Stand-alone lumbar cage subsidence: A biomechanical sensitivity study of cage design and placement.
Resumen: Background and objective: Spinal degeneration and instability are commonly treated with interbody fusion cages either alone or supplemented with posterior instrumentation with the aim to immobilise the segment and restore intervertebral height. The purpose of this work is to establish a tool which may help to understand the effects of intervertebral cage design and placement on the biomechanical response of a patient-specific model to help reducing post-surgical complications such as subsidence and segment instability.
Methods: A 3D lumbar functional spinal unit (FSU) finite element model was created and a parametric model of an interbody cage was designed and introduced in the FSU. A Drucker–Prager Cap plasticity formulation was used to predict plastic strains and bone failure in the vertebrae. The effect of varying cage size, cross-sectional area, apparent stiffness and positioning was evaluated under 500 N preload followed by 7.5 Nm multidirectional rotation and the results were compared with the intact model.
Results: The most influential cage parameters on the FSU were size, curvature congruence with the endplates and cage placement. Segmental stiffness was higher when increasing the cross-sectional cage area in all loading directions and when the cage was anteriorly placed in all directions but extension. In general, the facet joint forces were reduced by increasing segmental stiffness. However, these forces were higher than in the intact model in most of the cases due to the displacement of the instantaneous centre of rotation. The highest plastic deformations took place at the caudal vertebra under flexion and increased for cages with greater stiffness. Thus, wider cages and a more anteriorly placement would increase the volume of failed bone and, therefore, the risk of subsidence.
Conclusions: Cage geometry plays a crucial role in the success of lumbar surgery. General considerations such as larger cages may be applied as a guideline, but parameters such as curvature or cage placement should be determined for each specific patient. This model provides a proof-of-concept of a tool for the preoperative evaluation of lumbar surgical outcomes.

Idioma: Inglés
DOI: 10.1016/j.cmpb.2018.05.022
Año: 2018
Publicado en: Computer Methods and Programs in Biomedicine 162 (2018), 211-219
ISSN: 0169-2607

Factor impacto JCR: 3.424 (2018)
Categ. JCR: COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS rank: 25 / 106 = 0.236 (2018) - Q1 - T1
Categ. JCR: MEDICAL INFORMATICS rank: 6 / 26 = 0.231 (2018) - Q1 - T1
Categ. JCR: COMPUTER SCIENCE, THEORY & METHODS rank: 15 / 104 = 0.144 (2018) - Q1 - T1
Categ. JCR: ENGINEERING, BIOMEDICAL rank: 22 / 80 = 0.275 (2018) - Q2 - T1

Factor impacto SCIMAGO: 0.753 - Computer Science Applications (Q1) - Software (Q1) - Health Informatics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MEC/FPU13-01070
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2016-79302-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2021-03-18-09:09:35)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2019-05-23, última modificación el 2021-03-18


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)