000079143 001__ 79143
000079143 005__ 20200117211602.0
000079143 0247_ $$2doi$$a10.1016/j.cattod.2018.04.052
000079143 0248_ $$2sideral$$a106624
000079143 037__ $$aART-2018-106624
000079143 041__ $$aeng
000079143 100__ $$aCharisiou, N.D.
000079143 245__ $$aThe influence of SiO2 doping on the Ni/ZrO2 supported catalyst for hydrogen production through the glycerol steam reforming reaction
000079143 260__ $$c2018
000079143 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079143 5203_ $$aThe glycerol steam reforming (GSR) reaction for H2 production was studied comparing the performance of Ni supported on ZrO2 and SiO2-ZrO2 catalysts. The surface and bulk properties were determined by ICP, BET, XRD, TPD, TPR, TPO, XPS, SEM and STEM-HAADF. It was suggested that the addition of SiO2 stabilizes the ZrO2 monoclinic structure, restricts the sintering of nickel particles and strengthens the interaction between Ni2+ species and support. It also removes the weak acidic sites and increases the amount of the strong acidic sites, whereas it decreases the amount of the basic sites. Furthermore, it influences the gaseous products’ distribution by increasing H2 yield and not favouring the transformation of CO2 in CO. Thus, a high H2/CO ratio can be achieved accompanying by negligible value for CO/CO2. From the liquid products quantitative analysis, it was suggested that acetone and acetaldehyde were the main products for the Ni/Zr catalyst, for 750 °C, whereas for the Ni/SiZr catalyst allyl alcohol was the only liquid product for the same temperature. It was also concluded that the Ni/SiZr sample seems to be more resistant to deactivation however, for both catalysts a substantial amount of carbon exists on the catalytic surface in the shape of carbon nanotubes and amorphous carbon.
000079143 536__ $$9info:eu-repo/grantAgreement/ES/ISCIII/CIBER-BBN
000079143 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000079143 590__ $$a4.888$$b2018
000079143 591__ $$aCHEMISTRY, APPLIED$$b8 / 71 = 0.113$$c2018$$dQ1$$eT1
000079143 591__ $$aENGINEERING, CHEMICAL$$b17 / 138 = 0.123$$c2018$$dQ1$$eT1
000079143 591__ $$aCHEMISTRY, PHYSICAL$$b39 / 148 = 0.264$$c2018$$dQ2$$eT1
000079143 592__ $$a1.217$$b2018
000079143 593__ $$aChemistry (miscellaneous)$$c2018$$dQ1
000079143 593__ $$aCatalysis$$c2018$$dQ1
000079143 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079143 700__ $$aPapageridis, K.N.
000079143 700__ $$aSiakavelas, G.
000079143 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, V.$$uUniversidad de Zaragoza
000079143 700__ $$aHinder, S.J.
000079143 700__ $$aBaker, M.A.
000079143 700__ $$aPolychronopoulou, K.
000079143 700__ $$aGoula, M.A.
000079143 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000079143 773__ $$g319 (2018), 206-219$$pCatal. today$$tCatalysis Today$$x0920-5861
000079143 8564_ $$s1310210$$uhttps://zaguan.unizar.es/record/79143/files/texto_completo.pdf$$yPostprint
000079143 8564_ $$s51785$$uhttps://zaguan.unizar.es/record/79143/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079143 909CO $$ooai:zaguan.unizar.es:79143$$particulos$$pdriver
000079143 951__ $$a2020-01-17-21:12:56
000079143 980__ $$aARTICLE