000079329 001__ 79329
000079329 005__ 20200117221635.0
000079329 0247_ $$2doi$$a10.1021/acsami.8b02994
000079329 0248_ $$2sideral$$a107173
000079329 037__ $$aART-2018-107173
000079329 041__ $$aeng
000079329 100__ $$0(orcid)0000-0002-0595-5514$$aGarcia-Salinas, S.$$uUniversidad de Zaragoza
000079329 245__ $$aRapid on-Chip Assembly of Niosomes: Batch versus Continuous Flow Reactors
000079329 260__ $$c2018
000079329 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079329 5203_ $$aThe large-scale continuous production of niosomes remains challenging. The inherent drawbacks of batch processes such as large particle polydispersity and reduced batch-to-batch reproducibility are here overcome by using commercially available microfluidic reactors. Compared to the traditional batch-based film hydration method, herein, we demonstrate that it is possible to carry out the homogeneous, large-scale (up to 120 mg/min) production of niosomes using two different synthesis techniques (the thin film hydration method and the emulsification technique). Niosomes particle size can be controlled depending on the need by varying the synthesis temperature. The high cytocompatibility of the resulting niosomes was also demonstrated in this work on three different somatic cell lines. For the first time, the structure of the niosome multilamellar shell was also elucidated using high-resolution transmission electron microscopy (HR-STEM) as well as their colloidal stability over time (6 weeks) under different storage conditions. The morphology of cryo-protected or as-made niosomes was also evaluated by HR-STEM after freeze-drying. Finally, the dual ability of those synthetic, nonionic, surfactant-based vesicles to carry both hydrophilic and hydrophobic molecules was also here demonstrated by using laser scanning confocal microscopy.
000079329 536__ $$9info:eu-repo/grantAgreement/EC/FP7/614715/EU/A Photo-triggered On-demand Drug Delivery System for Chronic Pain/NANOHEDONISM
000079329 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000079329 590__ $$a8.456$$b2018
000079329 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b16 / 94 = 0.17$$c2018$$dQ1$$eT1
000079329 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b27 / 293 = 0.092$$c2018$$dQ1$$eT1
000079329 592__ $$a2.596$$b2018
000079329 593__ $$aMaterials Science (miscellaneous)$$c2018$$dQ1
000079329 593__ $$aNanoscience and Nanotechnology$$c2018$$dQ1
000079329 593__ $$aMedicine (miscellaneous)$$c2018$$dQ1
000079329 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079329 700__ $$aHimawan, E.
000079329 700__ $$0(orcid)0000-0003-2293-363X$$aMendoza, G.
000079329 700__ $$0(orcid)0000-0003-3165-0156$$aArruebo, M.$$uUniversidad de Zaragoza
000079329 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, V.$$uUniversidad de Zaragoza
000079329 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000079329 773__ $$g10, 22 (2018), 19197-19207$$pACS appl. mater. interfaces$$tACS Applied Materials & Interfaces$$x1944-8244
000079329 8564_ $$s1211701$$uhttps://zaguan.unizar.es/record/79329/files/texto_completo.pdf$$yPostprint
000079329 8564_ $$s70077$$uhttps://zaguan.unizar.es/record/79329/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079329 909CO $$ooai:zaguan.unizar.es:79329$$particulos$$pdriver
000079329 951__ $$a2020-01-17-22:01:37
000079329 980__ $$aARTICLE