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ABSTRACT  

Graphene separated a few nanometers away from a metal surface can support ‘acoustic 

plasmons’, which exhibit extreme plasmon confinement an order of magnitude higher than that 

of conventional graphene plasmons. Here, we investigate acoustic plasmons supported in a 

monolayer and multilayers of black phosphorus (BP) placed shortly above a conducting plate. In 

the presence of a conducting plate, the acoustic plasmon dispersion for the armchair direction is 

found to exhibit the characteristic linear scaling in the mid- and far-infrared regime while it 

largely deviates from that in the long-wavelength limit and near-infrared regime. For the zigzag 

direction, such scaling behavior is not evident due to relatively tighter plasmon confinement. 

Further, we demonstrate a new design for an acoustic plasmon resonator that exhibits higher 

plasmon confinement and resonance efficiency than BP ribbon resonators in the mid-infrared and 

longer wavelength regime. Theoretical framework and new resonator design studied here provide 

a practical route toward the experimental verification of the acoustic plasmons in BP and open 

up the possibility to develop novel plasmonic and optoelectronic devices that can leverage its 

strong in-plane anisotropy and thickness-dependent band gap. 

 

KEYWORDS. black phosphorus, acoustic plasmon, gap plasmon, surface plasmon polaritons, 

anisotropy, two-dimensional material. 
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 Two dimensional (2D) materials1,2 have attracted enormous interest due to their unique 

properties such as ultrahigh charge carrier mobility,3,4  anomalous quantum Hall effect,5 and 

strong light-matter interaction.6,7 Among a variety of such exciting properties, strong light-matter 

interactions in 2D materials are particularly intriguing considering the extreme size mismatch 

between their atomic-scale thicknesses and wavelengths of free-space light, λ0. Moreover, this 

feature plays a central role in many potential applications of 2D materials such as optical 

modulators,8,9 metasurfaces,10-13 biosensors,14,15 and photodetectors.16,17 For a particular set of 2D 

materials including graphene, light-matter interactions can be even more intense because of the 

excitation of surface plasmons.18-20 Compared to conventional surface plasmons in noble metals, 

the plasmons in 2D materials exhibit tighter confinement (~λ0/100)21-23 as well as tunability by 

extrinsic doping.20,24 Many researchers have demonstrated that such features allow for the 

development of nanoscale photonic and optoelectronic devices that have novel functionality and 

superior performance inaccessible with conventional materials.15,25,26  

 Recent work on graphene indicates that the plasmon wavelength, and accordingly the 

confinement of 2D plasmons, can be further reduced in the presence of a conducting plate 

adjacent to the graphene.27-30 As in the case of spatially separated double-layer graphene,31,32 the 

hybridization of two plasmons in a graphene sheet and its mirror image leads to the formation of 

two plasmon branches: less confined ‘optical’ and highly confined ‘acoustic’ plasmons, 

depending on whether charges in two layers oscillate in-phase or out-of-phase. In the double-

layer case with a gap much smaller than plasmon wavelength, the acoustic mode with out-of-

phase charge oscillation becomes a dark mode due to the cancellation between dipole momenta 

in two layers, while the optical mode that has a net dipole momentum is optically active.33 In the 

present case of a 2D layer on metal, however, the acoustic mode becomes optically active in the 
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absence of a second 2D layer to cancel the dipole momentum, while the optical mode is 

prohibited since it mandates the tangential electric fields to be non-zero at the surface of the 

conducting plate. Due to the out-of-phase charge oscillations, the vertical electric fields of 

acoustic plasmons are largely confined within the nanometric gap with a conducting plate, which 

gives extreme plasmon confinement defined by the gap size. In contrast to conventional 

graphene plasmons or a 2D electron gas that has a parabolic dispersion, interestingly, acoustic 

plasmons exhibit a linear dispersion at small frequencies.28-30  

 Recently, black phosphorus (BP) has been extensively studied as a novel anisotropic 

plasmonic material.34-39 In contrast to other 2D plasmonic materials, the inherent in-plane 

anisotropy of BP renders the plasmon dispersion dependent on the propagation direction.34 These 

anisotropic plasmons are expected to enable the development of novel polarization-dependent 

optoelectronic devices such as optical modulators,40,41 tunable polarization rotators,37,42 and 

polarization-sensitive photodetectors.43,44 One possible way to maximize the light-matter 

interaction in BP for such applications is to leverage the extreme confinement of acoustic 

plasmons. In this regard, it is imperative to understand how the in-plane anisotropy of BP is 

manifested through the acoustic plasmon dispersion and how these plasmons enhance the light-

matter interactions in BP. For practical applications, in addition, new resonator configurations 

for acoustic plasmons that require minimal post-processing after the BP deposition should be 

investigated due to its instability in the ambient environment.45,46  

 In this work, we theoretically investigate the dispersion of acoustic plasmons in freestanding 

BP placed adjacent to a conducting plate. Using both analytical and numerical approaches, we 

study how the in-plane anisotropy of BP is reflected in the plasmon dispersion and how the 

acoustic plasmons scale with frequency ω and gap size g with a conducting plate. The effect of 
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doping and BP thickness is examined as well. Further, we propose a practically viable and highly 

efficient design for an acoustic plasmon resonator, for which we use a modified Fabry-Perot (F-

P) resonance model to describe the resonant behavior. 

 

RESULTS AND DISCUSSION 

 Theory. In the geometrical configuration considered here, a BP layer is placed above a 

conducting plate, and the distance between them is denoted by g (see Figure 1a). We consider 

surface plasmons propagating in the positive x direction. In order to study the influence of BP 

anisotropy on plasmon propagation, one of the two principal lattice axes, i.e., ‘armchair’ (AC) 

and ‘zigzag’ (ZZ), is aligned along the x direction. Figure 1b shows typical electric field 

distributions of conventional BP surface plasmons propagating along the AC direction for λ0 = 

25 µm for comparison. Here, we used five layers of BP (thickness t = 2.675 nm) and assumed a 

damping constant of η = 10 meV and an electron density of n = 1×1013 cm-2. Although no 

reliable experimental values for the damping constant have been reported so far, previous 

research on graphene, which has similar damping pathways, indicates that a damping constant of 

10 meV is within an experimentally feasible range,20 and accordingly, this value has been widely 

used in BP studies.34,37 From now on, we will use the same condition for BP unless mentioned 

otherwise. The conductivities we used for numerical simulations are summarized in the 

supplementary material. Throughout the paper, we will mostly focus on the case of five layers 

due to their experimental feasibility and reproducibility.47 However, we will still investigate the 

cases with a different number of layers including a monolayer for completeness. Conventional 

BP plasmons exhibit a symmetric field profile with the plasmon wavelength λc = 1200 nm, which 

gives the vertical confinement of λc/2π = 191 nm. Figures 1c and 1d show the field distributions 
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in the presence of a conducting plate for g = 5 nm and λ0 = 25 µm. As in the case of graphene,28-

30 the electric field is constant across the gap region due to the out-of-phase charge oscillation 

between the BP layer and the conducting plate, which clearly shows that the observed mode is an 

acoustic plasmon. For the given λ0, the vertical confinement of the acoustic plasmon within the 

gap is λ0/5,000, which is around 38 times higher as compared to conventional plasmons 

propagating in the AC direction and 3 times higher than that of plasmons propagating in the ZZ 

direction. Contrary to the graphene case, the acoustic plasmon wavelength λac largely differs for 

the two orthogonal directions (260 nm and 56 nm for AC and ZZ direction), which implicates a 

strong in-plane anisotropy in the plasmon dispersion for the BP case.  

 Before numerical investigation, we derive an analytical expression for the plasmon 

dispersion. The details for the mathematical derivation can be found in the supplementary 

material. Here, we define the dimensionless momentum q as k/k0 with the plasmon wavenumber 

in the x direction k and the free-space wavenumber k0 ≡ ω/c, with c being the speed of light in 

free-space. Thus, Re(q) directly gives the ratio of λ0/λac. For Re(q)g� ≪ 1, the plasmon dispersion 

for a BP layer on a freestanding plane in a vacuum is given as follows.  

  
2

,
ˆ4 4 2

i i i
q

gα α α

 
= + + 

 
                                                                                            (1)  

with the dimensionless conductivity α ≡ (2πσ)/c and the dimensionless gap height g� ≡ k0g. The 

in-plane anisotropy of BP is accounted for by using the anisotropic conductivity σ (in Gaussian 

units).34  

  2 2
AC ZZcos sin .σ σ θ σ θ= +                                                                                           (2)   
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Here θ is the angle of propagation direction with the AC axis. We show that at low frequencies 

satisfying ω ≪  4�D/g  with the anisotropic Drude weight D = DAC cos2
θ + DZZ sin2

θ, the 

plasmon dispersion in Eq. (1) is further simplified to 

  
1

.
ˆ2

q
i gα

=
−

                                                                                                                (3)        

Under the additional assumption of η/ℏ	 ≪  ω, Eq. (3) becomes c/�4gD  so that q becomes 

constant in ω and scales with g as g
-1/2. Thus, the plasmon dispersion in Eq. (3) clearly shows the 

characteristic features of acoustic plasmons. Note that the constant q in ω represents linear 

scaling with ω in terms of k since k = qω/c. The linear scaling regime is accordingly given by the 

intersection of three inequalities; (1) ω <  2√D/t  ( ≡  ωpl), (2) Re(q) g� ≪  1, (3) η/ℏ	 ≪  ω ≪  

4�D/g. The inequality (1) comes from the condition for the existence of plasmons, Re(εBP) < 0 , 

with the effective permittivity of BP, εBP = 1+i(4πσ)/(ωt), where the first (second) term denotes 

dielectric (Drude) response.48 In the limit of zero thickness, the former is negligible, and its 

contribution increases with thickness. Similarly, a reduced doping will also enhance the relative 

dielectric contribution. Lastly, let us consider the two cases outside of linear scaling regime. At 0 

≤ ω ≲ η/ℏ, the plasmon dispersion in Eq. (3) scales with ω as ω-1/2 due to the increase in Re(σ). 

At high frequencies where 1 ≲ Re(q)g�, on the other hand, the plasmon dispersion asymptotically 

approaches that of conventional plasmons without a conducting plate.  

 Acoustic Plasmon Dispersion. Plasmon dispersion curves for five layers of BP from 

numerical simulations along with those from Eq. (1) in the case of g = 5 nm are shown in Figure 

2a. In addition, the plasmon dispersion for the case of conventional plasmons without a 

conducting plate is plotted alongside for comparison. As shown in the figure, generally, Re(q) 

for the AC direction is smaller at a given ω because of a larger σ. In the case of conventional 
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plasmons without a conducting plate, Re(q) for the AC direction follows the classical parabolic 

scaling behavior (which corresponds to linear scaling with ω in terms of q), while for the ZZ 

direction, it largely deviates from that. This is attributed to the fact that λc becomes comparable 

to t as ω approaches ωpl = (0.175 eV)/ℏ. The AC case shows no such tendency since ωpl 

corresponds to higher frequency, (0.593 eV)/ℏ . In the presence of a conducting plate, the 

plasmon dispersion for the AC direction is nearly constant in ω at most of frequencies showing 

the characteristic scaling behavior of acoustic plasmons except for the near-infrared (IR) regime 

and very small frequencies satisfying 0 ≤ ω	≲ 	η/ℏ. In the near-IR regime, λac is comparable to g 

so that the plasmon dispersion follows the conventional case. For 0 ≤ ω ≲ η/ℏ, Re(q) increases 

with decreasing ω as ω
-1/2 as expected from Eq. (3), which is the same for the ZZ direction. 

Physically, such divergent behaviors come from overdamped oscillations, as the real part of 

conductivity becomes very large at such low frequencies. In contrast to the AC case, however, 

the plasmon dispersion for the ZZ direction shows no linear scaling behavior owing to larger 

Re(q) and smaller ωpl . As ω → (0.175 eV)/ℏ, it follows that for the case without a conducting 

plate. The larger Re(q) for the ZZ direction also results in a significant discrepancy between the 

numerical and the analytical results for the acoustic dispersion as well, while the two results for 

the AC direction are in a good agreement because of a smaller Re(q).  

 Figure 2b shows the figure of merit (FOM), Re(q)/Im(q), for the plasmon dispersions given 

in Figure 2a. At small frequencies, the FOM increases almost linearly with ω and the FOMs for 

different crystal axes have the similar value, as expected from the analytical results (see 

supplementary material). At higher frequencies, however, it starts to deviate from this trend 

before rolling down with increasing ω as intraband Landau damping sets in. Particularly for the 

ZZ direction, FOM becomes zero at ω = (0.175 eV)/ℏ. In contrast, the AC case is found to be 
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less damped and persists up to the near-IR regime due to lower plasmon confinement and larger 

ωpl = (0.593 eV)/ℏ. The numerical results also agree with the analytical results in that the FOM 

for acoustic plasmons is always larger than those for conventional plasmons when Re(q)g� ≪ 1. 

In Figures 2c and 2d, we examined the effect of g on Re(q) and FOM given ω = 0.025 eV. For a 

small g, where Re(q)g� ≪ 1, Re(q) scales with g as g-1/2 since it follows Eq. (1). For a large g, the 

analytical expression deviates from the numerical results and Re(q) asymptotically approaches 

the conventional case. Figure 2d shows the decrease in the FOM as the plasmon nature changes 

from acoustic to conventional. 

 Doping and Number of Layers Dependence. From a practical viewpoint, it is important to 

consider the effect of the electron density, n, as well as the number of layers, N, on the acoustic 

plasmon dispersion, since many potential applications require an active tuning of the optical 

properties of 2D materials. The plasmon dispersion at different n is shown in Figure 3a. With 

increasing n, Re(q) decreases at a fixed ω due to the increase in D and accordingly σ.34 In 

addition, the increase in D broadens the plasmon-supporting band limited by ωpl. In the ZZ case, 

in particular, ωpl is located within the frequency range of interest leading to substantial change in 

the dispersion with n. In the AC case, ωpl is in the near-IR regime so that the plasmon dispersion 

is less sensitive to n. For both directions, the FOM increases with increasing n at a given ω 

because of lower plasmon confinement (Figure 3b). At low frequencies, however, the FOM does 

not change appreciably with n. 

 Shown in Figure 3c is how the acoustic plasmon dispersion changes with increasing N for g 

= 5 nm. Here, we fixed n to be 1×1013 cm-2. For larger N, more sub-bands contribute to the 

optical absorption, thereby increasing D.34 For the AC direction, this leads to a slight decrease in 

Re(q) as N increases. The increase in Re(q) for N = 20 in the near-IR regime is attributed to the 
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decrease in ωpl. The change in ωpl leads to the significant changes in the plasmon dispersion for 

the ZZ direction as well. With decreasing N, the FOMs have a larger value for a broader 

frequency range (Figure 3d). Note that the results in Figure 3 indicate the larger asymmetry in 

the dispersion for small n and larger N, which agrees well with the expectation from the 

anisotropy in σ (Figure S1b). 

 Modal Reflection of Acoustic Plasmons. In addition to the plasmon dispersion, the modal 

reflection of plasmons plays an important role in predicting the behavior of plasmonic 

resonators.49 In this regard, we investigated the reflectance and reflection phase picked up by 

acoustic plasmons at the open edge of a BP/free-space/conducting plate system. Here, we focus 

on two different types of edge termination; semi-infinite BP/semi-infinite conducting plate 

(SBSC) and infinite BP sheet/semi-infinite conducting plate (IBSC), which are schematically 

illustrated in Figures 4a and 4b. Figures 4c and 4d show the electric field distributions along the 

AC direction after reflection at the SBSC and IBSC edges. In the SBSC case, acoustic plasmons 

are almost totally reflected, while in the IBSC case, they are coupled to conventional BP 

plasmons in the metal-free region.  

 Figures 4e and 4f show the reflectance and reflection phase picked up by plasmons after 

reflection at the SBSC and IBSC edges for different g of 2, 5, and 10 nm. In the SBSC case, the 

reflectance of acoustic plasmons is always close to unity due to the absence of a waveguide 

mode in free-space, similar to the graphene ribbon case.49 For the ZZ direction where λac easily 

becomes comparable to t, the reflectance is smaller due to more efficient coupling to photonic 

radiation modes at the edge. In the long wavelength limit where acoustic plasmons are more 

confined within the gap, the reflection phase approaches that for the metal gap plasmon case, -π, 

due to the similarity in the mode profile.50,51 With increasing ω, the reflection phase converges to 
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a value around -0.5π. For the ZZ direction, the reflection phase converges to this value more 

rapidly as ω → (0.175 eV)/ℏ . Note that the non-trivial reflection phase obtained here is 

somewhat different from that for the monolayer graphene case, -3/4π,49 because of the larger 

thickness of five layers of BP. However, our numerical results show that -3/4π is recovered for a 

monolayer of BP.  

 In contrast to the SBSC case, the reflectance for the IBSC case abruptly decreases with 

increasing ω so that at high frequencies, the reflection becomes negligible (Figure 4f). This is 

because of the small difference in q between acoustic and conventional plasmons, which also 

accounts for the smaller reflectance for the cases of propagation in the ZZ direction and larger 

gaps. The reflection phase scales with ω similarly to the SBSC case, except that it has larger 

values at most frequencies and converges more rapidly. Note that we neglect the reflection 

phases for the ZZ direction at around ω = ωpl, since the numerical simulations fails to give 

reliable values for the reflection phase because of a negligibly small λac.  

 Optical Responses of Acoustic Plasmon Resonators. From our numerical results for the 

plasmon dispersion and the reflection phase, we estimate the resonant frequencies of two 

different types of acoustic plasmon resonators, having either periodic ribbons or a continuous BP 

sheet on a periodic array of conducting plates (gold). These two configurations are considered 

due to their experimental feasibility. The other feasible design, BP ribbons on a continuous 

conducting plate, is excluded due to its small far-field signal compared to the other 

configurations (see Figure S4). We also focus only on the AC case to compare the resonant 

behaviors of different configurations (for the ZZ direction, see supplementary material). Figure 

5a shows the far-field extinction spectra for the case of BP(ribbon)/metal(ribbon) with g = 5 nm 

as a function of inverse conducting plate width (1/w). We set the distance between two 
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neighboring gold plates to be w as well. The far-field extinction is defined by 1-T with T being 

the far-field transmittance normalized to that without a resonator. The red dashed lines show the 

estimated resonant frequencies from the plasmon dispersion in Figure 2a and the reflection phase 

shown in Figure 4e using the F-P equation, which is  

  2 2 2 ,ac rk w mπ+ Φ =                                                                                  (4)   

where kac, Фr and m represent the wavenumber of acoustic plasmons, the reflection phase at the 

edge and the order of the F-P resonance, respectively. As shown in the figure, the estimated 

resonant frequencies for different F-P resonance orders agree very well with full numerical 

results. Figure 5b shows extinction spectra for the case of BP(sheet)/metal(ribbon). In contrast to 

the previous case, the estimated resonant frequencies using the reflection phase in Figure 4f 

significantly deviates from full numerical results. In the BP(sheet)/metal(ribbon) case, the unit 

cell of the plasmon resonator should be considered as a combination of two F-P resonators 

formed within the gap and intermediate region. The modified F-P model gives the resonant 

condition as (see supplementary material for details),  

  2 2 2 .ac ck w k w lπ+ =                                                                                                       (5)           

Here, kc represents the wavenumber of conventional plasmons, and l is the order of F-P 

resonances. As shown in the figure, the resonance frequency estimated from the new model is a 

decent match with numerical results. We emphasize that in the modified F-P model, the zeroth-

order F-P resonance is not allowed due to the absence of the phase term in Eq. (5) and 

accordingly the first occurring mode corresponds to the second-order F-P resonance. As a result, 

the plasmon resonances can occur at higher frequencies than the case of 

BP(ribbon)/metal(ribbon).  
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 Comparison of Resonator Designs. Based on the resonance model developed above, we 

investigate the extinction intensities of two different acoustic plasmon resonators together with a 

conventional BP ribbon resonator. Figures 6a-c illustrate optical coupling routes in three 

different designs. In the BP(ribbon) and BP(ribbon)/metal(ribbon) cases, incident waves are 

coupled to conventional surface plasmons or acoustic plasmons directly after scattering at the 

edge of resonator units. In the BP(sheet)/metal(ribbon) case, however, incident waves can launch 

both conventional and acoustic plasmons. Because of small reflection at the resonator edge, two 

plasmons are efficiently coupled to each other during propagation within the resonator, which 

can be considered as an indirect coupling of incident waves to plasmons. The electric field 

enhancement maps at the first occurring resonance (ωR = 0.083 eV/ℏ) of three different designs 

are shown in Figures 6d-f. The BP(sheet)/metal(ribbon) case shows the largest field 

enhancement on resonance than those of the other configurations. Figures 6e and 6f clearly show 

that the resonances indeed result from the acoustic (out-of-phase) mode as can be seen from 

highly confined and vertically constant electric fields within the gap. In the double ribbon case 

where the charges in two layers oscillate in-phase, however, the electric fields inside the gap are 

appreciably weak confirming that the optical (in-phase) mode is an active mode (see 

supplementary materials).  

 Figure 6g shows the extinction spectra for three different configurations where the first-

occurring resonances coincide at ωR = (0.083 eV)/ ℏ . Among three designs, the 

BP(sheet)/metal(ribbon) design shows the largest extinction intensity on resonance while the 

BP(ribbon)/metal(ribbon) case exhibits the smallest intensity. In addition, the higher order modes 

of the BP(sheet)/metal(ribbon) resonator have larger extinction intensities than those of the 

BP(ribbon) resonator, which indicates that the background transmission in the 
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BP(sheet)/metal(ribbon) resonator remains relatively smaller for a given w. We found out that 

the trend in Figure 6g between three designs holds in mid-IR and longer wavelength regimes, 

which covers most of the frequency range of interest (Figure 6h). With the same BP material 

parameters, the BP(sheet)/metal(ribbon) case exhibits the largest extinction on the first-occurring 

resonance of up to 60% for ωR < 0.142 eV/ℏ. Using the plasmon dispersion and the extinction 

results in Figure 6h, we calculate the efficiency of coupling from free-space waves to plasmons, 

κ, for different designs as given in the inset (for the details, see supplementary material). The 

inset shows that for the BP(sheet)/metal(ribbon) resonator, the coupling from free-space waves 

to acoustic plasmons is several times more efficient than the BP(ribbon) case. The strong 

coupling efficiency for the BP(sheet)/metal(ribbon) case is attributed to the fact that the 

metal(ribbon) array is highly efficient in focusing the free-space light into a slit mode between 

the conducting plate units, which facilitates coupling to the plasmon mode. The presence of the 

metal(ribbon) array also helps to reduce the background transmission for a large w, which 

explains the larger extinction intensities for higher order modes compared to the BP(ribbon) 

case. The similarity in the scaling behavior of the coupling efficiency between the BP(ribbon) 

and the BP(sheet)/metal(ribbon) indicates that the focused light in the slit mode in the 

BP(sheet)/metal(ribbon) case mostly excites acoustic plasmons via conventional plasmons as 

suggested in Figure 6c. At higher frequencies, however, the extinction intensity for the 

BP(ribbon) case is larger due to the significant increase in the other contributor to extinction 

intensity, i.e., a cavity quality factor, which is determined by the propagation loss of plasmons 

and the reflectance at resonator edges (for definition, see supplementary materials). In contrast to 

the indirect coupling to acoustic plasmons, the direct coupling from free-space waves to acoustic 

plasmons is inefficient due to the larger difference in wavenumber between them as can be seen 
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in the BP(ribbon)/metal(ribbon) case. In addition to higher extinction intensity, the 

BP(sheet)/metal(ribbon) resonators are more suitable for practical implementation compared to 

the other designs since potentially, no patterning steps are required after the deposition of BP, 

thereby minimizing process-induced damages to BP.   

 

 

CONCLUSION 

 In conclusion, we have investigated the anisotropic dispersion for the acoustic plasmons in a 

freestanding BP layer coupled to a conducting plate. The dispersion for the acoustic plasmons 

was found to scale linearly with ω in the mid- and far-IR regimes except in the long wavelength 

limit. At high frequencies, where λac becomes comparable to g, it approaches the dispersion of 

conventional BP plasmons without a conducting plate. Due to larger confinement and narrower 

plasmon-supporting band, the ZZ case largely deviates from the linear scaling behavior. The 

analytical results confirmed the numerical results and clearly showed that the linear scaling 

regime becomes broader for smaller gap size and number of layers, and higher carrier density. 

Further, we numerically demonstrated different types of acoustic plasmon resonators including 

BP(ribbon)/metal(ribbon) and BP(sheet)/metal(ribbon) configurations. Among feasible design 

options, the BP(sheet)/metal(ribbon) resonator exhibited the largest extinction intensity than the 

other possible configurations considered due to higher coupling efficiency. We developed a 

modified F-P resonance model to account for the resonant behavior of such a plasmon resonator. 

Importantly, our new resonator design can be realized using a continuous sheet of BP without 

nano-patterning, which can introduce defects and edge roughness in BP. While an experimental 

realization of acoustic plasmon resonances in BP is not trivial, recent advances47,52 in the growth 

Page 15 of 29

ACS Paragon Plus Environment

ACS Photonics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

16 
 

of high-quality large-area BP samples show promising routes for the verification of our 

theoretical predictions. Also, our findings on acoustic plasmons in BP help to develop novel 

optoelectronic devices using optical anisotropy and extreme field confinement such as 

metasurfaces,10,12,13  biosensors,15,30 optical modulators,40,41 molecular trapping,53-55 and 

photodetectors.43,44  

 

 

METHODS  

 We used COMSOL Multiphysics with the RF Module for numerical simulations. In order to 

calculate the dispersion relation for acoustic plasmons in BP along with the reflection phase and 

amplitude, a port placed inside the simulation domain was used to solve for the eigenmode, 

launch the mode, and measure the reflection from the terminal interface. Perfectly matched 

layers (PMLs) were used at all simulation boundaries to increase accuracy. The electric field 

distributions in Figures 1 and 4 were also calculated in the same configuration. For Figures 5 and 

6, we used a plane wave with transverse magnetic polarization to obtain the extinction spectra of 

two acoustic plasmon resonators. Perfect electrical conductor (PEC) boundary conditions were 

used at both boundaries to simulate a periodic structure and reduce the computation time through 

symmetry. In most cases, the conducting plate was assumed to be 50 nm-thick gold with a 

dielectric function obtained elsewhere.56 The Drude model is used to approximate the 

conductivity of multilayer BP (see supplemental material for details). For numerical calculations, 

BP is modeled as a slab with thickness t and effective permittivity εBP as defined in the text.48  
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Figure 1. (a) The geometrical configuration supporting acoustic plasmons. The z-component of 
the electric field of (b) conventional plasmons propagating in the AC direction with the plasmon 
wavelength, λc, and acoustic plasmons propagating in (c) the AC and (d) ZZ direction with the 
plasmon wavelength λac are shown for the free-space wavelength of 25 µm. In (c) and (d), the 
gap between the BP and the conducting plate was 5 nm. The insets in (b)-(d) show the 
geometrical configurations considered and the arrows represent the propagation direction of 
plasmons (the positive x direction in all cases).    
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Figure 2. (a) The plasmon dispersion and (b) figure of merit (FOM) along the AC and ZZ 
directions. Here, we assumed g = 5 nm. (c) The momentum and (d) FOM as a function of g along 
the AC and ZZ directions. In all cases, the dispersions given in terms of the real part of the 
dimensionless momentum, q ≡ k/k0 and FOM is defined as Re(q)/Im(q). Numerical and 
analytical results are plotted together, and the numerical results for plasmons without a 
conducting plate (CP) are given for comparison.  
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Figure 3. Effect of electron density, n, on (a) plasmon dispersion and (b) FOM. n is varied from 
5×1012, 1×1013 to 2×1013 cm-2. The effect of the number of layers, N, on (c) plasmon dispersion 
and (d) FOM. Here, 1, 5, 10, and 20 layers are considered.  
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Figure 4. Schematic illustration of reflection at two different types of edge termination with (a) 
semi-infinite and (b) infinite BP sheet over the edge of a semi-infinite conducting plate (SBSC 
and IBSC cases, respectively). Electrical field distribution after reflection for (c) SBSC and (d) 
IBSC cases for AC direction, g = 5 nm, and λ0 = 25 µm. Reflection amplitude and phase of an 
acoustic plasmon after reflection at the edge for (e) SBSC and (f) IBSC cases for different g and 
crystal axes. Here, r denotes the reflection coefficient for acoustic plasmons. 
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Figure 5. Extinction spectra of BP acoustic plasmon resonators with (a) 
BP(ribbon)/metal(ribbon) and (b) BP(sheet)/metal(ribbon) for the AC direction as a function of 
inverse conducting plate width (1/w) under illumination by a normally incident plane wave with 
transverse magnetic polarization. Red dashed lines are the estimated resonant frequencies for 
different orders of interference (m) using the conventional Fabry-Perot resonance equation. 
White dashed lines are the estimation from the modified Fabry-Perot resonance equation for 
different orders (l). 
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Figure 6. Schematic illustration of coupling routes to surface plasmons (SP) or acoustic surface 
plasmons (ASP) for (a) BP(ribbon) (‘A’), (b) BP(ribbon)/CP(ribbon) (‘B’), and (c) 
BP(sheet)/CP(ribbon) (‘C’) resonators where ‘CP’ means a conducting plate. The z electric field 
enhancement on resonance at λ0 = 15 µm (ω = 0.083 eV//ℏ) for (d) A, (e) B, and (f) C resonators. 
(g) Extinction spectra for three different geometries where the first-occurring resonance coincide 
at λ0 = 15 µm. In (d)-(g), the widths of a resonator unit were 92, 61, and 128 nm for A, B, and C 
resonators, respectively. (h) Normalized extinction intensities on resonance as a function of 
resonance frequency for three different geometries. Inset shows corresponding coupling 
efficiency κ. In (d)-(h), both the spacing between two resonator units and the thickness of a 
conducting plate were fixed to be 20 nm for optimized performance. The resonators were 
illuminated by a normally incident plane wave with transverse magnetic (TM) polarization. 
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