000079322 001__ 79322 000079322 005__ 20200117211559.0 000079322 0247_ $$2doi$$a10.1021/acsphotonics.8b00062 000079322 0248_ $$2sideral$$a107156 000079322 037__ $$aART-2018-107156 000079322 041__ $$aeng 000079322 100__ $$aLee, In-Ho 000079322 245__ $$aAnisotropic acoustic plasmons in black phosphorus 000079322 260__ $$c2018 000079322 5060_ $$aAccess copy available to the general public$$fUnrestricted 000079322 5203_ $$aAcoustic plasmon modes tightly coupled between a two-dimensional material and another conducting layer can exhibit optical confinement not possible with conventional plasmons. Here, we investigate acoustic plasmons supported in a monolayer and multilayers of black phosphorus (BP) placed shortly above a conducting plate. In the presence of a conducting plate, the acoustic plasmon dispersion for the armchair direction is found to exhibit the characteristic linear scaling in the mid- and far-infrared regime while it largely deviates from that in the long-wavelength limit and near-infrared regime. For the zigzag direction, such scaling behavior is not evident due to relatively tighter plasmon confinement. Further, we demonstrate a novel design for an acoustic plasmon resonator that exhibits higher plasmon confinement and resonance efficiency than BP ribbon resonators in the mid-infrared and longer wavelength regime. The theoretical framework and new resonator designs studied here provide a practical route toward the experimental verification of acoustic plasmons in BP and open up the possibility to develop novel plasmonic and optoelectronic devices that can leverage its strong in-plane anisotropy and thickness-dependent band gap. 000079322 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-53432-C5 000079322 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000079322 590__ $$a7.143$$b2018 000079322 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b39 / 293 = 0.133$$c2018$$dQ1$$eT1 000079322 591__ $$aOPTICS$$b6 / 95 = 0.063$$c2018$$dQ1$$eT1 000079322 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b19 / 94 = 0.202$$c2018$$dQ1$$eT1 000079322 591__ $$aPHYSICS, CONDENSED MATTER$$b14 / 68 = 0.206$$c2018$$dQ1$$eT1 000079322 591__ $$aPHYSICS, APPLIED$$b17 / 148 = 0.115$$c2018$$dQ1$$eT1 000079322 592__ $$a2.983$$b2018 000079322 593__ $$aAtomic and Molecular Physics, and Optics$$c2018$$dQ1 000079322 593__ $$aElectronic, Optical and Magnetic Materials$$c2018$$dQ1 000079322 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ1 000079322 593__ $$aBiotechnology$$c2018$$dQ1 000079322 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000079322 700__ $$0(orcid)0000-0001-9273-8165$$aMartin-Moreno, Luis$$uUniversidad de Zaragoza 000079322 700__ $$aMohr, Daniel A. 000079322 700__ $$aKhaliji, Kaveh 000079322 700__ $$aLow, Tony 000079322 700__ $$aOh, Sang-Hyun 000079322 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000079322 773__ $$g5, 6 (2018), 2208-2216$$pACS photonics$$tACS photonics$$x2330-4022 000079322 8564_ $$s536211$$uhttps://zaguan.unizar.es/record/79322/files/texto_completo.pdf$$yPostprint 000079322 8564_ $$s64036$$uhttps://zaguan.unizar.es/record/79322/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000079322 909CO $$ooai:zaguan.unizar.es:79322$$particulos$$pdriver 000079322 951__ $$a2020-01-17-21:10:57 000079322 980__ $$aARTICLE