000079142 001__ 79142
000079142 005__ 20200117211600.0
000079142 0247_ $$2doi$$a10.1016/j.ceramint.2018.05.120
000079142 0248_ $$2sideral$$a106614
000079142 037__ $$aART-2018-106614
000079142 041__ $$aeng
000079142 100__ $$0(orcid)0000-0001-9625-5160$$aLaliena, C.
000079142 245__ $$aContinuous processing of Bi2Sr2CaCu2O8+d precursor powders
000079142 260__ $$c2018
000079142 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079142 5203_ $$aA continuous solid-state process inside a roller furnace has been used to fabricate Bi-2212 powders. These powders were synthesized for their use as precursors to obtain textured monoliths by laser induced directional solidification. A thermal cycle has been defined, which depends on the length of the furnace, the prefixed temperature profile and the velocity of the sample inside the furnace. Powder properties have been studied as a function of the number of processing cycles. Phase evolution has been analyzed using X-ray diffraction, while other relevant properties of the powders, including grain size distribution, thermal behavior and temperature dependence of the AC susceptibility, have also been measured. These properties have been compared with those of commercial powders and precursors prepared using a standard solid-state protocol. Textured samples using these continuous solid-state precursors exhibit superconducting properties comparable to those similarly processed but prepared from commercial powders.
000079142 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T12$$9info:eu-repo/grantAgreement/ES/DGA/T54-17R$$9info:eu-repo/grantAgreement/ES/DGA/T87$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2014-52105-R
000079142 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000079142 590__ $$a3.45$$b2018
000079142 591__ $$aMATERIALS SCIENCE, CERAMICS$$b2 / 28 = 0.071$$c2018$$dQ1$$eT1
000079142 592__ $$a0.888$$b2018
000079142 593__ $$aCeramics and Composites$$c2018$$dQ1
000079142 593__ $$aElectronic, Optical and Magnetic Materials$$c2018$$dQ1
000079142 593__ $$aSurfaces, Coatings and Films$$c2018$$dQ1
000079142 593__ $$aProcess Chemistry and Technology$$c2018$$dQ1
000079142 593__ $$aMaterials Chemistry$$c2018$$dQ1
000079142 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079142 700__ $$0(orcid)0000-0003-2212-447X$$aAmaveda, H.$$uUniversidad de Zaragoza
000079142 700__ $$aÖzçelik, B.
000079142 700__ $$0(orcid)0000-0003-4839-5286$$aMartínez, E.$$uUniversidad de Zaragoza
000079142 700__ $$0(orcid)0000-0002-0500-1745$$ade la Fuente, G.F.
000079142 700__ $$0(orcid)0000-0001-5685-2366$$aAngurel, L.A.$$uUniversidad de Zaragoza
000079142 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000079142 773__ $$g44, 12 (2018), 14865-14872$$pCeram. int.$$tCeramics International$$x0272-8842
000079142 8564_ $$s1154084$$uhttps://zaguan.unizar.es/record/79142/files/texto_completo.pdf$$yPostprint
000079142 8564_ $$s52136$$uhttps://zaguan.unizar.es/record/79142/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079142 909CO $$ooai:zaguan.unizar.es:79142$$particulos$$pdriver
000079142 951__ $$a2020-01-17-21:11:27
000079142 980__ $$aARTICLE