 

electricity transmission system located in the steering rod. In the rear axle, Al is the most 

downcycled metal, which is also present in axle dampers. The breaking system is included in the 

wheels and brakes category; in this subsystem, the metals Al, Cu, Ga, Ta, and Ni used in sensor, 

distributor, and pump are the most downcycled. In the selector mechanism category, Ni, Cr, and 

Zn used as steel alloys in the clear level and ventilator together with Ta, Al, and Pd used in foot-

adjusting are notable. The inner mirror is the most downcycled part in the body owing to its gold 

content for the anti-glare system. Also highlighted should be the seat belts that use Al, Zn, and 

Ni. In electrical and electronic equipment, the metals used in sensors such as Ta, Au, Ni, Pd, or 

Pt are the most downcycled. Finally, with respect to accessories, which also include any electrical 

equipment, the most downcycled parts are those that use Au and Ta such as the control unit or 

aerial amplifier and those that use Au and Pd such as the speed sensor. 
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Table 19: The top 3 most downcycled components  in each category  

Description Vehicle subsystem 
Thermodynamic 

Rarity (MJ/veh) 

Downcycling 

(%) 

metal 

1 

metal 

2 

metal 

3 

Particle filter Engine 8,613.48 −99.72% Pt Pd Cu 

Turbo distributor Engine 260.71 −97.86% Nb Cr ----- 

Turbo guide vane 

housing 

Engine 185.32 −88.77% W Nb Cr 

Clamp Fuel tank and exhaust system 12.35 −75.88% Ni Mo Cr 

Front pipe Fuel tank and exhaust system 379.57 −74.89% Ni Al Cr 

Closing cap Fuel tank and exhaust system 0.91 −73.38% Ni Cr Zn 

Shaft Transmission 11.68 −33.74% Ni Mo Cr 

Reverse shaft Transmission 35.35 −28.92% Ni Sn Mo 

5th gear shaft Transmission 32.74 −28.44% Ni Mo Cu 

Input pinion Front axle 13.11 −27.87% Ni Cr ----- 

Track control arm Front axle 260.76 −20.07% Mo Nb V 

Steering wheel Front axle 147.94 −19.70% Ta Au Cu 

Axle dampers Rear axle 206.55 −80.74% Al Cu Zn 

Feathering Rear axle 0.30 −17.13% Zn ----- ----- 

Rear axle Rear axle 840.17 −16.31% Al V Ni 

Break assistance pump Wheels and brakes 352 −82.10% Al Ga Ta 

Brake distributor Wheels and brakes 9.05 −58.76% Al Cu Ni 

Brake sensor Wheels and brakes 7.02 −57.80% Al Cu Ni 

Foot adjusting Selector mechanism 12.93 −76.22% Ta Al Pd 

Clear level Selector mechanism 0.78 −71.85% Ni Cr Zn 

Ventilator Selector mechanism 0.11 −58.41% Ni Cr Zn 

Seat belt Body 84.02 −83.90% Al Zn Ni 

Bracket Body 9.74 −76.30% Ni Cr ----- 

Inner rear mirror Body 185.02 −74.90% Au Fe Mg 

Airbag circuit Electrical and electronic 118.51 −98.81% Ta Au Pd 

Rain sensor Electrical and electronic 7.23 −98.51% Ta Au Pd 

Temperature sensor Electrical and electronic 45.01 −98.39% Pt Ni Cu 

Speed sensor Accessories 5.16 −98.46% Au Pd Cu 

Control unit Accessories 600.52 −95.04% Ta Au Al 

Aerial amplifier Accessories 37.41 −83.53% Au Ta Pt 
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Paper IV incorporates the list of vehicle parts ordered by downcycling rate measured in MJ. This 

list contains 27 parts representing 80% of the total downcycling of the vehicle (17.317 out of a 

total of 21.647 MJ). 

One can additionally perform an economic analysis to put this loss into perspective. Accordingly, 

we have used commodity prices as published by the United States Geological Survey [203]. These 

data are included in Paper IV as supporting information. This loss would be equivalent to €174.74 

per car, which indicates that, over the lifetime of a vehicle model, the total loss would be €183 M 

(considering an annual production of 150,000 units per year during 7 years). Note that this figure 

only represents an order of magnitude of the stringent importance of this issue, as price 

fluctuations can be significant even within a year. 

8.4.2. Downcycling reduction recommendations 

As main result of this chapter several recommendations are suggested to reduce downcycling in 

ELV recycling processes. It must be taken into consideration that the recommendations listed 

below does not consider the vehicle design phase because this approach will be analyzed in 

Chapter 9. 

a. Disassembly of electric and electronic components that use valuable metals such as Au, 

Ag, REEs, platinum group metals (PGMs), Sn, Ta, or Te before shredding. Some of the 

most identified critical parts are: panel instrument, lighting switchers, LED lamps, power 

window motors, windscreen cleaner motors, electronic control units, rain sensors, electric 

mirrors, aerial amplifiers, and infotainment devices. According to Li et al. [204] this 

operation could be done even using automation by means of robots and would allow that 

specific recycling processes are implemented at a later stage. 

b. Application of hybrid recycling processes for the aforementioned parts as in the case of 

waste electric and electronic equipment (WEEEs) as it was suggested in previous studies 

by Arda et al. [47], Awasthi and Li [205] and Cui and Zhang [206]. These recycling 

processes should be mechanical-hydrometallurgical-biometallurgical. This is because as 

Ardente et al. [207] published the sole application of mechanical techniques is not 

compatible with the recycling of other materials such as indium in the displays or REEs 

in LEDs. Using this approach, valuable metals such as Au, Ag, Cr, Cu, Ga, In, Mg, Mo, 

Nb, Ni, Pd, Pt, Sn, Ta, V, or W would be recycled. This operation could be even 

developed in WEEE recycling plants as some of them are already implementing these 

processes. 
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c. Disassembly of engine and gearbox components made of special steel alloys (high content 

of Cr, Mo, Nb, Ni, Ti, or W). Some of these components include the exhaust pipe, o-

rings, turbos, pinions, and gear shafts. Owing to the excessive time required for removing 

some of these parts (i.e., removing o-ring from an engine requires the cylinder head cap, 

cylinder head, connecting rods, and pistons to be disassembled before and this operation 

requires at least 1 h), an intermediate situation could be implemented. This situation could 

be that engines and gearbox are disassembled from the rest of the vehicle before 

shredding. Notably, in a vehicle manufacturing plant, the entire powertrain (including 

front axle, gearbox, engine, and rear axle) is joined to the body in less than 30 second and 

hence, this operation could also be implemented via a reverse approach.  

d. Application of specific shredding processes for different vehicle parts mainly made of 

steel and aluminum alloys (i.e., engines, gearboxes, and bodies) to produce different scrap 

qualities with the aim of manufacturing different qualities of alloys using them. 

Moreover, this measure would avoid the contamination of steel alloys due to high levels 

of some metals. The elements that have lower oxygen affinity than iron, such as Cu, Sn, 

Co and Ni (remember that all of these metals were classified under the high risk category 

(chapter 5), remain in the final alloy. As it was published by Daehn, Cabrera and Allwood 

[208] and Harsco Minerals [209] the use of low quality scraps provokes the production 

of off-specification steel and in addition to the direct impact of this on the steelmaker it 

could also be considered to be a loss of these valuable elements.  

e. For the above, it is important for ELV authorized treatment centers to be equipped with 

information systems showing the location of the components that must be disassembled 

before and indicating the proper procedure for the same. This recommendation could be 

implemented using the International Dismantling Information System [210], which 

currently shows information related to batteries, fluids, or airbags and in which the most 

important vehicle manufacturers participate. 

f. To implement novel post shredder treatments to recycle critical metals from the scrap 

obtained as output after the application of conventional recycling methods and from the 

ASR.  
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8.5. Conclusions of Paper IV 

Automobile recycling processes are designed to recycle metals that contribute to the largest part 

of the vehicle’s weight (i.e., steel and aluminum alloys). Yet vehicles have evolved into complex 

machines that require a myriad of different and valuable metals. As a result of a desynchronization 

between manufacturers and recyclers companies, many valuable metals end up downcycled or 

even worse, in landfills.    

As it was shown in this chapter, thermodynamic rarity is a very useful indicator for measuring 

downcycling, as it accounts not only for the quantity, but also for the quality of the metals that 

become functionally lost in ELV recycling processes. This same analysis carried out in mass terms 

would lead to conclude that downcycling does not practically occur (less than 5 %), since the car 

is composed (by weight) almost exclusively of iron, aluminum and copper, elements that are 

usually functionally recycled. On the contrary, with thermodynamic rarity, minor, but valuable 

metals have a much higher specific weight, and as such, the downcyclability degree of the 

analyzed car increases to around 27 %. This is because rarity is a physical measure of resources, 

considering their relative scarcity in the crust and the energy required to obtain the specific 

commodities with prevailing technologies. This way, even if gold or platinum are imperceptible 

metals in the overall weight of the car, they are not when converting their tonnages in rarity terms. 

This simple aspect has a key application in the car industry and in any resource intensive industry. 

Mainly, it allows very quickly, to identify those parts of the car that are more valuable from a 

material point of view.  

Accordingly, from more than 800 different metal parts that contain a car, the method allows to 

select those that are most downcycled and to define recommendations for reducing the 

downcycling level. 
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9.1. Introduction to the chapter 

In previous chapters, resource efficiency from the manufacturing and recycling point of views 

were assessed. This was done through thermodynamic rarity, which has been proven to be a 

reliable indicator to identify the most critical and strategical components of the vehicle from a 

raw materials point of view (as it was demonstrated in Chapter 7). In this chapter, a procedure 

aimed at vehicle designers based on this approach is established. Subsequently, a list of 

recommendations aimed at vehicle designers are stated. The recommendations are proposed by 

means of analyzing through the established procedure, the specific components identified as 

critical. It must be taken into consideration that these recommendations are focused on the design 

phase, while the recommendations given in the previous chapter were defined from the recycler’s 

point of view. 

The conclusions of this chapter will serve as a base to define eco-design strategies of vehicles, 

which must go beyond “design for recycling” as it is understood now. Instead, the strategy should 

be oriented towards “design for functional recycling”, with the aim that scarce and valuable metals 

do not become lost at the EoL and form part of the technosphere as much time as possible. 

9.2. Procedure for the identification of critical vehicle components 

The identification procedure of the most critical vehicle components is done by using two 

thermodynamic indicators: thermodynamic rarity [kJ] and Rarity intensity [kJ/g]. The first one 

has been previously explained in detail and the second one considers also the thermodynamic 

value with respect to the weight of the component. The second allows to identify those 

components that despite having little weight, have a high concentration of valuable metals with 

respect to their total weight. 

To assess the thermodynamic rarity of each vehicle component it is necessary before to have the 

metal composition for each one. To do it, Table 20 was built in which the quantity of each studied 

metal for each vehicle component is represented.  

Table 20: Example of table to make the thermodynamic assessment  

 Metal 1 ….. Metal n 

Component 1    

…..    

Component n    
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Once this table is built, the thermodynamic rarity assessment is made by multiplying the weight 

of each metal by the thermodynamic rarity value of each metal. (Equation 14).  

𝑅𝑎𝑟𝑖𝑡𝑦 (𝐴) = ∑ 𝑚(𝑖) · 𝑅𝑎𝑟𝑖𝑡𝑦 (𝑖)𝑛
𝑖=1     (14) 

Where A is a vehicle component, m is the mass in gr, Rarity is expressed in kJ/gr and i is the 

studied metal. In this case 46 metals were analyzed. The studied metals and their thermodynamic 

rarity values are included in Paper V as supplementary information. Note that the quantity of iron 

and aluminum contained in the vehicle were initially removed. This was done for two main 

reasons: (1) because current ELV recycling processes are already recovering these metals in 

shredding plants, so from a metal sustainability point of view these are not critical and (2) because 

the weight contribution of these metals are much larger than the rest. In the case study analyzed 

in this paper V, iron and aluminum contribute to 84.3 % and 8.1 % of the total metal weight, 

respectively. This significant mass contribution does not allow to see clearly the criticality of 

other used metals which weights are several orders of magnitude lower and that are not 

functionally recycled but downcycled with iron and aluminum (i.e. incorporated in minor 

quantities in the matrix of iron or aluminum blocks with no functional use). 

After the thermodynamic assessment, all vehicle components are classified into 10 groups 

considering both indicators. The classification is the following: one category for those component 

whose rarity is higher than 1 GJ, and 9 additional categories (from A to I) according to 

thermodynamic rarity and rarity intensity values. The value ranges of each category (from A to I) 

is calculated by dividing the total range of rarity and rarity intensity into five equal parts.  

The reason to make one category called rarity higher than 1 GJ and to exclude it from the rest of 

categories (from A to I) is because there are three vehicle components (the engine, gearbox and 

front axle) which are included without a disaggregation level in smallest components (i.e 

crankshaft, engine head, clutch, servo steering or fuel pump). As a result these parts have a very 

high rarity value compared to the rest, and must be studied individually to find recommendations. 

After this classification, we consider that eco-design measures should be focused on parts with 

thermodynamic rarity values higher than 1 GJ and those which belong to A - G groups.  

 

 

 

 

 

 



Chapter 9. Recommendations through eco-design. (Paper V) 

Thermodynamic assessment of raw material use in passenger vehicles 

102 

9.3. Results 

The vehicle used as a case study is a SEAT Leon III model, which belongs to the segment C and 

is a hatchback automobile. It is equipped with a 2.0 Diesel engine and manual gearbox. Its total 

weight is 1,270 kg and 780 kg if only its metal content is considered. This vehicle has 1,051 parts 

but only 794 include metals. This happens because there are a good number of components which 

are fully made using plastics, rubbers, glasses or textiles (excluded from this study).  

9.3.1. Critical components identified 

After the thermodynamic assessment from an initial list of 794 components, 31 were identified as 

critical. Table 21 summarizes the number of vehicle parts for each category of criticality. 

Table 21: Number of vehicle parts, parts classification and selected critical components  

Total components 794 

Critical components 31 

Components in category (>1GJ) 2 

Components in category (A) 0 

Components in category (B) 0 

Components in category (C) 0 

Components in category (D) 2 

Components in category (E) 4 

Components in category (F) 7 

Components in category (G) 16 

Components in category (H) 49 

Components in category (I) 714 

The classification procedure is shown in Figure 13, representing the value ranges for rarity and 

rarity intensity as well as the different classification groups (from A to I). It is highlighted that the 

largest number of parts have both small rarity and rarity intensity. Nevertheless there are others 

that have at least high values in one of the two indicators.  
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Figure 13: Components classification. On the left the categories zones and on the right 

the position for each of the 794 components assessed  

These critical components have a total rarity of 39.6 GJ. This figure is 85 % above the total vehicle 

rarity (46.2 GJ). This classification procedure is in line with the Pareto rule, because less than 20 

% of vehicle components (31 components over 794) have more than 80 % of the vehicle’s rarity 

(39.6 GJ over 46.2 GJ). Table 22 shows the selected components.  
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Table 22: List of critical components  identified 

Description Rarity (kJ) Rarity Intensity (kJ/g) Group 

Engine 32,099,655.39 191.52 >1GJ 

Gearbox 1,734,110.12 33.14 >1GJ 

Infotainment unit 538,664.92 386.19 D 

On board supply control unit 250,164.31 677.90 D 

Front axle 849,407.35 26.81 E 

Exhaust gases temperature sensor 44,318.77 785.39 E 

Aerial amplifier (left side) 35,217.40 845.45 E 

Aerial amplifier (right side) 35,217.40 845.45 E 

Battery 518,856.02 25.19 F 

Combi Instrument 269,509.99 367.46 F 

Airbag control unit 113,556.86 529.44 F 

Door control unit (driver) 60,603.42 610.61 F 

Door control unit (passenger) 59,165.19 600.97 F 

Lamp for ambience lighting (driver) 2,147.97 511.30 F 

Lamp for ambience lighting (passenger) 2,147.97 511.30 F 

Generator 453,144.52 71.54 G 

Intermediate exhaust pipe with rear silencer 450,583.58 32.45 G 

Starter 344,093.86 82.64 G 

Wiring 326,124.54 172.64 G 

Wiring for rear lighting 265,318.42 202.30 G 

Exterior rear mirror (left side) 209,219.21 180.97 G 

Exterior rear mirror (right side) 202,880.78 230.21 G 

Wiring for front lighting motor 188,196.00 188.48 G 

Rear screen cleaner motor 182,001.13 230.49 G 

Additional brake light 31,345.25 354.58 G 

Lighting switcher 26,870.75 362.84 G 

Rain sensor 7,124.03 431.08 G 

Air quality sensor 4,922.18 346.80 G 

Speed sensor (left front tyre) 4,548.35 450.91 G 

Speed sensor (right front tyre) 4,548.35 450.91 G 

Cable shoe used for anti-twist device 1,726.88 352.43 G 
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From the previous list, the battery is excluded in the eco-design assessment. This is so because 

batteries are already disassembled from ELV in the authorized treatment centers to be 

subsequently sent to specific recycling plants according to the requirements of EU Directive 

2006/66/EC [211]. 

Once critical components are identified, eco-design recommendations are proposed. In this 

process, each component is also compared with the same used in the previous vehicle version 

(SEAT Leon II model) to analyze the evolution of the raw material performance of that specific 

car part. The template used to state eco-design recommendations is included in Paper V as 

supporting information. 

9.3.2. Eco-design proposals 

The recommendations are classified into the following four categories: (Type 1) Facilitating 

disassembly; (Type 2) Critical metal substitutability; (Type 3) Retrofitting; (Type 4) New 

approaches. A deeper explanation about each category is described below. 

(Type 1) Facilitating disassembly: The aim of this category is to define 

recommendations oriented to facilitating disassembly. In order to do that, we first need to 

know disassembly times of the identified parts. This information is retrieved from an 

internal SEAT IT system.  

This measure is proposed because as it was published by Talens, Ardente and Mathieux 

[212] the difficulty of separating parts from products limits the development of circular 

economy strategies. Moreover their potential has been previously assessed by Santini et 

al. [213] and may reduce dismantling time to a third by simply innovating joining. From 

their point of view in the case of automobiles, pre-treatment based on dismantling can 

significantly reduce the amount of Automotive Shredder Residue (ASR) disposed in 

landfills. A clear example is the case of Ta. Tantalum is very difficult to recover through 

metallurgical processes unless the parts containing them are removed and processed 

separately from the others like Ballester, Schaik and Reuter [214]. These measures would 

allow that these parts could be easily disassembled in ELV authorized treatment centers. 

Subsequently, these components could be sent to two types of industries: (i) Specific 

recycling centers, where the most valuable metals are recovered applying mechanical and 

chemical processes. (ii) Retrofitting companies, where a component could be refurbished 

and updated for its eventual use in new or used vehicles.  
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 (Type 2) Critical metal substitutability: As explained previously, vehicle parts are 

considered critical because they use valuable and scarce metals. One eco-design approach 

is to substitute those metals by less critical ones. Substitutability must be carefully 

analyzed, because substitution usually also affects the performance of the components, 

due to changes in some properties like density, electrical conductivity, thermal 

conductivity or dilatation coefficient. At this stage, substitutability recommendations are 

based on information included in USGS [215] reports.   

(Type 3) Retrofitting: The fact that a vehicle arrives to its end of life does not necessary 

mean that all parts constituting the vehicle have lost their functionality. Indeed, the 

lifetime of many car components is greater than that of the vehicle as a whole. This is 

something very well known by ELV authorized centers whose main business is based on 

the selling of EoL car parts. Another option is retrofitting. If the lifetime of certain 

components is high enough, these could eventually be retrofitted and updated to be 

subsequently used in new or used vehicles. It is well known that retrofitting is an effective 

way to maintain products in a closed loop, reducing both environmental impacts and 

manufacturing costs, Pigosso et al. [216]. By means of this measure, it would be possible 

to reduce the demand of critical metals to manufacture new vehicles and to increase the 

time that a component stays in the technosphere. Note that retrofitting should be done 

with care, because this might be a barrier for potential vehicle buyers. Yet retrofitting can 

take place with long lasting parts that are not necessarily visible to the end user. This is 

in fact already being done in some industrial vehicles, which use retrofitted engines from 

previous used models as in the case of VOLVO [217]. 

(Type 4) New approaches: Sometimes a component can be improved by means of 

applying innovative measures that change the component approach or requirements. As 

an example, some years ago certain vehicles were equipped with phones, but nowadays 

it is commonly extended that radio devices allow the use of personal phones through 

Bluetooth technology. Another example is the substitution of the CD reader through USB 

bus readers. 

The type of eco-design measures applied and the most valuable metals used for each component 

are summarized in Paper V as supporting information. From the initial list of 46 metals 

(excluding Fe and Al) there are only 23 metals, which are the most valuable ones among the 

critical components. From all eco-designed proposed measures (1-4), facilitating disassembly and 

critical metal substitutability have been proposed in all cases. Retrofitting and new approaches 

measures have been proposed in 16 components.  
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Information concerning metal content and eco-design assessment for each component are not 

published due to confidential issues. Below is a description of the most relevant results of the 

study. 

Type 1 recommendations - Facilitating disassembly 

The generator, which is currently placed at the bottom part of the engine, should be preferably 

placed in the upper part, as this would facilitate disassembly and the recovery of its valuable 

metals. The generator is moved by a multifunction belt, meaning that this measure could be easily 

implemented. The combi instrument could be also designed to be removed from the upper part of 

the dashboard. This would avoid the airbag and steering wheel to be previously removed (see 

Figure 14). As for the wires that connect the battery, they have a high thickness (and copper 

content) due to the maximum power demand required to move the starter. With a redesign they 

could be also disassembled when the batteries are removed in ELV authorized centers. Finally a 

common disassembling of engine, gearbox and front axle would allow that specific recycling 

processes are applied to recover valuable metals of specific components such as: suspension arms 

(Nb, Mo, V), turbo (Nb, Cr, W), exhaust pipe (Pd, Ni, Zr), exhaust temperature gases sensor (Pt, 

Ni, Cu) or servo-steering (Cu). This operation could be easily implemented because these 

components are designed to be quickly assembled in vehicle manufacturing factories.  

 

Figure 14: Combi instrument location  



Chapter 9. Recommendations through eco-design. (Paper V) 

Thermodynamic assessment of raw material use in passenger vehicles 

108 

Type 2 recommendations - Critical metal substitutability 

Copper is the metal that appears most frequently in all selected components (30 times). Copper is 

followed by three metals with high rarity values such as gold, tantalum and palladium that appear 

20, 19 and 17 times, respectively. This is why substitutability recommendations are mostly 

focused on such metals. Below we list some of the possible alternatives:  

Aluminum instead of copper in certain wirings: as is well known, aluminum is an alternative to 

copper for wiring. It should be taken into account though that aluminum has 61 % of the copper 

conductivity but it has only 30 % of the weight. An aluminum cable with the same conductivity 

than copper will weight up to 50 % less but it will be also thicker. Moreover, the use of aluminum 

as a conductive material implies the addition of other elements such as Fe, Cu, Mg or Cr. On the 

other hand, the linear expansion coefficient is around 36 % higher than for copper, what might 

constitute a problem in several applications with high temperatures.  

Silver plating instead of gold plating in electronic contacts: gold, as a native element, has very 

useful properties such as high conductivity, corrosion resistance, high melting point or 

reflectivity. These properties makes that the electronic sector has become the most important gold 

consumer. Nevertheless, electronic parts are rarely made entirely of gold because of the material´s 

cost. This is why manufacturers use electroplating to apply a thin layer of gold over the main 

material that comprises the component. As an alternative, silver plating can be also used. Silver 

has as main benefit its lower cost. Moreover it has other key properties such us the highest 

electrical and thermal conductivity of any metal. That said, according to Song et al. [218] its main 

weakness with respect to gold plating comes from its corrosion resistance. For a better corrosion 

resistance, a nickel undercoat with silver plating can be used. This alternative should be carefully 

analyzed mainly for those components responsible for safety systems.    

Ceramic capacitors instead of tantalum capacitors: Ceramic capacitors have the highest market 

share but tantalum capacitors provide a feasible alternative if higher breakdown strengths are 

required. The reduced costs, smaller size (suitable for space-constrained electronic circuits), high-

frequency characteristics, higher reliability, ripple control and longevity are driving the market to 

replace tantalum capacitors with ceramic capacitors wherever possible. Nevertheless, for Smith 

et al. [219] from an environmental point of view the highest electrical energy consumption during 

fabrication alongside the use of nickel paste are the major environmental hotspot for ceramic 

capacitors. So the environmental benefits associated to substitution must be carefully assessed. 

At this point it must be also highlighted that the substitution of precious metals such as Pt or Au 

can have counterproductive effects because they play a key role in driving the economics of 

recycling, Reuter and Schaik [220]. Nevertheless, since they are not being recycled in vehicles, it 

will always be better if they are substituted by less critical materials. 
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Type 3 recommendations - Retrofitting 

From a retrofitting point of view (eco-design measure 3), it is key the availability of reusable 

parts. Such parts can only come from models with high production values such as those in segment 

C. The destination of such parts would be in turn vehicles with smaller sales figures and where 

the focus is not placed on newest designs. This is why a clear destination of retrofitted parts would 

be in industrial vehicles. Particularly, retrofitting would be a plausible option for the combi 

instrument, lighting switcher, rain sensor, air quality sensor or exhausts gases temperature sensor 

(see Figure 15 with examples about different components that could be retrofitted).  

Retrofitting of engine and gearbox parts could be also considered. Particularly for the engine, this 

could be done by using disassembled cylinder bores such as in some industrial engine cases. This 

measure would not hinder the engine for being updated to new performance requirements, 

because these changes mainly affect auxiliary systems like the head engine, the exhaust pipe or 

the fuel pump. 

The gearbox is manufactured with some valuable metals like magnesium, nickel, chromium and 

molybdenum. In the studied vehicle, the gearbox contains 80 % of the total magnesium used by 

the vehicle. Moreover the gearbox is a very unfailing and robust component and is therefore a 

perfect candidate to be retrofitted. Manual gearbox design has not substantially changed 

throughout the years and this operation is a common technique applied in specialist gearbox repair 

garages. 

 

 

15.a lighting switcher 
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15.b rain sensor 

 

15.c rear screen cleaner motor  

Figure 15: Different components that could be retrofitted  

Type 4 recommendations - New approaches 

In the field of new approaches (eco-design measure 4), it is recommended to assess the possibility 

to centralize all electric units (i.e. on board supply control unit, door unit, airbag unit, electronic 

control unit, combi instrument electronic or electronic from infotainment) in a common unit (see 

Figure 16 with different examples about electronic units that could be grouped). Through this 

way, this unit could be easily disassembled and sent from ELV authorized centers to specific 

recycling plants as it happens with batteries or tires. It is also recommended to assess the impact 

of changing the vehicle voltage from 12 V to 24 V or 48 V. This measure is being proposed to 

improve the engine efficiency and the performance of hybrid systems.  
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Note that this measure could also reduce the section of wiring. In this line, the use of Integrated 

Starter and Generator Technology as it is used by some manufacturers like VOLVO [221] may 

well reduce the demand of copper and permanent magnets containing rare earths. Finally, it is 

proposed to assess the impact that would have the inclusion of combi instrument information and 

switchers in the screen of infotainment unit. This measure would not only avoid the use of such 

devices but also the associated wiring. 

 

16.a onboard supply control unit (located under the dashboard)  

 

16.b airbag unit (located under the dashboard)  
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16.c door control unit (located in doors)  

Figure 16: Different control units that could be grouped in a common one  

9.3.3.  Eco-design measures implementation  

The impact of these measures goes beyond the studied vehicle because many models from VW 

group share the identified critical components. In fact, only those parts with an exterior design 

such as exterior mirrors, additional brake lights or combi instruments are included in just two 

models, the analyzed one and the SUV version based on the same platform. This fact also happens 

with tailor-made components such as wirings. 

However a good number of components are shared by several models: door control unit (29 

models); starter (30 models); generator (40 models); rain sensor (45 models) or speed sensor (88 

models). So the impact of applying eco-design techniques goes usually beyond the specific model. 

That being said, the application of the proposed eco-design measures needs a deeper feasibility 

analysis. As was shown in Chapter 8, it was quantified that around 175 € of valuable metals are 

lost per vehicle when current ELV processes are applied. Taking into consideration a vehicle 

model lifetime, the total loss would be as high as 183 M€ (Ortego et al. [201]). Knowing this 

figure, the next question is if this loss justifies an investment in new eco-design alternatives.  

We see that the identified measures can be divided into two main groups according to the number 

of actors that take part. In the first group, only automobile manufacturers are involved. In the 

second, more stakeholders such as recyclers or dismantler centers are involved. For instance, one 

measure related to metals substitution affects in principle only to manufacturers.  
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However, a measure where components should be disassembled and subsequently sent to specific 

recycling or component retrofitting plants would involve several actors: dismantlers, recyclers 

and component manufacturers. In any case the economic benefits should be enough to generate a 

profit for each actor in the logistic chain.  

For manufacturers, the economic feasibility could come from the savings achieved through the 

substitution of critical but also expensive metals by more common and less expensive ones. 

Measures related to facilitating disassembly of certain components could be initially and more 

easily done for vehicles that belong to manufacturers. It is a fact that more and more customers 

are acquiring services instead of products (renting or leasing instead of purchasing) and hence 

more vehicles will belong to manufacturers at the end of life. A potential new income source for 

manufacturers could thus come from the dismantling of valuable components from these ELV or 

from the application of simple pretreatment operations (i.e.: disassembly of capacitors or printed 

circuit boards from electronic units) which are subsequently sent to specific recycling plants.  

In such cases where dismantling centers need to be involved for disassembly, the business model 

could be centered on the revenues obtained from those components sent to retrofitting companies 

or alternatively to recyclers. Recyclers in turn would receive components with high concentrations 

of valuable metals that would be separated by means of mechanical and metallurgical processes 

and sent again to car or other types of manufacturers. 
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9.4. Conclusions of Paper V 

In the past, automobile manufacturers have been working on improving the environmental 

performance of their products mainly through fuel efficiency and low emission techniques. 

Particularly for Europe, efforts on ELV recyclability were focused on ensuring that an 85 % 

recycling quote (measured in mass terms) is achieved. However, vehicle manufacturers must take 

into consideration that meeting European ELV recycling policies does not guarantee a sustainable 

use of minor metals, which usually end downcycled in electric arc furnaces with steel and 

aluminum scrap or in the worst case in landfills. On the contrary, it incentivizes to focus on the 

bulky ones: steel and aluminum. Yet are these the most critical ones in terms of future supply 

risks for the car industry? A new environmental challenge which is resource efficiency especially 

for minor raw materials is coming up. These additional efforts must be aligned with the adoption 

of eco-design strategies to guarantee that resources are really used in a sustainable manner.   

Valuable and scarce metals such as Au, Ta, Cu, Pd, Nb or Sn among others, are needed to 

manufacture certain components like: engines, gearboxes, starters, alternators, electronic control 

units, motors, LEDs, switchers or sensors. It is a fact that current vehicles are equipped with an 

increasing amount of electrical components that use such metals, for which no specific recycling 

processes exist. Moreover, since they are spread around the vehicle, disassembly is an extremely 

difficult task. For this reason, such components must be eco-designed to be easily disassembled, 

repaired, updated and retrofitted. They must be designed to be operational as much time as 

possible. Only when they cannot be used again, such components must be sent to specific 

recycling centers to obtain the valuable metals by means of using hybrid recycling approaches 

(physical and chemical) instead of being sent to common shredder plants where only bulk 

materials are recovered.  

If catalytic converters, batteries or tires are sent to specific recycling centers once the vehicle ends 

in an ELV authorized treatment center, why not to use this same approach for more components 

such as screens, electronic units, switchers or sensors. Why are the screens used in the 

infotainment unit or in the combi instrument of a vehicle dashboard shredded? These components 

are equivalent to domestic tablets and contain the same scarce metals (Ag, In, Pd, Sn, Ta…). Yet 

contrary to tablets, such vehicle units are not considered as waste electrical and electronic 

equipment (WEEE) and do not enter the specific WEEE recycling center. If they were considered 

WEEEs, they would be probably redesigned to be easily and quickly disassembled. 

As it has been shown in this chapter, the application of the Thermodynamic Rarity approach 

through a procedure defined in this chapter offers a new dimension to help in the identification of 

critical components in a car.  
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This new dimension is the consideration of the current and future scarcity of each commodity in 

the crust and the loss of mineral capital associated to mineral extraction. This loss is irreversible 

and must be taken into account to know the physical value associated to each raw material because 

it puts the focus on commodities with possible future shortages from a geological point of view. 

This method is presented as an easy tool to calculate the metal sustainability of components and 

to complement the traditional LCA assessment by means of a better understanding of the 

irreversibility associated to raw material extraction.  

Through this method, we have shown that a common hatchback vehicle has more than 30 

components considered critical from a raw material point of view. Hence, such parts are a priority 

to be eco-designed so as to increase the metal sustainability in the car. For such identified car 

parts, different eco-design measures have been proposed. It should be stated that this methodology 

does not assess the feasibility of implementing eco-design alternatives. It only prioritizes those 

components which are susceptible to be eco-designed. 
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10.1. General conclusions and reflections 

The energy transition towards a low carbon economy is demanding cleaner technologies, which 

should be free of greenhouse gases and other direct polluting emissions. However, even if they 

will not operate with fossil fuels, they will demand scarce raw materials used for their 

manufacturing. As a consequence, resource dependency will probably evolve from fossil fuels to 

critical raw materials. As was demonstrated in this Thesis and considering forecasts in the increase 

in renewable technologies and electric vehicles to 2050, there might be some serious bottlenecks 

in the supply of certain raw materials. Particularly, the automobile manufacturing sector heavily 

depends on some strategic metals which supply until 2050 might be at medium risk (Mo, Nd, Ta) 

or at high risk (Ag, Co, Cr, Cu, Ga, In, Li, Mn, Ni).  

So in the same way that we are certain about the limited nature of fossil fuels and that we should 

migrate towards an economy free of them, we cannot ignore the limits of available mineral 

resources. Note that, as opposed to fossil fuels, once used, minerals do not disappear but become 

dispersed if not appropriately managed. The result is that they ultimately become unavailable. 

However, the potential unavailability of mineral resources is a serious problem that is 

unfortunately ignored in current outlooks toward a low carbon economy.  

The automobile manufacturing industry is one of the sectors where more advances to improve 

their sustainability are being made. That said, the main focus is placed on producing low or zero 

carbon emission vehicles. These advances are mainly directed to improve the vehicle’s energy 

performance, to reduce their polluting emissions and to find alternative powertrains free of direct 

emissions. Nevertheless, these huge advances are also demanding more resources to manufacture 

them. Current vehicles require components that demand scarce metals such as: LEDs for lighting 

(Ga, Ge, Y); catalytic converters (Pt, Pd, Zr); electronic units (Au, Ag, Sn, Ta, Yb), sensors (Ce, 

Tb, Se, La), infotainment screes (In, Sn), high strength steel or aluminum alloys (Nb, Mo, Cr, Ti, 

V, Cs, W) or injectors (Tb). Besides, demand of these scarce metals will grow even more with 

the massive adoption of electric vehicles that will require large capacity batteries (Co, Ni, Mn, 

Li), permanent magnets in motors (Nd, Pr, Dy) and more electronic components. This does not 

mean that electric vehicles should not be promoted, yet a careful sustainability analysis regarding 

the raw materials needed for their development should be accomplished and measures to improve 

their resource efficiency need to be urgently adopted.   

In line with this aim, current ELV legislation in Europe is promoting higher recycling targets. 

Although these targets are ambitious, they are failing in capturing functional recycling of minor 

but scarce metals. This is because the unit of measure for setting the targets is the kilogram. 

According to the current ELV Directive, 1 gr of cobalt is as valuable as 1 gr of aluminum and 
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hence only bulk metals are effectively recycled. However, it is well known that the scarcity in the 

crust of Co and Al and their extraction and beneficiation costs are very different.  

The adoption of policies based on physical parameters considering the quality of metals would 

avoid this problem. As it has been demonstrated, the Thermodynamic Rarity approach used 

throughout this Thesis, assigns an objective and universal value to each metal based on the relative 

scarcity of the element in the crust and the energy costs incurred in the mining and refining 

process. Scarce and difficult to extract metals are more critical than abundant ones from a 

thermodynamic rarity point of view. If the raw materials used in a car are rated through this 

approach, their components can be classified considering the physical quality of the metal 

contents. Moreover, the raw material sustainability of the car as a whole can be assessed.  

With this approach, this Thesis has shown that the mineral value (measured in Rarity terms) of 

those metals demanded by a common electric vehicle is 2.2 times higher than in an equivalent 

combustion engine one. Considering this fact, it is at least questionable that the mass adoption of 

the electric vehicle in a business as usual scenario is the definite solution towards achieving 

sustainable development in mobility. In this respect, appropriate recycling processes should 

encompass the electrification of vehicles. 

Yet after an examination of ELV recycling processes, several weaknesses have been identified. 

Current recycling operations are designed to manage large quantities of ELV of ferric and non-

ferric scraps consuming relatively small amounts of energy to improve cost efficiency.  However, 

they do not guarantee the functional recycling of all metals. ELV shredders are based on mixing 

processes which are highly entropic. In a conventional vehicle, different steel types are used, 

being some of them very valuable from the required alloying elements point of view (Cr, Mo, Nb, 

Ni, Ti or W). That said, the process output only entails one type of ferric scrap which is 

subsequently sent to a steel making furnace. As a consequence, these minor but scarce metals 

used as alloying elements become dispersed and lost forever.  

Even worse is the case of other non-alloying metals included in, for instance, sensors, LEDs or 

electronic units. Are they recycled? The answer is straightforward: there are no specific processes 

designed to do so. Instead, they are shredded, mixed and they usually end in the slags of steel 

making processes and ultimately in landfills. Accordingly, even if in a vehicle any metal is 

considered fully recyclable, this Thesis has shown that from a thermodynamic point of view only 

73 % of the metal content in a vehicle is functionally recycled. In other words, the mineral capital 

associated to one out of four vehicles that become recycled is practically lost. Therefore, it can be 

assumed that in a business as usual scenario the availability of scarce metals will soon be at risk 

because functional recycling rates are not evolving as fast as their demands.  
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Considering this situation, it becomes necessary that sustainable alternatives for guaranteeing the 

supply of scarce metals are urgently developed. As it has been shown for the Seat Leon case study, 

at least 31 components that are critical from their raw materials point of view have been identified: 

electronic units, motor, sensors, lighting, switchers, screen or infotainment units are among them. 

Moreover, it was highlighted that the majority of these components are common for any type of 

vehicle powertrain (whether electric, hybrid or combustion engines), meaning that global 

solutions can be adopted. Reduction and substitution of scarce metals is key, and in this respect, 

important research efforts should be invested.  

Another solution is the development of specific recycling processes. These processes must be 

based on hybrid operations (mechanics-hydrometallurgical-pirometallurgical-biometallurgical) 

instead of only physical ones. It is impossible to separate through physical treatments that which 

has been mixed through chemistry. Nevertheless, to be cost effective, the application of these 

metallurgical operations requires a high concentration of those metals that want to be recovered. 

For this reason, it is key to select and disassemble such critical components from the rest of the 

vehicle so that they can be appropriately recycled.  

On the other hand, recycling would considerably improve if vehicles were designed thinking in 

the EoL. In Thermodynamics, it is well known that separating requires far more efforts than 

mixing.  Nevertheless, from an industrial point of view more resources and efforts are aimed at 

manufacturing complex components with a high metal mixology (and hence highly entropic) than 

to separate these metals in recycling processes. Indeed, a vehicle manufacturing plant uses 

complex and highly automated processes, just in time logistic operations, energy resources, 

human efforts and strict quality requirements to produce large volumes of vehicles. Yet their 

recycling is mainly based on simple, low cost processes.  

For instance, if current tantalum capacitors recycling processes require the use of metallurgical 

operations, those components that use them (i.e. a steering electronic unit) should be designed to 

be easily disassembled. This approach would allow that such components are subsequently sent 

to a specific recycling center. Moreover, if no specific recovery processes are available for certain 

materials, their use should be avoided or limited. Something similar should happen with the use 

of REEs (Nd, Pr and Dy) in the motor, Ga, Ge, Y in LEDs, Ag, Au, Sn in electronics or In in 

screens. If domestic tablets or LED lamps are sent to a WEEE installation once the EoL is 

achieved, why is the EoL treatment procedure different with the navigator screen or the vehicle 

front lighting? Why are these vehicle components shredded? Are these metals different? It is 

evident that the ELV economic value is only marginal when compared with a new one. Yet its 

weight and raw material contents are the same as when it was new.  
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Moreover, and considering its raw materials primary availability at the end of the life, they might 

have become even scarcer than when the car was manufactured. On the other hand, what is the 

lifetime of a switcher, combi instrument or rain sensor? Certainly, many components of the car 

last much longer than the car itself. So, why are they shredded instead of reused in ELV? 

In short, there are different solutions to guarantee sustainable use of raw materials in the vehicle 

manufacturing sector and a combination of all should take place: 1) avoidance, substitution or 

reduction of the use of scarce and difficult to recycle metals; 2) eco-design considering the EoL; 

3) adoption of reverse logistic operations, what entails among others, automation of disassembly 

processes; 4) adoption of recycling operations, ensuring functional recycling. This will entail the 

application of specific metallurgical treatments; 5) reuse or retrofitting of long lasting components 

beyond the car’s EoL.  

At last but not least important is a reflection on the vehicle lifetime as a whole. Why does society 

consider that a conventional vehicle is old when it is about 10 years old? Why are manufacturers 

changing vehicle exterior designs every 5 years? The lack of regulations about vehicle durability 

and the fast evolution of vehicle designs incentivize the renovation of the fleet without 

considering the Earth’s limits. This unlimited consumerism will be constrained sooner or later by 

the limitation of natural resources. At this moment, adaptation will be certainly more painful than 

if radical changes are applied now. 

This Thesis has shown that current designing and recycling processes of vehicles are 

unsustainable from a raw materials point of view. This was demonstrated through the application 

of a thermodynamic approach which also helped in offering eco-design guidelines for improving 

the overall resource efficiency of a car. It is irresponsible of talking about clean and sustainable 

vehicles without considering the Earth’s limits and the thermodynamic laws. 
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10.2. Contributions  

The main contributions of the Thesis are listed below from A to J letter: 

A) It has been demonstrated that in the energy transition resource dependency will evolve from 

fossil fuels to raw materials. The amount of new technologies that will lead this transition 

such as renewables or electric vehicles are highly dependent on scarce metals. Current 

reserves and recycling values of scarce metals are not enough to guarantee the future 

development of green technologies. If we trust in green technologies to achieve a low 

carbon economy, more efforts in dematerialization, substitution of critical minerals and 

recycling must be urgently done. 

B) It has been assessed when possible raw material bottlenecks could put at risk the 

development of green technologies. This has been done by means of a method which is 

based on known reserves, available resources, capacity production, expected demand and 

recycling improvements. In the case of the automobile manufacturing sector, the following 

metals were identified in the medium risk category: Mo, Nd, Ta, whereas Ag, Co, Cr, Cu, 

Ga, In, Li, Mn, Ni would belong to the high risk one. Moreover, it has been estimated that 

demand could exceed the capacity of production for the following commodities: Ni (2027-

2029); Co (2030-2050); Ag (2031-2042); Ta (2033-2050); Nd (2034-2041); Mo (2038-

2042); Mn (2038-2050); In (2041); Li (2042-2045). 

C) It has been calculated how recycling rates should evolve to avoid some of these bottlenecks. 

The annual growing of functional recycling rates must grow up until 2050 at least at the 

following annual growing rates: Ag (0.6 %); Cd (1.3 %); Co (1.8 %); Cr (2.5 %); Dy (0.9 

%); In (0.5 %); Li (4.6 %); Mn (0.1 %); Mo (0.7 %); Nd (0.1 %); Ni (1 %); Se (2 %); Sn 

(0.1 %) and Ta (0.1 %).  

D) An innovative method based on physical parameters has been applied to calculate the 

material criticality of different types of vehicles (ICEV, PHEV and BEV). This has been 

useful to demonstrate that the electric vehicle is not as sustainable as it seems from the raw 

materials point of view. The application of Thermodynamic Rarity indicator shows that the 

demand of scarce metals in BEV is significantly higher than that of ICEV (172 GJ vs 387 

GJ). This increment is mainly due to the use of scarce metals necessary to manufacture 

batteries, motors and electronics. 
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E) This report has demonstrated the weakness of current ELV recycling policies which targets 

are based on weight. Such policies do not incentivize the recycling of minor but valuable 

metals like critical raw materials. An alternative approach based on the second law of 

Thermodynamics using an indicator called Thermodynamic rarity as the unit of measure 

has been proposed. Current ELV policy encourages the recycling of major metals, mainly 

Fe, Al and Cu because they account for more than 95 wt% of a vehicle’s metal content. 

Considering their physical quality (through rarity indicator), their relative thermodynamic 

contribution drops to less than 70 rt%. Around 30 % of the thermodynamic rarity value of 

the car is included in less than 5 % of the overall mass which is not recycled. This simple 

statement could encourage that recycling policies change the method to guarantee a more 

sustainable use of scarce metals.  

F) To the author’s knowledge, a comprehensive set of data with the metal composition of 

different types of vehicles equipped with different powertrains (ICEV – petrol and diesel, 

PHEV and BEV) has been published for the first time. In total 52 metals where evaluated. 

The set of data published in Chapter 4, is in itself a very valuable input information for 

future research. 

G) An index to classify the most strategic metals for the automobile manufacturers has been 

developed. The method has a holistic vision and combines physical parameters such as 

available reserves, known resources or metal production capacity and non-physical 

parameters like automobile sector demand with respect to world production; economic 

importance and supply risk. This method has served to identify as top ten strategic metals 

for automobile manufacturing sector: Ni, Li, Tb, Co, Dy, Sb, Nd, Pt, Au, Ag, Te, Mn, Ta, 

and Se. Although this method considers non-physical aspects, it identifies the same critical 

vehicle components as those identified by the thermodynamic approach (batteries, 

electronics, permanent magnets, catalytic converters, injectors) so it ensures that the 

thermodynamic method can be considered at least in the automobile case as self-sufficient. 

H) The lack of effectivity of current ELV recycling processes to recover minor metals has been 

demonstrated and quantified. Even if from tonnage point of view a high portion of the 

vehicle is recycled, the application of the method has demonstrated that 27 % of the metals 

measured in rarity terms are not functionally recycled. This means that the mineral capital 

associated to one out of four vehicles that become recycled is practically lost. Moreover, 

this figure does not considered other vehicle components like tires or glazing, which also 

demand scarce metals. Hence, the final figure is even higher. 
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I) A set of recommendations have been proposed to reduce the problem of downcycling in 

ELV recycling processes. The recommendations were explained in Chapter 8 (Paper IV), 

nevertheless the most important ones are described again below since they are part of the 

main Thesis contributions: 

I.1. To disassembly those components with valuable metals such as Au, Ag, REEs, 

platinum group metals (PGMs), Sn, Ta, or Te before shredding. Some of the most 

identified critical parts are: panel instrument, lighting switchers, LED lamps, 

power window motors, windscreen cleaner motors, electronic control units, rain 

sensors, electric mirrors, aerial amplifiers, and infotainment devices. This 

operation should be done even using automation by means of robots and would 

allow that specific recycling processes are implemented at a later stage. 

I.2. To apply hybrid recycling processes for the aforementioned parts. These 

recycling processes should be mechanical-pirometallurgical-hydrometallurgical-

biometallurgical. This is because the sole application of mechanical techniques is 

not compatible with the recycling of other materials such as indium in the displays 

or REEs in LEDs. Using this approach, valuable metals such as Au, Ag, Cr, Cu, 

Ga, In, Mg, Mo, Nb, Ni, Pd, Pt, Sn, Ta, V, or W would be recycled. This operation 

could be even developed in WEEE recycling plants as some of them are already 

implementing these processes. 

I.3. To disassembly those components made with special steel alloys (high content of 

Cr, Mo, Nb, Ni, Ti, or W). Some of these components include the exhaust pipe, 

o-rings, turbos, pinions, and gear shafts. Owing to the excessive time required for 

removing some of these parts (i.e., removing o-ring from an engine requires the 

cylinder head cap, cylinder head, connecting rods, and pistons to be disassembled 

before and this operation requires at least 1 h), an intermediate situation could be 

implemented. This situation could be that engines and gearbox were 

disassembled from the rest of the vehicle before shredding. Notably, in a vehicle 

manufacturing plant, the entire powertrain (including front axle, gearbox, engine, 

and rear axle) is joined to the body in less than 30 second and hence, this operation 

could also be implemented via a reverse approach  
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I.4. To apply shredding processes for different vehicle parts made from different 

qualities of steel and aluminum alloys (i.e., engines, gearboxes, and bodies). This 

would produce different scrap qualities which in turn would be the source of new 

alloys. In turn, this would avoid the contamination of steel alloys with high levels 

of some metals. This problem mainly happens with elements that have lower 

oxygen affinity than iron, such as Cu, Sn, Co and Ni which remain in the final 

alloy and contaminate it. 

J) From the eco-design point of view several recommendations to improve the resource 

efficiency in vehicles have been stated. These recommendations were published in Chapter 

9 (Paper V), however they are described again below since they are part of the main Thesis 

contributions: 

J.1. Facilitating disassembly: The generator, which is currently placed at the bottom 

part of the engine, should be better placed in the upper part, as this would facilitate 

disassembly and the recovery of its valuable metals. The generator is moved by 

a multifunction belt, meaning that this measure could be easily implemented. The 

combi instrument could be also designed to be removed from the upper part of 

the dashboard. This would avoid that the airbag and steering wheel are previously 

removed. As for the wires that connect the battery, they have a high thickness 

(and copper content) due to the maximum power demand required to move the 

starter. With a redesign they could be also disassembled when the batteries are 

removed in ELV authorized centers. Finally, a common disassembling of engine, 

gearbox and front axle would allow that specific recycling processes are applied 

to recover valuable metals of specific components such as: suspension arms (Nb, 

Mo, V), turbo (Nb, Cr, W), exhaust pipe (Pd, Ni, Zr), exhaust temperature gases 

sensor (Pt, Ni, Cu) or servo-steering (Cu). This operation could be easily 

implemented because these components are designed to be quickly assembled in 

vehicle manufacturing factories. 

J.2. Critical metal substitutability: Aluminum could be used instead of copper in 

certain wirings: as is well known, aluminum is an alternative to copper for wiring. 

It should be taken into account though that aluminum has 61 % of the copper 

conductivity but it has only 30 % of the weight. An aluminum cable with the same 

conductivity than copper will weight up to 50 % less but it will be also thicker. 

Moreover, the use of aluminum as a conductive material implies the addition of 

other elements such as Fe, Cu, Mg or Cr. On the other hand, the linear expansion 
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coefficient is around 36 % higher than for copper, what might constitute a 

problem in several applications with high temperatures. Silver plating instead of 

gold plating in electronic contacts: gold, as a native element, has very useful 

properties such as high conductivity, corrosion resistance, high melting point or 

reflectivity. These properties make that the electronic sector has become the most 

important gold consumer. Nevertheless, electronic parts are rarely made entirely 

of gold because of the material´s cost. This is why manufacturers use 

electroplating to apply a thin layer of gold over the main material that comprises 

the component. As an alternative, silver plating can be also used. Silver has as 

main benefit its lower cost. Moreover, it has other key properties such us the 

highest electrical and thermal conductivity of any metal. Its main weakness with 

respect to gold plating comes from its corrosion resistance. For a better corrosion 

resistance, a nickel undercoat with silver plating can be used. This alternative 

should be carefully analyzed mainly for those components responsible for safety 

systems. Ceramic capacitors instead of tantalum capacitors: Ceramic capacitors 

have the highest market share but tantalum capacitors provide a feasible 

alternative if higher breakdown strengths are required. The reduced costs, smaller 

size (suitable for space-constrained electronic circuits), high-frequency 

characteristics, higher reliability, ripple control and longevity are driving the 

market to replace tantalum capacitors with ceramic capacitors wherever possible.  

J.3. Retrofitting: From a retrofitting point of view, it is key the availability of reusable 

parts. Such parts can only come from models with high production values such 

as those in segment C. The destination of such parts would be in turn vehicles 

with smaller sales figures and where the focus is not placed on newest designs. 

This is why a clear destination of retrofitted parts would be in industrial vehicles. 

Particularly, retrofitting would be a plausible option for the combi instrument, 

lighting switcher, rain sensor, air quality sensor or exhausts gases temperature 

sensor. Retrofitting of engine and gearbox parts could be also considered. 

Particularly for the engine, this could be done by using disassembled cylinder 

bores such as in some industrial engine cases. This measure would not hinder the 

engine for being updated to new performance requirements, because these 

changes mainly affect auxiliary systems like the head engine, the exhaust pipe or 

the fuel pump. The gearbox is manufactured with some valuable metals like 

magnesium, nickel, chromium and molybdenum. In the studied vehicle, the 

gearbox contains 80 % of the total magnesium used by the vehicle. Moreover, the 
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gearbox is a very unfailing and robust component and is therefore a perfect 

candidate to be retrofitted. Manual gearbox design has not substantially changed 

throughout the years and this operation is a common technique applied in 

specialist gearbox repair garages. 

J.4. New approaches: In the field of new approaches, it is recommended to assess the 

possibility to centralize all electric units (i.e. on board supply control unit, door 

unit, airbag unit, electronic control unit, combi instrument electronic or electronic 

from infotainment) in a common unit. Through this way, this unit could be easily 

disassembled and sent from ELV authorized centers to specific recycling plants 

as it happens with batteries or tires. It is also recommended to assess the impact 

of changing the vehicle voltage from 12 V to 24 V or 48 V. This measure is being 

proposed to improve the engine efficiency and the performance of hybrid 

systems. Note that this measure could also reduce the section of wiring. In this 

line, the use of Integrated Starter and Generator Technology may well reduce the 

demand of copper and permanent magnets containing rare earths. Finally, it is 

proposed to assess the impact that would have the inclusion of combi instrument 

information and switchers in the screen of infotainment unit. This measure would 

not only avoid the use of such devices but also the associated wiring. 
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10.3. Perspectives 

Several aspects that have remained outside the scope of this Thesis and that could complement 

the work are presented below. 

 In the first place, the possibility of analyzing more data about different types of vehicles. In 

the case of the electric and hybrid vehicles, the data used came from a literature review. This 

is a first assessment with uncertainties related to the real metal demand by each type of 

vehicle. In this respect, shortly a comparison between two models with different powertrains 

(combustion and electric) will be performed within the research group where I belong. 

Moreover, the methodology used in this Thesis could be applied to different equipment levels 

to identify resource efficiency aspects related to optional equipment. 

 This thesis has been focused on metals. However, in a vehicle there are other materials such 

as rubbers, plastics, glasses, tires or foams. Currently these materials end usually in landfills 

and in some cases they even contain scarce metals (glasses, body tires or metal plating used 

in plastics) so it is urgent to give also solutions for these materials with the aim to close the 

cycles. 

 An important follow up of this Thesis is to analyze the ways and options for recovering 

metals from critical components. This Thesis has identified them, but now the processes 

required to recycle them must be defined. This task will be done through metallurgical 

approaches using simulation tools. The intention is to cooperate with Helmholtz Zentrum 

Dresden Rossendorf (Freiberg headquarter) using HSC Chemistry software to build a virtual 

plant to recycle scarce metals from vehicle critical components. 

 Once the different metallurgical processes for the recovering of valuable metals from ELV 

are defined, the impact of these processes needs to be assessed from an environmental and 

economic point of view. Several questions need to be addressed: How much waste will be 

generated? What will be the impact of this waste? How many metals can be recycled? What 

is the economic feasibility of recovering these metals?   

 The application of conventional shredding process has encouraged that huge quantities of 

scarce metals contained in ASR are disposed of in landfills. The potential to convert current 

landfills in urban mines to recycle scarce metals is a very interesting new research line.  
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10.4. Principales conclusiones y reflexiones 

La transición energética hacia una economía baja en carbono necesita de tecnologías libres de 

emisiones directas de contaminantes y gases precursores del efecto invernadero. Sin embargo esas 

tecnologías a pesar de no ser dependientes de los combustibles fósiles para su funcionamiento 

seguirán siendo dependientes de los materiales que se requieran para su fabricación, por tanto la 

dependencia de los recursos probablemente migrara desde los combustibles fósiles hasta las 

materias primas. Como se ha demostrado en esta Tesis, considerando las proyecciones de 

desarrollo previstas para las energías renovables y los vehículos eléctricos hasta 2050, podría no 

haber suficientes materiales para su desarrollo. En concreto en el sector de la fabricación de 

vehículos existe una gran dependencia de algunos metales cuyo suministro hasta 2050 se puede 

considerar en riesgo medio (Mo, Nd, Ta) o alto (Ag, Co, Cr, Cu, Ga, Li, Mn, Ni). 

De igual forma que sabemos que los combustibles fósiles no son infinitos y que debemos de 

migrar hacia una economía que no dependa de ellos, no se puede ignorar los límites de los recursos 

minerales. Aunque al contrario que en el caso de los combustibles fósiles, los recursos minerales 

no desaparecen tras su uso, sino que se dispersan si no se emplean adecuadamente. Como 

consecuencia de esta dispersión se vuelven inservibles. Sin embargo y al contrario que en el caso 

de los combustibles fósiles, el problema de la suficiencia de recursos minerales para conseguir 

una economía baja en carbono no se está abordando con la importancia que requiere. 

El sector del automóvil es uno de los sectores que está haciendo más avances para mejorar su 

sostenibilidad. Estos avances se han centrado principalmente en la mejora del rendimiento de los 

motores de combustión, la reducción de sus emisiones contaminantes y la búsqueda de nuevas 

fuentes de energía que permitan un uso exento de emisiones directas. Sin embargo estos avances 

también están suponiendo una gran demanda de recursos para su fabricación. Estos recursos son 

de gran valor y escasez y son necesarios para fabricar algunos de los siguientes componentes: 

LEDs para iluminación (Ga, Ge, Y); convertidores catalíticos (Pt, Pd, Zr); unidades electrónicas 

(Au, Ag, Sn, Ta, Yb), diferentes tipos de sensores (Ce, Tb, Se, La), pantallas de 

infoentretenimiento (In); aleaciones de acero o aluminio de altas prestaciones (Nb, Mo, Cr, Ti, V, 

Sc, W) o inyectores (Tb). Por otro lado esta demanda de metales de gran escasez aumentará más 

con la penetración masiva en el mercado de los vehículos eléctricos. Estos automóviles 

necesitaran de grandes baterías (Co, Ni, Mn o Li), imanes permanentes para motores (Nd, Dy, Pr) 

y de más componentes electrónicos. Esta afirmación no implica que no se deba de apoyar su 

desarrollo, pero se debe de investigar mucho más para que los coches eléctricos sean más 

sostenibles desde el punto de vista de sus materias primas. 
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Como solución para usar los metales de forma más sostenible se están impulsando leyes que 

incrementan las cuotas de reciclaje de los vehículos. Aunque estas leyes son ambiciosas están 

lejos de garantizar el reciclaje funcional. Para la actual legislación de reciclaje 1 gramo de cobalto 

tiene la misma importancia que 1 gramo de aluminio, cuando es bien sabido que su escasez, 

dificultad de extracción y por tanto capital mineral es totalmente diferente.  

Una política de reciclaje que asignara a cada metal un valor objetivo en base a parámetros físico 

evitaría ese problema. Tal y como se ha demostrado el uso de la Rareza Termodinámica asigna 

ese valor en función de su abundancia en la corteza terrestre y los costes energéticos necesarios 

para extraerlos, procesarlos y ponerlos a disposición de las industrias. Desde el punto de vista 

termodinámico los metales más escasos y difíciles de extraer son más críticos que los más 

abundantes. Por tanto, si todos los metales empleados por un vehículo fueran evaluados mediante 

este enfoque, sus componentes se podrían clasificar de forma objetiva considerando el valor físico 

de sus metales. Además el vehículo en su conjunto se podría evaluar desde una perspectiva de 

eficiencia en el uso de los recursos. 

Mediante este método esta Tesis ha demostrado que el valor mineral de los metales que demanda 

un vehículo eléctrico es 2.2 superior al de un vehículo de combustión equivalente en tamaño. 

Teniendo en consideración este resultado se puede afirmar que el actual vehículo eléctrico no es 

la solución para conseguir un desarrollo sostenible. Por tanto, una mejora de los procesos de 

reciclaje se debe de desarrollar en paralelo a la electrificación de los vehículos. 

Tras un análisis detallado de los procesos de reciclaje de vehículos se han identificado varias 

debilidades. Son eficaces para gestionar grandes cantidades de chatarras férricas y no férricas 

pero son ineficaces para reciclar funcionalmente los metales escasos. Los procesos de mezcla que 

tienen lugar en las actuales operaciones de fragmentación son altamente entrópicos. Un vehículo 

tiene diferentes tipos de aceros, siendo algunos de gran valor por contener aleaciones con grandes 

propiedades mecánicas (alto contenido de Cr, Mo, Nb, Ni, Ti o W), sin embargo a la salida del 

proceso de reciclaje hay una única fracción de chatarra férrica que es llevada a una fundición 

provocando la dispersión y posterior pérdida de metales aleantes de gran valor. 

Pero el mayor de los problemas no sucede con las aleaciones de acero, las cuales al fin y al cabo 

tienen un proceso que aunque no las recicla funcionalmente al menos si las recicla en parte. ¿Qué 

sucede con los  sensores, los LEDs o las unidades electrónicas? Todos ellos no tienen entre sus 

composiciones principales aleaciones de hierro y aluminio. ¿Entonces que se recupera de ellos? 

La respuesta es sencilla, no se recupera nada, pues sus metales se fragmentan, mezclan y diluyen 

en las operaciones de reciclaje, de tal manera que acaban formando escorias en los procesos de 

fundición de aluminio y acero o en un vertedero.  
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Como consecuencia en la actualidad a pesar de que en los cálculos de la reciclabilidad de un 

vehículo se considera que todo metal contenido por un vehículo es reciclado al 100 %, en realidad 

y de forma funcional se ha demostrado que se recicla solamente el 73 % del valor total de los 

metales que se emplean. En otras palabras cada cuatro vehículos que se reciclan, se pierde el valor 

mineral de uno de ellos. En este momento se puede afirmar que si continuamos con la actual 

tendencia no habrá suficientes materias primas y aunque confiemos en la evolución del reciclaje, 

las cuotas de reciclaje no están creciendo tan rápido como la demanda de recursos primarios. 

Ante esta situación hay que comenzar a desarrollar alternativas sostenibles al uso de metales 

escasos. Como se ha demostrado un vehículo convencional tiene 31 componentes que se pueden 

considerar críticos por los metales que emplean. Entre estos componentes están unidades 

electrónicas, motores eléctricos, sensores, sistemas de iluminación LED, interruptores, pantallas 

o cuadros de instrumentación. Además es destacable que la mayoría de esos componentes son 

comunes a cualquier tipo de vehículo, sea de combustión, híbrido o eléctrico. Para estos 

componentes es preciso desarrollar alternativas sostenibles desde el punto de vista de sus materias 

primas. La reducción y la sustitución de metales escasos son fundamentales y en este respecto se 

deben de hacer importantes mejoras. 

Otra solución es el desarrollo de procesos específicos de reciclaje. Estos procesos no pueden estar 

basados solamente en operaciones físicas sino también en metalurgia. No se puede separar 

mediante la física aquello que ha sido fabricado a través de la química. Sin embargo para que 

estos procesos sean viables, se necesita partir de componentes con altas concentraciones en los 

metales a recuperar y para ello hay que desensamblar esos componentes del resto del vehículo. 

El concepto debe de cambiar, hay que diseñar los vehículos en base a criterios de sostenibilidad 

en el uso de los metales, pensando tanto en su disponibilidad como en su reciclabilidad. Desde la 

perspectiva termodinámica es bien sabido que separar requiere de un mayor esfuerzo que mezclar. 

Sin embargo desde una perspectiva industrial se destinan muchos más esfuerzos para fabricar 

complejos productos con una alta mixología de metales que para reciclarlos. Un fabricante de 

automóviles emplea procesos sofisticados de fabricación que implican complejas operaciones de 

producción en cadena, con una automatización muy avanzada, logística “just in time” y estrictos 

requerimientos de control de tiempos, costes y calidad… sin embargo el reciclaje de vehículos se 

basa en fragmentar vehículos. 

A modo de ejemplo, si el actual estado del arte del reciclaje del tántalo de los condensadores 

implica usar metalurgia, aquellos componentes electrónicos que emplean condensadores de 

tántalo (por ejemplo la unidad electrónica de una dirección asistida) deben de ser diseñados para 

que se puedan quitar fácilmente los condensadores y ser llevados a un centro específico de 

reciclaje. De forma alternativa y en caso de que no se puedan llevar a cabo dichas operaciones se 
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tendrán que emplear condensadores que no empleen tántalo. De igual forma sucede con las tierras 

raras (Nd, Pr y Dy principalmente) que se emplean en la fabricación de motores eléctricos, con 

los metales que se emplean en los LEDs (Ga, Ge, Y), en las conexiones eléctricas (Ag, Au, Sn) o 

en las pantallas (In). Si cuando llevamos una tablet o una luminaria LED que tenemos en nuestro 

hogar a un punto de recogida de productos fin de vida, son llevados a centros de tratamiento de 

WEEEs. ¿Por qué la pantalla del navegador de un coche es fragmentada? ¿Acaso los metales que 

emplean son diferentes?  

Está claro que los procesos de reciclaje tienen que ser los más económicos posibles. De igual 

modo se sabe que el valor económico de un vehículo al llegar a su fin de vida es marginal en 

comparación con su precio original. Sin embargo el contenido de sus metales es el mismo que 

cuando era nuevo y seguramente su disponibilidad a nivel de recurso primario, hará que sean más 

escasos que cuando se fabricó el vehículo. Por otro lado y considerando la vida útil ¿Cuál es la 

vida útil de un interruptor, un panel de instrumentos, un sensor de lluvia o un motor de un limpia 

cristales? ¿Por qué se fragmentan componentes que podrían ser remanufacturados para nuevos 

modelos? 

En resumen, hay diferentes soluciones para garantizar un uso más sostenible de los materiales en 

la fabricación de los vehículos y una combinación de todas ellas se debe de llevar a cabo, a 

continuación se describen dichas soluciones: 1) Evitar, sustituir o reducir el uso de metales 

escasos en la naturaleza y difíciles de obtener; 2) Eco-diseñar los vehículos considerando el fin 

de vida de los mismos y su reciclabilidad; 3) Adoptar operaciones de logística inversa, que 

impliquen automatizar el desensamblaje; 4) Aplicar operaciones de reciclaje para conseguir el 

reciclaje funcional de los metales; 5) Reusar o remanufacturar todos los componentes que se 

pueda, más allá de la vida del vehículo que inicialmente los usó.  

Finalmente y no por ello menos importante es el problema de la vida útil. ¿Por qué consideramos 

viejo un vehículo con poco más de 10 años? ¿Por qué se cambian los diseños exteriores y por 

tanto los modelos de vehículos cada 5 años aproximadamente? Esta falta intencionada de 

durabilidad y la rápida evolución de los diseños incentiva una renovación de la flota exacerbada 

que no tiene en cuenta los límites de los recursos naturales. No podemos consentir que un producto 

tan demandante de recursos como un vehículo tenga una vida útil tan corta. Este consumismo 

ilimitado acabara tarde o temprano sucumbiendo ante los límites de la Tierra y para entonces las 

consecuencias y la adaptación no será nada sencilla. En esta tesis se ha demostrado que los 

actuales procesos de diseño y reciclaje de vehículos son insostenibles. Las soluciones aquí 

planteadas se basan en el uso de enfoques objetivos para la medición de la eficiencia en el uso de 

los recursos y la definición de medidas de ecodiseño. No podemos hablar de vehículos limpios y 

de desarrollo sostenible, de espaldas a los límites de la Tierra y las leyes de la termodinámica. 
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10.5. Contribuciones 

Las principales contribuciones de la Tesis son descritas a continuación, siendo listadas de la letra 

A a la J: 

A) Se ha demostrado que en la transición energética la dependencia de los recursos 

evolucionará desde los combustibles fósiles hacia los materiales. Las nuevas tecnologías 

que lideraran la transición energética, como las energías renovables o los vehículos 

eléctricos son altamente dependientes de recursos escasos. Si confiamos en las  

tecnologías verdes para conseguir una economía baja en carbono, se quieren más 

esfuerzos en sustituir y reciclar los metales escasos que emplean. 

B) Se ha evaluado cuando podría haber posibles restricciones de suministro de metales 

necesarios para el desarrollo de tecnologías limpias. El método desarrollado está basado 

en las reservas, recursos, capacidad de producción, futura demanda y evolución de las 

cuotas de reciclaje. En la fabricación de vehículos se identificaron con riesgo medio los 

siguientes metales (Mo, Nd, Ta) y con riesgo alto (Ag, Co, Cr, Cu, Ga, In, Li, Mn, Ni). 

Se calcularon además como posibles periodos en los cuales podrían surgir algunas de las 

restricciones los siguientes: Ni (2027-2029); Co (2030-2050); Ag (2031-2042); Ta (2033-

2050); Nd (2034-2041); Mo (2038-2042); Mn (2038-2050); In (2041); Li (2042-2045). 

C) Se ha comunicado como deberían evolucionar los ratios de reciclaje para evitar alguna de 

esas restricciones. El ratio anual de reciclaje debería de crecer hasta 2050 a los siguientes 

ritmos: Ag (0.6 %); Cd (1.3 %); Co (1.8 %); Cr (2.5 %); Dy (0.9 %); In (0.5 %); Li (4.6 

%); Mn (0.1 %); Mo (0.7 %); Nd (0.1 %); Ni (1 %); Se (2 %); Sn (0.1 %) and Ta (0.1 %). 

D) Se ha aplicado por primera vez en el sector del automóvil un método innovador basado 

en parámetros físicos para calcular la criticidad de diferentes tipos de vehículos desde la 

perspectiva de los materiales que emplean. El método se ha aplicado a tres tipos de 

vehículos (ICEV, PHEV and BEV) y demuestra que el indicador Rareza Termodinámica 

en los vehículos eléctricos es mayor que en los de combustión (172 GJ frente a 387 GJ). 

Este incremento es principalmente causado por el incremente de la demanda de metales 

necesarios para fabricar baterías y componentes eléctricos y electrónicos. 

E) Se ha demostrado que las políticas actuales de reciclaje basadas en masa no promueven 

el reciclaje de metales escasos. Como alternativa se ha propuesto un método basado en la 

rareza termodinámica como una de medida. Las actuales políticas de reciclaje propician 

que se recicle el acero, aluminio y cobre porque entre ellos contabilizan el 95 % de la 

masa de los metales de un vehículo. Sin embargo su contribución a la rareza 

termodinámica del coche es inferior a un 70 %. En la actualidad hay un 30 % del valor 
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termodinámico de los materiales de los vehículos en menos de un 5 % de su masa y las 

actuales policitas no propician la recuperación de esos metales. 

F) Se ha publicado un análisis en profundidad sobre las cantidades de metales demandadas 

por diferentes tipos de vehículos. En total se han evaluado 52 metales para 4 tipos de 

vehículos (diésel, gasolina, hibrido y eléctrico). Este conjunto de datos constituyen en sí 

mismo un gran avance para futuras investigaciones. 

G) Se ha definido un ranking estratégico de metales para clasificar aquellos metales 

demandados para fabricar vehículos. Este método combina parámetros físicos como las 

reservas disponibles o la capacidad de producción, con parámetros no físicos como la 

demanda del sector del automóvil con respecto a la demanda total; la importancia para la 

economía o el riesgo de suministro. Este método identifica como los principales metales 

estratégicos los siguientes: Ni, Li, Tb, Co, Dy, Sb, Nd, Pt, Au, Ag, Te, Mn, Ta y Se. 

Aunque este método considera aspectos no físicos, sus resultados ofrecen pocas 

desviaciones respecto a los ofrecidos por el análisis termodinámico, de tal forma que sirve 

para demostrar que el caso del automóvil el enfoque termodinámico es suficiente para 

evaluar la criticidad.  

H) Se ha demostrado numéricamente la falta de efectividad de las políticas de reciclaje para 

la recuperación de metales escasos. Basados en el caso de estudio realizado, las pérdidas 

calculadas a través de la Rareza Termodinámica son un 27 % sobre el total del valor del 

vehículo. Esto significa que el valor mineral de uno de cuatro vehículos se destruye en 

los actuales procesos de reciclaje. A esto habría que sumar la situación de otros 

componentes que no son analizados como los cristales, plásticos y espumas.  

I) Se han propuesto una serie de recomendaciones para reducir el subciclaje en los procesos 

de reciclaje de vehículos. Las recomendaciones fueron explicadas en el Capítulo 8 (Paper 

IV). Sin embargo las principales se describen a continuación dado que constituyen una 

de las principales contribuciones de la Tesis. 

I.1. Desensamblar aquellos componentes fabricados con metales valiosos como Au, 

Ag, REE, PGMs, Sn, Ta o Te antes de ser fragmentados. Algunos de estos 

metales se encuentran en los siguientes componentes: panel de instrumentos, 

interruptores de luces, lámparas LED, motores de ventanillas, motores de 

limpiaparabrisas, unidades de control, sensores de lluvia, espejos eléctricos, 

amplificadores de antena o dispositivos de infroentretenimiento. Esta medida se 

podría realizar a través de estaciones automatizadas que permitirán un posterior 

reciclaje de las piezas desmontadas. 
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I.2. Aplicar procesos híbridos de reciclaje para las citadas piezas. Esos procesos 

deberían de ser mecánicos-pirometalúrgicos-hidrometalúrgicos-biometalurgicos 

ya que la adopción de técnicas mecánicas no es compatible con la recuperación 

de materiales como el indio de las pantallas o las tierras raras de los LEDs. De 

esta forma algunos metales valiosos como el Au, Ag, Cr, Cu, Ga, In, Mg, Mo, 

Nb, Ni, Pd, Sn, Ta, V o W podrían ser reciclados. Además la implementación de 

esta medida se podría llevar a cabo en centros específicos de reciclaje de RAEEs. 

I.3. Desensamblar aquellos componentes hechos con aleaciones de acero de alta 

calidad (alto contenido en Cr, Mo, Nb, Ni, Ti o W). Algunos de estos 

componentes son los siguientes: tubo de escape, segmentos, piñones, turbo y ejes 

de cajas de cambio. Dado que algunas de esas piezas requieren mucho tiempo 

para su desmontaje  (p.e: segmentos, bielas, pistones o culata) se podría hacer 

una situación intermedia en la cual todo el motor y la caja de cambio se 

desensamblara del resto del vehículo antes de la fragmentación para su posterior 

reciclaje de forma específica. Hay que tener en consideración que su montaje se 

hace de forma conjunta en menos de 30 segundos, por tanto su desmontaje podría 

hacerse de forma inversa. 

I.4. Aplicar procesos de fragmentación específicos para diferentes componentes del 

coche hechos con diferentes calidades de acero o aluminio (p.e motores, cajas de 

cambio o carrocerías) para producir diferentes calidades de chatarra férrica y no 

férrica. Esta medida evitaría la contaminación de aleaciones de acero por altos 

niveles de algunos metales como Cu, Su, Co y Ni que no se pueden eliminar en 

los procesos de oxidación del acero. 

J) Desde la perspectiva del ecodiseño se han propuesto varias recomendaciones. Las 

recomendaciones fueron explicadas en el Capítulo 9 (Paper V). Sin embargo las 

principales se describen a continuación dado que constituyen una de las principales 

contribuciones de la Tesis. 

J.1. Facilitar el desensamblaje: En la actualidad el alternador suele estar en la parte 

baja del motor y debería de ubicarse en la zona alta. Esto facilitaría el desmontaje 

del mismo para la recuperación de metales valiosos. El alternador se mueve por 

una correa multifunción, de tal forma que su reubicación podría ser fácilmente 

implementada. En el caso del cuadro de instrumentos se debería de diseñar para 

ser desmontado por la zona superior del salpicadero. De esta forma no habría que 

desmontar previamente el airbag y el volante. En el caso de los cables de la 
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batería, que son los que tiene mayor espesor y contenido en cobre, se podrían 

rediseñar para ser fácilmente desmontados cuando se desmontan las baterías en 

los CATs. Finalmente si se realizará un proceso de desmontaje común del motor, 

caja de cambios y tren delantero se podrían recuperar algunos metales los 

siguientes componentes: brazos de suspensión (Nb, Mo, V), turbo (Nb, Cr, W), 

tubo de escape (Pd, Ni, Zr), sensor de temperatura de gases (Pt, Ni, Cu) o  

asistencia de la dirección (Cu).  

J.2. Sustitución de metales críticos: El aluminio se podría emplear para sustituir al 

cobre en algunos cableados. Para ello hay que tener en consideración que el 

aluminio tiene el 61 % de la conductividad eléctrica del cobre pero solamente el 

30 % de su peso. De tal forma que a igualdad de conductividad, un cable de 

aluminio, aunque tendrá más espesor que el cobre pero pesara un 50 % menos. 

No obstante para la substitución de cobre por aluminio se debe de tener en 

consideración que para su uso hay que emplear también como elementos aleantes 

Fe, Cu, Mg o Cr. Por otro lado el coeficiente de dilatación lineal del aluminio es 

un 36 % superior al del cobre de tal forma que para algunos componentes puede 

suponer un problema. En algunos contactos electrónicos se podrían sustituir los 

recubrimientos de oro por recubrimientos de plata. Además de por ser un material 

menos escaso, el uso de la plata tiene también como ventaja su menor coste. La 

plata tiene una conductividad eléctrica y térmica mejor que el oro, aunque 

presenta como principal desventaja su menor resistencia a la corrosión. Para 

evitar este problema el recubrimiento debería de ser de plata y níquel. En el caso 

de los condensadores de tántalo se podrían emplear condensadores cerámicos.  

J.3. Reacondicionamiento: Desde el punto de vista del reacondicionamiento, es vital 

analizar la disponibilidad de piezas para ser reacondicionadas y montadas en 

vehículos nuevos. Estas operaciones se podrían realizar desde vehículos con 

grandes series de fabricación como sucede en el segmento C, hacia otros que se 

fabrican en menor escala y en los cuales los requerimientos estéticos no son tan 

importantes, por ejemplo en vehículos industriales. Esta opción sería muy 

adecuada para: cuadros de instrumentos, interruptores, sensores de lluvia, 

sensores de calidad de aire, gases o temperatura. Además se podría evaluar 

también el reacondicionamiento de motores y cajas de cambio. En el caso de los 

motores, un diseño con camisas intercambiables permitirá la sustitución de estas 

como se hace en los motores industriales. Por otro lado esta medida no 

imposibilitaría que el motor se pudiera actualizar a nuevos requerimientos 

legislativos o de rendimiento ya que los sistemas de inyección, culata o sistema 
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de escape son independientes al bloque. En el caso concreto de la caja de 

cambios, se emplean también metales de gran valor como magnesio, níquel, 

cromo y molibdeno. En el vehículo estudiado el 80 % del magnesio estaba en la 

caja de cambios. Las cajas de cambios son muy robustas y sus desarrollos nos 

han cambiado sustancialmente en los últimos años de tal forma que es una 

operación que se podría llevar a cabo fácilmente. 

J.4. Nuevos conceptos: Se recomienda la posibilidad de centralizar todas las unidades 

electrónicos (p.e unidad de control de abordo, unidad de control de puertas, 

unidad de airbag, unidad electrónica de control del motor, cuadro de instrumentos 

o unidad del sistema de infoentretenimiento) en una unidad común. De esta 

manera podría ser desensamblada en los CATs y enviada posteriormente a un 

centro de reciclaje. Por otro lado se recomienda evaluar el impacto de elevar el 

voltaje de los vehículos de 12 V a 24 V o 48 V. En la actualidad los modelos 

híbridos están llevando a cabo esta medida para mejorar el rendimiento, pero hay 

que tener en cuenta que esta medida reduciría también la sección de cableado. En 

este sentido se propone integrar el alternador y el motor de arranque en una única 

unidad ya que se reduciría la demanda de imanes permanentes y por tanto de 

tierras raras. Finalmente se recomienda evaluar el impacto de concentrar toda la 

información e interruptores del vehículo en una pantalla, ya que permitirá 

eliminar la necesidad de interruptores, reduciría la demanda de cableado y ese 

conjunto podría ser fácilmente desmontable para su reciclaje y/o reutilización. 
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10.6. Perspectivas 

Las futuras líneas de investigación que pueden complementar el trabajo desarrollado por esta 

Tesis se presentan a continuación. 

 Primeramente, la posibilidad de investigar más sobre las composiciones de otros tipos de 

vehículos. En el caso de los vehículos eléctricos e híbridos, los datos empleados vienen 

de revisión bibliográfica. Esta primera evaluación tiene incertidumbres derivadas de los 

contenidos de metales de los vehículos. Se espera que en un corto plazo a comparación 

entre dos modelos con diferentes tipos de propulsión (eléctrica y de combustión) se pueda 

llevar a cabo. Además, esta metodología se podría aplicar a diferentes tipos de niveles de 

equipamiento. 

 En segundo lugar, investigar el papel de otros materiales. En esta Tesis se han analizado 

los metales, sin embargo, un vehículo también emplea plásticos, vidrios, neumáticos, 

espumas o materiales textiles. En la actualidad esos materiales finalizan habitualmente 

en los vertederos por lo que hay que buscar soluciones para cerrar sus ciclos. 

 En tercer lugar habría que investigar las opciones para recuperar metales de los 

componentes identificados como críticos. Una vez que ya se dispone del listado de los 

componentes críticos de un vehículo hay que definir los procesos de reciclaje para 

recuperar los metales críticos que emplean. Para desarrollar está actividad hay que 

emplear herramientas de simulación de procesos metalúrgicos. Esta tarea se desea realizar 

con el Helmholtz Zentrum Dresden Rossendorf (sede de Freiberg) empleando el software 

HSC Chemistry, como resultado se quiere diseñar una planta virtual de reciclaje de 

componentes. 

 En cuarto lugar habría que investigar la viabilidad ambiental y económica de los procesos 

de reciclaje. Una vez que los procesos metalúrgicos son definidos, es necesario evaluar 

sus impactos. En la actualidad hay varias preguntas que resolver: ¿Cuánto residuo 

produciría el reciclado de esos componentes? ¿Cuál sería la toxicidad de dicho residuo? 

¿Es viable recuperar esos metales? 

 Finalmente, investigar qué procesos de reciclaje se podrían desarrollar para la 

recuperación de metales de los residuos de fragmentación que han sido depositados en 

los vertederos durante años. La aplicación de los procesos de fragmentación 

convencionales ha propiciado que en la actualidad haya vertederos que puedan ser 

considerados auténticas minas urbanas por el valor de los metales que contienen. 
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Appendix 

The present thesis is based on a compilation of different published manuscript. The impact factors 

and scope of the corresponding journals are listed below: 

A.1. Valero, Al. Valero, A. Calvo, G. Ortego, A. Material bottlenecks in the future development 

of green technologies. Renewable and Sustainable Energy Reviews. Vol 93, pp 178-200. October 

2018. 
Impact Factor: 9.18. Journal Citation Reports 2017.  

Scope: review papers, original research, case studies and new technology analyses that have 

a significant review element, which may take the form of a critique, comparison, or 

analysis. Main topics are: Energy resources, applications, utilization, environment, techno-socio-

economic aspect, systems, and sustainability. 

A.2. Ortego, A. Valero, Al. Valero, A. Restrepo, E. Vehicles and Critical Raw Materials. A 

Sustainability Assessment using Thermodynamic Rarity. Industrial Ecology. Vol 22. Nº5. March 

2018. 
Impact Factor: 4.35. Journal Citation Reports 2017.  

Scope: material and energy flows studies ('industrial metabolism'), technological change, 

dematerialization and decarbonization, life cycle planning, design and assessment, design for the 

environment, extended producer responsibility ('product stewardship'), eco-industrial parks 

('industrial symbiosis'), product-oriented environmental, policy eco-efficiency. 

A.3. Ortego. A, Valero. Al, Valero. A, Calvo. G, Villacampa. M, Iglesias. M. Strategic metals 

ranking in the automobile sector. 13th Sustainable Development Energy Water and Environmental 

Systems Conference. Palermo, Italy. 4th October 2018. 

Impact Factor: It has no impact factor but it is indexed in Scopus. It has been selected for 

publication in the journal of Environmental Management. 

Scope: It is dedicated to the improvement and dissemination of knowledge on methods, policies 

and technologies for increasing the sustainability of development by de-coupling growth from 

natural resources and replacing them with knowledge-based economy, taking into account its 

economic, environmental and social pillars. Among its areas the following are included: Smart 

transport systems and policy; Green economy and better governance; Sustainability comparisons 

and measurements; Transport management. 

A.4. Ortego, A. Valero, Al. Valero, A. Iglesias, M. Downcycling in automobile recycling process: 

A thermodynamic assessment. Resources, Conservation and Recycling. Vol 136, pp 24-32. 

September 2018. 
Impact Factor: 5.12. Journal Citation Reports 2017.   

Scope: The journal emphasizes the transformation processes involved in a transition toward more 

sustainable production and consumption systems. Emphasis is upon technological, economic, 

institutional and policy aspects of specific resource management practices, such as 

conservation, recycling and resource substitution, and of "systems-wide" strategies, such as 

resource productivity improvement, the restructuring of production and consumption profiles and 

the transformation of industry. 

A.5. Ortego, A. Valero, Al. Valero, A. Iglesias, M. Towards material efficiency vehicles. Eco-

design recommendations based on metal sustainability assessments. SAE International Journal 

of Materials and Manufacturing. Vol 11, Issue 3. September 2018. 

Impact Factor: 0.413. Scimago Journal and Country Rank.  

Scope: The Journal is assembled to present and promote wide-ranging research of the following 

areas: materials (materials development, analysis, modeling, and testing); design (design analysis, 

modeling, simulations, and optimization) and manufacturing (manufacturing practices, process, 

simulations, and methodologies).
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A.1 Paper I 

Valero, Al. Valero, A. Calvo, G. Ortego, A. Material bottlenecks in the future development of 

green technologies. Renewable and Sustainable Energy Reviews. Vol 93, pp 178-200. October 

2018. 

Impact Factor: 9.18. Journal Citation Reports 2017.  

Scope: review papers, original research, case studies and new technology analyses that have 

a significant review element, which may take the form of a critique, comparison, or 

analysis. Main topics are: Energy resources, applications, utilization, environment, techno-socio-

economic aspect, systems, and sustainability. 

Contribution to the work:  

 To make a revision of scientific publications about the state of the art concerning the use 

of critical raw materials to manufacture renewable technologies. 

 To make a revision about the metal composition (g/vehicle) of different kind of vehicles: 

ICEV, PHEV and BEV. 

 To develop the model to calculate the impact in metal demand caused by the future 

repowering of green technologies. 

 To develop the model to calculate the recycling rate evolution to avoid any metal 

shortages. 

 To compare current reserves and resources with expected cumulative demand for each 

studied metal (risk categories very high and high). 
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A B S T R A C T

Decarbonizing world economies implies the deployment of “green technologies”, meaning a renovation of the
energy sector towards using renewable sources and zero emission transport technologies. This renovation will
require huge amounts of raw materials, some of them with high supply risks. To assess such risks a new
methodology is proposed, identifying possible bottlenecks of future demand versus geological availability. This
has been applied to the world development of wind power, solar photovoltaic, solar thermal power and pas-
senger electric vehicles for the 2016–2050 time period under a business as usual scenario considering the impact
on 31 different raw materials. As a result, 13 elements were identified to have very high or high risk, meaning
that these could generate bottlenecks in the future: cadmium, chromium, cobalt, copper, gallium, indium, li-
thium, manganese, nickel, silver, tellurium, tin and zinc. Tellurium, which is mostly demanded to manufacture
solar photovoltaic cells, presents the highest risk. To overcome these constraints, measures consisting on im-
proving recycling rates from 0.1% to 4.6% per year could avoid material shortages or restrictions in green
technologies. For instance, lithium recycling rate should increase from 1% to 4.8% in 2050. This study aims to
serve as a guideline for developing eco-design and recycling strategies.

1. Introduction

In the 21st United Nations Framework Convention on Climate
Change celebrated on December 2015 in Paris, it was agreed to keep the
increase in the global average temperature to well below 2 °C above
pre-industrial levels. Besides, it was proposed that global peaking of
greenhouse gas emissions (GHG) should be reached as soon as possible
[1]. In this respect, the European Commission, via the Joint Research
Centre (JRC), is exploring the most effective way to make the European
economy more climate friendly. As it was published in the European
low carbon economy roadmap, GHG emissions must be cut to at least
80% below 1990 levels and to accomplish this goal, all sectors must
contribute [2].

Both, the electric and transport sectors have a great potential to
achieve European targets. The electricity power sector has actually the
largest potential for cutting down CO2 emissions and even eliminating
them totally by 2050 [3]. On the other hand, the transport sector, and
especially private mobility, could reduce its CO2 emissions by up to

60% in the same time frame [4]. These changes will imply a renovation
in the energy sector towards using renewable sources and zero emission
transport technologies.

During this transition period, green technologies like wind power,
solar photovoltaic or electrical vehicles will be needed. According to
the International Energy Agency projections [5], in 2050, installed
power of wind and solar technologies1 is expected to reach 2208 GW
and 2613 GW, respectively in the Reference technology scenario and
3280 GW and 1739 GW, respectively in the 2 °C scenario. Yet this
transition must be carefully accomplished as huge amounts of raw
materials are going to be required, increasing the pressure on raw
material availability.

Wind power demands important amounts of rare earth elements
(REE) like neodymium and dysprosium to build permanent magnets for
electric generators [6,7] and some studies have shown that demand of
both elements might increase by 700% and 2600%, respectively, in the
next decades [8]. Additionally, solar photovoltaic demands high
quantities of silver for electrical connections, and other materials like
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cadmium, tellurium, or indium are used for manufacturing p-n junc-
tions in solar thin film technologies like CIGS or CdTe [9–11]. Solar
thermal power (STP) requires also silver for manufacturing reflectors or
nickel and molybdenum for manufacturing high strength steel alloys
needed in structures [12].

In the field of mobility, Light Duty Vehicles (LDV) based on internal
combustion engines will be progressively replaced by vehicles based on
electromobility. For instance, it is expected that Plug Hybrid Electric
Vehicles (PHEV) and Battery Electric Vehicles (BEV) world sales will
surpass Internal Combustion Engine Vehicles (ICEV) sales in 2029 and
2038, respectively [13]. This new generation of vehicles will require
more electrical and electronic devices, which will demand materials
like neodymium, praseodymium and dysprosium to build permanent
magnets [14] and silver, indium, tantalum or lanthanum for electronic
components [15]. Besides, electromobility will bring the development
of high capacity batteries, which in turn will increase world lithium
demand [16,17] and with it prices [18] as well as demand for other
commodities such as nickel or cobalt [19,20].

On the other hand, current recycling rates of some of these materials
are almost negligible because more often than not the specific required
recycling processes do not pay off. That is the case for indium, gallium,
cadmium and tellurium in solar modules [21]. Indeed, and even if it has
been demonstrated that recycling has a huge improving potential by
including pre-recycling processes to recover the metals, current re-
cycling rates are still very low [22]. For instance, less than 3% of the
lithium contained in a battery is currently recycled [23] and only 42%
of the total battery waste mass can be recycled with current available
technology [24]. And even if at least 95% of a car's weight must be
recycled or recovered, this only covers the most common metals such as
iron, aluminum and copper [25]. As a result, the concern regarding the
impact of green technologies on raw material availability is becoming
an important issue for countries aiming at guaranteeing their sustain-
ability [26,27] and for the development of green technologies [28,29].

The criticality of materials has been extensively studied using dif-
ferent points of view. These assessments can include several dimensions
related to vulnerability, economic importance, supply or ecological
risks [30,31], being one of the most relevant the one provided by the
European Commission, recently updated [32,33]. Most of these factors
are very influenced by geopolitical and socioeconomic elements. This is
why critical raw materials (CRM) lists need to be constantly updated. In
this respect, geological availability could constitute a more stable
factor. Still, as it currently depends on demand, exploration efforts and
technological progress, all of which related to the economic interest of
the commodities, it also presents a high level of incertitude.

Historically, fluctuations and shortages in demand have generated
increases both in price and in geological exploration. One of the most
recent examples of mineral shortages can be found in China, with REE
trade restrictions that took place during the 2005–2012 period [34,35].
Another example was associated to cobalt production in the early
1970s. Due to political instability of the Democratic Republic of Congo,
mining activities were slowed down while demand increased sharply.
Besides increasing market prices, this situation also triggered the search
for alternatives, such as reducing the use of cobalt or finding substitutes
in key applications [36].

Leaving questions related to geopolitical risk aside, material con-
straints from a geological point of view can be assessed by comparing
future demand with current production capacity [37,38] or by com-
paring reserves with production capacity [39]. Nevertheless, these ap-
proaches consider that production is static and that it does not change
over time, a trend that has been proven wrong over the years.

Thus, it is an interesting first approach but a dynamic behavior must
be incorporated to provide more realistic values. For instance, in the
case of the energy sector, models that provide dynamic data, like
TIMES-MARKAL or LEAP, can be used to assess the impacts related to
fossil fuel supply, emissions and encourage the development of energy
policies [9,40–42].

As for non-fossil fuels, several dynamic models have been developed
for specific minerals, such as copper [43], lithium [44] or aluminum
[45], that rely on information regarding ore grade, production rates or
market prices, among other factors, to make future predictions. How-
ever, these models need very specific data, definition of variables and
functions to estimate future projections, which partly need to be based
on numerous assumptions.

Indeed, creating a model that estimates future raw material pro-
duction is a challenge. Nevertheless, in the case of fossil fuels, the
Hubbert peak methodology is admitted as a useful and reliable model
[46–48] and has also been applied to non-fuel minerals [49]. This ap-
proach considers that production evolution is a function of reserves (or
resources), therefore production is not considered to be constant. Ob-
viously the model has weaknesses related to data availability and to
unpredictable changes in future production, as it presents a business as
usual scenario [50]. That said, it is more reliable than those models
which consider a constant yearly production.

To assess raw material constraints related to the growth of green
technologies, this paper presents a methodology that identifies possible
bottlenecks based on: 1) cumulative raw material demand with current
available reserves and resources and 2) expected raw material demand
and raw material production projections. With this approach, it is
possible to identify which materials could create constraints in the
medium to long term for each green technology analyzed. Once this
task has been carried out, the recycling improvements that should take
place before 2050 to avoid these constraints are calculated.

This information can then be used to promote possible alternatives
related to increase geological knowledge, substitutability, investment in
new technologies to increase recycling rates, etc. It should be stated
that it is not the intention of the authors to propose a new CRM list, but
rather to point out which green technologies might be at risk of not
achieving current deployment targets due to possible raw material
supply shortages.

2. Methodology

When talking about green technologies, many types of technologies
come into play, from solar power to geothermal. In this paper, the green
technologies considered are: wind power, solar photovoltaic (PV),
concentrated solar power (CSP) and the mobility sector, with special
emphasis on Electric Vehicles (EV) including Plug Hybrid Electric
Vehicles (PHEV) and Battery Electric Vehicles (BEV). For this endeavor,
the identification of bottlenecks is done using a combination of bottom-
up and top-down approaches, defined as follows:

• Bottom-up approach: assessment, on a global basis, of the reserves,
resources and estimated production trends from 2016 to 2050 for
each commodity (assuming a Hubbert-like production trend).

• Top-down approach: assessment of material requirements for man-
ufacturing green technologies assuming state of the art develop-
ments and competition for materials with the rest of sectors, in the
2016–2050 time period.

2.1. Bottom-up

As extraction is ultimately limited by the amount of minerals pre-
sent in the crust with sufficient concentration, it is important to identify
raw material availability in terms of reserves and resources.

According to the USGS (United States Geological Survey), resources
(RES) are concentrations of naturally occurring materials on the Earth's
crust in such form that economic extraction is currently or potentially
feasible. Reserves (RSV) in turn are the portion of resources which can
be economically extracted or produced at the time of determination.
Reserves figures are thus lower than resources and more dynamic, since
identified resources can be reclassified as reserves when commodity
prices rise or when there is a decrease in production costs. Different
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sources have been compared, first using global databases (i.e. USGS
[51]) and then analyzing books and scientific papers that focus on
certain elements for comparative purposes [52–55]. Those considered
more accurate have been used in this paper. For instance, information
regarding reserves and resources of rare earth elements (REE) comes
from [51,56].

As annual production rates need to be synchronized with the rising
demand of materials, projections regarding future raw material pro-
duction are equally required. In this paper it is assumed that material
production will follow the Hubbert peak model. Hubbert [57,58]
showed that trends in fossil fuels production always followed the same
pattern. The curve of production started to increase slowly before rising
steeply and tending towards an exponential increase over time. This
trend goes on until reaching an inflection point, upon which the curve
starts to decrease, generating a bell-shaped curve of normal distribu-
tion. The area below the curve depends on the combination of the
available reserves or resources and historic production data of the
commodity. Production of commodity a in year t is given by Eq. (1):
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where R are the reserves (RSV) or resources (RES) of the commodity
and parameters b0 and t0 are the unknowns. The function's maximum is
given by parameter t0, and it verifies that:
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With this approach, the maximum production peak of the com-
modity can be obtained, meaning the year when production starts to
decrease. Additionally, future yearly projections of production can be
obtained using a business as usual scenario. Using this methodology it is
presumed that production will continue with an exponential growth, as
it has been the case for most commodities (see Figs. 1 and 2). Yet
geological availability in form of reserves or resources will prevent at
some point further growth.

2.2. Top-down

For the top-down approach, the use of critical raw materials in each
green technology has been assessed by reviewing more than 50 scien-
tific papers regarding materials used in each technology. Regarding
material demand, it was considered that a certain amount of raw

materials comes from recycling processes. As the available information
on recycling rates is usually very aggregated or general, the recycling
rates used in this study come from the United Nations Environmental
Program [59], and are listed in Appendix A. Eq. (3) shows how material
demand in the studied green technologies is calculated for a given year
for each commodity:

∑= ⎡
⎣⎢

− ⎤
⎦⎥=

=
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i m

1 (3)

where da_gt is the quantity of primary material a demanded for the
analyzed green technologies (gt) during a given year; N is the number of
yearly manufactured units of each technology; M is the quantity of
material a demanded by each technology to manufacture one functional
unit – FU (for renewables, FU=1MW; for passenger cars FU=1 ve-
hicle); r is the share of material which comes from recycling and m is
the number of studied technologies.

The impact of recycling on primary production is assumed as one-to-
one displacement because reprocessing does not change material
properties. It should be stated though that, as Geyer et al. [60] de-
monstrated, this approach is not a rule because rebound effects in de-
mand could appear. Therefore robust models to predict the impact of
recycling on primary demand must be still developed.

As the projections presented in this study go until 2050 and the
technology lifetime is lower, material demand from renovation and
repowering activities in renewable energies and passenger vehicle fleet
must be considered. This effect is taken into consideration using Eq. (4).

= +N N Nns rn (4)

where Nns is the number of new units which are added to the global
market and Nrn is the number of units manufactured to renew old in-
stallations.

The studied “green” technologies will have to compete for materials
with many megasectors such as construction, chemicals, metal industry
or electronics. For instance, 17% of gallium is used in the solar sector
and the remaining is used in integrated circuits, LED, alloys, batteries
and magnets [33]. In this respect, the expected boom of the internet of
things will be an important competitor for many essential metals in the
renewables sector. For this reason, material demand for other sectors
must be taken into account in the analysis. Unfortunately, information
regarding material consumption in other sectors is scattered and in
many cases not available. Consequently, in this paper it is assumed that
material demand for other sectors (da_os) will be constant until 2050

Fig. 1. Cumulative production of most common minerals throughout the 20th century and beginning of the 21st century. Own elaboration from USGS data.
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and equivalent to the difference between total material production in
2015 (Pa)2015 and material demand for green technologies for that same
year d( )a_gt 2015 (Eq. (5)). Obviously, this is a very conservative as-
sumption as historically material demand for other sectors has usually
increased year by year. That said, this assumption allows us to identify
the lower boundary for potential material constraints regarding mate-
rial competition of green technologies with other sectors.

= −d P d( ) ( )a os a a gt_ 2015 _ 2015 (5)

Accordingly, total material demand for a given commodity a in year
t d( )a_T is calculated by means of Eq. (6), whereas the total cumulative
material demand for commodity a (D )a_T from 2016 to 2050 is obtained
through Eq. (7).

= +d d d( ) ( ) ( )a T t a gt t a os_ _ _ 2015 (6)
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2.3. Identification of bottlenecks

This methodology combines reserves, resources, production and
demand data, so as to determine possible constraint risks. Three risk
categories have been defined for the cumulative demand and annual
production of the selected materials: very high, high and medium. This
approach considers expected projections of green technologies, re-
cycling rates of metals (assumed as constant), as well as metal demand
for the rest of the sectors, as shown in Table 1.

The first and most restrictive constraint is associated with cumula-
tive production surpassing available resources. This is because, as
stated before, the amount of resources is an indication of the avail-
ability of a given commodity in the crust that could be potentially ex-
tracted now or in the future.

The second one is related to reserves instead of resources. Note that
reserves relate to that portion of resources that can be recovered eco-
nomically with the application of extraction technology available cur-
rently or in the foreseeable future. It should be pointed out that reserves
data are dynamic, as they can change with technology, prices, discovery
of new deposits, among other factors. Therefore, results obtained with
these data have to be considered as an indication rather than as a fact.
Then, as reserves data are more dynamic, a bottleneck based on re-
serves can be considered less critical than one based on resources.

The third constraint is associated to isolated supply shortages. This
is assessed with the information coming from the bottom-up and the
top-down approaches, through the intersection between future demand
and future production estimations. For instance, using nickel expected
demand in electric vehicles and other sectors, and nickel estimated
production using the Hubbert model approach, a possible bottleneck
can be identified beyond 2027 as shown in Fig. 3.

As for the previous constraint, it must be pointed out that any
successful prediction obtained using the Hubbert model depends on
many different factors, such as the reliability of the estimated reserves
and resources data, which can delay the peak several years if these
increase [61]. A conservative approach is considered in this study,
using resources and not reserves data for fitting Hubbert peaks. The
nature of the commodities and their production processes are also an
important factor in the reliability of the Hubbert peak model. For in-
stance, in [62] it was shown how the production of primary metals such
as iron, aluminum or copper can be well fitted to a bell-shaped curve,
whereas those elements obtained as by-products or co-products have
significantly poorer fits. For this reason, from the three mentioned
constraints, this last one can be considered as the least critical of all,
since future production trends have a high uncertainty level and as long
as there are enough reserves, markets can almost always (to a certain
level) adjust their production.

Fig. 2. Cumulative production of certain minerals, excluding those of Fig. 1, throughout the 20th century and beginning of the 21st century. Own elaboration from
USGS data.

Table 1
Risk types and definitions.

Risk type Definition

Very High 2016–2050 cumulative demand ≥ current resources
( ≥D RESa_T 2015)

High 2016–2050 cumulative demand ≥ current reserves ( ≥D RSVa_T 2015)
Medium Annual demand ≥ annual primary production ≥d p(( ) ( )a_T t a t)
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2.4. Recycling improvements

There are many ways to overcome identified bottlenecks. In addi-
tion to increasing material supply (i.e. investment in exploration efforts
to increase reserves and eventually resources), from the demand side,
change of technologies, improving material efficiency or substitution of
materials for a given application or technology (i.e. bio-based materials
for metals) are some possible options. It should be though not forgotten
that substitution can, in some cases, reduce product performance or
even increase prices [29]. An alternative way to overcome a certain
identified bottleneck is by increasing recycling rates. The annual re-
cycling growth needed to avoid that annual demand exceeds annual
production in any year until 2050 is calculated with Eq. (8).

= ⎛
⎝
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−
Re Re r* 1

100f i

f i
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Where Re is the recycling quote of a given metal in a year, f and i are
final and initial years and r is the annual growth recycling rate (%) with
respect to the previous year.

It should be stated that in reality, a combination of all above
mentioned options will likely take place. That said, this method gives
an indication of where to encourage recycling efforts.

3. Results

Once all the information regarding reserves, resources, demand in
green technologies and metal demand for all sectors have been com-
piled, bottlenecks for each technology can be identified.

3.1. Green technology's projections

Demand projections for each green technology are shown in Fig. 4.
Yearly installed power (Fig. 4a) considers the repowering effect that
takes place at the end of life for each technology. For this reason, a
change in the tendency can be observed in 2038, a moment at which
the first RES installation built at the beginning of the century has to be
repowered. The lifetime considered for all renewable technologies is 25
years (CSP [63]; wind power [64]; solar photovoltaic: [65]). Projec-
tions of cumulative installed power for each technology (Fig. 4b) have
been built using average values obtained from the following informa-
tion sources:

• Wind Power [66,67],

• Solar Thermal Power [68,69],

• Solar Photovoltaics [70,71].

It is noteworthy that cumulative power will grow linearly up to
2050 for all the studied technologies with similar growth rates. The
technology that will have a larger share in 2050 will be solar photo-
voltaic with more than 3500 GW, followed by wind power, with
2500 GW, and finally solar thermal with nearly 900 GW.

For each renewable source of energy, different types of technologies
can be selected. In the case of wind power two main types of wind
turbines have been considered: model 1, with gearbox, and model 2,
gearless, each with a constant market share of 75% and 25%, respec-
tively [72]. In the case of solar thermal power, today there are two
main commercial possibilities: parabolic trough (PT) and central re-
ceptor system (CRS). The share of each technology in the market is
considered to be 60% for PT and 40% for CRS [69]. In the case of solar
photovoltaic, a market mainly dominated by crystalline technologies,
the share considered is 85%, with thin film technologies contributions
(CIGS, CdTe and a-Si) of 5% for each one of them [38].

In the case of light duty vehicles, the world fleet evolution and the
sales projections by type of vehicle (Figs. 3c and 3d, respectively) have
been represented according to information published by ANFAC and
IEA [13,73]. In 2050 a world fleet of near 1500 million of LDV is ex-
pected. Among them, ICEV will represent 21% of the fleet, PHEV, 45%
and BEV, 33%. ICEV sales will decrease from 2016 in favor of PHEV
sales.

Additionally, BEV sales will mainly grow from 2025 onwards and in
2045 their sales will be even greater than PHEV. Considering these
projections shown in Fig. 4d, PHEV and BEV total share in the world
fleet will be higher than the share of ICEV from 2041 and 2046, re-
spectively.

3.2. Material demand

The assumptions and hypothesis considered to estimate material
demand in each green technology throughout the studied time period
are fully developed in Appendix B. Prevailing technologies have been
assumed and hence materials that are currently used have been con-
sidered. Metal demand for the rest of the sectors has been assessed with
Eq. (5). Table 2 shows a summary of the estimated cumulative primary
material demand by technology and by element from 2016 to 2050.

Fig. 3. Identification of possible bottlenecks using bottom-up (production) and top-down (demand) combination approaches for the case of nickel. In this case, the
bottleneck takes place beyond 2027.
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Wind turbines will basically demand common metals such as alu-
minum, copper, iron and nickel in huge amounts, along with other
scarcer commodities such as dysprosium and neodymium. Solar PV and
CSP will demand a greater variety of materials, but EV is the technology
that will require more different elements. For instance, among all the

technologies analyzed in this paper, gadolinium, platinum group ele-
ments, cerium or praseodymium are commodities that will only be
demanded in EV. Overall, iron, aluminum, copper and nickel will be the
minerals demanded in larger amounts.

Fig. 4. Demand projections for green technologies: a) yearly installed power and b) cumulative power of wind, solar PV and CSP technologies; c) yearly sales of
vehicles and d) world fleet evolution for ICEV, PHEV and BEV.

Table 2
Cumulative expected material demand from 2016 to 2050 by element and by technology. Data are expressed in ktons.

Wind PV CSP EV Rest of sectors Total

Ag – 385.57 9.78 28.53 725.87 1149.74
Al 1548.56 – 6070.92 148,355.01 9,974,161.39 10,130,135.88
Cd – 31.18 – – 851.29 882.47
Ce – – – 44.14 2180.19 2224.33
Co – – – 4988.46 4172.23 9160.69
Cr – – 2203.26 7202.75 1,098,084.62 1,107,490.63
Cu 13,223.52 12,117.75 1707.52 92,311.94 647,903.40 767,264.13
Dy 3.69 – – 11.82 5.35 20.87
Fe 301,604.65 – 5,194,916.88 557,455.38 79,311,435.17 85,365,412.08
Ga – 1.28 – 0.99 14.75 17.02
Gd – – – 0.24 42.38 42.62
Ge – 2.35 – 0.06 4.49 6.90
In – 17.59 – 0.34 15.91 33.84
La – – – 9.97 1025.70 1035.67
Li – – – 6001.46 20,796.26 26,797.73
Mg – 148.41 1871.59 – 298,648.37 300,668.36
Mn – – 2156.44 5200.17 638,828.94 646,185.54
Mo – 31.79 93.84 247.65 9556.38 9929.66
Nb – – – 303.02 1984.93 2287.95
Nd 250.52 – – 844.73 585.12 1680.37
Ni 243.69 3.23 896.69 31,011.55 89,340.09 121,495.26
Pd – – – 0.42 7.42 7.84
Pr – – – 92.77 256.25 349.02
Pt – – – 2.63 7.66 10.30
Se – 10,777.03 – – 57,625.96 68,403.03
Sn – 1680.70 – – 8646.65 10,327.35
Ta – – – 12.70 41.90 54.60
Te – 35.04 – – 3.55 38.58
Ti – – 7.08 – 219,239.78 219,246.87
V – – 1.78 1173.28 2732.75 3907.81
Zn – 27.43 724.17 – 481,209.15 481,960.75
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3.3. Available resources and reserves compared to material demand

The most restrictive constraint takes place when cumulative de-
mand of the technologies analyzed is larger than current resource es-
timations. To better understand these constraints, one must know the
percentage that each technology demands for each studied material,
this is represented in Fig. 5. For instance, there are certain elements that
are used only in one of the green technologies analyzed, being the rest
of the production of this metal used in other sectors. An example is the
case of lanthanum which is used in vehicles to manufacture electrical
and electronic components but also in fiber optics, high intensity
lighting and high sensitivity sensors.

Combining Fig. 5 with Fig. 6, one can better understand which
technologies present more risks related to material constraints. Fig. 6

shows the obtained cumulative demand of metals from 2016 to 2050
and their associated current resources and reserves. This figure is re-
presented in logarithmic scale so that all materials can be represented
in a single diagram. Using silver as an example, over 1 million tons
could be needed from 2016 to 2050, as seen in Fig. 6. Approximately,
34%, 2.5% and 0.9% will be needed in PV, EV and CSP, respectively,
being the rest used in other sectors (Fig. 5).

Fig. 6 also provides valuable information regarding cumulative
production and availability (reserves and resources). As it can be seen,
demand may exceed available reserves in the cases of silver, cadmium,
cobalt, chromium, copper, gallium, indium, lithium, manganese, nickel,
lead, platinum, tellurium and zinc. Nevertheless, when comparing de-
mand with resources information, demand only may exceed resources
in the case of tellurium. Still, it is important to mention that reserves

Fig. 5. Material demand share by element and by type of technology. For each element, the cumulative material demand from 2016 to 2050 was calculated so to
represent the corresponding share of each technology in the figure.

Fig. 6. Comparative analysis between cumulative material demand by element from 2016 to 2050 with material reserves and resources data (vertical axis is in
logarithm scale).
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and resources information for tellurium are usually inaccurate or in-
complete as it is a by-product mainly obtained during copper and lead-
zinc refining processes.

3.4. Annual demand and production comparison

By means of the bottom up approach explained in Section 2.1, data
of maximum production peaks using resources data have been calcu-
lated (Table 3). For the materials shown in Table 3, estimated demand
exceeds production before 2050, therefore a possible bottleneck can be
identified. Materials are arranged according to the nearest identified
bottleneck year. The reliability of Hubbert-peak functions is also
shown. This reliability factor has been used to calculate the time period
in which bottlenecks could appear, having as lower boundary the in-
tersection between supply and demand curves and the upper boundary
the resulting year obtained from dividing the intersection year by R2.
This way, a conservative approach has been assumed, since theoretical

Table 3
Maximum production peaks and bottlenecks (year where demand exceeds
production) calculated with resources data.

Metal R2 Production peak Expected bottleneck time period

Se 0.83 2008 2016–2032
Ni 0.95 2033 2027–2029
Dy 0.95 2219 2029–2034
Co 0.90 2142 2030-beyond 2050
Ag 0.71 2025 2031–2042
Ta 0.83 2039 2033–2050
Nd 0.96 2105 2034–2041
Te 0.46 2065 2035-beyond 2050
Mo 0.94 2030 2038–2042
Mn 0.84 2030 2038–2050
In 0.98 2032 2041
Li 0.92 2037 2042–2045
Sn 0.71 2086 2042-beyond 2050

Table 4
Studied elements with technologies were they are used and risk classification. Elements highlighted in grey fall into the “very high
risk” and “high risk” categories, where cumulative demand from 2016 to 2050 exceeds resources and reserves, respectively.
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peaks usually appear before real ones [62]. Appendix C shows the
Hubbert curves for those materials affected by this constraint.

In the cases of cobalt, neodymium and dysprosium, bottlenecks
appear when both curves (production and demand) still have growing
tendencies. For these cases, the bottleneck would be a problem of
supply rather than scarcity, as it can be seen in the curves of Appendix
C. Yet, it must be noted that other sectors demand has been considered
constant and this assumption is especially conservative for the men-
tioned elements. Such metals are used to manufacture permanent
magnets (neodymium and dysprosium) and NCA batteries (cobalt),
used for other applications like electric bikes, hard disks for laptops or
batteries for mobile phones whose demand is expected to significantly
increase in the future [74,75].

In the case of tellurium, if the R2 accuracy is considered, the bot-
tleneck could appear beyond 2050, but the accuracy is the lowest one
(0.46). For this reason, projections regarding production have an im-
portant level of uncertainty with respect to other elements.
Nevertheless, tellurium already falls in the very high risk category
considering that cumulative demand surpasses resources, as it was
shown in Fig. 6.

Noteworthy is the case of selenium, which is mainly used in CIGS PV
technology. The theoretical peak is reached even before 2016, hence
the bottleneck appears from that moment onwards. Yet it should be
stated that, as it happens with tellurium, selenium is obtained as a by-
product of copper extraction. Consequently, its production projections
will depend on copper mineral extraction and hence Hubbert peak re-
liability is low.

3.5. Raw material constraints summary

Table 4 summarizes all the studied materials and their risk classi-
fication. The sole material with a very high identified availability risk is
tellurium. At high risk are silver, cadmium, cobalt, chromium, copper,
gallium, indium, lithium, manganese, nickel, tin and zinc. Finally,
materials which only fall in the moderate future availability risk cate-
gory are dysprosium, molybdenum, neodymium, selenium and tan-
talum, as their annual demand may exceed annual production before
2050.

It should be noted that cadmium, chromium, copper, gallium and
zinc fall into the high risk but not into the medium risk category. This
happens in those materials in which the difference between reserves
and resources is notable. For the mentioned metals the ratios between
proven resources and reserves are 2.4; 25; 4.2; 192 and 8.3, respec-
tively. Accordingly, cumulative demand is greater than reserves but
production projections based on available resources is always greater
than expected demand. If projection demand had been assessed with
reserves instead, all medium risk metals would fall in the high risk
category.

Even if the main goal of this paper is not to create a list of critical
materials, it is interesting to carry out a comparison between the list of
elements that could generate bottlenecks in the development of green
technologies with already published criticality assessment papers and
reports (Table 5). All of the 13 identified elements with very high or
high risk to generate bottlenecks have been classified as critical in some
studies, but not all of them altogether. For instance, in the case of the
risk list carried out by the British Geological Survey [76], all except
tellurium are included, but the categorization is different for each ele-
ment. The methodologies used in each criticality assessment usually
take into account the same factors used by other authors [28,33,76–83]
but with different weights, production concentration, recycling rates,
technologies, substitutability, governance, environmental standards of
the producing countries, among others. The main difference with the
approach used in this paper is that we are considering not only the use
of those elements in green technologies and in other sectors but also the
geological availability using reserves and resources data compared to
the estimated future production trends. Usually these aspects are not
addressed in criticality assessment reports.

As an example, chromium, copper, nickel or zinc, which have been
identified as presenting high risk in this paper, have low risk according
to the BGS report. Additionally, silver and nickel have a high risk in this
present study, but in Moss et al. [28] they both have a low overall risk.
Copper is not usually classified as a critical element in any of these
studies except in Angerer et al. [78] and Bae [77], but it is indeed used

Table 5
Comparison between the elements with very high and high risk in this study with other criticality assessment reports. These reports may have considered critical
other elements that are not shown on this table.

Bae [71] Angerer et al.
[78]

JOGMEC [79] APS [80] Resnick Institute
[81]

DOE [82] Moss et al.
[28]

EC (2010)
[85]

EC (2014)
[33]

EC (2017)
[32]

UKERKC [83] BSGS [76]

Ag ● ● ● ○ ● ◐
Cd ● ○ ◐
Co ◐ ● ● ● ● ○ ● ● ● ● ●
Cr ◐ ● ● ○
Cu ○ ● ○
Ga ● ● ● ● ● ○ ● ● ● ● ● ●
In ● ● ● ● ● ○ ● ● ● ● ● ●
Li ● ○ ● ● ◐ ● ●
Mn ◐ ● ○ ○
Ni ● ● ○ ○ ○
Sn ● ◐ ○
Te ● ● ◐ ● ●
Zn ○ ○

• =high risk, ◐ =medium risk, ○ =low risk. When there is no categorization available, the risk has been considered high. In the case of the BGS [76] risk list,
values from 4.8 to 6.5 have been considered low risk, 6.6 to 7.5 medium risk, and higher than 7.6 high risk.

Table 6
Current recycling rates, annual growth and 2050 recycling rate that would be
needed to avoid constraints in the case of materials that belong to the medium
risk category (where annual demand exceeds annual expected production).

Current recycling rate Annual growth 2050 recycling rate

Ag 30% 0.6% 37%
Cd 25% 1.3% 39%
Co 32% 1.8% 59%
Cr 20% 2.5% 47%
Dy 10% 0.9% 13.7%
In 37.5% 0.5% 44.7%
Li 1% 4.6% 4.8%
Mn 37% 0.1% 38%
Mo 33% 0.7% 42%
Nd 5% 0.1% 5.2%
Ni 29% 1% 41%
Se 5% 2% 10%
Sn 22% 0.1% 22.8%
Ta 17.5% 0.1% 18.2%
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in all of the green technologies analyzed in this paper, and therefore
very important to transition towards a low carbon economy. Note-
worthy is the case of chromium, which was considered critical by the
European Commission in 2014 [33] but not in their 2017 report [32].
Still, some of the elements that in this paper were identified to generate
bottlenecks, such as cobalt, gallium and indium, are considered critical
in almost all of the analyzed reports, emphasizing their relevance in this
and in other sectors of the economy [84].

3.6. Recycling improvements

As stated before, a way to overcome supply bottlenecks is through
increasing recycling rates. Note that recycling improvements to avoid
high and very high risks are not calculated because in these cases, the
problem is not caused by supply shortage but by geological scarcity. In
such cases, if expected demand does not change, the most effective way
to overcome bottlenecks is to invest in exploration to increase geolo-
gical knowledge. This is because recycling can never achieve 100%
efficiency due to second law of thermodynamics restrictions, and even
if it were possible, exponential growth in demand makes that primary
production will always be required to offset the rocketing demand.

Table 6 shows the growth in recycling rates that would be needed in
order to avoid that annual demand surpasses annual production in a
business as usual scenario (i.e. without considering substitution of
technologies or materials and considering that reserves and resources
do not increase). Table 6 also shows the current recycling rates and the
values that would be reached in 2050 at this growing speed.

The highest growths correspond to lithium, chromium, cobalt and
cadmium with annual growth rates of 4.6%, 2.5%, 1.8% and 1.3%,
respectively. The case of lithium is of special relevance because of its
notable future importance for storage systems and the low current re-
cycling rate, which is below 1%. It is also noteworthy how relatively
small recycling efforts could avoid the appearance of bottlenecks for
certain materials such as manganese, neodymium or tin, which would
require annual growths of around 0.1%, or silver or dysprosium, of less
than 1%.

That said, recycling would be mainly based on minor metals re-
covery (cobalt, REE, lithium, tellurium, indium and silver among
others). These minor metals began to be used in industrial applications
only thirty years ago and there is a lack of information regarding re-
cycling process efficiency [62]. Indeed, these metals have special
properties which need complex recovery processes and when mixed,
the recovery route of one set of metals may impede that of co-existing
ones. Moreover, recycling processes have their own limits from a
thermodynamic point of view, a fact that was named by Valero and
Valero [62] as “entropic backfire”. This term describes how in all real
processes the specific separation of components from a recyclate creates
waste which is at each successive step, more difficult to salvage. Indeed,
recycling never achieves 100% material recovery [86] and as a result
there are unavoidable losses, as stated by the second law of thermo-
dynamics, ending in landfills, dissolved or diluted in alloys in the case
of metals [87].

Alternative solutions to recycling from the demand side are sub-
stitution, dematerialization or resource efficiency and most likely a
combination of all, together with increases in reserves, will take place.

4. Discussion

Considering the green technologies analyzed, electric vehicles will
probably demand the largest quantities of critical materials. Constraints
are mainly focused on metals for battery manufacturing such as lithium,
cobalt and nickel, which fall in high and medium risk categories.
Additionally, there could be constraints regarding manufacturing of
steel alloys that need chromium or molybdenum and with certain
electric and electronic equipments, which require neodymium, dys-
prosium, silver, copper or tantalum.

In the case of solar photovoltaic, along with large quantities of si-
licon [88], an element not considered in this study, it will demand
materials such as indium, silver, selenium, tin and tellurium. In these
cases, the cumulative demand expected for 2016–2050 may exceed
current reserves and in the case of tellurium, it may also exceed current
resources. Still, the reliability of reserves and resources data of these
commodities creates an important level of uncertainty. For instance, in
the case of tellurium, further studies should be carried out focusing on
increasing geological knowledge but also focusing on increasing re-
covery from existing copper producers [10].

As for CSP, it demands silver, copper, nickel and molybdenum,
among others. Silver is used to build high performance solar glasses,
while nickel and molybdenum are used for high strength steels and
copper mainly for electric grids. These elements fall into the high risk
category with the exception of molybdenum which is in the medium
risk category.

Last, in the case of wind power, the highest risks are associated to
the use of permanent magnets, as they require neodymium and dys-
prosium. Nevertheless, it must be taken into account that copper con-
straints could also affect this technology mainly for the demand needed
to build electric distribution grids.

As stated before, in this study, demand in other sectors has been
assumed constant until 2050. This is an optimistic scenario since if
population grows to 9700M inhabitants before 2050 [94], other sectors
demand will most likely grow and even spiral up. This means that
material constraints could appear sooner than expected, since green
technologies will need to compete against other sectors whose demand
will equally increase even at an exponential rate.

Still, some of these constraints might be partially overcome at least
by substituting certain elements in each green technology. For instance,
in the case of wind turbines, rather than using permanent magnets,
wound-rotor generators can be used. Additionally, some research pro-
jects from all over the world are also trying to decrease the use of REE
in green technologies or look for alternatives [89,90]. Indeed, this issue
is also being considered by different companies. General Electric (GE)
has developed their own methodology to identify materials that could
present constraints throughout the production process in turbines en-
gines [91]. In that study, rhenium used in super alloys, was used as a
case study and measures related to the reduction of usage of rhenium,
collecting scrap or recovery were analyzed. Further studies have been
undertaken by other companies, such as Rolls-Royce or Volkswagen
[92,93].

5. Conclusions

To reduce emissions and to move towards a complete low carbon
economy, green technologies must be promoted. However, to manu-
facture them, many critical elements are needed and, as seen in this
paper, raw material availability can produce restrictions and bottle-
necks that should be avoided. Having a better understanding of what
materials are used in each green technology might become critical from
a supply side point of view and can favor the promotion of policies
related to recycling, substitution, or material efficiencies able to pre-
vent those bottlenecks.

Analyzing the materials used in the selected green technologies
(solar photovoltaic, concentrated solar power, wind power and electric
and hybrid vehicles) different constraints have been identified re-
garding material demand and available reserves, resources and future
primary production.

Current green technologies depend on certain materials whose risks
have been classified as very high, high or medium. Materials which
present a very high risk are those where cumulative demand from 2016
to 2050 exceeds resources (tellurium). With high risk are those where
cumulative demand surpasses reserves (silver, cadmium, cobalt, chro-
mium, copper, gallium, indium, lithium, manganese, nickel, tin and
zinc). Medium risk commodities are those whose demand might at
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some point exceed production before 2050 (silver, cobalt, indium, li-
thium, manganese, molybdenum, dysprosium, neodymium, nickel, se-
lenium, tin, tantalum and tellurium). Technologies which are affected
by these bottlenecks are solar photovoltaic, with indium, gallium, se-
lenium, tellurium and silver requirements, electric vehicles, that need
cobalt, lithium, molybdenum and gallium among others, wind power
which demands permanent magnets (i.e. REE) and solar thermal power
that requires silver and molybdenum.

Moreover, considering each specific green technology, it is note-
worthy that not all available commercial products have the same im-
pact on raw materials. For instance, for wind power, the demand of
permanent magnets is lower in the case of turbines with gearbox.
Additionally, in solar cells the demand of critical materials is lower in
crystalline silicon technologies than in thin film technologies. In solar
thermal power systems, a parabolic trough contain less “risk materials”
than a central receiver system and so does PHEV with respect to BEV
due to the lower material demand to manufacture batteries.

Therefore, if current material demands and recycling quotes con-
tinue in a business as usual scenario, the transition towards a low
carbon economy will be threatened by the availability of certain com-
modities. This issue should be analyzed in depth to define appropriate
strategies that avoid the mentioned bottlenecks.

These strategies might be focused on: (1) investments in geological
exploration to increase current reserves and resources; (2) to invest in
new technologies able to obtain commodities from unconventional
sources, i.e. lithium extraction technologies from salt-lake brines and
sea water using lithium ion-sieve (LIS) technology; (3) research in the
design of green technologies with lower requirements of critical raw
materials such as metal-air batteries, generators without permanent
magnets or organic photovoltaic solar cells; (4) investing in recycling
technologies that are able to recover critical materials based on en-
vironmental friendly processes; (5) a combination of all them by means
of defining eco-design strategies that reduce the use of critical raw
materials and also improve end of life material recovery. This last op-
tion would also prevent that critical raw materials end up in landfills,
where their retrieval is considerably harder.

A proper strategy must bear in mind the own characteristics of

materials and technical specifications of products and process. The
thermodynamic limits of recycling, rebound effects in raw material
demand caused by recycling improvements and the fact that sub-
stitutability between materials may decrease product performance, in-
crease the price, or both, must not be forgotten.

Finally, as there are important gaps in the mineral statistics at world
level, further studies must be made concerning evaluation and char-
acterization of mineral deposits to have better assessments of available
mineral resources. Having international standards that can be used by
mining companies is a first approach, but other problems related with
exploration and technology development must be solved.
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Appendix A. Recycling rates

Table A.1 shows the recycling rates used to estimate the amount of materials which come from recycling instead of from primary resources.

Table A.1
Recycling quotes from studied raw materials.
Source: [59].

Material Recycling rate (%) Material Recycling rate (%)

Ag 30 Mg 33
Al 36 Mn 37
Cd 25 Mo 33
Ce 1 Nb 50
Co 32 Nd 5
Cr 20 Ni 29
Cu 30 Pd 50
Dy 10 Pr 5
Fe 50 Pt 50
Ga 25 Sn 22
Gd 5 Ta 17.5
Ge 35 Te 1
In 37.5 Ti 52
La 5 V –
Li 1 Zn 22.5
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Appendix B. Assumptions to assess green technologies material demand

Wind power

See Appendix Tables B.1–B.3.

Solar thermal power

See Appendix Table B.4.

Table B.1
List of materials used (in kg/MW) in wind turbines from different authors. Type 1 Doubled Fed Induction Generator and Type 2 Direct Drive Turbine.

Author Cu Fe Al Nd Dy Ni Modela

[95] – – – 150 14 – 2
[96] 1200 148,000 – – – – 1

5500 98,900 2
[97] – – 560 – – – 2
[36] 4700 – – 200 13.3 – 2
[72] – 120,000 – 195 13 – 2
[98] 1750 89,840 – – – – 1
[82] – – – 186b 18 – 2
[99] 2500 – – 43.2 18 – 1
[100] 1408 – 830 – – – 1
[38] – – – – – 111 (in steel) 1 and 2

a Model 1 with gearbox to transfer power from rotor to generator and Model 2 with a direct power transmission.
b 30% of permanent magnets mass.

Table B.2
Copper and iron demand (in kg/MW) in wind turbines, foundation and grid infrastructures.

Author Material On shore Off shore

[101] Cu 2700 11,500
[102] Fe – 120,000 more than on shore

Table B.3
Material requirements by type of turbine and installation (in kg/MW).

Model 1 Model 2

On shore Off shore On shore Off shore

Al 840 840 560 560
Cu 2700 11,500 7000 15,800
Fe 172,100 292,100 112,670 232,670
Nd 60.92 60.92 182.75 182.75
Dy 4.86 4.86 14.58 14.58
Ni 111 111 111 111

Table B.4
List of materials used in Solar Thermal Power installations (in ton/GW).
Source: [12].

Material PT (ton/GW) CRS (ton/GW)

Ag 13 16
Al 740 23,000
Cr 2200 3700
Cu 3200 1400
Fe 650,000 393,000
Mn 2000 5700
Mo 200 56
Ni 940 1800
Ti 25 0
V 2 2
Zn 650 1400
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Solar photovoltaic

See Appendix Tables B.5–B.8.

Table B.5
c-Si material requirements (in kg/MW).

Authors compilation

[28] [37] [38] [103] Average

Ag 24 19.2 355.9 – 133.0
Cd – 6.1 – – 6.1
Cu 2741 2194.1 7597.5 – 4177.5
Ga – 0.1 – – 0.1
In – 4.5 – – 4.5
Mg 53.5 – – 53.5
Ni – 1.1 – 1.1
Se – 0.5 – – 0.5
Si 3653 – 9000 6326.5
Sn 577 463.1 – – 520.0
Te – 4.70 – – 4.7

Table B.6
CIGS material requirements (in kg/MW).

Authors compilation

[37] [38] [104] [105] [106] [107] Average

Cd – – – – – 1.8 1.8
Cu 21.0 – – – – 16.9 19.0
Ga 2.3 5.0 – 7.5 5.0 5.0 4.9
In 18.9 27.4 15.5 22.5 27.4 27.4 23.2
Mo – – – – – 94.3 94.3
Se 9.6 45.3 45.0 45.3 45.3 38.1
Zn – – – – – 85.8 85.8

Table B.7
CdTe material requirements (in kg/MW).

Authors compilation

[37] [38] [104] [108] [105] [106] [107] Average

Cd – 63.3 – – 85.0 63.3 49.2 65.2
Cu – – – 42.8 – – – 42.8
In 15.9 – – – – – – 15.9
Mo – – – – – – 100.5 100.5
Sn – – – – – – 6.6 6.6
Te – 61.9 55.0 – 97.5 – 47.2 65.4

Table B.8
a-Si material requirements (in kg/MW).

Authors compilation

[38] [104] [106] [107] Average

Ge 6.9 42.0 6.9 3.4 14.8
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Light duty vehicles

See Appendix Tables B.9–B.11.

Table B.9
Compilation of materials used in passenger car vehicles (in g per unit of vehicle) with the exception of Al, Cast Iron, Cu and Steel which are in kg.

Authors compilation

Material [109] [110] [9] [111] [112] [113] [101]

ICE ICEa PHEVb PHEV BEVc ICE BEV ICE ICE PHEV

Al (kg) 50 200 88.45
Cast Iron (kg) 50 20
Ce 81 12.91 0.31
Co
Cu (kg) 27 60 25 150 67.5
Dy 27.45 1.96 129.66 210 336
Er 0 0.18
Eu 0.45 < 0.01 < 0.01
Gd 0.36 < 0.01 < 0.01
Ga 0.42 0.57 1.05 1.68
Ge 0.05 0.08
In 0.38 0.08 0.05 0.08
La 8.1 0 6.68
Li 1.36 6256.55
Mo
Nd 297 27.6 531.88 360 576
Nb 89.81 109.14
Pd 1.24 1.81 0.12
Pt 7.85 5.51
Pr 30.6 2.47 4.01 120 192
Rh < 0.01 < 0.01
Sa 3.24 0.73 1.4
Sc 1.13
Ag 17,5 50 6 9.6
Steel (kg) 730 790 975.22
Sr
Ta 6.99 10.83
Te 0 0 19.86 21 34

a With medium equipment level.
b With medium equipment level.
c Original values are published for a 50 kW motor. In the present study, values are adapted for 50 kW and 80 kW motors in PHEV and BEV, respectively.

Table B.10
Material demand for Li: ion NCA batteries (in g). Values adapted to an autonomy of 200 km.

Authors compilation

[117] [118] [27] Average

Li 9.01 7.2 9.3 8.50
Ni 57.40 46.5 58 53.97
Co 10.91 9 12 10.34
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For the assessment of materials used in batteries, it has been considered that current battery market situation is led by Li: ion batteries as
demonstrated by the fact that both Nissan and Tesla are currently using Li: ion batteries in their vehicles [114,115]. Even if Toyota used NiMH
batteries in their vehicles, last Prius PHEVs version is already using Li: ion depending on the equipment level [116]. Although Li: ion technology is
expected to be the reference in the coming years, from a chemistry point of view there are different types of Li: ion batteries such as: NMC, NCA, LFP,
Li/S or Li/air. This study considers only NCA (lithium nickel cobalt aluminum oxide) batteries because of their high energy density and because they
are used in current Tesla vehicles.

Appendix C. Hubbert curves for medium risk materials

See Appendix Figs. C.1–C.13.

Table B.11
Studied materials in vehicles, contribution in mass (in g) per unit of vehicle
analyzed.

Material Type of vehicle

PHEV BEV

Ag 28 30
Al 115,544 200,000
Ce 49.7 0.15
Co 2659 10,63
Cr 12,789 11,850
Cu 59,1 150
Dy 22.5 45
Fe 806,144 746,945
Ga 0.81 1.12
Gd 0.18 0.18
Ge 0.05 0.1
In 0.38 0.38
La 7.4 7.4
Li 2126 8504
Mn 5968 5530
Mo 3410 3410
Nb 426 426
Nd 553 749
Ni 17,864 58,026
Pd 0.94 0
Pr 51.5 98
Pt 5.51 0
Rh 0.01 0
Ta 10.8 10.8
V 852.6 790

Fig. C.1. Expected demand and production assessed with Hubbert model for nickel.
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Fig. C.2. Expected demand and production assessed with Hubbert model for dysprosium.

Fig. C.3. Expected demand and production assessed with Hubbert model for cobalt.
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Fig. C.4. Expected demand and production assessed with Hubbert model for silver.

Fig. C.5. Expected demand and production assessed with Hubbert model for tantalum.
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Fig. C.6. Expected demand and production assessed with Hubbert model for neodymium.

Fig. C.7. Expected demand and production assessed with Hubbert model for tellurium.
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Fig. C.8. Expected demand and production assessed with Hubbert model for molybdenum.

Fig. C.9. Expected demand and production assessed with Hubbert model for manganese.
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Fig. C.10. Expected demand and production assessed with Hubbert model for indium.

Fig. C.11. Expected demand and production assessed with Hubbert model for lithium.
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Summary

The changing material composition of cars represents a challenge for future recycling of
end-of-life vehicles (ELVs). Particularly, as current recycling targets are based solely on mass,
critical metals increasingly used in cars might be lost during recycling processes, due to their
small mass compared to bulk metals such as Fe and Al. We investigate a complementary
indicator to material value in passenger vehicles based on exergy. The indicator is called
thermodynamic rarity and represents the exergy cost (GJ) needed for producing a given
material from bare rock to the market. According to our results, the thermodynamic rarity
of critical metals used in cars, in most cases, supersedes that of the bulk metals that are
the current focus of ELV recycling. While Fe, Al, and Cu account for more than 90% of the
car’s metal content, they only represent 60% of the total rarity of a car. In contrast, while
Mo, Co, Nb, and Ni account for less than 1% of the car’s metal content, their contribution
to the car’s rarity is larger than 7%. Rarity increases with the electrification level due to the
greater amount of critical metals used; specifically, due to an increased use of (1) Al alloys
are mainly used in the car’s body-in-white of electric cars for light-weighting purposes, (2)
Cu in car electronics, and (3) Co, Li, Ni, and rare earth metals (La, Nd, and Pr) in Li-ion
and NiMH batteries.

Keywords:
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Introduction

Global car sales have more than doubled over the past 30
years, from about 29 million in 1980 to 65 million in 2014
(OICA 2016). The European Union (EU) passenger car fleet
amounted to 250 million units in 2014, representing an in-
crease of 5% in the last 5 years (ACEA 2014). Annually,
end-of-life vehicles (ELVs) represent between 7 and 8 million
tonnes of waste in the EU, which should be properly managed
(European Commission 2016). Consequently, the EU Directive
2000/53/EC sets strict targets to prevent waste generation and
to promote the reuse, recycling, and recovery of materials from
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ELVs. This directive establishes that, from 2015, the total mass
percentage of materials reused and recovered with respect to
the average car’s weight must be equal to 95%, of which at least
85% must come from reuse and recycling. Reuse is understood
as any operation by which components are “used for the same
purpose for which they were conceived.” Recovery means “any
of the applicable operations provided for in Annex IIB of Di-
rective 75/442/EEC,” which in the case of vehicles can be: (1)
fuel or energy generation, (2) recycling/reclamation of metals
and metal compounds, and (3) recycling/reclamation of other
inorganic materials (European Parliament and The Council
1975). Recycling, in turn, is the reprocessing of materials in “a
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production process for the original purpose or for other pur-
poses, but excluding energy recovery” (Directive 2000/53/EC of
the European Parliament and of the Council on End of Life Vehicles,
2000).

However, the future compliance with these recycling tar-
gets is challenged by two main factors: (1) the changing ma-
terial composition of cars and (2) the thermodynamic limits
of material production and recycling. Examples of the chang-
ing material composition over time are: the replacement of Fe
by Al alloys for parts such as the engine, body-in-white, and
wheels (Hatayama et al. 2012; Løvik et al. 2014; Van Schaik
et al. 2002), increased use of plastics for the car’s interior (Juska
2007), transition from conventional internal combustion en-
gines to hybrid-electric and fully electric power trains (Eurostat
2015), and evolution from manual to automated control of
vehicle functions provided by an increased number of car elec-
tronics (Restrepo et al. 2017). Regarding the thermodynamic
limits of car recycling, Castro and colleagues (2004, 2007),
Ignatenko and colleagues (2008), and Reuter and colleagues
(2006), among others, have illustrated how the combination of
materials, together with the intrinsic efficiency of the current
recycling technologies, pose physical limits to the recycling of
materials from ELVs. These limits are explained by the Second
Law of Thermodynamics and have been discussed more gen-
erally by many authors, including Gutowski (2008), Gutowski
and Dahmus (2005), Ignatenko and colleagues (2007), Naka-
jima and colleagues (2009), and Valero and Valero (2015). In
short, according to the Second Law, there is an intrinsic ir-
reversibility carried along with each production and recycling
process, because part of the useful energy (exergy) of primary
materials is inevitably transferred to the surroundings in the
form of losses with each transformation process.

New developments in automobile design, triggered mainly
by emission reduction policies and safety standards, have in-
creased the number and amount of specialty metals that are
used in a passenger car. For example, Nd is used in electric
drive motors that replace internal combustion engines and Au
is used in a variety of automotive controllers that help prevent
road accidents. Most of these specialty metals are considered
critical, due to their importance for future technologies, low
substitutability, risks associated with their supply, and environ-
mental impacts of production (European Commission 2014;
Graedel et al. 2015).

According to Du and colleagues (2015) and Widmer and
colleagues (2015), the majority of critical metals (CMs) used in
passenger cars are found in the embedded electronics. After the
current treatment of ELVs, most of these CMs end up in the
automobile shredder residue (ASR) from which they are not
recycled and, as reported by Andersson and colleagues (2017),
from a total of 17 CMs investigated, only Pt from catalytic
converters is functionally recycled in current ELV treatment
systems. It is a fact that current ELV recycling targets by the
EU favor the recycling of bulk metals, while overlooking most
of the CMs that are used in smaller amounts. This is because
metals such as Fe and Al still account for more than 90% of the
car’s mass (excluding plastics, rubber, and glass).

The objective of this study is to perform an assessment of
the use of CMs in vehicles. This is achieved by: (1) establish-
ing average compositions of several types of vehicles and (2)
performing a thermodynamic rarity assessment of vehicles. To
that end, we estimate the embedded exergy cost (rarities) of 17
CMs used in four different vehicle technologies: conventional
passenger vehicles; plug-in hybrid electric vehicle (PHEV) with
NiMH battery; PHEV with Li-ion battery; and battery electric
vehicles (BEVs). A comparison of the mass of materials with
their respective rarities unveils the hidden value of CMs with
respect to bulk materials. This hidden value is effectively lost if
recycling targets continue to be measured in terms of mass. We
build upon previous work by Valero and Valero (2015) for the
thermodynamic assessment through a complementary exergy-
based indicator for material value in passenger cars and discuss
the possible benefits of using it for setting ELV recycling targets
in which the incentive for recycling CMs is made explicit.

Methodology

Technically, exergy is defined as the maximum amount of
work that may theoretically be performed by bringing a re-
source into equilibrium with its surrounding environment by a
sequence of reversible processes. The exergy of a system gives an
idea of its evolution potential for not being in thermodynamic
equilibrium or “dead state” with the reference environment. At
the dead state, a system is at the temperature and pressure of its
surroundings; it has no kinetic or potential energy and it does
not react with the surroundings. All substances have a definable
and calculable exergy content, with respect to a defined exter-
nal environment. Once the environment is specified, exergy
can be regarded as a property of the system.

A mineral deposit is a high-exergy resource that stands out
from the surrounding environment, because of its specific chem-
ical composition, cohesion degree, and concentration with re-
spect to the average crust (Valero et al. 2012). The fact of having
minerals concentrated in mines and not dispersed throughout
the crust saves, in turn, huge amounts of extraction and bene-
ficiation energy (Valero and Valero 2012)

A model for the average crust was developed by Valero and
colleagues (2011), serving as the baseline for mineral exergy
calculations. The model should represent an exhausted Earth
(named Thanatia), where all mineral deposits have been ex-
tracted and dispersed and all fossil fuels have been burnt. The
starting point to develop the model was the mineralogical com-
position proposed by Grigor’ev (2000), which was further im-
proved considering the chemical composition in terms of el-
ements proposed by Rudnick and Gao (2003). Accordingly,
Thanatia’s crust incorporates information regarding composi-
tion and crustal concentration of the nearly 300 most abundant
minerals in the upper crust. With Thanatia as the reference
environment, one can now calculate the exergy of a given by
means of the concentration exergy (bci) as expressed in equation
(1) (Faber and Proops 1991):

bci = −RT0
[

lnxi + (1 − xi )
xi

ln(1 − xi )
]

. (1)
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Being R the universal gas constant (8,314 kJ/kmolK), T0

is the temperature of the reference environment (298.15 K)
and xi is the concentration of substance i. The difference of
the concentration exergy obtained with xi being the ore grade
of a given mine and with xi being Thanatia’s concentration
of the mineral is called replacement exergy and represents the
minimum energy (exergy) required to form the mineral from
the concentration in the Earth’s crust (xc) to the concentration
in the mineral deposits (xm). In this way, the average exergy of
different substances was obtained, considering global average
ore grades (xm), mainly derived from Cox and Singer (1992). It
should be noted, however, that exergy only provides minimum
values, which are far removed from societal perception of value.
This is because, as per definition, it considers that processes
are reversible. Yet man-made processes are very irreversible
and, in reality, one would need k-times the minimum exergy
(equation 2):

b∗
ci = k · bci (2)

Accordingly, instead of replacement exergy, we need to re-
sort to exergy replacement costs, which are defined as the ex-
ergy required to concentrate a given mineral from Thanatia’s
dispersed conditions to the current concentration found in the
mines with prevailing technology. Variable k is a constant called
unit exergy cost. It is the ratio between (1) the real cumulative
exergy required to accomplish the real process to concentrate
the mineral from the ore grade xm to the commercial grade
xr and (2) the minimum thermodynamic exergy required to
accomplish the same process. An implicit assumption in the
methodology is thus that the same technology applies for con-
centrating a mineral from xm to xr than from xc to xm.

Exergy replacement costs can be seen as a hidden cost or
“bonus” that nature provides for free for having minerals con-
centrated in mines and not dispersed throughout the crust. This
bonus is related to mineral scarcity in nature. Note that scarcity
is here referred as the relative low concentration of the given
mineral in the crust, in contrast to the more anthropogenic
definition by Van Oers and Guinée (2016, 7) where a specific
mineral is scarce if “the amount available for use is, or will soon
be, insufficient.”

It should be stated that exergy replacement costs are an
important part of the physical value of a substance, but not the
only one. A mineral resource from which useful materials are
obtained can be regarded as valuable from a physical point of
view when (1) they are scarce in nature and/or (2) they are
costly to obtain. The second part refers to the energy associated
to extract, beneficiate, and refine the mineral to produce the
useful element or commodity. In other words, the embodied
exergy cost incurred by companies in mining and metallurgical
processes. These costs increase as ore grades decline and so the
Earth approaches to Thanatia.

From a life cycle assessment (LCA) point of view, this part
corresponds to a cradle-to-gate approach, whereas exergy re-
placement costs to a grave-to-cradle approach as it is related to
the exergy required to restore natural mines from the grave, that
is, Thanatia (Valero and Valero 2013). Using embodied exergy

and not embodied energy as commonly done in conventional
LCA has an additional advantage: Cost allocation among si-
multaneously produced materials or energy flows is carried out
according to the quality of the streams, that is, through exergy
and not through tonnage or monetary costs. As demonstrated
in Valero and colleagues (2013), exergy allocation brings the
advantages of monetary allocation (resulting costs are close to
societal perception of value) and those of tonnage allocation
(stable and absolute value independent of market fluctuations).

The sum of the exergy replacement cost and the embodied
exergy costs is what Valero and Valero (2015) named thermo-
dynamic rarity of minerals. Thermodynamic rarity can be thus
defined as the amount of exergy resources needed to obtain a
mineral commodity from the ordinary rock (Thanatia), using
the prevailing technology. Hence, it allows taking nature into
account as it apprehends both ideas: (1) conservation, because
it advices to preserve those minerals that are scarce through
exergy replacement costs, and (2) efficiency, because embod-
ied exergies indicate real energy expenditures that should be
decreased in order to be cost-effective.

Note that if technology does not change, rarity can be as-
sumed to be constant. Before effective mining appeared, mineral
deposits were abundant and highly concentrated (the natural
bonus was high and so the exergy replacement costs). In turn,
it was very easy to mine and beneficiate minerals (embodied
exergy costs were low). Throughout history, the low hanging
fruits have been already mined, steadily resulting in exploita-
tion of lower-ore grade mines. Currently, the mining industry
needs to go deeper, further, and more energy intensively than
before (the natural bonus has been decreased), that is, exergy
replacement costs have been converted into embodied exergies.
In some cases, technology improvements could partially offset
decreasing ore grades (Swart and Dewulf 2013). Yet, as demon-
strated by Calvo and colleagues (2016) for the case of copper,
ore grades have generally declined throughout history leading
to greater energy costs.

In summary, thermodynamic rarity is here proposed as an
alternative unit of measure than mass for material assessment,
as it gives a greater weight to those substances that are more
valuable from a physical point of view. The methodology does
not incorporate energy costs associated to the manufacturing
and use phases of the products where the materials are con-
tained, something that can be assessed through conventional
LCA. It only focuses on the physical value of the substances
per se. Other physical-based indicators that could eventually
come into play are the ecological footprint, which consists of con-
verting equivalent global hectares to the direct and indirect
consumption of resources (Wackernagel and Rees 1996), or
emergy, expressing the amount of direct and indirect solar en-
ergy needed to produce any product or service (Odum 1995).
The problem with the first is that the environmental impact on
mining is hardly measurable with biologically productive area
and is consequently insensitive to depletion problems. The use
of emergy, in turn, is questionable for mineral resource assess-
ment, as the sun has not played a central role in their creation.
One could also argue that price would be the better alternative.
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This is because the price of a resource sometimes can be even
regarded as a measure of its scarcity and societal value. Yet,
prices are influenced by particular economic markets, national
social conditions reflected in labor cost, the power of mining
companies with a monopoly, the costs of identifying new re-
serves, etc. (Van Oers and Guinée 2016). Thermodynamic
rarity, in turn, is a universal and much more stable unit of
measure, reflecting physical criticality of mineral resources. It
should be mentioned that such an exercise would be impossi-
ble with other criticality assessments such as the one defined
by the European Commission (2014), based on supply risk or
economic importance, since both indicators are dimensionless.
This is why Calvo and colleagues (2017) proposed rarity as a
new dimension in the criticality assessment of minerals.

It is important to state that rarity should not be confused
with recyclability. Rarity measures in the exergy impact of ma-
terials contained in a component, considering the scarcity of
these materials in nature, by means of the ore grade in mines
and the exergy required to extract them from a hypothetical
bare rock to postbeneficiation conditions. With this approach,
one does not take into account how these materials are found in
the specific component. Truly, it is not the same if Co is found
homogeneously spread all over the vehicles, or if it is found al-
most pure in some components. This will not affect the results of
the rarity assessment, but will affect recyclability significantly.
Recyclability, in turn, depends on the components where
materials are contained and hence for each metal a myriad
of options appear. Values of exergy are included as Supporting
Information available on the Journal’s website (see table S1).

Results and Discussion

Materials Used by Type of Vehicle and Component

Table 1 shows the amount of metals considered by type of
vehicle. More detailed information about considered assump-
tions regarding the types of vehicles analyzed according to sales
projections and the specific weight of each metal by component
and type of vehicle are included as Supporting Information on
the Web (see tables S3 to S6).

Mass and Rarity Material Comparison

A comparison between the mass and rarity content of ICEV
(internal combustion engine vehicle), PHEV, and BEV vehicles
allow one to know the contribution of each metal with both
approaches. Comparisons are presented individually for vehicles
and batteries. This is because a vehicle’s and a battery’s end-
of-life legislation are different. While ELVs are regulated by
EU Directive 2000/53/EC, batteries are regulated by Directive
2006/66/EC, which establishes different mass recycling targets:
65% for lead based batteries, 75% for nickel-cadmium batteries,
and 50% for the rest.

Comparison Considering the Vehicle without Batteries
Figure 1 and figure 2 present the contribution of each

metal in terms of mass and rarity. Major metals are shown

in figure 1, whereas those with a mass share below 0.1%
are presented in figure 2. All values expressed in mass and
exergy units for ICEVs, PHEVs, and BEVs are detailed as
Supporting Information on the Web (see tables S10 to
S12).

From figure 1, it becomes evident how iron, aluminum, and
copper together account for over 95 wt% of the total amount
of metals in the three cases (ICEV, PHEV, and BEV). This
situation drastically changes when the assessment is carried
out in rarity (rt) terms. Even if iron is the major metal used
with mass shares greater than 75 wt%, the rarity share drops
to around 15 rt%. On the contrary, aluminum’s rarity share in-
creases with respect to a mass assessment (40 rt% vs.12 wt%).
This means that small quantities of aluminum used for a ve-
hicle´s light-weighting purposes have a negative impact on
the sustainability of the car from a rarity point of view. Alu-
minum contribution prevails over iron because of its higher
embodied exergy associated to the Bayer process. The case
of copper is also representative, since its rarity contribution
doubles that of its mass contribution. Minor metals account-
ing for below 0.1 wt% have significantly greater contributions
in rarity terms, that is, 34.1 rt%, 27.8 rt%, and 7.5 rt% for
ICEVs, PHEVs, and BEVs, respectively. Figure 2 shows this
fact in more detail. For instance, around 6 grams (g) of plat-
inum and 1 g of palladium are used to build catalytic convert-
ers in ICEVs and PHEVs. Yet, considering their rarity values
(per gram, the highest among all considered materials), they
are as relevant as iron, aluminum, or copper, accounting for
22 and 7 rt%, respectively, for ICEVs and 15 and 5 rt% for
PHEVs.

The importance of materials used in high-strength steel
alloys becomes also more evident when using rarity as the
unit of measure. Niobium passes from a share of 0.04 wt%
to over 1 rt%, whereas vanadium passes from 0.09 wt% to
0.8 rt%. Something similar occurs to important materials de-
manded in electric and electronic components such as tanta-
lum, neodymium, silver, or gallium. In BEVs, tantalum share
increases from 0.001 wt% to over 3.5 rt% and neodymium
from 0.08 wt% to 0.3 rt%, while gallium and silver pass
from less than 0.01 wt% to around 0.6 rt% and 0.2 rt%,
respectively.

As a summary, table 2 shows the metals where recycling ef-
forts should be placed if the unit of measure in the European
reuse and recycling target were mass (as it is now) or exergy
through rarity indicator. The situation today is that the target
can be achieved if iron and aluminum were fully recycled. Yet
with rarity, at least platinum, palladium, and copper should be
additionally considered depending on the type of vehicle. Note
that this is a simplification, as complete recycling is impossible
from a thermodynamic point of view (Reuter et al. 2006) and
the maximum achievable recycling rates should be analyzed on
a case-by-case basis. In fact, as Hagelüken and Meskers (2009)
or Granata and colleagues (2011) state, certain high-tech
metallurgical processes are capable to recover as by-products
precious metals such as platinum group metals from automotive
catalysts.
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Table 1 Studied materials in vehicles (g) per unit of vehicle analyzed

Type of vehicle

Material ICEV
PHEV
NiMH

PHEV
Li:ion BEV

Ag 17.5 28.0 28.0 29.8
Al 110,544 115,544 141,370 200,000
Au 0 0.20 0.20 0.32
Ce 46.95 2,127 49.67 0.15
Co 0 8,313 2,712 9,330
Cr 6,510 6,510 6,510 6,031
Cu 28,500 43,481.92 59,166 150,000
Dy 14.70 165.72 165.72 224.63
Er 0 0.18 0.18 0.18
Eu 0.23 0.23 0.23 0.23
Fe 806,144 853,826 806,144 746,945
Ga 0.42 0.81 0.81 1.12
Gd 0.18 0.17 0.17 0.17
Ge 0 0.05 0.05 0.08
In 0.38 0.38 0.38 0.38
La 4.04 14,555 7.38 7.38
Li 1.36 1.36 2,242 7,709
Mn 5,968 5,968 5,968 5,530
Mo 260 260 260 260
Nb 426.30 426.30 426.30 426.30
Nd 162 2,631 552.79 749.30
Ni 1,780 82,832 16,049 55,724
Pb 5,850 5,850 5,850 5,850
Pd 1.24 0.94 0.94 0
Pr 16.53 2,129 51.48 98.00
Pt 7.85 5.51 5.51 0
Rh 0.01 0.01 0.01 0
Sm 1.98 2.32 2.32 3.15
Ta 6.99 10.83 10.83 10.83
Tb 0 13.62 13.62 26.93
V 852.61 852.61 852.61 790
Yb 0 0.08 0.08 0.16
Y 0.41 0.41 0.41 0.41

Weight analyzed (kg) 967 1,145 1,048 1,190

Weight analyzed (%) 82.5% 84.7% 80% 74.7%

Other mat. (kg) 206.1 206.1 263.1 402.4

Total weight (kg) 1,173 1,351 1,311 1,592

Note: “Other mat.” refers to rubbers, plastics, glasses, and fluids.
g = grams; ICEV = internal combustion engine vehicle; PHEV = plug-in hybrid electric vehicle; BEV = battery electric vehicle; kg = kilograms.

Comparison in Batteries
Figure 3 represents the mass and rarity contribution for all

metals required for batteries analyzed: lead based, NiMH, and
Li:ion.

The case of lead batteries is straightforward, as its major
component is lead. Hence, mass and rarity approaches provide
similar results. For Li:ion, Co becomes very relevant in rarity
terms, accounting for 46 rt% of the total with respect to the
4 wt%. The rarity share of Cu, in turn, drops from 26 wt%

to only 8 rt%. Something similar occurs with iron in NiMH,
which passes from 30 wt% to only 1 rt%, while cobalt prevails
over the rest, with a 56 rt% rarity share (vs. 5 wt%).

With these results, one can now identify which would be the
metals where more recycling efforts should be placed if EU reuse
and recycling targets were rarity instead of mass based. This is
presented in table 3. In lead batteries, both approaches provide
the same results. Yet for NiMH and Li:ion, cobalt becomes the
most relevant metal to be recycled.
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Figure 1 Mass and rarity for materials with a mass share greater than 0.1 wt%. BEV = battery electric vehicle; ICE = internal combustion
engine; PHEV = plug-in hybrid electric vehicle.
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Figure 2 Mass and rarity for materials with a mass share below 0.1 wt%. BEV = battery electric vehicle; ICE = internal combustion
engine; PHEV = plug-in hybrid electric vehicle.

Light-Duty Vehicle Components Comparison
One could go a step further and calculate thermodynamic

rarity values by component and type of vehicle. By doing this,
it would be easier to identify which are those car parts with
the largest material rarity share, and thus advice for improv-
ing their eco-design and material recovery at the end of life.
Rarity values are compared to the same results obtained using
mass.

As can be seen in figure 4, both approaches point to the
BEV as being the most material intensive from all types. While
the heaviest parts (body, brakes, suspensions, and steering)
are similar in the four analyzed cases, the BEV has an extra
weight caused mainly by batteries and electronic components.
It is also remarkable that PHEV weight grows from 1,048 to
1,145 kilograms (kg) if the NiMH instead of the Li:ion bat-
tery is used. This is because of the lower power density of
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Table 2 Metal contribution to achieve EU Directive 2000/53/EC
requirements under rarity and mass approaches

Reuse and recycle 85%

Type of vehicle Rarity Mass

ICEV Al, Pt, Fe, Pd Fe, Al
PHEV Al, Pt, Fe, Cu Fe, Al
BEV Al, Cu, Fe Fe, Al

Note: ICEV = internal combustion engine vehicle; PHEV = plug-in hybrid
electric vehicle; BEV = battery electric vehicle.

metallic hydrides with respect to Li:ion. Besides, electrical
and electronic component’s BEV weight is 68 kg on average,
whereas that for the PHEV and ICEV it is only 44 and 28 kg,
respectively.

Considered as a whole, an average BEV is around 220 and
140 kg heavier than an ICEV and PHEV, respectively. Such
components are not only heavier, but contain critical materials
with significant higher rarity contents. Figure 5 shows material
contribution to the rarity value for each type of component and
vehicle.

From a rarity point of view, even if BEVs are also the highest
material-intensive vehicles, the distance to the other two types,
especially to the ICEV, is far more pronounced. The rarity of
a BEV is 2.2 times greater than that of the ICEV, yet it is
only 22% heavier. With respect to the Li:ion-PHEV, the BEV
has a rarity content that is 61% greater (but 13% heavier).
Again, the differences among them are mainly caused by the
contribution of batteries and electronic components, but also
because of the greater aluminum use in the body’s BEV for
light-weighting purposes. Indeed, light-weighting constitutes

Table 3 Metal contribution to achieve EU Directive 2006/66/EC
requirements under rarity and mass approaches

Recycling 65%

Type of batteries Rarity Mass

Lead Pb Pb
NiMH Co, Ni Ni, Fe
Li:ion Co, Al Ni, Al, Cu

an important challenge for electromobility because it is one
effective way to increase a vehicle’s autonomy. Nevertheless
this is not without difficulties because battery autonomy heavily
depends on their weight.

Battery autonomy is, in fact, the reason why this component
is especially relevant for BEV, less so in the Li:ion-PHEV and
almost insignificant for an ICEV. Nickel and cobalt account
for more than 60 rt% of the battery’s rarity in BEV and Li:ion-
PHEV. Li in turn, accounts for around 3 rt% in both cases. The
battery’s rarity in the NiMH-PHEV case is 2.4 times greater
than that of Li:ion-HEV and similar as in the BEV, although its
autonomy is 4 times smaller. This is a consequence of the greater
Ni and Co demand with respect to the Li:ion battery and the
need for rarity intensive elements La, Pr, and Nd. Finally, in
the case of ICEV, with a lead base battery, Pb demands most of
the total rarity. All values expressed in mass and exergy terms
for batteries are included as Supporting Information on the Web
(see tables S13 to S16).

This unbalance is also very remarkable for the electric and
electronic components. BEV and PHEV rarities are 2.2 and 1.7
times greater than in ICEV, respectively. This is mainly due to
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Figure 3 Mass and rarity comparison in different batteries.
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the greater amount of Cu in the first vehicle types (i.e., Cu share
for the BEV is near 80 rt%). That said, tantalum is also an impor-
tant element, accounting for around 20 rt% of total electrical
and electronic rarity. The most critical component in the ICEV
and PHEV is the powertrain. This is because of the platinum
and palladium content in the catalyzer, which are elements with
the highest rarities per gram of all materials considered. Both
account for more than 40 rt% of the powertrain’s rarity in the
ICEV and PHEV. Fortunately, such elements are also highly
recovered, getting recycling shares of up to 90% (BASF 2012).
The fact that they can be separated from the molten metal more
easily than other elements for their metallurgical properties also
helps to achieve the mentioned shares. It should be noted that
even if BEVs do not contain catalyzers, the greater Al content
in the powertrain with respect to the other two vehicles (with
a contribution of 62 rt%), makes this component to have an
important rarity’s share. Not surprisingly therefore, Al is the
material with the highest rarity contribution in the body, with
62 rt% to 68 rt% of the total share depending on the type of
vehicle.

Not insignificant either are refractory metals used as steel
alloys, such as Cr, Mn, Mo, Nb, Ni, and V, which account
all together for 10 rt% of the body´s rarity in the case of the
ICEV and PHEV and 15 rt% in the BEV. Niobium included
in the steels of the ICEV, for instance, contributes to 4 rt%
of the body´s rarity, but only 0.09 wt% to its mass, that is, 2
orders of magnitude more. While Fe is almost fully recovered as
new Fe source through magnetic processes, other metals con-
tained in the body become downcycled or lost. Today, there
are more than nine types of steel containing less than 0.5%

of critical elements, conferring special properties to the body
and for satisfying safety standards and fuel efficiency require-
ments. Moreover, the future is moving toward the so-called
“high-entropy” alloys. These consist of four, five, or more ele-
ments (such as Nb, Sc, Co, Cr, Ni, Ti, Fe, Al, or any other from
the periodic table) mixed together in roughly equal ratios, lead-
ing to lighter and stronger materials than their conventional
counterparts, while being much more resistant to corrosion, ra-
diation, or severe wear (Lim 2016). As can be inferred from its
name, recovering the elements from high-entropy alloys will be
even more difficult than it is now. This is because today when
the body goes to the fragmenting process, all steel types are
mixed together, complicating the recovery of valuable materi-
als such as Nb, Cr, Ni or V. In this respect, Ohno and colleagues
(2014) demonstrated how around 60 wt% of Ni, Cr, and Mo
contained in light-duty vehicles (LDVs) end unintentionally
as an iron source in an electric arc furnace steel-making process
and cannot be recovered. The case of Ni losses in shredding
processes is so illustrative because approximately only 40 wt%
of nickel contained in automobiles is reused for its nickel con-
tent in steel plate rolls, another 40 wt% is recycled into other
metals and becomes unavailable to the nickel recycling loop,
and, finally, around 20 wt% ends in landfills (Nickel Institute
2016).

For this reason, specific operations to dismantle compo-
nents, recycle ASR, and reuse critical materials in vehicles
must be urgently encouraged by European policies and im-
plemented by the automotive industry. Particularly, separa-
tion of high-value components should be done in vehicles
during the ELV treatment and before the shredding process.
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Figure 5 Rarity contribution in different types of vehicles. BEV = battery electric vehicle; ICE = internal combustion engine; PHEV =
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Nevertheless, it must be taken into account that metals are
commonly spread in many vehicle parts (i.e., in a conven-
tional LDV, the same metal can be present in more than 1,000
parts). This implies that disassembly by authorized treatment
facilities of such rarity-intensive components (i.e., instrument
panels, dashboards, capacitors, electronic control units, mo-
tors, wirings, sensors, or switchers) should be mandatory as it
is done with catalytic converters, tires, fluids, or lead batter-
ies. Moreover, and to guaranty the feasibility of the process,
these parts should be designed to be disassembled quickly and
easily.

In summary, considering the added value that rarity concept
provides with respect to a conventional mass accounting, the
following outcomes have been obtained:

� Although the weight increase in PHEVs and BEVs with
respect to the ICEV is not remarkable, there is a substan-
tial value increment related to those materials needed
for electrical-electronic components and batteries. This

means that from a thermodynamic rarity point of view,
ICEV is better than the PHEV and BEV alternatives.

� If rarity per kilometer (km) of autonomy is assessed, it can
be stated that NiMH batteries are worse from a thermo-
dynamic rarity point of view than Li:ion batteries. NiMH
has a rarity of 3.25 gigajoules (GJ)/km, while Li:ion has
only 1.33 GJ/km.

� In the BEV and NiMH-PHEV and contrary to the other
cases, electrical and electronic components and chemical
storage devices together are even more important from a
rarity point of view than the body and powertrain. Special
attention should be paid to: Co, Ni, La, and Li (batter-
ies) and Cu, La, Mo, and In (electrical and electronic
components).

� The powertrain and the body contribute similarly in value
in the three cases, yet the first is more critical than the lat-
ter. This is mainly due to the use of Al in powertrain com-
ponents such as engine parts or suspensions. Refractory
metals contained in steel alloys contribute substantially
to the rarity of the body.
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Conclusions

The application of the rarity approach allows not only to
recognize the physical value of materials with a low-weight
contribution, but also to quantify their specific importance in
the vehicle as a whole. Particularly, it has been demonstrated
that Al, Co, Cu, Ni, and La (used in chemical storage systems),
Nb, Cr, Mo, and V (used in steel alloys), Ce, Pt, and Pd (used in
catalytic converters) or Nd, In, Ga, and Ta (used in electrical
and electronical applications), of which weight contribution
in the vehicle as a whole is small, are not insignificant when
considering their rarity. The demand of these materials will
grow in the transition through zero emission vehicles, making
PHEVs and BEVs worse from a thermodynamic rarity point of
view than ICEVs. This situation will become even more acute
in the future with the installation of sensors and connectivity
devices in autonomous vehicles.

Therefore, if recycling policies use targets based on mass,
even if they are ambitious, they fail in enhancing the recycling
of the CM. This could be solved by using thermodynamic rarity
as the unit of measure instead. Indeed, even if Fe, Al, and Cu
account for more than 95 wt% of a vehicle’s metal content,
their relative thermodynamic contribution drops to less than
70 rt% in ICEV and PHEV cases, what would lead to recover
other types of materials. For instance, a vehicle’s recycling target
should pass from 85 wt% (excluding plastics, rubber, and glass)
to 90 wt% if Ta had to be recovered using rarity as the unit of
measure.

The proposed approach also helps automobile manufactur-
ers to quantify the impacts of using and not recovering a par-
ticular metal in their vehicles, serving as a guideline for eco-
design. For instance, with a detailed rarity analysis, it is possible
to identify which parts of the car should be key to recover
and hence find ways to improve disassembly times. Equally,
it would allow to identify where to enhance more research
on substitution materials. Substitution should especially be fo-
cused on those elements with higher rarities. As was seen,
high-rarity materials are going to form part of the new gen-
eration of vehicles. This will probably lead to a future sup-
ply risk that may hinder the very development of the electric
vehicle.
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ABSTRACT 

A conventional passenger vehicle demands more than 50 different types of metals, some of them 
such as tantalum, indium, niobium or rare earths elements (REE), are considered critical by the 
European Commission. Besides this, their functional recycling is practically absent. Moreover, the 
transition to fully electric vehicles will require more electrical and electronic devices, motors and 
batteries that will need an increasing amount of critical metals.  

With the aim to identify possible future metal supply constraints, an own methodology has been 
developed and applied to the automobile manufacturing industry. This approach defines a variable 
called Strategic Metal Index (SMI) which is calculated for each metal. The SMI is the result of 
combining the following parameters: (1) Automobile sector demand with respect to world 
production; (2) Available reserves; (3) Known resources; (4) Metal production capacity; (5) 
Economic importance and (6) Supply risk. Together with another methodology called 
thermodynamic rarity developed by the authors, they should provide a holistic decision support 
tool for raw material strategic planning in the automobile sector. 

The SMI has been applied to 50 metals used by different types of vehicle powertrains. The 
assessment covers metal demand from 2018 to 2050 according to vehicle sales projections for five 
different scenarios.  

This assessment reflects as main possible constraints: Ni, Li, Co and Mn (batteries); Nd and Dy 
(permanent magnets); Pt (catalytic converters); Tb (lighting and fuel injectors); Sb (steel alloys 
and paintings); Au, Ag and Ta (electronics); In (screens); Te (steel alloys and electronics) and Se 
(sensors and glasses). 
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Material bottlenecks; Strategic raw materials; Resource efficiency; Electric vehicle; Passenger 
vehicles; Strategic decision tool. 
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INTRODUCTION 

The vehicle manufacturing sector is one of the largest raw material consumers and the tendency is 
that this demand will continue growing in the future [1]. Global vehicle sales have doubled in the 
last 30 years [2] and as a result vehicle world fleet has grown exponentially [3]. For instance, only 
in the European Union, passenger car fleet has grown by 5% annually in the last 5 years [4] and 
projections indicate that it will keep growing in the coming years [5]. This evolution in vehicle 
sales has caused in parallel an increase in raw material demand to manufacture them [6]. 

Besides, automobile manufacturers are directing their efforts to comply with the environmental 
protection legislation [7] because stricter regulations are continuously being introduced [8]. As an 
example, according to the European transport White Paper, before 2050 urban mobility will not 
be allowed to conventional fueled vehicles [9] and some cities such as Paris, Barcelona, Milan or 
London have even committed to more ambitious targets to procure that a major area of their cities 
is zero emissions by 2030 [10]. These cleaner vehicles need more different types of metals and as 
a consequence in the last years not only the quantity of vehicles has grown but also the number of 
different raw materials necessary to manufacture them has changed [11]. Some examples of this 
change is the fact that some steel parts such as engine head, suspension arms or wheels are being 
substituted by aluminum alloys for light weighting purposes [12–14]. It is also remarkable that 
more permanent magnets such as neodymium or dysprosium are being demanded to manufacture 
hybrid or fully electric powertrains [15,16]. Moreover, some metals such as lithium, cobalt or rare 
earths are being used to manufacture batteries [17] and others like silver, indium, tantalum or 
lanthanum to make electronic components [18]. As a result, nowadays a conventional vehicle 
needs around 50 different types of metals [11]. Furthermore, some of these metals such as light 
rare earth elements, cobalt, gallium, indium, magnesium, niobium, tantalum, or vanadium are 
considered critical due to potential supply risk problems and economic importance [19–25] or have 
other associated problems such as the case of rare earths production and the associated thorium 
accumulation [26]. 

One solution to guarantee a sustainable use of critical metals is the improvement of recycling 
processes at the end of life of the product. In the case of ELV, the EU Directive 2000/53/EC sets 
strict targets to promote the reusing, recycling and recovering of materials (from 2015, the total 
mass percentage of materials reused and recovered with respect to the average car’s weight must 
be equal to 95%, of which at least 85% must come from reuse and recycling). However ELV 
recycling operations are mainly focused on recycling major metals such as steel and aluminum 
alloys [18] and many others are not functionally recycled [11]. Nevertheless, these scarce materials 
may be recycled, but in reality only a very small proportion is ever recycled back into cars. The 
vast majority are downcycled into less technically demanding applications or indeed simply 
thrown away [27]. As it was demonstrated by Andersson et al [18], from a total of 17 metals 
investigated, only Pt from catalytic converters is functionally recycled. Other examples are the 
cases of nickel, chromium and molybdenum, which approximately 60% unintentionally ending as 
the iron source in steel-making process [28]. 

It is also remarkable the case of nickel, as only 40% of its content in automobiles is reused for its 
nickel content in steel plate rolls, being the rest downcycled or ending up in landfills [29]. As a 
result current functional recycling rates of some of these materials are almost negligible because 
sometimes recycling processes are more expensive than primary raw material costs, as it happens 
in the cases of indium, gallium, cadmium and tellurium [30]. Indeed, and even if it has been 
demonstrated that recycling has a huge improving potential by including pre-recycling processes 
to recover the metals, current recycling rates are still very low [31]. For instance, less than 3 % of 
the lithium contained in a battery is currently recycled [32] and only 42 % of the total battery waste 
mass can be recycled with current available technology [33]. As a consequence, the concern 
regarding raw material availability is becoming an important issue for countries which aim to 
guarantee their sustainability [22,34–37].  
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This is why a number of studies have analyzed this specific issue in the car industry. Focusing on 
the components that use critical metals, Field et al. [38] assessed the use of several critical and 
minor metals used in a Ford Fiesta, Ford Focus and F-150. They realized that strategic metals were 
mainly used in electrical, drivetrain and suspension systems.  Du et al. [39] quantified the use of 
critical metals in conventional vehicles by means of an hybrid approach (input and output) and 
compared the results of previous studies for 25 metals. As a main conclusion it was stated that the 
comparison among different studies is quite difficult because there are no standard nomenclatures 
to define vehicle subsystems. Restrepo et al. [40] evaluated the use of critical metals in electronic 
components used in passenger vehicles. It was demonstrated that REE are mainly found in electric 
motors (alternator, starters, steering motor, etc…) and drive motors (in hybrid and electric ones). 
This is why they suggest dismantling strategies for these components before entering shredding 
processes.  

Henbler et al. [41] presented the ESSENZ method that compared a Mercedes-Benz C-Class with 
different powertrains (petrol, diesel and plug-in hybrid). The method shows that more different 
materials are used in PHEV and that combustion engines perform better than PHEV in the category 
of abiotic resource depletion of metals.  

Regarding the future availability of raw materials, Simon et al. [17] researched the impact of 
different types of lithium ion batteries in lithium, cobalt, nickel and manganese supply. The 
assessment was limited to European passenger vehicle fleets and metal resources. It was identified 
that a possible shortage in European lithium and nickel reserves might be expected around 2025. 
Grandell et al. [35] assessed the role of critical metals in clean technologies, including electric 
vehicles. The paper identified several constraints in the future for Ag, Te, In, Dy, La, Co, Pt and 
Rh. 

In this respect, a new methodology called Thermodynamic Rarity was proposed to assess the use 
of scarce and critical metals from a thermodynamic perspective [42].  Rarity measures in exergy 
terms, the impact of materials contained in a component, considering the scarcity of these materials 
in Nature, by means of the ore grade in mines and the exergy required to extract them from a 
hypothetical bare rock, to post-beneficiation conditions. Thermodynamic Rarity can be considered 
as a new dimension to assess metal criticality and it complements other common non-physical 
assessment dimensions like supply risk or economic importance which are used by the European 
Commission [43]. This approach has been applied to identify more critical vehicle components for 
different powertrain vehicles [11] and to calculate the loss of mineral capital in current End of Life 
Vehicle (ELV) recycling processes [44]. The application of the rarity approach, allows not only to 
recognize the physical value of materials with a low contribution in mass terms, but also to quantify 
their specific importance in the vehicle as a whole. This is because scarce and difficult to obtain 
metals have a higher rarity than abundant ones (i.e. platinum vs. iron). This approach is objective 
and universal because it is only based on physical parameters. However it is well known that there 
are non-physical factors that could also provoke metal supply constraints to a given industry such 
as the specific dependency for these metals, the unavailability of substitution alternatives, the 
existence of other industries that also demand or compete for the same metal, the future expected 
demand for emerging technologies or the concentration of mining activity in politically unstable 
countries. For these reasons the physical point of view must be also complemented with another 
method that also considers socio-economic parameters.  

To advance in scientific knowledge regarding metal availability and importance for the automobile 
industry, this paper proposes a complementary index to thermodynamic rarity to identify possible 
raw material supply constraints in the vehicle manufacturing industry until 2050. This method is 
based on: (1) expected material demand; (2) available reserves; (3) known resources; (4) metal 
capacity production; (5) supply risks and (6) economic importance. It must be noted that the 
author’s intention is not to propose a new critical metal list but to make a list of strategic metals 
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and to show what vehicle components demand these metals and hence are advised to be eco-
designed to avoid future raw material supply risks.   

MATERIAL AND METHODS 

Strategic Metal Index 

An index named Strategic Metal Index (SMI) has been defined in order to rank raw materials in 
the automobile sector according to different criteria. The SMI index ranges from 0 to 100 and is 
calculated considering the following variables: 

 A: Automobile manufacturing sector demand of each metal with respect to total 
production. It is calculated by dividing the cumulative demand (2018 – 2050) of automobile 
manufacturing sector and the total cumulative demand (2018 – 2050) of all sectors for each 
studied metal. It gives an idea of the importance of the automobile sector in the world 
capacity production of this metal. 

 B: Available reserves with respect to cumulative demand (from 2018 to 2050) of this metal. 
It is calculated by dividing the total cumulative demand (2018 – 2050) and the available 
reserves. It gives an idea of the directly geological availability of this commodity. 

 C: Metal known resources with respect to cumulative demand (from 2018 to 2050) of this 
metal. It is calculated by dividing the total cumulative demand (2018 to 2050) and the 
current known resources. As in the previous case it gives an idea of the geological 
availability of each commodity but based on resources instead of reserves (i.e. not 
necessarily economically feasible at the time of determination). 

 D: Production capacity and annual demand ratio for each metal (from 2018 to 2050). It is 
useful because it compares for each studied year the expected demand with the production 
capacity. To do it, the production capacity is modeled by means of the Hubbert theory. This 
model is explained in section 2.3.  

 E: Economic Importance. Value taken from the Critical Raw Material report published by 
the European Commission [45]. This index ranges from 0 to 10 and so it can be used in 
SMI by extrapolating it to a 0 to 100 scale. This variable complements the A variable, and 
offers an idea of the economic dependency of a given metal. 

 F: Supply risk. Value taken from the Critical Raw Material report published by the 
European Commission [45]. This index ranges from 0 to 10 and so to use it in the SMI 
index it is extrapolated to a 0 to 100 scale. It offers a geopolitics vision of dependency for 
each commodity. 

The SMI is calculated as the sum of the six described variables (A – F) by means of using 
weighting coefficients for each one, as follows (equation 1): 

SMI = α*A + β*B + γ*C + δ*D + ε*E + ζ*F Eq. 1 

Where: α + β + γ + δ + ε + ζ = 1 

Once the SMI is assessed for each metal, all of them can be ranked. Nevertheless at this stage the 
challenge is to calculate the required variables. In the next sections the assessment methods to 
calculate reserves data, resources data, metal production capacity and metal demand for each year 
from 2018 to 2050 are explained. 
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Reserves and Resources 

As extraction is ultimately limited by the amount of minerals present in the crust with sufficient 
concentration, it is important to know raw material availability in terms of reserves and resources.   

Resources (RES) are concentrations of naturally occurring materials on the Earth’s crust in such 
form that economic extraction is feasible, currently or at some future time. Reserves (RSV) in turn 
are the portion of resources which can be economically extracted or produced at the time of 
determination. Reserves are thus lower than resources and more dynamic, since identified 
resources can be reclassified as reserves when commodity prices rise or a decrease in production 
costs takes place. Different sources have been compared and those considered more accurate have 
been used for the methodology [46–50]. Information regarding reserves and resources of rare earth 
elements (REE) comes from [51] and [46].  

Variables B and C from equation 1 are calculated by means of dividing resources and reserves by 
cumulative demand respectively. Appendix A shows the Reserves and Resources values used. 

Metal production 

As annual production rates need to be synchronized with the rising demand of materials, 
projections regarding future raw material production are equally required. In this paper it is 
assumed that material production will follow the Hubbert peak model. Hubbert [52,53] showed 
that trends in fossil fuels production always followed the same pattern. The curve of production 
started slowly before rising steeply and tending towards an exponential increase over time. This 
trend goes on until reaching an inflection point, upon which the curve starts to decrease, generating 
a bell-shaped curve of normal distribution. The area below the curve depends on the combination 
of the available reserves or resources and the historic production data of the commodity. 
Production of commodity pa in year t is given by Equation 2: 

ሻݐ௔ሺ݌ ൌ
ܴ

ܾ଴√2ߨ
݁
ିଵଶቀ

௧ି௧బ
௕బ

ቁ
మ

 Eq. 2 

Where R are the reserves (RSV) or resources (RES) of the commodity and the parameters b0 and 
t0 are the unknowns. The function's maximum is given by parameter t0, and it verifies that: 

଴ሻݐ௔ሺ݌ ൌ
ܴ

ܾ଴√2ߨ
 Eq. 3 

With this approach, the maximum production peak of the commodity can be obtained, meaning 
the year when production starts to decrease. Additionally, future yearly projections of production 
can be obtained using a business-as-usual scenario. It is presumed that production will continue 
rising with an exponential trend, as it has been the case for most commodities. Yet geological 
availability in form of reserves or resources prevents at some point this continuing growth.  

The variable D from equation 1 is calculated by means of identifying the possible year in which 
metal production can be smaller than metal expected demand. It is assessed by means of a lineal 
interpolation, where a bottleneck in 2050 or later has null value and a bottleneck in 2018 has a 
figure of 100. The model has uncertainty, for this reason the coefficient of determination (R2) for 
each metal production capacity has been calculated. This coefficient is used to correct the value of 
the lineal interpolation always extending the maximum capacity year and thus keeping the criteria 
of a best case scenario. By means of this method those values with a small reliability will not 
contribute too much in variable D from equation 1. 
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Metal demand 

Metal demand for each type of vehicle has been assessed. Metal composition data for combustion 
vehicles (petrol and diesel) comes from an automobile manufacturer and in the cases of PHEV and 
BEV from a scientific paper revision. The metal compositions for each type of vehicle and the 
assumptions are included in Appendix B. Regarding material demand, it was considered that a 
certain amount of raw materials comes from secondary sources (recycling processes). As the 
available information on recycling rates is usually very aggregated or general, the recycling rates 
used in this study come from the United Nations Environmental Program [54], and are listed in 
Appendix C. Eq. 4 shows how material demand in the studied vehicles is calculated for a given 
year for each commodity: 

݀௔_௧௩ ൌ ሾܰ ∗ ܯ ∗ ሺ1 െ  ሻሿ Eq. 4ݎ

Where da_tv is the quantity of primary material a demanded for the analyzed type of vehicle (tv) 
during a given year; N is the number of yearly manufactured units of each type of vehicle; M is 
the quantity of material a demanded by each type of vehicle to manufacture one functional unit - 
FU (FU=1 vehicle); r is the share of material which comes from recycling. 

The impact of recycling on primary production is assumed as one to one displacement because 
reprocessing does not change material properties. It should be stated though that as Geyer et al. 
demonstrated [55], this approach is not a rule because rebound effects in demand could appear, so 
robust models to predict the impact of recycling in primary demand must be yet developed. As the 
projections presented in this study go until 2050 and the vehicle lifetime is lower, material demand 
from fleet renovation must be considered. This effect is taken into consideration using Equation 5.  

ܰ ൌ ௡ܰ௩ ൅ ௥ܰ௩ Eq. 5 

Where Nnv is the number of new vehicles which are added to the global fleet and Nrv is the number 
of vehicle to renew old ones. 

Nevertheless, it must be also considered that automobile manufacturing industry will need to 
compete for materials with many sectors, such as construction, chemicals, metal industry or 
electronics and with other disruptive sectors such as renewable energy technologies. 
Unfortunately, for the rest of the sectors the information on material consumption is scattered and 
in many cases unavailable. This is why in this paper it is assumed that material demand for other 
sectors (݀௔_௢௦) will be kept constant until 2050 and equal to the difference between total material 
production in 2018 (Pa)2018 and material demand for vehicles for the same year ሺ݀௔_௩ሻଶ଴ଵ଼ (Eq. 6). 
Obviously, this is a very conservative assumption as historically material demand for other sectors 
has usually increased year by year. That said, this assumption allows us to identify the lower bound 
for potential material constraints regarding material competition of automobile manufacturing 
sector with other sectors. 

݀௔_௢௦ ൌ ሺ ௔ܲሻଶ଴ଵ଼ െ ሺ݀௔_௩ሻଶ଴ଵ଼ Eq. 6 

Accordingly, total demand for a given commodity a in year t ሺ݀௔_்ሻ	is calculated by means of Eq. 
7, whereas the total cumulative material demand for commodity a (ܦ௔_்ሻ	from 2018 to 2050 is 
obtained through Eq. 8. 

				ሺ݀௔_்ሻ௧ ൌ ሺ݀௔_௩ሻ௧ ൅ ሺ݀௔_௢௦ሻ௧ Eq. 7 

்_௔ܦ ൌ ෍ ൣሺ݀௔_்ሻ௧൧

௧ୀଶ଴ହ଴

௧ୀଶ଴ଵ଼

 Eq. 8 
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RESULTS AND DISCUSSION 

Vehicle stock and sales projections 

The demand projections for each type of vehicle are represented in Figure 1. In the case of annual 
sales (left) it must be taken into consideration that fleet renovation effect is included. The lifetime 
considered for all types of vehicles is 17 years according to data published by the Spanish ELV 
recycling management system [56]. Projections of sales and world fleet evolution are built using 
data from International Energy Agency roadmaps and the International Organization of 
Automobile Manufacturers [2,57]. 

  
Figure 1: World vehicle sales projection (left) and world fleet evolution (right) 

According to the above, world fleet would increase to more than 2,200 million of vehicles in 2050 
from which 26 %, 53 % and 19 % will be ICEV, PHEV and BEV respectively. On the other hand, 
it stands that PHEV and BEV sales would surpass those from ICEV in 2032 and 2044 respectively. 
Regarding sales it can be observed that beyond 2020 ICEV world sales will decrease.   

Metal demand, resources and reserves 

Through sales projections, annual material demand by type of vehicle and demand for the rest of 
sectors for each metal is assessed. These demands are compared to resources and reserves data to 
calculate B and C parameters of equation 1. In Figure 2, demand, reserves and resources data for 
each metal are shown.  

It can be highlighted that cumulative demand exceeds reserves values for silver, arsenic, gold, 
cadmium, cobalt, copper, gallium, mercury, indium, nickel, lead, antimony, tin, strontium, 
tellurium and zinc. However, when comparing the demand with resources it only happens in the 
case of tellurium. It is important to note that reserves and resources data for tellurium are usually 
inaccurate or incomplete as it is a byproduct mainly produced during the copper and lead-zinc 
refining processes. 
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Figure 2: Total demand, resources and reserves for each metal 

Annual capacity production comparison with annual demand 

Through a combination of metal capacity production and metal demand explained in sections 2.3 
and 2.4, respectively, the data of maximum production peaks have been calculated. Table 1 shows 
those metals where demand may exceed capacity production before 2050, with their regression 
factors R2 of the Hubbert model applied. The information concerning possible bottlenecks 
represents the latest possible year considering the reliability or R2.  

Table 1: Metals where demand may exceed production before 2050 

Metal R2 Peak production Possible bottleneck 

Ag 0.71 2026 ≤ 2040 
Au 0.78 2018 ≤ 2042 
B 0.91 2030 ≤ 2047 
Co 0.90 >2050 ≤ 2026 
Dy 0.95 >2050 ≤ 2020 
Li 0.94 >2050 ≤ 2020 
Mn 0.84 2027 ≤ 2048 
Nd 0.96 >2050 ≤ 2021 
Ni 0.94 2029 ≤ 2025 
Pt 0.95 >2050 ≤ 2023 
Sb 0.71 2018 ≤ 2040 
Se 0.95 2028 ≤ 2040 
Tb 0.95 >2050 ≤ 2019 
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It can be observed that for Co, Dy, Li, Nd, Pt and Tb the demand and production intersections are 
achieved before the metal production peak. This means that for these metals the problem is not 
availability but an excessive expected demand because production and demand intersect along the 
growing tendency. Tellurium, despite a bottleneck being identified, is not included in the table 
because R2 is too low to be considered reliable (only 0.35).  

Figure 1 presents the case of selenium. According to the Hubbert methodology, a possible 
production peak may be achieved in 2028. Considering the evolution of the expected demand, the 
possible bottleneck could arrive in 2035. If the reliability of the model is considered through the 
R2 value (i.e. 0.95), the maximum capacity production increases and hence the bottleneck is 
displaced to 2040.  

 
Figure 3: Estimated production and demand for selenium case 

Metal strategic Ranking 

As different variables are needed to calculate the SMI, several scenarios are presented to assess it 
under different possible situations. The following scenarios have been defined: 

 Geo: The higher weight (0.6 over 1) is given to metal geological availability variables (B, 
C and D). The rest of variables are equitably weighted. 

 EU: The higher weight (0.6 over 1) is given to the variables defined by the European 
Commission (E and F). The rest of variables are equitably weighted. 

 Ams: The higher weight (0.6 over 1) is given to the automobile demand with respect to 
total demand (A). The rest of variables are equitably weighted. 

 Equi: All variables have the same weight. 
 Exp: It is a scenario based on the common criteria between the authors of this paper and 

the car manufacturer. 
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The values used for the weighting coefficients are presented in Table 2. 

 
Table 2: Weighting coefficients used for the different scenarios 

Scenario α Β γ δ Ε ζ 
Geo 0.13 0.2 0.2 0.2 0.13 0.13 
EU 0.1 0.1 0.1 0.1 0.3 0.3 

Ams 0.6 0.08 0.08 0.08 0.08 0.08 
Equi 0.16 0.16 0.16 0.16 0.16 0.16 
Exp 0.3 0.1 0.1 0.1 0.2 0.2 

The selection of these scenarios allows us to have a range of values in the SMI calculation. Figure 
4 represents the SMI ranking and the uncertainty range for each case. Metals are ranked through 
the SMI value calculated for an Average scenario. The average scenario is calculated as the 
average SMI value obtained for each metal from the scenarios shown in Table 2. The SMI for the 
Average scenario is represented with crosses. Color scale means: Red (SMI ≥ 35); Orange (35 > 
SMI ≥ 20); Green (SMI < 20). The most critical metals under the SMI approach (those which SMI 
≥ 50) are Ni (61), Li (57), Tb (56), Co (55), Dy (51) and Sb (51). These metals are followed by Nd 
(47), Pt (44), Au (40), Ag (40) and Te (40).  

 

 

Figure 4: Metal strategic ranking 
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Considering the possible range of results among the studied metals and scenarios, the lowest 
corresponds to the Ams scenario for most cases. This scenario assigns the highest impact to the 
automobile sector demand with respect to the total demand. The opposite case corresponds for 
Geo and EU scenarios. In Appendix D all SMI values for each metal and scenario are shown. 

It must be underlined that the SMI should only serve as a strategic ranking tool for metals in cars. 
It is not a criticality list of metals because, contrary to general criticality lists such as the one by 
the European Commission, the SMI reflects material shortages from the perspective of the 
automobile industry. Obviously, certain metals that are critical by the EC but do not appear in cars 
are not considered in this approach, i.e. tungsten, hafnium or scandium. However, this does not 
mean that they might appear in the future, if these metals are demanded in future cars.  

 

Most strategic metals and vehicle applications 

The next step is to identify the most critical parts considering the metals with an SMI greater than 
35 for the Exp scenario. Table 3 contains this information, showing that the most affected 
components are batteries, which mainly use Ni, Li Co and Mn, all of these metals with an average 
SMI value higher than 40 and in the case of Ni, Li and Co even higher than 55.  

Moreover, the case of Tb stands out, which is mainly used in lightings and fuel injectors. Lighting 
equipment can be subject to Se shortages, an element that is also used for glazing manufacturing. 
Permanent magnets are also included among the most affected components. Dy and Nd have SMI 
values of 51 and 47, respectively.  High strength steel alloys can be also affected, as Sb and Te are 
ranked between the most strategic metals. Catalytic converters used to treat combustion gases will 
be also at risk due to their critical metals content. This is mainly because of their Pt content, which 
has an average SMI of 44. Finally, electronic components that demand Au and Ag for contacts and 
welding can be subjected also to the possible shortage of Ta to manufacture capacitors or In, which 
is mainly used in the screens of combi instruments and infotainment units. 

Table 3: Main strategic metals and vehicle applications 

Metal SMI range Applications 

Ni From 51.4 to 73.1 Batteries (NMC and NCA) and steel alloys 

Li From 45.2 to 75.3 Batteries  (NMC) 

Tb From 47.5 to 74.1 Lighting and fuel injectors 

Co From 50.0 to 60.3 Batteries  (NMC and NCA) and steel alloys 

Dy From 43.4 to 64.9 Permanent magnets 

Sb From 29.3 to 65.5 Steel alloys and paintings 

Nd From 43.9 to 53.9 Permanent magnets 

Pt From 42.3 to 45.7 Catalytic converters 

Au From 26.7 to 55.9 Electronics (contacts coating) 

Ag From 26.4 to 53.5 Electronics (contacts coating) 

Te From 22.7 to 51.7 Steel and lead alloys and electronics 

Mn From 22.6 to 48.1 Batteries  (NMC) and steel alloys 

Ta From 32.3 to 42.3 Electronics (capacitors) 

In From 21.2 to 45.3 Screens 

Se From 19.9 to 45.1 Lighting sensors and glasses 
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CONCLUSIONS 

The SMI is presented as a useful index to rank materials demanded to manufacture vehicles 
according to their possible future strategic importance to the sector and so guide in the formulation 
of possible ecodesign alternatives. The SMI is calculated through a holistic approach considering 
physical variables such as reserves and resources and non-physical ones such as supply risks and 
economic importance of raw materials within and outside the sector.  

The SMI should not be understood as a quantitative variable for measuring metal scarcity or 
criticality. If the SMI value of metal A doubles that of metal B, it does not mean that the former is 
twice as critical or scarce as the latter. This is for instance the case of aluminum and germanium 
where the SMI for Al (21.2) is slightly higher than that of Ge (20.4). But in fact germanium is 
scarcer in the crust than aluminum, and contrary to the latter, due to its global economic importance 
and supply risks, germanium is considered critical by the European Commission. The SMI rather 
reflects how scarcity and criticality of a given metal may affect the automotive sector.  

Moreover, and contrary to the Thermodynamic Rarity indicator proposed by the authors in 
previous studies (which uses exergy as the unit of measure to value minerals according to their 
specific physical features in the crust and mining energy intensities), the assumptions considered 
implicitly in this method, make that the SME cannot be considered either as a universal numeraire 
of metal sustainability in the automobile sector. Such assumptions are: (1) the vehicle composition 
is considered constant throughout the analyzed years; (2) future mineral reserves discoveries are 
not considered; (3) the possible growth in the metal demand of other sectors is not considered; (4) 
Metal production capacity is modeled using a Hubbert approach, which is theoretical; (5) Supply 
risk and economic importance by the EC might change over time (6) the weighting factors used 
for each category composing the SMI is arbitrary.  

Nevertheless, the SMI complements the thermodynamic approach because it provides a different 
dimension for the potential identification of raw material shortages in the automotive sector. This 
dimension incorporates non-physical parameters such as supply risk, sector dependency or 
economic importance which are indeed key for the automobile industry.  

Particularly, in this paper we have obtained through the SMI that the main identified shortages are 
those concerning the manufacturing of batteries in electric vehicles (Ni, Co, Li and Mn), permanent 
magnets for motors (Nd and Pr), electronic components (Ag, Au, Ta, Te and In), catalytic 
converters (Pt), fuel injectors (Tb) and paintings (Sb). In fact these same components were also 
identified as the most relevant when the assessment was carried out from a thermodynamic point 
of view in a previous research [11] what ensures that the thermodynamic approach at least in the 
automobile case can be considered as self-sufficient. Yet this may not be the case for other sectors 
and this is why both approaches are always recommended to have a holistic view of the problem.  

For the identified components, automobile manufactures should encourage ecodesign strategies to 
reduce the demand of these strategic metals, to find substitutes or to increase their functional 
recyclability. This is why, based on the obtained results, in a future paper, the authors will propose 
specific ecodesign measures in vehicles. 

 

ACKNOWLEDGMENTS 

This study has been carried out under the framework of EXCITE project (EXergy approach to 
encourage CIrcular economy pracTices in vEhicles), funded by SEAT, S.A. under the agreement 
NºOFE-01115-L5G1R8 and ENE2017-85224-R project, financed by the Spanish Ministry of 
Economy, Industry and Competitiveness.  

 

0006-12



13 

 

NOMENCLATURE 

BEV: Battery Electric Vehicle 
CRM : Critical raw materials 
d: material demand 
D: cumulative material demand 
ELV: End of Life Vehicle 
FU: Functional Unit 
GHG: Greenhouse gas 
ICEV: Internal Combustion Engine Vehicle 
m: studied technologies 
N: manufactured units 
Nns: new units added to the global market 

Nrn: units manufactured to renew 
installations 
PHEV: Plug Hybrid Electric Vehicle 
R: reserves or resources 
r: material share from recycling 
Re: recycling quote 
REE: Rare Earth Element 
RES: resources 
RSV: reserves 
SMI: Strategic Metal Index  
t: studied years  
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Table A. 1: Reserves and Resources data (in tonnes) 

Metal Reserves Resources Metal Reserves Resources 

Ag 570,000 1,308,000 Mn 690,000,000 1,030,000,000 

Al 28,000,000,000 75,000,000,000 Mo 15,000,000 19,400,000 

As 730,000 11,000,000 Nb 4,300,000 14,328,483 

Au 57,000 100,000 Nd 8,750,000 16,700,000 

B 380,000,000 410,000,000 Ni 78,000,000 130,000,000 

Ba 320,000,000 2,000,000,000 Pb 88,000,000 2,000,000,000 

Be 400,000 400,000 Pd 33,000 46,000 

Bi 370,000 370,000 Pr 2,000,000 4,800,000 

Cd 500,000 3,600,000 Pt 33,000 50,000 

Ce 31,700,000 31,700,000 Rh 5,000 5,000 

Co 7,000,000 145,000,000 Ru 6,000 6,000 

Cr 500,000,000 12,000,000,000 Sb 1,500,000 4,300,000 

Cu 720,000,000 6,350,000,000 Se 100,000 172,000 

Dy 2,600,000 2,980,000 Sm 2,900,000 2,900,000 

Eu 244,333 244,333 Sn 4,700,000 76,200,000 

Fe 160,000,000,000 800,000,000,000 Sr 6,800,000 1,000,000,000 

Ga 5,200 1,000,000 Ta 100,000 317,060 

Gd 1,235,000 3,622,143 Tb 566,104 566,104 

Ge 12,500 440,000 Te 11,080 25,000 

Hg 94,000 600,000 Ti 794,000,000 2,000,000,000 

In 11,000 47,100 V 19,000,000 63,000,000 

Ir 2,000 2,000 W 3,100,000 7,000,000 

La 6,000,000 22,600,000 Yb 1,900,000 1,900,000 

Li 14,000,000 40,000,000 Zn 220,000,000 1,900,000,000 

Mg 2,400,000,000 12,000,000,000 Zr 75,000,000 235,029,851 
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APPENDIX B – VEHICLE COMPOSITION 

Table B. 1: Compilation of materials used in passenger car vehicles PHEV and BEV (in g) per unit of 
vehicle with the exception of Al, Cast Iron, Cu and Steel which are in kg. 

 [60] [35] [61] [62] 
 PHEV2 PHEV BEV3 BEV PHEV 
Al (kg)   200  

Cast Iron (kg)   20  

Ce 0.31    

Co     

Cu (kg) 60  150 67.5 

Dy 129.66 210 336   

Er 0.18    

Eu <0.01    

Gd <0.01    

Ga 0.57 1.05 1.68   

Ge  0.05 0.08   

In 0.08 0.05 0.08   

La 6.68    

Li 6,256.55    

Mo     

Nd 531.88 360 576   

Nb 109.14    

Pd 1.81  0.12   

Pt 5.51    

Pr 4.01 120 192   

Rh <0.01    

Sa 1.4    

Sc     

Ag 50 6 9.6   

Steel (kg)   790  

Sr     

Ta 10.83    

Te 19.86 21 34   

For the assessment of materials used in batteries, it has been considered that current battery market 
situation is led by Li:ion batteries as demonstrated by the fact that both Nissan and Tesla are 
currently using Li:ion batteries in their vehicles [63,64]. Even if Toyota used NiMH and Li:ion 
batteries in their vehicles, last Prius PHEVs version is already using Li:ion depending on the 
equipment level [65]. This is why materials considered to be demanded for batteries in vehicles 
are those demanded by Li:ion batteries. 

 

 

                                                 
2 With medium equipment level. 
3 Original values are published for a 50 kW motor. In the present study, values are adapted for 50 kW and 80 kW 
motors in PHEV and BEV, respectively. 
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Table B. 2: Material demand by type of battery in g. Values adapted to a battery autonomy of 200 km. 

 Authors compilation  
 [66]  [67]  [36]  Average 

Li 9.01 7.2 9.3 8.50 
Ni 57.40 46.5 58 53.97 
Co 10.91 9 12 10.34 

 
Table B. 3 contains the metal composition for each type of vehicle. In ICEV petrol and diesel cases, 
information comes from SEAT Leon model (segment C). 

Table B. 3: Metal composition (in gr) for each type of vehicle 

 ICEV Diesel ICEV Petrol PHEV BEV 

Ag 10.19 19.47 28 29.80 
Al 61,103 78,343 141,370 200,000 
As 0.14 1.30 0 0 
Au 3.15 3.65 0.20 0.32 
B 23.76 26.37 0 0 
Ba 832.55 777.66 0 0 
Be 0.03 0.02 0 0 
Bi 8.81 8.84 0 0 
Cd 0.15 0.12 0 0 
Ce 2.67 0.37 49.67 0.15 
Co 9.72 8.06 2,712 9,330 
Cr 5,041 5,566 6,510 6,031 
Cu 15,584 15,376 59,166 150,000 
Dy 0.19 0.48 13.81 18.73 
Eu 0 0.0001 0.23 0.23 
Fe 701,095 653,524 806,140 746,945 
Ga 0.27 0.27 0.81 1.12 
Gd 0.0005 0.0005 0.17 0.17 
Ge 0.0036 0.003 0.05 0.08 
Hf 0.0027 0.008 0 0 
Hg 0.047 0.001 0 0 
In 0.216 0.21 0.38 0.38 
Ir 0.018 0 0 0 
La 0.341 0.40 7.38 7.38 
Li 22.06 4.63 2,242 7,709 
Mg 13,622 3,565 0 0 
Mn 4,333 4,211 5,968 5,530 
Mo 240.03 187.97 260 260 
Nb 154.20 145.57 426.30 426.30 
Nd 23.71 18.84 552.79 749.30 
Ni 1,590 2,993 16,049.57 55,724 
Pb 12,527 11,535 9,750 9,750 
Pd 1.99 1.84 0.94 0 
Pr 0.066 0.08 51.48 98 
Pt 3.79 0.13 5.51 0 
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Rh 0.12 0.09 0.01 0 
Ru 0.012 0.013 0 0 
Sb 15.70 35.36 0 0 
Se 0.013 0.02 0 0 
Sm 0.21 0.33 2.32 3.15 
Sn 208.53 234.61 0 0 
Sr 148.84 144.08 0 0 
Ta 4.65 6.53 10.83 10.83 
Tb 0.01 0.02 13.62 26.93 
Te 0.20 0.18 0 0 
Ti 541.41 536.41 0 0 
V 92.81 86.62 852.61 790 
W 9.24 3.17 0 0 
Y 0.07 0.13 0.41 0.41 
Yb 0.0003 0.0002 0.08 0.16 
Zn 6,614 6,502 0 0 
Zr 12.50 78.42 0 0 
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APPENDIX C – METAL RECYCLING VALUES 

Table C. 1: Metal recycling values [54] 

Metal Recycling rate Metal Recycling rate 

Ag 30% Mn 37% 

Al 36% Mo 33% 

As 1% Nb 50% 

Au 30% Nd 5% 

B 0% Ni 29% 

Ba 1% Pb 51% 

Be 17.5% Pd 50% 

Bi 0% Pr 5% 

Cd 25% Pt 50% 

Ce 1% Rh 40% 

Co 32% Ru 55% 

Cr 20% Sb 17% 

Cu 30% Se 5% 

Dy 10% Sm 1% 

Eu 1% Sn 22% 

Fe 50% Sr 0% 

Ga 25% Ta 17.5% 

Gd 5% Tb 1% 

Ge 35% Te 1% 

Hf 0% Ti 52% 

Hg 37.5% V 0.5% 

In 37.5% W 46% 

Ir 17.5% Y 0% 

La 5% Yb 0% 

Li 1% Zn 22.5% 

Mg 33% Zr 5% 
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APPENDIX D – STRATEGIC METAL INDEX AND SCENARIOS 

Table D. 1: SMI values for each metal and scenario 
 

Exp EU Geo Equi Ams 
Ag 35.60  39.82  53.55  47.95  26.39  
Al 21.79  29.18  20.84  22.04  12.13  
As 11.44  11.42  22.83  18.95  9.19  
Au 34.60  37.33  55.92  48.99  26.70  
B 27.87  34.46  38.14  35.43  17.02  

Ba 19.91  24.36  27.52  25.46  12.44  
Be 16.98  25.11  11.99  14.66  7.15  
Bi 14.80  13.66  26.94  22.68  13.88  
Cd 12.46  12.46  24.91  20.68  9.97  
Ce 19.31  26.98  14.82  17.26  9.99  
Co 54.67  50.07  56.99  55.65  60.35  
Cr 31.32  40.93  35.32  35.10  17.71  
Cu 30.82  33.94  34.23  33.44  25.97  
Dy 54.29  47.88  43.42  46.35  64.99  
Eu 19.09  26.35  13.43  16.22  10.55  
Fe 22.89  30.47  23.97  24.50  12.57  
Ga 30.25  35.79  32.84  32.62  22.35  
Gd 17.44  25.63  12.30  15.02  7.55  
Ge 20.70  27.91  20.83  21.64  11.07  
Hg 14.05  14.05  28.10  23.33  11.24  
In 32.99  39.96  45.30  41.94  21.24  
Ir 19.21  26.73  17.17  18.76  9.59  
La 19.64  27.71  16.41  18.47  9.54  
Li 57.94  45.26  55.63  54.91  75.30  

Mg 18.18  25.86  14.25  16.50  8.73  
Mn 35.48  43.28  48.12  44.75  22.56  
Mo 25.22  30.47  28.80  28.21  17.49  
Nb 31.66  35.82  31.39  31.97  26.16  
Nd 48.01  43.98  44.92  45.49  53.98  
Ni 57.09  58.95  73.17  67.92  51.40  
Pb 14.45  12.03  23.25  19.97  15.91  
Pd 28.08  30.32  22.58  24.72  26.21  
Pr 29.33  31.24  21.43  24.34  28.37  
Pt 43.93  42.37  45.42  44.73  45.72  
Rh 22.71  27.86  18.64  20.63  16.65  
Ru 19.19  26.77  17.28  18.83  9.47  
Sb 45.77  55.13  65.55  59.94  29.33  
Se 32.04  39.13  45.14  41.53  19.96  
Sm 19.71  26.37  13.27  16.25  12.13  
Sn 27.25  34.22  32.98  31.86  16.81  
Sr 10.55  10.31  20.53  17.11  8.89  
Ta 38.49  36.55  32.35  34.21  42.31  
Tb 59.57  50.41  47.55  50.55  74.18  
Te 34.25  40.26  51.69  46.47  22.75  
Ti 15.98  21.62  16.79  17.18  8.31  
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 Exp EU Geo Equi Ams 
V 36.77  37.42  25.45  29.38  38.17  
W 32.34  43.35  35.18  35.52  17.10  
Yb 25.56  31.96  15.85  19.91  18.98  
Zn 31.13  39.89  37.17  36.16  18.24  
Zr 9.16  9.12  18.22  15.13  7.39  
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A B S T R A C T

Current metal recycling techniques for end-of-life vehicles (ELV) are based on mechanical treatments to mainly
recover steel, aluminum, copper, and zinc alloys. Such techniques facilitate compliance with the ELV European
Directive (2000/53/EC) target of achieving recyclability quotes of up to 85%. However, a vehicle can use more
than 60 metals, some of them considered critical by international institutions, which end up downcycled as part
of alloys or ultimately in landfills. This paper undertakes an assessment of the downcycling degree of minor
metals in conventional vehicles using a SEAT Leon III model as a case study. Downcycling is assessed from a
thermodynamic point of view using thermodynamic rarity, an indicator that is used as a weighting factor for the
metals used in the car. The thermodynamic rarity of metals is a function of the quality of the minerals from
which they stem, considering their relative abundance in Nature and the energy intensity required to extract and
process them. The results demonstrated that, even if the quantity of downcycled metals only represents 4.5% of
the total metal weight of the vehicle, in rarity terms, this figure increases to approximately 27%. This indicates
that an important portion of high-quality metals becomes functionally lost. The most downcycled vehicle sub-
systems are in order: (1) accessories, (2) electrical and electronic equipment, (3) exhaust system, and (4) engine.
Further, the most downcycled parts are: speed sensor, control unit, antenna amplifier, airbag circuit, tempera-
ture and rain sensors, front pipe, particle filter, and turbo parts.

1. Introduction

At present, the vehicle sector generates approximately 5% of the
world’s industrial waste, either from vehicles or the plants that produce
them (Zorpas and Inglezakis, 2012). Each year in Europe, end-of-life
vehicles (ELV) generate between 7 and 9 million tonnes of waste
(European Commission, 2017a) and hence, the treatment of ELV and
the impact of discarding their residues are subjects of worldwide con-
cern (Simic and Dimitrijevic, 2012). As stated by Arda et al. (2017), a
stable supply of raw materials is crucial for the transition to a sus-
tainable and circular economy. This becomes even more important
considering that, by 2030, up to 1.85 billion vehicles are expected to be
added to the current fleet (Simic and Dimitrijevic, 2013), requiring
massive amounts of raw materials (Hernandez et al., 2017).

In order to reduce waste originating from ELVs and increase their
recyclability, in 2000, the EU enforced the ELV Directive (2000/53/
EC). It aims to reduce the waste generated by ELVs and also to protect
the environment by promoting the reuse and recycling of ELV compo-
nents. According to the ELV Directive, from January 1, 2015, recovery
requirements should achieve the target of at least 95% (with a

maximum energy recovery of 10%) and a minimum of 85% of the total
material has to be reusable and recyclable. Consequently, nowadays, a
common vehicle has recyclability rates higher than 85% for any
equipment version (Millet et al., 2012).

However, the future compliance of these recycling targets is chal-
lenged by the changing material composition of cars (Ortego et al.,
2017). Examples of the changes in vehicle material composition over
time are: the replacement of Fe by Al alloys for parts such as the head
cylinder or gearbox case, body-in-white, and wheels (Hatayama et al.,
2012; Løvik et al., 2014; Van Schaik et al., 2002); the increased use of
plastics for the interior of the car (Juska, 2007); the transition from
conventional internal combustion engines to hybrid-electric and fully
electric powertrains (Eurostat, 2015); the evolution from manual to
automated control of vehicle functions owing to an increased number of
car electronics (Restrepo et al., 2016). Current vehicles require more
electrical and electronic devices, which demand an increasing amount
of different metals such as Li, Co, Mn, Ni, and different rare earths to
manufacture batteries (Simon et al., 2015); Nd, Pr, and Dy to build
permanent magnets (Riba et al., 2016); Ag, In, Ta, or La to manufacture
electronic components (Andersson et al., 2016). As a result of this

https://doi.org/10.1016/j.resconrec.2018.04.006
Received 20 November 2017; Received in revised form 20 March 2018; Accepted 5 April 2018

⁎ Corresponding author at: CIRCE, Research Centre for Energy Resources and Consumption, Mariano Esquillor nº15, Zaragoza 50018, Spain.
E-mail address: aortego@fcirce.es (A. Ortego).

Resources, Conservation & Recycling 136 (2018) 24–32

Available online 10 April 2018
0921-3449/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09213449
https://www.elsevier.com/locate/resconrec
https://doi.org/10.1016/j.resconrec.2018.04.006
https://doi.org/10.1016/j.resconrec.2018.04.006
mailto:aortego@fcirce.es
https://doi.org/10.1016/j.resconrec.2018.04.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.resconrec.2018.04.006&domain=pdf


vehicle evolution, currently, more than 60 metals are used in a vehicle
(Ortego et al., 2017).

Furthermore, some of these metals such as light rare earth elements
(REE), Co, Ga, In, Mg, Nb, Ta, or V are also considered critical from
several perspectives such as vulnerability, economic importance,
supply, or ecological risks (Achzet and Helbig, 2013; Alonso et al.,
2007; European Commission, 2014, 2017b). Critical metals in pas-
senger vehicles are mainly found in the embedded electrical and elec-
tronic devices (Du et al., 2015; Widmer et al., 2015). Moreover, critical
metals are also used as alloying elements in aluminum and steel alloys
constituting the body-in-white and powertrain of the vehicle (Løvik
et al., 2014). The number of embedded electrical and electronic devices
and the alloy types depend on characteristics such as vehicle equip-
ment, power source, and model, which define the vehicle type
(Modaresi and Müller, 2012). Moreover, the future widespread adop-
tion of electrical powertrains will encourage the development of large-
capacity batteries, which will also increase the demand for some metals
such as lithium (Grosjean et al., 2012; Kushnir and Sandén, 2012;
Scrosati and Garche, 2010) or cobalt (Schmidt et al., 2016; Väyrynen
and Salminen, 2012).

Focusing on ELV recycling processes, they are typically aimed at
isolating hazardous content, selling spare parts, recovering and re-
cycling some regulated parts such as batteries, tires, or catalytic con-
verters, and recycling the metallic compounds existing in the largest
quantities such as steel and aluminum alloys (Andersson et al., 2016).
Focusing only on ELV metals, recycling plants (shredders) are mainly
designed to separate ferrous (steel) and non-ferrous (aluminum, copper
and zinc) fractions, which are subsequently sent to smelters as sec-
ondary sources. Such an operation entails the loss of most alloy ele-
ments (Ohno et al., 2015) either because they are downcycled or be-
cause they end up in the automobile shredder residue (ASR), ultimately
becoming landfilled.

The concept of downcycling is understood as “to recycle something in
such a way that the resulting product is of a lower value than the original
item” (Merriam-Webster, 1995). Metal downcycling in ELV processes is
a topic of concern; as demonstrated by Andersson et al. (2016) from a
total of 17 metals investigated, only Pt from catalytic converters is
functionally recycled. Moreover, as demonstrated by Ohno et al.
(2014), approximately 60% of Ni, Cr, and Mo contained in light duty
vehicles unintentionally ends up as the metal source in steel-making
process.

As a result, these metals are lost during smelting; dissolved in the
molten metal during smelting; or diluted as contaminants when they
exceed the maximum content allowed for a specific alloy (Amini et al.,
2007).

Another example is the case of nickel—only 40% of its content in
automobiles is reused for its nickel content in steel plate rolls; another
40% is downcycled into other metals and becomes unavailable to the
nickel recycling loop; finally, approximately 20% ends up in landfills
(Nickel Institute, 2016). This occurs because metals are recycled in
open/cascade recycling loops where dilution and quality losses occur
(Maurice et al., 2017).

Indeed, and as demonstrated by Van Schaik and Reuter (2007),
commercial recycling systems never achieves 100% material recovery
during physical separation, high temperature metal production or
thermal processing. These losses are intrinsic to any process and many
of them are unavoidable as stated by the second law of thermodynamics
(Valero and Valero, 2015). The physical limitations posed by the
combination of materials, together with the intrinsic efficiency of the
current recycling technologies have been analyzed by different authors
including Castro et al. (2004, 2007); Reuter et al. (2006); Ignatenko
et al. (2007, 2008); Gutowski and Dahmus (2005) or Gutowski (2008).
According to Reuter (2016), one of the key drivers of a true circular
economy is metallurgy and recycling and the understanding of entropy
in each of its facets.

It should be stressed that recyclability assessments are intricate and

work intensive because products are complex combinations of materials
changing rapidly and continuously over time and that have an effect on
the metals and other materials obtained after their recycling (Meskers
et al., 2008; Van Schaik et al., 2003). This is why, considering that a car
is made up of over 1000 different car parts, it is advisable to rank them
according to the intrinsic value of the materials contained in the given
component. Once ranked, recyclability assessments can be subsequently
performed to those car parts selected as more valuable from a material
point of view and so find ways to improve the eco-design of the product.

In depth recyclability assessments of vehicles have been performed
by Van Schaik et al. (2002, 2003), and Van Schaik and Reuter (2007),
who developed dynamic and fuzzy rule models to predict the liberation
behavior and therefore the quality of e.g. recyclates as a function of
design choices. This in turn provides a technology based feedback to the
designer on the consequences of material combinations, connections
and joints as defined in the design stage of the product. A useful soft-
ware to undertake such analyses is HSC Sim 9 simulator (Outotec,
2017), which also allows to quantify the environmental impact via Life
Cycle Assessments as well as through exergy.

This paper uses a methodology based on an indicator called ther-
modynamic rarity that allows to assess the physical value of systems
based on their material contents. It must be noted that this metho-
dology does not take into account the chemical relationships among
metals, which affects the recyclability of the system. That said, with the
method we can provide a quantitative number of the material losses
that take place in ELV recycling processes, considering not only the
quantity but also the quality of the materials. It also allows to identify
those car components where deeper recyclability analysis and sub-
sequent eco-design efforts should be placed. The methodology is ap-
plied to a segment A vehicle (SEAT Leon III) to which a hypothetical
conventional ELV recycling operation is applied.

2. Research framework

As demonstrated by Ortego et al. (2017), a mass-based assessment
of metal content in a vehicle excludes minor but very valuable elements
that are increasingly gaining importance in the automotive sector. In
order to overcome this deficiency, an alternative indicator based on the
second law of thermodynamics was proposed. The aim of the new in-
dicator, called “thermodynamic rarity,” is to allocate a physical value to
minerals and subsequently to metals according to their relative abun-
dance in Nature and the energy intensity required to extract and process
them to obtain the refined raw material. Consequently, commodities of
precious metals such as platinum or gold are several orders of magni-
tude greater in terms of rarity than common metals such as iron, alu-
minum, or lead. Thermodynamic rarity combines the advantage of
mass-based approaches—in that it is an indicator strictly based on the
physical aspects of the commodity and hence is universal, objective,
and stable—and that of monetary-based approaches, in that mineral
rarities are closer to the societal perception of value.

The methodology is based on the recognition that the physical value
of minerals is mainly due to their chemical properties and their degree
of scarcity in the crust. The scarcer a resource, the greater its extraction
costs and these, in turn, increase exponentially as the ore grades be-
come depleted (Valero and Valero, 2015). Thermodynamic rarity in-
corporates two aspects. The first and the most evident one is the exergy
cost (kJ) required to extract and process a given mineral from the cradle
to the gate (i.e., until it becomes a raw material for the manufacturing
industry). The second is the hypothetical exergy cost required if the
given mineral must be restored to its initial conditions of composition
and concentration in the original mines from a completely dispersed
state (Valero and Valero (2015)). The latter is named exergy replace-
ment cost, whereas the former is named embodied exergy cost. Notably,
as minerals become depleted, exergy replacement costs decrease, in-
dicating that the “bonus” granted by Nature for having minerals con-
centrated in mines and not dispersed reduces, indicating that real
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mining costs necessarily increase. Both approaches, cradle-to-gate and
grave-to-cradle, are equally important, as the first apprehends 1) effi-
ciency, because embodied exergies indicate real energy expenditures
that should be decreased in order to be cost-effective and 2) con-
servation, because it suggests the preservation of minerals that are
scarce via exergy replacement costs.

Embodied exergy costs are obtained from the literature, assuming
the average values of prevailing technologies for each commodity. In
order to calculate exergy replacement costs, one should first define a
baseline reference with which the current state of mineral deposits will
be compared. That reference should be assimilated to a dead state of
“zero utility” and as universal and stable as possible. Valero et al.
(2011) proposed “Thanatia” as the baseline, which represents a re-
source-exhausted Earth where all mineral deposits have been extracted
and dispersed. The so-called crepuscular crust is composed of ap-
proximately the 300 most abundant minerals in the upper crust, with
relative compositions and concentrations. For the current state of mi-
neral deposits, the average weighted values of ore grades across the
world were obtained, mainly derived from Cox and Singer (1992).
Considering that each element is obtained from a single type of ore
(e.g., for copper: chalcopyrite), and knowing the concentration of the
given mineral in Thanatia (xc) and that in the average mines (xm), the
exergy replacement cost for mineral i (bci*) is calculated as:

= ∙b k bΔci ci
*

= = − =b b x x b x xΔ ( ) ( )ci ci c ci m (1)

= − ⎡
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+ − − ⎤
⎦⎥

b RT lnx x
x

x(1 ) ln(1 )ci i
i

i
i0

Starting with the last equation, bci is the concentration exergy and
represents the exergy required to separate a given substance from a
mixture. In our case, a given mineral from the ore. In the equation, R is
the universal gas constant (8314 kJ/kmol K), T0 is the temperature of
the reference environment (298,15 K), and xi is the concentration of the
analysed mineral i, measured in grams of mineral per gram of ore. The

difference between the concentration exergy obtained with xi being
Thanatia’s concentration of the mineral (xc) and with xi being the ore
grade of a given mine (xm) is called “replacement exergy”, denoted

bΔ ,ci and it represents the minimum energy (exergy) required to convert
the mineral from the concentration in the Earth’s crust (xc) to the
concentration in the mineral deposits (xm). As exergy considers that
processes are reversible and hence only provides minimum values,
which are far removed from the societal perception of value, we must
resort to exergy replacement costs (bci*). Hence, man-made processes
that are irreversible require k-times the minimum exergy. Variable k is a
constant called unit exergy cost. It is the ratio between a) the real cu-
mulative exergy required to accomplish the process of concentrating
the mineral from the ore grade xm to the commercial grade xr and b) the
minimum thermodynamic exergy required to accomplish the same
process. An implicit assumption in the methodology is, thus, that the
same technology applies for concentrating a mineral from xm to xr as
from xc to xm. Once exergy replacement costs of minerals are obtained
(i.e. for chalcopyrite), those of the element (i.e. for Cu) are calculated
through their corresponding molecular weights.

It is important to stress that thermodynamic rarity does not consider
the distribution of materials in specific components. Materials can be
homogenously spread throughout the whole vehicle or found in almost
the pure form in several components. This fact would certainly affect
the recyclability of the vehicle, but the rarity would remain the same.
Thus, rarity only measures in terms of energy, the impact of using those
raw materials in a vehicle or any other application, by means of the ore
grade in mines and the exergy required to extract them from a hy-
pothetical bare rock to post-beneficiation conditions. Thermodynamic
rarity values are given in Appendix A (Supplementary material).

3. Materials and methods

3.1. ELV recycling process

Fig. 1 illustrates the ELV recycling process where red arrows re-
present the material flow of a recycling operation, blue boxes show the

Fig. 1. Vehicle recycling scheme. (1) operations performed by users; (2) operations performed by collection facilities; (3) operations performed by dismantlers; (4)
operations performed by shredding plants, and (5) operations performed by post-shredding plants.
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destiny in a landfill, green boxes show the output of recycled material,
the yellow boxes show the output to an energy recovery process and the
grey box shows reusing. There are mainly five entities involved: (1)
users who must deliver their vehicle to collection facilities (Vidovic
et al., 2011); (2) collection facilities i.e., dealers or repair garages,
which collect the ELVs; (3) authorized ELV treatment companies, which
remove hazardous parts of vehicles that cannot be depolluted in land-
fills such as fuel, oil, tires, batteries, or air conditioning cooling gas, and
remove reusable parts (called in Fig. 1 “other components”) such as
starters, suspensions or engines; (4) shredding plants, which receive
decontaminated ELVs and shred them to separate them into three
fractions: ferrous metals, non-ferrous metals, and the rest (a mix of
rubber, foam, and plastics called ASR) using magnetic processes; (5)
post-shredding plants, which receive the non-ferrous metal fraction
from shredding plants and apply eddy current and density processes to
separate mainly aluminum, zinc, and copper.

The scrap resulting from (4) and (5) is sent to smelters to produce
steel or aluminum from secondary sources. The ASR resulting from (4)
and (5) usually ends up in landfill or energy recovery plants, although
the latter option is more complex owing to the heterogeneity of ASR
composition, which contains a small fraction of metals that often hin-
ders energy recovery.

Consequently, in a conventional vehicle recycling process, no spe-
cific operations to recycle minor but valuable metals is present. This
fact was corroborated by several technical visits to and interviews with
different Spanish ELV recycling actors including vehicle manufacturers,
recycling associations, authorized ELV treatment centers, shredding
plants, post-shredding plants, and smelter plants.

3.2. Data gathering and downcycling assessment

Downcycling is calculated in this paper as the additional quantity of
virgin metals that would be required to manufacture a complete vehicle
if the starting point were scrap coming from ELV recycling facilities.
According to this definition, it is assumed that all metals become di-
luted in one of the different scrap types from ELV recycling facilities.
This is an idealization, since in reality and as was previously explained,
a portion of metals (usually below 5% end also in landfill). Yet this
approach allows us to identify those components that are more critical
from a downcycling point of view and thus provide automobile man-
ufacturers and policy makers with valuable information to improve
resource efficiency. It should be stated that this hypothesis is not very
far removed from current approaches used by automobile manu-
facturers. In the homologation of vehicles, manufacturers need to assess
the recyclability degree of the new car so as to ensure that they meet the
ELV directive. To that end, it is considered that all metals incorporated
in a vehicle are recycled.

Following the definition provided, downcycling assessment metho-
dology follows the scheme illustrated in Fig. 2. The starting point is to
determine the number of vehicle parts and the metal composition of
each part. Therefore, it is necessary to disaggregate components into as
small parts as possible, provided that the composition of each given
component is known. This activity is performed using two information
technology (IT) systems belonging to SEAT S.A. The first one includes a
list of vehicle parts and the latter assesses the metal composition of each
part (1). The selected parts are those that incorporate any kind of metal,
having excluded those made exclusively of plastic, foam, glasses, or
rubbers. The battery, catalytic converter and tires are also excluded
since they are disassembled before shredding.

Owing to the large amount of parts constituting a vehicle, they are
aggregated into larger subsystems for facilitating the assessment of
results (2). The used subsystems classification is: engine, fuel tank and
exhaust system, transmission, front axle, rear axle, wheel-brakes, se-
lector mechanism, body, electrical equipment, and accessories.
Subsequently, each part is also classified depending on the type of metal
alloy used (3). The metal alloy classifications are: steel, aluminum,

copper, and zinc alloys. These groups are used because shredding and
post-shredding operations are almost exclusively designed to recycle
these metals. It must be noted that magnesium has not been considered
because it is typically fed into a second lifecycle as a secondary alloy,
thus becoming a part of the aluminum cycle (Ehrenberger and
Friedrich, 2013). Once the composition of vehicle parts is known, the
subsequent step is to determine the composition of the steel, aluminum,
copper, and zinc scraps of the ELV obtained after the recycling process
(4). These scraps will be used as the input metal in steel, aluminum,
copper, or zinc smelting plants. Starting from the scrap metal compo-
sition, all the vehicle parts are virtually manufactured, considering that
the final weight and composition of each part must be the same as the
corresponding original pieces (5). As the composition of scrap (7) dif-
fers from that used in original vehicle parts (6), new material has to be
added. This difference, which represents the downcycling degree (8), is
calculated not only by weight, but also in terms of thermodynamic
rarity for each part. Downcycled parts and metals are finally ranked to
identify those for which eco-design should be enhanced (9).

In the case of components manufactured with metals different from
those used in steel, aluminum, copper, or zinc alloys such as Ag, Au, Co,
Li, Sn, or Ta, the loss is assumed to be 100%, as these metals either
become completely downcycled in minor quantities in alloys, thus
completely losing the functionality for which they were produced, or
are landfilled.

Notably, by using this method, the thermodynamic rarity of the
scrap (7) for some vehicle parts is greater than that of the required
metal composition. This occurs with parts made of low-quality alloys
that do not require certain elements or require them in lower quantity
than those that have been trapped in the scrap. An example of this is
martensitic steel whose alloy elements (Al, Nb, Ti) are significantly
lower than others such as ultra-high strength steel. In the methodology,
when this occurs, the rarity of the metals not required to manufacture a
certain part from scrap is assumed to be zero, since this addition, al-
though valuable is unintentional and does not confer new properties to
the given part.

To perform the rarity assessment, the first step is to obtain the metal
composition for each part of the vehicle. Subsequently, the thermo-
dynamic rarity of each part is calculated by means of Eq. (2).

∑=
=

R A m i R i( ) ( )· ( )
i

n

1 (2)

Where:
R= thermodynamic rarity, expressed in kJ/g (values included in

Appendix A in Supplementary material)
A= vehicle part
m=mass (g)
i=metal assessed
The downcycling degree of each component is calculated as the

difference in thermodynamic rarity of each part, using the metal com-
position of the original pieces and the average scrap metal composition.
The average scrap composition is selected considering the type of alloy
used to manufacture the vehicle part (steel, aluminum, copper or zinc
alloy). Eq. (3) shows the expression used:

∑=
=
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Where:
D= downcycling
A= vehicle part
i=metal assessed
Δ R=Rave_metal_scrap – Rori_metal_comp

Rave_metal_scrap = Thermodynamic rarity of the car part manufactured
with average metal scrap.

Rori_metal_comp = Thermodynamic rarity of the car part manufactured
with the original metal composition.
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Downcycling, as defined in Eq. (3), will always be a negative value
as it represents a loss incurred from an initial situation to a final si-
tuation where quality is lost. A high negative value of downycling in-
dicates that an important quantity of the metals contained in the given
car part are not functionally recycled. On the contrary, a small value of
downcycling means that these metals are not only recycled but also to a
higher degree functionally recycled. It may occur that a heavy car part
denoted as “A” has a lower downcyclability degree than a lighter one
denoted as “B”. The reason for this can come from two factors: 1) be-
cause A, as opposed to B, is composed of mainly fully recyclable ma-
terials (such as steel), and/or 2) because B incorporates non-recyclable
materials with a much higher rarity than A. As will be seen in Section 4,
that is the case of the turbo distributor, a much lighter component than
for instance the cyclinder block, but with a higher downcycling degree
mainly due to its chromium and niobium contents.

3.3. Case study description

Herein, the vehicle used as a case study is a SEAT Leon III model,
which belongs to the hatchback sector. It is equipped with a 2.0 Diesel
engine and manual gearbox. Its total weight is 1270 kg and considering
only metals, 780 kg. From the vehicle, the metal content of battery,
catalytic converter, tires, and fluids have been removed as they are
disassembled before the shredding processes. Consequently, the final
metal weight under study is 730 kg. Table B.1 (Supplementary mate-
rial), included in Appendix B (Supplementary material), lists the metal
composition of the studied vehicle. The composition of different vehicle
parts from recycling alloys originates from shredding plants and alloy
manufacturers. In Table B.2 (Supplementary material) included in
Appendix B (Supplementary material), the scrap compositions are
listed.

4. Results and discussion

4.1. Downcycling assessment

Table 1 presents the results obtained by applying the methodology
described in Section 3. As evident from Table 1, metal downcycling is
equal to 32.8 kg, accounting for 4.5% of the total analyzed weight of

the car, meaning that 32.8 kg of metals have not been functionally re-
cycled. This indicates that the ELV directive is satisfied, as more than
85% of the vehicle would be recycled. However, a completely different
situation occurs when one assigns a quality value to metals using the
thermodynamic rarity indicator. In such a case, the loss increases to
21,647MJ, or equivalently, −26.95 rt% of the total thermodynamic
rarity of the analyzed metals in the vehicle. If the ELV directive targets
are expressed in terms of rarity, current recycling systems would not be
enforcing the law. In order, the most downcycled subsystems are: ac-
cessories, electrical and electronic equipment, fuel tank, exhaust
system, and engine. The values listed in Table 1 are calculated using the
scrap composition described in Appendix B (Supplementary material).
Nevertheless, the sensitivity of downcycling values has been assessed
using two different scrap compositions. The results vary in the range of
3.9–4.5 wt.% and 23.7–27.0 rt%. Appendix E (Supplementary material)
includes the scrap composition used in this sensitivity assessment.

Fig. 3(a) and (b) show the downcycling values per metal. Fig. 3(a)
illustrates metals whose downcycling is greater than 1000MJ and
Fig. 3(b) illustrates those whose downcycling is lower than this value.
Using the thermodynamic rarity approach, the most downcycled metals
are Al, Pd, Pt, Cu, Ta, and Au. Aluminum has the highest loss in

Fig. 2. Data gathering and downcycling assessment methodology.

Table 1
Downcycling by vehicle subsystem in mass and thermodynamic rarity.

Mass (g/veh) Thermodynamic Rarity (MJ/
veh)

Engine −6024.39 −5.34% −10,905.50 −35.64%
Fuel tank and

exhaust system
−3480.60 −19.95% −762.76 −58.79%

Transmission −696.55 −1.77% −168.27 −5.27%
Front axle −1729.59 −3.75% −678.24 −8.23%
Rear axle −827.91 −3.03% −313.54 −25.40%
Wheels and brakes −2907.38 −5.85% −1246.27 −13.97%
Selector mechanism −114.48 −3.22% −43.23 −26.82%
Body −11,602.71 −2.85% −2369.72 −13.11%
Electrical and

electronic
−5169.93 −20.85% −4461.13 −57.36%

Accessories −285.73 −10.90% −698.52 −87.30%
Total −32,839.28 −4.50% −21,647.22 −26.95%
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thermodynamic rarity for two main reasons: (1) its greater rarity value
(661.64 GJ/ton) with respect to other common metal like iron
(31.85 GJ/ton) and (2) because aluminum used as an alloying element
in steel is not functionally recycled (not used as aluminum source). In
this model the average Al content in the steel is 0.75%, whereas that in
the average steel scrap only 0.08%. This means that on average, 0.67%
of Al would need to be added to the steel alloy. The difference in Al
content is a consequence of the use of ultra-high strength steel alloys
(UHSS) in the analyzed vehicle. UHSS requires a larger aluminum
content (2%) than conventional steel alloys (such as martensitic high
strength steels with an Al content of below 0.02%). The analyzed ve-
hicle uses UHSS in several heavy parts such as the floor or cross member
footwell. This is why the average aluminum content in steel is rather
high (0.75%).

Notably, even if Cu is the most downcycled metal by weight, in
terms of rarity, Pd, Pt, and Ta are more relevant. In the cases of Pt and
Pd, although catalytic converters are disassembled and recycled prior to
the shredding operation, there are more quantities of these metals in
other components such as particle filters or rear windscreen cleaner
motor. Regarding metals with downcycling figures less than 1.000MJ,
the most relevant metal is Zn followed by Ni and Nb; all of them are
used as steel alloys. Nickel and niobium are relevant because, even if
their concentrations in the car are low, their specific rarities are high
compared to other studied metals such as Zn. For Zn, notably, although
there are specific post-shredding processes to recover it, these are only
appropriate for parts made almost exclusively with Zn (i.e., a silent
block bracket). Zinc contents in steel alloys are, in turn, downcycled or
lost.

Finally, Table 2 presents the top 3 most downcycled vehicle parts
for each subsystem given in Table 1, with the three most downcycled
metals presented for each case. This type of analysis allows identifying
the parts where eco-design efforts should be made in order to recover
the most from valuable raw materials. The list has been made by or-
dering downcycling in percentage with respect to the initial thermo-
dynamic rarity value for each subsystem. In the case of the engine, Pt
and Pd used in particle filter, Nb and Cr used in turbo distributor, and W
and Nb used also in turbo guide van housing, are notable. In the matter
of fuel tank and exhaust subsystems, the most downcycled metals are Ni

and Cr used in alloys for exhaust pipe, closing cap, and clamp. In re-
lation to transmission, Ni and Mo used to manufacture shafts are the
most downcycled metals. In the front axle, the steering wheel is high-
lighted, owing to the use of Au, Ta, and Cu in the electricity trans-
mission system located in the steering rod. In the rear axle, Al is the
most downcycled metal, which is also present in axle dampers. The
breaking system is included in the wheels and brakes category; in this
subsystem, the metals Al, Cu, Ga, Ta, and Ni used in sensor, distributor,
and pump are the most downcycled. In the selector mechanism cate-
gory, Ni, Cr, and Zn used as steel alloys in the clear level and ventilator
together with Ta, Al, and Pd used in foot adjusting are notable. The
inner mirror is the most downcycled part in the body owing to its gold
content for the anti-glare system, there are also highlighted the seat
belts, that use Al, Zn, and Ni. In electrical and electronic equipment, the
metals used in sensors such as Ta, Au, Ni, Pd, or Pt are the most
downcycled. Finally, with respect to accessories, which also include any
electrical equipment, the most downcycled parts are those that use Au
and Ta such as the control unit or aerial amplifier and those that use Au,
Pd such as the speed sensor. Appendix D in the Supplementary material
incorporates the list of vehicle parts ordered by downcycling rate
measured in MJ. This list contains 27 parts representing 80% of the
total downcycling of the vehicle (17.317 out of a total of 21.647MJ).

One can additionally perform an economic analysis to put this loss
into perspective. Accordingly, we have used commodity prices as
published by the United States Geological Survey (USGS, 2017) and
included in Appendix C (Supplementary material) of the supplementary
information. This loss would be equivalent to €174.74 per car, which
indicates that, over the lifetime of a vehicle model, the total loss would
be €183 M (considering an annual production of 150,000 units per year
during 7 years). Note that this figure only represents an order of
magnitude of the stringent importance of this issue, as price fluctua-
tions can be significant even within a year.

4.2. Downcycling reduction recommendations

This research has allowed to obtain not only the downcycling de-
gree of cars, but also to identify those car parts that contain the most
critical and valuable metals. As such, in light of the results obtained,

Fig. 3. Downcycling by metal measured by weight and rarity. (a) Metals whose downcycling is greater than 1.000MJ and (b) metals whose downcycling is lower
than 1.000MJ.
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some eco-design recommendations can be already proposed. Note that
for a deeper analysis, further studies regarding recyclability and dis-
mantling times of the selected car parts together with the corresponding
energy and economic cost assessments should be performed. Below is a
list of some of these recommendations.

• Disassembly of electric and electronic components that use valuable
metals such as Au, Ag, REEs, platinum group metals (PGMs), Sn, Ta,
or Te before shredding. Some of the most identified critical parts
are: panel instrument, lighting switchers, LED lamps, power window
motors, windscreen cleaner motors, electronic control units, rain
sensors, electric mirrors, aerial amplifiers, and infotainment devices.
This operation could be done even using automation by means of
robots (Li et al., 2017) and would allow that specific recycling
processes are implemented at a later stage.

• Application of hybrid recycling processes for the aforementioned
parts as in the case of waste electric and electronic equipment
(WEEEs) (Arda et al., 2017; Awasthi and Li, 2017; Cui and Zhang,
2008). These recycling processes should be mechanical-hydro-
metallurgical-biometallurgical. This is because the sole application
of mechanical techniques is not compatible with the recycling of
other materials such as indium in the displays or REEs in LEDs
(Ardente et al., 2014). Using this approach, valuable metals such as
Au, Ag, Cr, Cu, Ga, In, Mg, Mo, Nb, Ni, Pd, Pt, Sn, Ta, V, or W would
be recycled. This operation could be even developed in WEEE re-
cycling plants as some of them are already implementing these
processes.

• Disassembly of engine and gearbox components made of special
steel alloys (high content of Cr, Mo, Nb, Ni, Ti, or W). Some of these
components include the exhaust pipe, o-rings, turbos, pinions, and
gear shafts. Owing to the excessive time required for removing some
of these parts (i.e., removing o-ring from an engine requires the
cylinder head cap, cylinder head, connecting rods, and pistons to be
disassembled before and this operation requires at least 1 h), an
intermediate situation could be implemented. This situation could

be that engines and gearbox are disassembled from the rest of the
vehicle before shredding. Notably, in a vehicle manufacturing plant,
the entire powertrain (including front axle, gearbox, engine, and
rear axle) is joined to the body in less than 30 s and hence, this
operation could also be implemented via a reverse approach.

• Application of specific shredding processes for different vehicle
parts mainly made of steel and aluminum alloys (i.e., engines,
gearboxes, and bodies) to produce different scrap qualities with the
aim of manufacturing different qualities of alloys using them.

• For the above, it is important for ELV authorized treatment centers
to be equipped with information systems showing the location of the
components that must be disassembled before and indicating the
proper procedure for the same. This recommendation could be im-
plemented using the International Dismantling Information System
(IDIS, 2016), which currently shows information related to bat-
teries, fluids, or airbags and in which the most important vehicle
manufacturers participate.

• To implement novel post shredder treatments to recycle critical
metals from the scrap obtained as output after the application of
conventional recycling methods and from the ASR.

• Invest in eco-design to favor end-of-life recycling by enabling easier
and faster disassembly of valuable components in ELV authorized
treatment centers. This measure should also be implemented with
an increase in the use of standard union systems avoiding the use of
specific tools to remove these parts. The potential of this measure
has been assessed and may reduce dismantling time to a third by
simply innovating joining (Santini et al., 2010).

The latest recommendation is the most important, as the previous
one depends on the disassembly costs. Consequently, disassembly times
must be as short as possible and design should be aligned with this
premise.

Table 2
The top 3 most downcycled components in each category.

Description Vehicle subsystem Thermodynamic Rarity (MJ/veh) Downcycling (%) metal 1 metal 2 metal 3

Particle filter Engine 8,613.48 −99.72% Pt Pd Cu
Turbo distributor Engine 260.71 −97.86% Nb Cr –
Turbo guide vane housing Engine 185.32 −88.77% W Nb Cr
Clamp Fuel tank and exhaust system 12.35 −75.88% Ni Mo Cr
Front pipe Fuel tank and exhaust system 379.57 −74.89% Ni Al Cr
Closing cap Fuel tank and exhaust system 0.91 −73.38% Ni Cr Zn
Shaft Transmission 11.68 −33.74% Ni Mo Cr
Reverse shaft Transmission 35.35 −28.92% Ni Sn Mo
5 t h gear shaft Transmission 32.74 −28.44% Ni Mo Cu
Input pinion Front axle 13.11 −27.87% Ni Cr –
Track control arm Front axle 260.76 −20.07% Mo Nb V
Steering wheel Front axle 147.94 −19.70% Ta Au Cu
Axle dampers Rear axle 206.55 −80.74% Al Cu Zn
Feathering Rear axle 0.30 −17.13% Zn – –
Rear axle Rear axle 840.17 −16.31% Al V Ni
Break assistance pump Wheels and brakes 352 −82.10% Al Ga Ta
Brake distributor Wheels and brakes 9.05 −58.76% Al Cu Ni
Brake sensor Wheels and brakes 7.02 −57.80% Al Cu Ni
Foot adjusting Selector mechanism 12.93 −76.22% Ta Al Pd
Clear level Selector mechanism 0.78 −71.85% Ni Cr Zn
Ventilator Selector mechanism 0.11 −58.41% Ni Cr Zn
Seat belt Body 84.02 −83.90% Al Zn Ni
Bracket Body 9.74 −76.30% Ni Cr –
Inner rear mirror Body 185.02 −74.90% Au Fe Mg
Airbag circuit Electrical and electronic 118.51 −98.81% Ta Au Pd
Rain sensor Electrical and electronic 7.23 −98.51% Ta Au Pd
Temperature sensor Electrical and electronic 45.01 −98.39% Pt Ni Cu
Speed sensor Accessories 5.16 −98.46% Au Pd Cu
Control unit Accessories 600.52 −95.04% Ta Au Al
Aerial amplifier Accessories 37.41 −83.53% Au Ta Pt
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5. Conclusions

Automobile recycling processes are designed to recycle metals that
contribute to the largest part of the vehicle’s weight (i.e., steel and
aluminum alloys). Yet vehicles have evolved into complex machines
that require a myriad of different and valuable metals. As a result of a
desynchronization between manufacturers and recyclers companies,
many valuable metals end up downcycled or even worse, in landfills.

As was shown in this paper, thermodynamic rarity is a very useful
indicator for measuring downcycling, as it accounts not only for the
quantity, but also for the quality of the metals that become functionally
lost in ELV recycling processes. This same analysis carried out in mass
terms would lead to conclude that downcycling does not practically
occur (less than 5%), since the car is composed (by weight) almost
exclusively of iron, aluminum and copper, elements that are usually
functionally recycled. On the contrary, with thermodynamic rarity,
minor, but valuable metals have a much higher specific weight, and as
such, the downcyclability degree of the analyzed car increases to
around 27%. This is because rarity is a physical measure of resources,
considering their relative scarcity in the crust and the energy required
to obtain the specific commodities with prevailing technologies. This
way, even if gold or platinum are imperceptible metals in the overall
weight of the car, they are not when converting their tonnages in rarity
terms. This simple aspect has a key application in the car industry and
in any resource intensive industry. Mainly, it allows very quickly, to
identify those parts of the car that are more valuable from a material
point of view.

Accordingly, from more than 800 different metal parts that contain
a car, the method allows to select those that are the most valuable from
a material point of view and whose metals become to an important
degree downcycled. With the results obtained in this study, we have
been able to point to certain eco-design strategies that would allow to
decrease the downcyclability degree of the car. Thanks to this macro
assessment in a future research the authors will work on a detailed
recyclability analysis where most downcycled components identified
will be assessed taking into consideration chemical and physical in-
teractions that take place under different recycling strategies.
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A.5 Paper V 

Ortego, A. Valero, Al. Valero, A. Iglesias, M. Towards material efficiency vehicles. Eco-design 

recommendations based on metal sustainability assessments. SAE International Journal of 

Materials and Manufacturing. Vol 11, Issue 3. September 2018. 

Impact Factor: 0.41. (SJR) Scimago Journal and Country Rank. The scientific impact is not very 

high, but it is one of the most relevant journals in the automobile industry. 

Scope: The Journal is assembled to present and promote wide-ranging research of the following 

areas: materials (materials development, analysis, modeling, and testing); design (design analysis, 

modeling, simulations, and optimization) and manufacturing (manufacturing practices, process, 

simulations, and methodologies). 

Contribution to the work:  

 To make a revision of scientific publications about the state of the art concerning eco-

design of vehicles. 

 To develop the method for identifying the most critical components based on the second 

law of Thermodynamics. 

 To apply the method in a case study. 

 To analyze the different types of eco-design strategies that could be applied. 

 To collect information about the disassembly time of those components identified as 

critical. 

 To define eco-design measures for identified critical components.  
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Abel Ortego and Alicia Valero, Fundación CIRCE

Antonio Valero, Universidad de Zaragoza

Marta Iglesias, SEAT S.A.

Abstract
Current End-of-Life Vehicle (ELV) recycling processes are mainly based on mechanical separation 
techniques. These methods are designed to recycle those metals with the highest contribution in 
the vehicle weight such as steel, aluminum, and copper. However, a conventional vehicle uses around 
50 different types of metals, some of them considered critical by the European Commission. The 
lack of specific recycling processes makes that these metals become downcycled in steel or aluminum 
or, in the worst case, end in landfills. With the aim to define several ecodesign recommendations 
from a raw material point of view, it is proposed to apply a thermodynamic methodology based on 
exergy analysis. This methodology uses an indicator called thermodynamic rarity to assess metal 
sustainability. It takes into account the quality of mineral commodities used in a vehicle as a function 
of their relative abundance in Nature and the energy intensity required to extract and process them. 
This method is proposed as a tool to identify the most critical components in a vehicle so as to define 
specific ecodesign recommendations for them.

The methodology is applied to a SEAT Leon 2.0 Diesel III model (segment C). Main recommen-
dations are focused on reducing the use of metals with high thermodynamic rarity values such as 
Ag, Au, Cu, Ga, In, Pd, Pt, Sn, Ta, and Te. These metals are mainly used in electrical and electronic 
equipment. It is also recommended to reduce the disassembly time of a number of critical components 
such as airbag unit, electronic control unit, lighting switcher, antenna amplifiers, panel instrument, 
sensors, infotainment unit, light-emitting diodes (LEDs), and motors. A fast and easy disassembly 
would allow in subsequent phases to apply specific recycling processes based on mechanical and 
hydrometallurgical hybrid approaches instead of only mechanical separation techniques.
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Introduction

The vehicle manufacturing sector is one of the largest 
raw material consumer [1] and the tendency is that 
this demand will grow in the future. Global vehicle 

sales have doubled in the last 30 years [2]. For instance, only 
in the European Union (EU), the passenger car fleet has 
grown by 5% in the last 5 years [3] and will keep growing in 
the coming years [4]. This evolution in vehicle sales will at 
the same time bring an increase in raw material demand to 
manufacture them [5].

This issue made the EU to react by enforcing the End-of-
Life Vehicle (ELV) Directive (2000/53/EC), aimed at reducing 
the waste generated by ELVs and at protecting the environ-
ment by promoting the reusing and recycling of ELV compo-
nents [6]. Current ELV recycling processes are typically 
focused on isolating hazardous content; selling spare parts; 
recovering and recycling some regulated parts such as 
batteries, tires, or catalytic converters; and recycling major 
metals such as iron and aluminum [7]. Yet a vehicle incorpo-
rates many more metals than those that are being presently 
recycled [8]. In the last years not only the quantity but also 
the type of raw materials required to manufacture vehicles 
have changed [8]. For example, some steel parts such as engine 
head, suspension arms, or wheels are being substituted for 
aluminum alloys for lightweighting purposes [9, 10, 11]: 
Permanent magnets made of neodymium and dysprosium are 
being incorporated to manufacture hybrid of fully electric 
powertrains [12, 13]; other metals such as lithium, cobalt, or 
rare earths are being used to manufacture batteries [14]; and 
others like silver, indium, tantalum, or lanthanum to make 
electronic components [7]. Some of these unrecycled metals 
such as light rare earth elements (REE), Co, Ga, In, Mg, Nb, 
Ta, or V, are considered critical due to potential supply risk 
problems or increasing importance for economic development 
[15, 16, 17]. Supply risks of certain materials are a serious 
threat in the automotive sector. This is true especially, with 
the mass introduction of fully electric and autonomous 
vehicles, very dependent on some of these critical metals. In 
this respect, Valero et al. [18] calculated that the recycling rate 
of some metals demanded by automobile manufacturers such 
as Ag, Co, Cr, In, or Ta must grow up to 37%, 59%, 47%, 45%, 
and 19%, respectively, to avoid metal shortages before 2050. 
Under this scenario, it is clear that more efforts in ensuring 
raw material efficiency in vehicles should be placed.

In recent decades the sustainability concept has acquired 
a growing importance, and a large number of methodologies, 
tools, standards, and regulations have been developed to 
promote the implementation of its principles inside industrial 
companies [19]. The developing of products with improved 
environmental performance is regarded as a crucial compo-
nent of companies’ commitment toward sustainable develop-
ment [20]. In the case of vehicle manufacturing companies, 
it has been demonstrated that they are continually working 
to minimize their environmental impacts and meet legal and 
customer requirements [21]. It is well known that acting in 
the design phase is the most important moment inside a 

product lifetime [22]. During this phase not only the specifica-
tions are set but also the quality of recycling, which is condi-
tioned by the liberation of materials during shredding which 
in turn strongly depends on the design [23]. Therefore, for 
achieving resource efficiency throughout a vehicle’s life cycle, 
it becomes crucial to apply ecodesign approaches.

In the industrial field, ecodesign can be defined as an 
approach to consider and integrate environmental aspects in 
the product development process through the application of 
strategies aimed at reducing the negative environmental 
impact along the product lifetime [24]. Ecodesign provides 
product designers with a range of guiding principles, strate-
gies, and methods [25] and encourages better environmental 
product performance by means of closing resource loops, 
minimizing resource consumption, promoting repair and 
upgrading, product long life, and recycling [22].

In Europe, ecodesign requirements are defined by the 
European Directive 2009/125/EC, but this legislation applies 
to all products related to energy with the exception of vehicles 
[26]. For vehicles, ecodesign approaches are focused on 
ensuring that the requirements established by the ELV EU 
Directive [6] and polluted emissions EU regulations [27] are 
met. In addition to comply with these requirements, vehicle 
manufacturers can also implement in their products ecode-
sign approaches according to ISO 14006, as has been the case 
of some vehicle companies [28]. ISO 14006 has as main aim 
to reduce the environmental impact of companies throughout 
the following phases: product design, manufacturing, trans-
port, operation, maintenance, and End-of-Life (EoL) [29].

Common methods used to ecodesign vehicle components 
are based on Life Cycle Assessment (LCA), assessing products’ 
impacts from a cradle-to-grave perspective, considering 
material production, product production, product use, and 
product EoL [5, 30, 31, 32, 33, 34]. In the case of the material 
production phase, the methodology usually consists of 
assessing the impacts related to the acquisition of natural 
resources and their later processing [35] by means of using 
specific LCA software tools such as GaBi or SimaPro [36]. 
However, there is an open debate whether these methods 
reflect well the depletion of natural resources [37].

An example of this discussion is, for instance, the issue 
of impact allocation when different commodities are obtained 
in the same process, such as when a valuable and scarce metal 
like cobalt is produced as a by-product of nickel mining. 
Cobalt can be seen as a free bonus from nickel extraction, and 
hence, all impacts can be  allocated to nickel. A different 
approach would be to allocate costs in terms of their respective 
mass contents or alternatively their monetary costs. However, 
in such cases, one would omit the scarcity of the metal and 
also the physical value that it contains.

With the aim to present a method that allows the identi-
fication of those components with the highest potential to 
be ecodesigned from a raw material point of view, an own 
methodology is presented and applied. This method is based 
on the second law of thermodynamics and the concept of 
thermodynamic rarity. This methodology focuses on the 
physical properties that make raw materials valuable, such as 

Downloaded from SAE International by Abel Ortego, Monday, October 08, 2018



	 Ortego et al. / SAE Int. J. Mater. Manuf. / Volume 11, Issue 3, 2018	 3

© 2018 SAE International. All Rights Reserved.

composition and concentration in the crust and the energy 
intensity to extract and refine them.

It must be noted that the method is presented as a macro 
assessment and the feasibility to implement each measure 
should be deeply analyzed in a subsequent research phase. 
Nevertheless, the method allows us for a quick identification 
of which components are subject to be ecodesigned.

Methodology

Thermodynamic Assessment
As demonstrated by Ortego et al. [8], a mass-based assessment 
of metal content in a vehicle does not incentivize the recycling 
of minor ones such as REE or refractory metals (Mo, Nb, Ta, 
Re, and W), which are very valuable and scarce elements. In 
order to propose a new and more equitable approach, an alter-
native indicator based on the second law of thermodynamics 
and particularly the exergy concept was proposed. The aim 
of this indicator, called thermodynamic rarity (or simply 
rarity), is to allocate a physical value to minerals according 
to the following parameters: (1) their scarcity in Nature and 
(2) the net energy required to extract and refine them to obtain 
the commodity. Scarce and difficult to obtain commodities 
such as cobalt are several orders of magnitude greater than 
common ones such as iron. Thermodynamic rarity combines 
the advantage of mass- and economic-based approaches. It is 
an indicator strictly based on physical aspects of the 
commodity and hence is universal, objective, and more stable 
than monetary approaches. Moreover, although alien to the 
volatility of the commodity markets, it is also closer to societal 
perception of value [38].

In order to define ecodesign recommendations for 
improving metal use efficiency in vehicles, the first step is to 
analyze the metal content in the car and quantify them 
through a weighting factor considering the rarity value of each 
identified metal.

For that endeavor, we first need to take into consider-
ation that primary production of metals comes from mineral 
deposits scattered throughout the crust and that the physical 
value of mined minerals comes mainly from their inherent 
chemical properties as well as the relative concentration of 
the mineral ore with respect to the earth’s crust, that is, its 
scarcity degree. Such aspects can be  physically assessed 
through a thermodynamic property called exergy, which in 
layman term represents useful energy and is a measure of 
the quality of any natural or man-made system with respect 
to its surrounding environment, also referred to as dead 
state. The greater the exergy of a system the more it stands 
out from the environment, and hence the greater its quality. 
A very concentrated mineral ore has a lot of exergy, which 
results in a lower exergy expenditure in extraction costs. On 
the contrary, the scarcer a resource the greater the extraction 
costs, and these in turn increase exponentially as ore grades 
become depleted [39].

Scarcity in the crust is captured through the so-called 
exergy replacement costs, which is a hypothetical exergy cost 
that would be  required if a given mineral would need to 
be restored to its initial conditions of composition and concen-
tration as it was found in the original mines (cradle), from a 
complete dispersed state (grave) [40]. It can be seen as the 
hypothetical bonus granted by Nature for having minerals 
concentrated in mines and not dispersed throughout the crust. 
In turn, the net energy required to extract and refine the 
mineral to obtain a commodity is calculated through conven-
tional embodied exergy costs.

Thermodynamic rarity is calculated as the sum of the 
exergy replacement cost with the embodied exergy costs (see 
Figure 1). As long as the ore grades in mines are high, 
embodied exergy costs will be low compared to exergy replace-
ment costs. Yet with extraction, ore grades decline and more 
energy is required to extract the same amount of ore. 
Accordingly, embodied exergies increase, whereas exergy 
replacement costs decrease. If technology does not change, 
rarity can be assumed to be constant. This assumption is 
supported by the study of Calvo et al. [39] who, for the case 
of copper, observed that ore grades have generally declined 
throughout history, and albeit the implementation of certain 
improvements, energy costs had increased.

Thermodynamic rarity can be thus defined as the amount 
of exergy resources needed to obtain a mineral commodity 
from ordinary rock using prevailing technologies.

As stated by Ortego et al. [8], thermodynamic rarity does 
not take into account how materials are found in a specific 
vehicle component. Indeed materials can be homogenously 
spread throughout the whole vehicle or found almost pure in 
certain components. This fact would obviously very much 
affect the recyclability of the vehicle [42] but the rarity would 
remain the same. Thus, rarity only measures in energy terms, 
the impact of using those raw materials in a vehicle or any 
other application, considering the state of mineral ores in the 
earth and mining and beneficiation energies. Thermodynamic 
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 FIGURE 1  Thermodynamic rarity and ore grades. Adapted 
from [41].
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TABLE 1 Example of table to make the thermodynamic 
assessment.

Metal 1 … Metal n
Component 1

…

Component n ©
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rarity values for the 46 metals analyzed in this study are 
included in Appendix A. Such values are the weighting factors 
for each metal used in a car to identify the most critical 
components in the vehicle. From there, ecodesign recom-
mendations can be easily derived.

Critical Vehicle Components 
Identification
To apply this thermodynamic approach into a vehicle, the 
quantity of iron and aluminum contained in the vehicle was 
initially removed. This was done for two main reasons: (1) 
because current ELV recycling processes are already recov-
ering these metals in shredding plants, so from a metal 
sustainability point of view, these are not critical; and (2) 
because the weight contribution of these metals are much 
larger than the rest. In the case study analyzed in this article, 
iron and aluminum contribute to 84.3% and 8.1% of the total 
metal weight, respectively. This significant mass contribution 
does not allow to see clearly the criticality of other used metals 
because their weights are several orders of magnitude lower. 
Moreover, these are usually not functionally recycled but 
become downcycled with iron and aluminum (i.e., incorpo-
rated in minor quantities in the matrix of iron or aluminum 
blocks with no functional use).

The identification of critical components is done by using 
two thermodynamic indicators: thermodynamic rarity [kJ] 
and rarity intensity [kJ/g]. The first one has been previously 
explained in detail, and the second one is a ratio between the 
thermodynamic rarity and the weight of the given component. 
This second parameter allows to identify those components 
that, despite having little weight, have a high concentration 
of valuable metals with respect to their total weight.

Firstly, a table needs to be built in which the quantity of 
each studied metal for each vehicle component is represented 
(see Table 1).

Once this table is built, the thermodynamic rarity assess-
ment is made by multiplying the weight of each metal by the 
thermodynamic rarity value of each metal (Equation 1).

	 Rarity A m i Rarity i
i

n( ) = ( ) × ( )
=å 1

	 Eq. (1)

where A is a vehicle component, i is the studied metal, m is 
the mass in gr of metal i, and Rarity is the thermodynamic rarity 
values, expressed in kJ/gr, of the 46 metals included in Appendix A.

After this first thermodynamic assessment, all vehicle 
components are classified into 10 groups considering both indi-
cators. The classification is as follows: one category for those 
component whose rarity is higher than 1 GJ, and nine additional 
categories (from A to I) according to thermodynamic rarity 

and rarity intensity values. The value ranges of each category 
(from A to I) is calculated by dividing the total range of rarity 
and rarity intensity into five equal parts, obtaining a matrix of 
5 rows with 5 columns, as shown in Figure 2.

The reason to make one category called rarity higher than 
1 GJ and to exclude it from the rest of the categories (from A 
to I) is because there are three vehicle components (the engine, 
gearbox, and front axle) which are included without a disag-
gregation level in smallest components (i.e., crankshaft, engine 
head, clutch, servo steering, or fuel pump). As a result, these 
parts have a very high rarity value compared with the rest, 
and must be studied individually. After this classification, 
ecodesign measures are recommended to be focused on parts 
with thermodynamic rarity values higher than 1 GJ and those 
which belong to A to G groups, that is, medium to high rarity 
and rarity intensity.

Results

Case Study Description
The vehicle used in the present study is a SEAT Leon III model, 
which belongs to the hatchback sector. It is equipped with a 
2.0 Diesel engine and manual gearbox. Its total weight is 
1,270 kg and 780 kg if only its metal content is considered. 
This vehicle has 1,051 parts but only 794 use any kind of metal. 
This happens because there are a good number of components 
which are fully made using plastics, rubbers, glass, or textiles.

Identified Critical Components
After the thermodynamic assessment, from an initial list of 
794 components, 31 were identified as critical. Table 2 summa-
rizes the number of vehicle parts for each criticality category.
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 FIGURE 2  Components classification. On the left the 
categories’ zones and on the right the position for each of the 
794 components assessed.
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The classification procedure is shown in Figure 2, repre-
senting the value ranges for rarity and rarity intensity as well 
as the different classification groups (from A to I). It is worth 
noting that the largest number of parts have both medium 
rarity and rarity intensity values. Nevertheless there are 
certain components that have at least high values in one of 
the two indicators.

The identified critical components have a total rarity of 
39.6 GJ. This figure is 85% above the total vehicle rarity (46.2 
GJ). This classification procedure is in line with the Pareto prin-
ciple, because less than 20% of vehicle components (31 compo-
nents over 794) have more than 80% of the vehicle’s rarity (39.6 
GJ over 46.2 GJ). Table 3 shows the selected components.

From the previous list, the battery is excluded in the 
ecodesign assessment. This is so because batteries are already 
disassembled from ELV in the authorized treatment centers 
to be subsequently sent to specific recycling plants according 
to the requirements of EU Directive 2006/66/EC [43].

Once critical components are identified, ecodesign 
recommendations are proposed. The template used to list 
ecodesign proposals is included in Appendix B.

Ecodesign Proposals
The recommendations are classified into the following four 
categories: (type 1) facilitating disassembly, (type 2) critical 
metal substitutability, (type 3) retrofitting, (type 4) new 
approaches. In addition to the thermodynamic approach used, 
the recommendations are also based on the feedback received 
by the car manufacturer and several ELV recycling center 
visits and interviews. A more detail explanation about each 
category is described below.

Types of Recommendations 

Type 1: Facilitating Disassembly. The aim of this category 
is to define recommendations oriented to facilitating disas-
sembly. In order to do that, we first need to know the disas-
sembly times of the identified parts. This information is 
retrieved from an internal SEAT IT system.

TABLE 2 Number of vehicle parts, parts classification, and 
selected critical components.

Total components 794

Critical components 31

Components in category (>1 GJ) 2

Components in category (A) 0

Components in category (B) 0

Components in category (C) 0

Components in category (D) 2

Components in category (E) 4

Components in category (F) 7

Components in category (G) 16

Components in category (H) 49

Components in category (I) 714©
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TABLE 3 List of critical components identified.

Description Rarity (kJ)
Rarity intensity 
(kJ/g) Group

Engine 32,099,655.39 191.52 >1 GJ

Gearbox 1,734,110.12 33.14 >1 GJ

Infotainment unit 538,664.92 386.19 D

Onboard supply 
control unit 250,164.31 677.90 D

Front axle 849,407.35 26.81 E

Exhaust gases 
temperature 
sensor

44,318.77 785.39 E

Aerial amplifier (left 
side) 35,217.40 845.45 E

Aerial amplifier (right 
side) 35,217.40 845.45 E

Battery 518,856.02 25.19 F

Combi instrument 269,509.99 367.46 F

Airbag control unit 113,556.86 529.44 F

Door control unit 
(driver) 60,603.42 610.61 F

Door control unit 
(passenger) 59,165.19 600.97 F

Lamp for ambience 
lighting (driver) 2,147.97 511.30 F

Lamp for 
ambience lighting 
(passenger)

2,147.97 511.30 F

Generator 453,144.52 71.54 G

Intermediate  
exhaust pipe with 
rear silencer

450,583.58 32.45 G

Starter 344,093.86 82.64 G

Wiring 326,124.54 172.64 G

Wiring for rear 
lighting 265,318.42 202.30 G

Exterior rear mirror 
(left side) 209,219.21 180.97 G

Exterior rear mirror 
(right side) 202,880.78 230.21 G

Wiring for front 
lighting motor 188,196.00 188.48 G

Rear screen cleaner 
motor 182,001.13 230.49 G

Additional brake 
light 31,345.25 354.58 G

Lighting switcher 26,870.75 362.84 G

Rain sensor 7,124.03 431.08 G

Air quality sensor 4,922.18 346.80 G

Speed sensor (left 
front tire) 4,548.35 450.91 G

Speed sensor (right 
front tire) 4,548.35 450.91 G

Cable shoe 
used for anti-
twist device

1,726.88 352.43 G
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 FIGURE 3  Combi-instrument location.
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This measure is proposed because the difficulty and cost 
of separating parts from products limits the development of 
circular economy strategies [44]. In the case of automobiles, 
pretreatment based on dismantling can significantly reduce 
Automotive Shredder Residue (ASR) disposed in landfills [45]. 
A clear example is the case of Ta. Tantalum is very difficult to 
recover through metallurgical processes unless the parts 
containing them are removed and processed separately from 
the others [46]. These measures would allow that these parts 
could be easily disassembled in ELV authorized treatment 
centers. Subsequently, these components could be sent to two 
types of industries: (i) specific recycling centers, where the most 
valuable metals are recovered applying mechanical and 
chemical processes, and (ii) retrofitting companies, where a 
component could be refurbished and updated for its eventual 
use in new or used vehicles.

Type 2: Critical Metal Substitutability. As explained 
previously, vehicle parts are considered critical because they 
use valuable and scarce metals. One ecodesign approach is 
to substitute those metals by less critical ones. Substitutability 
must be carefully analyzed, because substitution usually also 
affects the performance of the components, due to changes 
in some properties like density, electrical conductivity, 
thermal conductivity, or dilatation coefficient. At this stage, 
substitutability recommendations are based on information 
included in the United States Geological Survey (USGS) 
[47] reports.

Type 3: Retrofitting. The fact that a vehicle arrives to its 
end of life does not necessary mean that all parts consti-
tuting the vehicle have lost their functionality. Indeed, the 
lifetime of many car components is greater than that of the 
vehicle as a whole. This is something very well known by 
ELV authorized treatment centers whose main business is 
based on the selling of EoL car parts. Another option is 
retrofitting. If the lifetime of certain components is high 
enough, these could eventually be retrofitted and updated 
to be subsequently used in new or used vehicles. It is well 
known that retrofitting is an effective way to maintain 
products in a closed loop, reducing both environmental 
impacts and manufacturing costs [48]. By means of this 
measure, it would be  possible to reduce the demand of 
critical metals to manufacture new vehicles and to increase 
the time that a component stays in the technosphere. Note 
that retrofitting should be  done with care, because this 
might be a barrier for potential vehicle buyers. Yet retrofit-
ting can take place with long-lasting parts that are not 
necessarily visible to the end user. This is in fact already 
being done in some industrial vehicles, which use retrofitted 
engines from previously used models [49].

Type 4: New Approaches. Sometimes a component can 
be improved by means of applying innovative measures that 
change the component approach or requirements. As an 
example, some years ago certain vehicles were equipped with 

phones, but nowadays it is commonly extended that radio 
devices allow the use of personal phones through Bluetooth 
technology. Another example is the substitution of the CD 
reader through USB bus readers.

Recommendations The type of ecodesign measures 
applied and the most valuable metals used for each compo-
nent are summarized in Appendix C. From the initial list of 
46 metals (excluding Fe and Al), 23 metals have been selected 
as the most valuable ones among the critical components. 
From all ecodesign measures (type 1 to type 4), facilitating 
disassembly and critical metal substitutability have been 
proposed in all cases. Retrofitting and new approaches 
measures have been proposed in 16 components. Information 
concerning metal content and ecodesign assessment for each 
component are not published due to confidential issues. 
Below is a description of the most relevant results of the 
study which are classified for each ecodesign category.

Type 1 Recommendations: Facilitating Disassembly. The 
generator, which is currently placed at the bottom part of the 
engine, should be better placed in the upper part, as this would 
facilitate disassembly and the recovery of its valuable metals. 
The generator is moved by a multifunction belt, meaning that 
this measure could be easily implemented. The combi instru-
ment could be also designed to be removed from the upper 
part of the dashboard. This would avoid the airbag and steering 
wheel to be removed first (see Figure 3). As for the wires that 
connect the battery, they have a high thickness (and copper 
content) due to the maximum power demand required to move 
the starter. With a redesign they could be also disassembled when 
the batteries are removed in ELV authorized treatment centers. 
Finally, a common disassembling of engine, gearbox, and 
front axle would allow that specific recycling processes are 
applied to recover valuable metals of specific components 
such as suspension arms (Nb, Mo, V), turbo (Nb, Cr, W), 
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exhaust pipe (Pd, Ni, Zr), exhaust temperature gases sensor 
(Pt, Ni, Cu), or servo steering (Cu). This operation could 
be easily implemented because these components are designed 
to be quickly assembled in vehicle manufacturing factories.

Type 2 Recommendations: Crit ical Metal 
Substitutability. Copper is the metal that appears most 
frequently in all selected components (30 times). Copper is 
followed by three metals with high rarity values such as gold 
(Au), tantalum, and palladium that appear 20, 19, and 17 
times, respectively. This is why substitutability recommenda-
tions are mostly focused on such metals. Below we list some 
of the possible alternatives:

Aluminum instead of copper in certain wirings: As is 
well known, aluminum is an alternative to copper for 
wiring. It should be  taken into account though that 
aluminum has 61% of the copper conductivity, but it has 
only 30% of the weight. An aluminum cable with the same 
conductivity than copper will weight up to 50%, less but it 
will be also thicker. Moreover, the use of aluminum as a 
conductive material implies the addition of other elements 
such as Fe, Cu, Mg, or Cr. On the other hand, the linear 
expansion coefficient is around 36% higher than for copper, 
what might constitute a problem in several applications 
with high temperatures.

Silver plating instead of gold plating in electronic 
contacts: Gold, as a native element, has very useful properties 
such as high conductivity, corrosion resistance, high melting 
point, or reflectivity. These properties make that the elec-
tronic sector has become the most important gold consumer. 
Nevertheless, electronic parts are rarely made entirely of 
gold because of the material’s cost. This is why manufac-
turers use electroplating to apply a thin layer of gold over 
the main material that comprises the component. As an 
alternative, silver plating can be also used. Silver has as main 
benefit its lower cost.

Moreover, it has other key properties such us the highest 
electrical and thermal conductivity of any metal. That said, 
its main weakness with respect to gold plating comes from its 
corrosion resistance [50]. For a better corrosion resistance, a 
nickel undercoat with silver plating can be used. This alterna-
tive should be carefully analyzed mainly for those components 
responsible for safety systems.

Ceramic capacitors instead of tantalum capacitors: 
Ceramic capacitors have the highest market share, but 
tantalum capacitors provide a feasible alternative if higher 
breakdown strengths are required. The reduced costs, smaller 
size (suitable for space-constrained electronic circuits), high-
frequency characteristics, higher reliability, ripple control, 
and longevity are driving the market to replace tantalum 
capacitors with ceramic capacitors wherever possible. 
Nevertheless, from an environmental point of view, the 
highest electrical energy consumption during fabrication 
alongside the use of nickel paste is the major environmental 
hotspot for ceramic capacitors [51]. So the environmental 
benefits associated to substitution must be carefully assessed.

At this point it must be also highlighted that the substitu-
tion of precious metals such as Pt or Au can have counterpro-
ductive effects because they play a key role in driving the 
economics of recycling [52]. Nevertheless, since they are not 
being recycled in vehicles, it will always be better if they are 
substituted by less critical materials.

Type 3 Recommendations: Retrofitting. From a retrofit-
ting point of view (ecodesign measure 3), it is key - the avail-
ability of reusable parts. Such parts can only come from 
models with high production values such as those in segment 
C. The destiny of such parts would be in turn vehicles with 
smaller sales figures and where the focus is not placed on 
newest designs. This is why a clear destiny of retrofitted parts 
would be in industrial vehicles. Particularly, retrofitting would 
be  a plausible option for the combi instrument, lighting 
switcher, rain sensor, rear screen cleaner motor, additional 
braking light, air quality sensor, or exhausts gases temperature 
sensor (see Figure 4 with different examples about components 
that use scarce metals and could be retrofitted).

Retrofitting of engine and gearbox parts could be also 
considered. Particularly for the engine, this could be done by 
using disassembled cylinder bores such as in some industrial 
engine cases. This measure would not hinder the engine for 
being updated to new performance requirements, because 
these changes mainly affect auxiliary systems like the head 
engine, the exhaust pipe, or the fuel pump.

The gearbox is manufactured with some valuable metals 
like magnesium, nickel, chromium, and molybdenum. In the 
studied vehicle, the gearbox contains 80% of the total magne-
sium used by the vehicle. Moreover the gearbox is a very 
unfailing and robust component and is therefore a perfect candi-
date to be retrofitted. Manual gearbox design has not substan-
tially changed throughout the years, and this operation is a 
common technique applied in specialist gearbox repair garages.

Type 4 Recommendations: New Approaches. In the 
field of new approaches (ecodesign measure 4), it is recom-
mended to assess the possibility to centralize all electric units 
(i.e., onboard supply control unit, door unit, airbag unit, elec-
tronic control unit, combi-instrument electronic, or electronic 
from infotainment) in a common unit (see Figure 5 with 
different examples about current electronic units that use 
scarce metals).

Through this way, this unit could be easily disassembled 
and sent from ELV authorized treatment centers to specific 
recycling plants as it happens with batteries or tires. It is also 
recommended to assess the impact of changing the vehicle 
voltage from 12 V to 24 V or 48 V. This measure is being 
proposed to improve the engine efficiency and the performance 
of hybrid systems. Note that this measure could also reduce the 
section of wiring. In this line, the use of Integrated Starter and 
Generator Technology [53] may well reduce the demand of 
copper and permanent magnets containing rare earths. 
Finally, it is proposed to assess the impact that would have the 
inclusion of combi-instrument information and switchers in 

Downloaded from SAE International by Abel Ortego, Monday, October 08, 2018



© 2018 SAE International. All Rights Reserved.

5.a onboard supply control unit (located under the dashboard) 

5.b airbag unit (located under the dashboard) 

5.c door control unit (located in doors) 

 FIGURE 5  Different electronic units.
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4.a lighting switcher 4.a lighting switcher 

4.b rain sensor 4 b rain sensor

4.c rear screen cleaner motor 4.c rear screen cleaner motor

 FIGURE 4  Different components that could be retrofitted.
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the screen of infotainment unit. This measure would not only 
avoid the use of such devices but also the associated wiring.

Ecodesign Measures Implementation. The impact of 
these measures goes beyond the studied vehicle because many 
models from the VW group share the identified critical 
components. In fact, only those parts with an exterior design 
such as exterior mirrors, additional brake lights, or combi 
instruments are included in just two models, the analyzed one 
and the SUV version based on the same platform. This fact 
also happens with tailor-made components such as wirings.

However, a good number of components are shared by 
several models: door control unit (29 models), starter (30 
models), generator (40 models), rain sensor (45 models), or 
speed sensor (88 models). So the impact of applying ecodesign 
techniques goes usually beyond the specific model.

That being said, the application of the proposed ecodesign 
measures needs a deeper feasibility analysis. From a previous 
research carried out by the authors in the same vehicle, it was 
quantified that around 175 € of valuable metals are lost per 
vehicle when current ELV processes are applied. Taking into 
consideration a vehicle model lifetime, the total loss would 
be as high as 183 M€ (considering an annual production of 
150,000 units per year in 7 years) [54]. Knowing this figure, 
the next question is if this loss justifies an investment in new 
ecodesign alternatives.

We see that the identified measures can be divided into 
two main groups according to the number of actors that take 
part. In the first group, only automobile manufacturers are 
involved. In the second, more stakeholders such as recyclers 
or dismantler centers are involved. For instance, one measure 
related to metals substitution affects in principle only to 
manufacturers. However, a measure where components 
should be disassembled and subsequently sent to specific recy-
cling or component retrofitting plants would involve several 
actors: dismantlers, recyclers, and component manufacturers. 
In any case the economic benefits should be enough to generate 
a profit for each actor in the logistic chain.

For manufacturers, the economic feasibility could come 
from the savings achieved through the substitution of critical 
but also expensive metals by more common and less-expensive 
ones. Measures related to facilitating disassembly of certain 
components could be initially and more easily done for vehicles 
that belong to manufacturers. It is a fact that more and more 
customers are acquiring services instead of products (renting 
or leasing instead of purchasing), and hence more vehicles will 
belong to manufacturers at the end of life. A potential new 
income source for manufacturers could thus come from the 
dismantling of valuable components from these ELV or from 
the application of simple pretreatment operations (i.e., disas-
sembly of capacitors or printed circuit boards from electronic 
units) which are subsequently sent to specific recycling plants.

In such cases where dismantling centers need to 
be  involved for disassembly, the business model could 
be centered on the revenues obtained from those components 

sent to retrofitting companies or alternatively to recyclers. 
Recyclers in turn would receive components with high 
concentrations of valuable metals that would be separated by 
means of mechanical and metallurgical processes and sent 
again to car or other types of manufacturers.

Conclusions
In the past, automobile manufacturers have been working on 
improving the environmental performance of their products 
mainly through fuel efficiency and low emission techniques. 
Particularly for Europe, efforts on ELV recyclability were 
focused on ensuring that an 85% recycling quote (measured 
in mass terms) is achieved. However, vehicle manufacturers 
must take into consideration that meeting European ELV 
recycling policies does not guarantee a sustainable use of 
minor metals, which usually end downcycled in electric arc 
furnaces with steel and aluminum scrap or in the worst case 
in landfills. On the contrary, it incentivizes to focus on the 
bulky and easy to obtain ones: steel and aluminum. Yet are 
these the most critical ones in terms of future supply risks 
for the car industry? A new environmental challenge which 
is resource efficiency especially for minor raw materials is 
coming up. These additional efforts must be aligned with the 
adoption of ecodesign strategies to guarantee that resources 
are really used in a sustainable manner.

Valuable and scarce metals such as Au, Ta, Cu, Pd, Nb, or 
Sn, among others, are needed to manufacture certain compo-
nents like engines, gearboxes, starters, alternators, electronic 
control units, motors, LEDs, switchers, or sensors. It is a fact 
that current vehicles are equipped with an increasing amount 
of electrical components that use such metals, for which no 
specific recycling processes exist. Moreover, since they are 
spread around the vehicle, disassembly is an extremely difficult 
task. For this reason, such components must be ecodesigned to 
be easily disassembled, repaired, updated, and retrofitted. They 
must be designed to be operational as much time as possible. 
Only when they cannot be used again, such components must 
be sent to specific recycling centers to obtain the valuable metals 
by means of using hybrid recycling approaches (physical and 
chemical) instead of being sent to common shredder plants 
where only bulk materials are recovered.

If catalytic converters, batteries, or tires are sent to 
specific recycling centers once the vehicle ends in an ELV 
authorized treatment center, why not use this same approach 
for more components such as screens, electronic units, 
switchers, or sensors. Why are the screens used in the info-
tainment unit or in the combi instrument of a vehicle dash-
board shredded? These components are equivalent to domestic 
tablets and contain the same scarce metals (Ag, In, Pd, Sn, Ta …). 
Yet contrary to tablets, such vehicle units are not considered 
as waste electrical and electronic equipment (WEEE) and do 
not enter the specific WEEE recycling center. If they were 
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considered WEEEs, they would be probably redesigned to 
be easily and quickly disassembled. As shown in this article, 
the application of the Thermodynamic Rarity approach offers 
a new dimension to help in the identification of critical 
components in a car. This new dimension is the consideration 
of the current and future scarcity of each commodity in the 
crust and the loss of mineral capital associated to mineral 
extraction. This loss is irreversible and must be taken into 
account to know the physical value associated to each raw 
material because it puts the focus on commodities with 
possible future shortages from a geological point of view. This 
method is presented as an easy tool to calculate the metal 
sustainability of components and to complement the tradi-
tional LCA assessment by means of a better understanding of 
the irreversibility associated to raw material extraction.

Through this method, we have shown that a common 
hatchback vehicle has more than 30 components considered 
critical from a raw material point of view. Hence, such parts 
are a priority to be ecodesigned so as to increase the metal 
sustainability in the car. For such identified car parts, different 
ecodesign measures have been proposed.

It should be stated that this methodology does not assess the 
feasibility of implementing ecodesign alternatives. It only priori-
tizes those components which are susceptible to be ecodesigned.

In future research, the authors will work on the technical, 
environmental, and economic feasibility of implementing a 
business model around the recovering of scarce metals from 
the identified vehicle components. This will be accomplished 
by analyzing different metallurgical routes.
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Appendix A

Thermodynamic Rarity Values
Table A.1 contains the thermodynamic values of 46 metals analyzed in this article. It must be taken into consideration that the 
studied vehicle uses 48, but in this assessment both iron and aluminum were excluded. Column B was obtained from an exten-
sive bibliographic revision published in Valero and Valero (2014). It should be noted that in the cases of Dy, Sm, and Tb rarity 
values are approximated to an average REE. This value was calculated from Koltun and Tharumarajah (2010) data [56]. In the 
cases of Pd, Pt, Ir, and Ru, values are calculated to an averages platinum group metal element. The details about the calculation 
procedures are explained by Valero et al. [57] and Valero and Valero [55].

TABLE A.1 Exergy replacement cost, mining-concentration-smelting-refining, and rarity (GJ/ton).

Metal A, embodied exergy B, exergy replacement cost A + B thermodynamic rarity
Ag 1,566 7,371 8,937
As 28 399.84 427.84
Au 108,626 546,057 654,683
Ba 1 38.34 39.34
Be 457.20 252.73 709.93
Bi 56.40 489.22 545.62
Cd 542.40 5,898 6,440.40
Ce 523 97 620
Co 138 10,872 11,010
Cr 36.40 4.50 40.90
Cu 56.70 291.70 348.40
Dy, Eu, Sm, Tb 384 348 732
Ga 610,000 144,828 754,828
Gd 3,607 478 4,085
Ge 498 23,749 24,247
Hf 32,364.36 32,364.36
Hg 409 28,298 28,707
In 3,320 360,598 363,918
Pt, Pd, Ir, Ru 2,870,013.09 2,870,013.09
La 297 39 336
Li 432 546 978
Mg 0 145.73 145.73
Mn 57 16 73
Mo 148 908 1,056
Nb 360 4,422 4,782
Nd 592 78 670
Ni 234 524 758
Pb 4 37 41
Pr 296 577 873
Rh 156 102,931 103,087
Sb 13.40 474.49 487.89
Sn 26.60 426.35 452.95
Ta 3,083 482,828 485,911
Te 589,405.30 2,235,699 2,825,104.30
Ti 196.45 6.67 203.12
V 517 1,055 1,572
W 594 7,429 8,023
Y 1,198 159 1,357
Zn 41.90 155.03 196.93
Zr 1,371.50 654.43 2,025.93©
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Appendix B

Template with the Information Collected to Make the 
Ecodesign Assessment
TABLE B.1 Template to make the ecodesign assessment.

General information
Code no: Designation:

Provider:

Model that use it:

Rarity (kJ): Density of rarity (kJ/g)

Metal:

Rarity over the total (%):

Mass (g):

Disassembly time

Variation with respect to previous model
Model/code no Model I Model II Δ Model II - Model I (%)

Rarity (kJ)

Ecodesign recommendations
Facilitating disassembly Critical metal substitutability

Retrofitting New approaches
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Appendix C

Studied Metals and Ecodesign Type of Measure by Component
TABLE C.1 Studied metal and type of ecodesign measure applied in each component: (1) easier disassembly, (2) metal 
substitutability, (3) retrofitting, (4) new approaches.

Component
Metal Type of measure
Ag Au Bi Co Cr Cu Ga In Mg Mn Mo Nb Ni Pb Pd Pt Rh Ru Sn Ta Te Ti Zn (1) (2) (3) (4)

Engine X X X X X X X X X

Gearbox X X X X X X X X X

Infotainment unit X X X X X X X X X

Onboard supply 
control unit X X X X X X X X

Front axle X X X X X X X X

Exhaust gases 
temperature 
sensor

X X X X X X X X X

Aerial amplifier 
(left and right) X X X X X X X X X

Combi 
instrument X X X X X X X X X X

Airbag control 
unit

X X X X X X X X X X

Door control unit 
(left and right)

X X X X X X X X X

Ambient lighting 
(left and right)

X X X X X X X X

Generator X X X X X X X X X X

Intermediate 
exhaust pipe

X X X X X X X X

Starter X X X X X X X X X X

Main wiring X X X X X X X X X

Wiring for rear 
lighting

X X X X X X X X X

Exterior mirrors 
(right and left)

X X X X X X X X X

Wiring for front 
lighting

X X X X X X X X X

Rear screen 
cleaner motor

X X X X X X X X X

Additional brake 
light

X X X X X X X X X X

Lighting switcher X X X X X X X X X X

Rain sensor X X X X X X X X X

Air quality sensor X X X X X X X X X

Speed sensor 
(right and left)

X X X X X X X X X

Battery wiring X X X X X X X X

Total 13 20 1 3 2 30 2 3 4 4 3 2 10 1 17 5 1 10 11 19 4 1 12 30 30 16 16©
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