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Binomial Identities and Moments of Random
Variables

José A. Adell and Alberto Lekuona

Abstract. We give unified simple proofs of some binomial identities, by using an elementary
identity on moments of random variables.

1. INTRODUCTION. The starting point of this note is the following binomial iden-
tity

n∑
k=0

(
n

k

)
(−1)k

r + k
=

n!

r(r + 1) · · · (r + n)
, (1)

valid for any r > 0. Peterson [7] gave a proof of (1) and a generalization of it (Identity
2 below) using conditional expectations involving the exponential distribution. Nakata
[6] provided a short proof of (1) using the minimum of a finite sequence of independent
and uniformly distributed random variables. Recently, Spivey [8] has developed a more
classic probabilistic approach to prove (1) and its generalization based on a standard
balls-and-jars interpretation.

The aim of this note is to show that identity (1), and many other binomial identities
of a similar nature, can be derived in a unified way from elementary identities between
moments of suitable random variables stated in formula (2) below.

The basic concepts of probability theory used here are continuous random variables
and their moments. The probability density ρ(x) of a continuous random variable T
is a nonnegative function whose integral from −∞ to ∞ is 1. Given a nonnegative
integer n, the moment of order n of T is the mathematical expectation of T n, i.e.,

ET n =

∫ ∞
−∞

xnρ(x) dx,

whenever this integral exists. For general moments of arbitrary random variables, we
refer the reader to the classical book by Billingsley [2, pp. 273–280].

Suppose now that T is a continuous random variable whose moments of order s,
ET s, r − 1 ≤ s ≤ r + n− 1, are finite. By the binomial formula, we obviously have
the following identity between the moments of T

n∑
k=0

(
n

k

)
(−1)kET r+k−1 = ET r−1(1− T )n. (2)

It turns out that every choice of the random variable T in (2) gives us a different
binomial identity. Of course, the most interesting cases are those in which we can
compute in closed form the right-hand side in (2). In addition, formula (2) allows
us to write in integral form the corresponding binomial identity, depending on the
probability density of the random variable T (in this respect, see Identity 2 below). We
finally mention that formula (2) is also true for arbitrary random variables T .
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Many authors have used moments of random variables as an efficient tool to deal
with various different problems coming from combinatorics and classical analysis. For
instance, Chang and Xu [3] have obtained a Chu-Vandermonde multivariate formula
by computing the moment of order n of the chi-square random variable with m de-
grees of freedom. Vignat and Moll [13] have shown that a variety of classical binomial
identities, including some generalizations of the Chu-Vandermonde formula, can be
obtained by using moments of finite sums of independent random variables. Repre-
sentations of the Bernoulli, Euler and Gegenbauer polynomials in terms of moments
of appropriate random variables can be found in Sun [11] and Srivastava and Vignat
[9]. Finally, Ta [12] has recently introduced a nice probabilistic approach to Appell
polynomials by connecting them to moments of random variables.

We will use the following notations. For any real α, it is understood that(
α

n

)
=
α(α− 1) · · · (α− n+ 1)

n!
.

For any p > 0, Euler’s gamma function is defined as

Γ(p) =

∫ ∞
0

xp−1e−x dx.

When n is a nonnegative integer, Γ(n + 1) = n! and 0! = 1. For any p > 0 and
q > 0, we recall that∫ 1

0

xp−1(1− x)q−1 dx = β(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
, (3)

where β(·, ·) is Euler’s beta function, as well as

Γ(p+ n)

n! Γ(p)
=

(
p− 1 + n

n

)
. (4)

2. BINOMIAL IDENTITIES. To illustrate how formula (2) works, we will make
three choices of the random variable T in it, thus obtaining three binomial identities.
The first two were considered by Peterson [7] and Spivey [8] and involve uniformly
distributed random variables, whereas the third one involves a random variable having
the beta density.

Identity 1. For any r > 0, we have

n∑
k=0

(
n

k

)
(−1)k

r + k
=

n!

r(r + 1) · · · (r + n)
.

Proof. Let U be a random variable having the uniforms distribution on (0, 1). It read-
ily follows from (3) that

EU r+k−1 =
1

r + k
, EU r−1(1− U)n =

Γ(r)Γ(n+ 1)

Γ(r + n+ 1)
.

Therefore, the conclusion follows by setting T = U in formula (2).
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Identity 2. For any r > 0 and j = 1, 2, . . ., we have

n∑
k=0

(
n

k

)
(−1)k

(r + k)j
=

1

r
(
r+n
n

) ∑
0≤k1≤...≤kj−1≤n

1

(r + k1)(r + k2) · · · (r + kj−1)

=

∫ 1

0

xr−1(1− x)n
(− log x)j−1

(j − 1)!
dx.

Proof. Let (Ui, 1 ≤ i ≤ j) be a finite sequence of independent and identically dis-
tributed random variables having the uniform distribution on (0, 1), and denote by
Ti = U1 · · ·Ui, 1 ≤ i ≤ j. We will show Identity 2 by choosing T = Tj in formula
(2). In fact, since the random variables under consideration are independent and iden-
tically distributed, we see that

ET r+k−1
j = EU r+k−1

1 · · ·EU r+k−1
j =

1

(r + k)j
. (5)

For i = 1, . . . , j, we consider the function

fi(n) =

(
r − 1 + n

n

)
ET r−1

i (1− Ti)
n, n = 0, 1, 2, . . . , (6)

and claim that

fi(n) =
1

r + n

n∑
k=0

fi−1(k), n = 0, 1, 2, . . . , i = 2, . . . , j. (7)

Actually, since we can write Ti = Ti−1Ui as the product of two independent random
variables, we have from (3)

ET r−1
i (1− Ti)

n = E(UiTi−1)
r−1(1− Ui + Ui(1− Ti−1))

n

=
n∑

k=0

(
n

k

)
EU r+k−1

i (1− Ui)
n−kET r−1

i−1 (1− Ti−1)
k

=
n∑

k=0

(
n

k

)
Γ(r + k)Γ(n− k + 1)

Γ(r + n+ 1)
ET r−1

i−1 (1− Ti−1)
k

=
n!Γ(r)

Γ(r + n+ 1)

n∑
k=0

fi−1(k).

This, together with (4) and definition (6), shows claim (7). On the other hand, it is
easily checked from (3) and (4) that

f1(m) =

(
r − 1 +m

m

)
EU r−1

1 (1− U1)
m =

1

r +m
, m = 0, 1, 2, . . . .

Thus, claim (7) allows us to use induction in order to obtain

fj(n) =
1

r + n

∑
0≤k1≤···≤kj−1≤n

1

(r + k1)(r + k2) · · · (r + kj−1)
. (8)
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The first equality in Identity 2 follows by choosing T = Tj in formula (2) and taking
into account (5), (6), and (8). Finally, the probability density of the random variable
Tj is given by (see, for instance, Feller [4, p. 26])

ρj(x) =
(− log x)j−1

(j − 1)!
, 0 < x < 1.

As a consequence, the second equality in Identity 2 follows by writing in integral form
the right-hand side in formula (2) with T = Tj .

It is worth noting that products of independent and uniformly distributed random
variables are interesting probabilistic tools in certain areas of number theory and math-
ematical analysis. Among other instances, we mention the application of such products
to obtain integral representations of the Riemann zeta function and identities of series
involving the Stirling numbers of the first kind (see [10]), as well as applications to
establish rates of convergence for the iterates of Cesàro operators (see [1]).

Identity 3. For any real numbers p and q, we have

n∑
k=0

(−1)k
(
p− 1 + k

k

)(
p+ q − 1 + n

n− k

)
=

(
q − 1 + n

n

)
.

Proof. Since the identity is a polynomial equation in p and q, it suffices to show the
result for p > 0 and q > 0. Let T be a random variable having the beta density (see
[4, p. 50])

ρ(x) =
xp−1(1− x)q−1

β(p, q)
, x ∈ (0, 1), p, q > 0.

For k, n = 0, 1, . . ., we see from (3) that

ET k =
β(p+ k, q)

β(p, q)
, E(1− T )n =

β(p, q + n)

β(p, q)
.

Hence, applying formula (2) to the case at hand with r = 1, we get

n∑
k=0

(
n

k

)
(−1)kβ(p+ k, q) = β(p, q + n).

This is nothing else but Identity 3, as follows by using (3), (4), and a bit of algebra.
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