
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

An Evaluation Framework for Comparative
Analysis of Generalized Stochastic

Petri Net Simulation Techniques
Ricardo J. Rodríguez , Member, IEEE, Simona Bernardi, and Armin Zimmermann, Member, IEEE

Abstract—Availability of a common, shared benchmark to pro-
vide repeatable, quantifiable, and comparable results is an added
value for any scientific community. International consortia pro-
vide benchmarks in a wide range of domains, being normally
used by industry, vendors, and researchers for evaluating their
software products. In this regard, a benchmark of untimed Petri
net models was developed to be used in a yearly software com-
petition driven by the Petri net community. However, to the best
of our knowledge there is not a similar benchmark to evalu-
ate solution techniques for Petri nets with timing extensions. In
this paper, we propose an evaluation framework for the com-
parative analysis of generalized stochastic Petri nets (GSPNs)
simulation techniques. Although we focus on simulation tech-
niques, our framework provides a baseline for a comparative
analysis of different GSPN solvers (e.g., simulators, numerical
solvers, or other techniques). The evaluation framework encom-
passes a set of 50 GSPN models including test cases and case
studies from the literature, and a set of evaluation guidelines for
the comparative analysis. In order to show the applicability of
the proposed framework, we carry out a comparative analysis of
steady-state simulators implemented in three academic software
tools, namely, GreatSPN, PeabraiN, and TimeNET. The results
allow us to validate the trustfulness of these academic software
tools, as well as to point out potential problems and algorithmic
optimization opportunities.

Index Terms—Benchmarking, generalized stochastic Petri nets
(GSPNs), performance, simulation software.

I. INTRODUCTION

BENCHMARKS have been recognized as an effective tool
for conducting experiments in computer science since

Manuscript received November 4, 2017; accepted April 30, 2018. The work
of R. J. Rodríguez and S. Bernardi was supported in part by the EU Horizon
2020 Research and Innovation Programme under Grant 644869 (DICE), in
part by the Spanish Ministry of Economy, Industry, and Competitiveness
Project CyCriSec under Grant TIN2014-58457-R, and in part by the Aragon
Government Ref. T27—DisCo Research Group. This paper was recom-
mended by Associate Editor M. P. Fanti. (Corresponding author: Ricardo
J. Rodríguez.)

R. J. Rodríguez is with the Centro Universitario de la Defensa, General
Military Academy, 50090 Zaragoza, Spain (e-mail: rjrodriguez@unizar.es).

S. Bernardi is with the Departamento de Informática e Ingeniería
de Sistemas, University of Zaragoza, 50018 Zaragoza, Spain (e-mail:
simonab@unizar.es).

A. Zimmermann is with the Department of System and Software
Engineering, Technische Universität Ilmenau, 98684 Ilmenau, Germany
(e-mail: armin.zimmermann@tu-ilmenau.de).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2018.2837643

they provide repeatable, quantifiable and, thus, comparable
results [1]. Nowadays, there is a strong need for common
benchmarks in different scientific communities supporting
a common, shared way to provide reproducible and com-
parable data. For instance, they play an important role in
the measurement-based testing within performance software
engineering [2].

International consortia provide benchmarks in a wide range
of domains, e.g., high-performance computing [3], transac-
tion processing and databases [4], and image-processing and
cyber security [5]. Such standardized benchmarks are used
by industry and vendors for assessing the performance of
their hardware/software products, as well as by researchers
to compare their software techniques and tools.

The development of a new benchmark (proto-benchmark)
can be initiated by a small group of researchers as an offer
to a larger scientific community to initialize a consensus pro-
cess [6]. In the model checking research field, for instance, a
benchmark including a repository of untimed Petri net models
was developed and used in a yearly software competition by
the Petri net community [7] to compare the efficiency of new
solution techniques. Such benchmark was aimed at checking
the qualitative properties of the Petri Net models, such as the
reachability of deadlocks or liveness, to name a few.

Petri nets [8] are a graphical and mathematical formal-
ism that easily represent common characteristics of computer
systems such as concurrency, synchronization, conditional
branches, looping, and sequencing. In particular, Petri nets are
a suitable model for the design and verification of real-life
processes [9], being a common formalism used in automated
manufacturing systems [10], [11]. Roughly speaking, a Petri
net (PN) is a bipartite graph of places and transitions connected
with arcs, describing the system behavior with concurrency
and synchronous capabilities. Tokens are assigned to places,
and a distribution of tokens in the places represents a state
of the system, whereas transitions model events or activities.
Stochastic Petri nets (SPN) are a timed extension of Petri
nets, where each transition has associated an exponentially
distributed firing time delay (e.g., modeling the duration of an
activity).

To the best of our knowledge, there is not a similar bench-
mark to evaluate solution techniques for SPN models. In this
paper, we aim at providing a proto-benchmark to fill this
gap. This proto-benchmark considers a class of SPN, namely
generalized SPNs [12] (GSPN), that are used for systems

2168-2216 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7982-0359


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

performance and reliability analysis. In addition to timed tran-
sitions, GSPN include immediate transitions that are used to
model logical actions occurring in zero time.

In particular, we propose an evaluation framework that con-
sists of a repository of GSPN models and a guideline for the
solvers evaluation. The models of the repository are available
in different formats, two of them compliant to the ISO standard
place/transition nets with XML (PNML) [13]. Furthermore,
we also provide a tool to interchange the models between
different tools and the shell scripts used to launch experi-
mentation as a way to make easier the reproducibility of the
experiments carried out in this paper. As an example anal-
ysis, this paper furthermore applies the proposed evaluation
framework to three selected event-driven simulators, namely
GreatSPN [14], PeabraiN [15], and TimeNET [16]. A
comparative analysis among these three tools is carried out
and results are reported from the user perspective. This mainly
includes run times and achieved result accuracy which may
greatly differ as the selected tools implement various variants
of Monte Carlo simulations. A comparison of the algorithms
themselves is outside the scope of this paper.

Let us remark that although the evaluation framework is
applicable for any GSPN solution method, in this paper we
focus on GSPN simulation solvers to illustrate its usage.

Along this paper, we will use the notions for the description
of benchmarking proposed in [17] to present and discuss the
different aspects of our evaluation framework. A benchmark
consists of the following data.

1) I, an input set of data to be processed.
2) E, an examination to be passed by a program.
3) P, the program to be benchmarked.
4) 〈I, E, P〉, a run corresponding to the execution of a P

for an E with a given I.
This paper is organized as follows. Section II describes the

evaluation framework, in particular by providing a general
guideline for defining I and E. Section III briefly covers GSPN
simulation and the selected tools (P) that are used in the com-
parative analysis. Section IV describes the application of the
guideline for the comparative analysis of the GSPN simulator
and details the experiments (〈I, E, P〉). Related work is cov-
ered in Section V. Finally, Section VI sets out the conclusions
of this paper.

II. EVALUATION FRAMEWORK

In this section, we present the evaluation framework that
enables us to specify the input set of data I to be processed
by a GSPN solver P and the examination E to be passed by
a solver. We first describe the repository of GSPN models
and, then, we introduce the guideline for the evaluation of
solvers. The reader interested in examining in depth the GSPN
formalism can refer to [12].

A. Generalized Stochastic Petri Net Repository

The repository consists of a collection of 50 GSPN models,
listed in Table I. For each model, we indicate its identifier,
its Petri net subclass, its size (in terms of places and tran-
sitions), its qualitative properties, and if it is a parametric

model. Furthermore, we indicate the modeled system: most
of the models come from case studies and test cases from the
literature (see reference columns in the table).

Each model of the repository is characterized by an iden-
tifier (Net_id) and labeled (PN subclass) according to the
structural Petri Net subclass it belongs. In particular, most the
models belong to the well-known PN-subclasses of monoT-
semiflows [37], Free-Choice nets (FC) [38], freely related
T-semiflows [39], and deterministic systems of sequential
processes (DSSP) [40]. The main reason is that the reposi-
tory has been built on a collection of models that was used
in [31] to assess bounding techniques on interval-based time
Petri net models, which are known to produce tight bounds for
these PN-subclasses. Nevertheless, we consider the repository
as an open proposal, subject to future extensions to encompass
also other PN-subclasses. Finally, we classified as general nets
the rest of the GSPN models that do not belong to a specific
PN-subclass.

The repository is freely available at [41]. A wiki Web page
was created to provide further detailed information for each
model, such as the number of places/transitions (model size
column, in Table I), the satisfied logical properties (logical
properties column)—structural boundedness (B), deadlock-
freeness (DF), liveness (L), and reversibility (R) [42]—, and
the parameters, in case of parametric model (parametric col-
umn). In particular, for parametric models, three different
variants of initial marking setting are provided which corre-
spond to a coarse classification of the model workload, namely
low, medium, and high. The low category includes the models
where the initial marking parameters have been set to the ref-
erence values, that is the values in the original models.1 The
medium and high categories include the models where the ini-
tial marking parameters have been set to, respectively, one and
two orders of magnitude greater than the reference values.

The repository includes the nets in the file formats required
for the three tools used in this paper, i.e., GreatSPN [14],
PeabraiN [15], and TimeNET [16]. The file format of
GreatSPN does not follow any particular standard, while
the file formats supported by PeabraiN and TimeNET
are compliant to the adopted ISO standard for description
of PNML [13] or have a corresponding import/export con-
verter. It is worth mentioning that the last published version
of GreatSPN incorporates a translator module from PNML-
compliant file format to its own file format [43]. Since there
does not exist at the moment of this writing any adopted
ISO standard for timing specification in PNML, as the one
proposed in [44], the file formats of both tools differ in this
part. A tool for converting the file formats between some of
these tools was developed as a side product of the proposed
framework to overcome this issue. This tool is also available
at the GSPN website repository and its source code has been
released under the GNU/GPLv3 license.

B. Guideline for Evaluation of Simulation Solvers

The guideline for the solvers evaluation is aimed at provid-
ing a support for the definition of the examination E, to be

1The nonparametric models have been also included in this category.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RODRÍGUEZ et al.: EVALUATION FRAMEWORK FOR COMPARATIVE ANALYSIS OF GSPN SIMULATION TECHNIQUES 3

TABLE I
GSPN REPOSITORY

passed by the GSPN solvers under analysis, and the selection
of the input set of GSPN models I from the repository. It can
be summarized as a list of steps, that are discussed in detail
in this section.

1) Define the examination E.
a) Decide the type of comparative analysis.
b) Define the set of indexes for the assessment.
c) Establish the conditions for passing the

examination.
2) Select the input set I.

a) Check the prerequisites for GSPN solvers.
b) Define a selection criterion considering the features

of the GSPN repository (Table II).
1) Define the Examination: The examination E should be

defined first, since it determines the goals of the analysis. It
implies the selection of the set of indexes for the assessment
and the specification of the conditions to be passed by the
GSPN solvers. In particular, we can distinguish two types of
analysis: 1) correctness and 2) efficiency.

TABLE II
FEATURES OF THE GSPN REPOSITORY

The first type of analysis is aimed at assessing the correct-
ness of the GSPN solvers and/or accuracy of the performance
results computed by the GSPN solvers. Therefore, at least an
index needs to be defined for the assessment that is based on
performance properties. The basic performance properties of a
GSPN model are the transitions throughput (i.e., number of fir-
ings per unit of time) and the mean number of tokens in places.
We have considered only the throughput of a transition as the
reference property for the GSPN models of the repository. Let
us remark that this decision is mainly motivated because, for
those GSPN models that represent case studies, the reference



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

property has a precise meaning in the context of the modeled
system (e.g., finished products per time unit for those models
representing flexible manufacturing systems, such as the nets
3, 7, 14, and 40–43). Based on such a reference property, an
example of index to be used for the tool assessment is the
relative error of the value estimated by a GSPN solver under
analysis with respect to a (known) value.

The second type of analysis is aimed at assessing the
efficiency of the GSPN solvers and, similarly to the correct-
ness analysis, performance indexes need to be defined for
the assessment. Several performance indexes of interest are
proposed in [45] for benchmarking, being the most com-
mon ones the CPU time and wall time (i.e., the elapsed
time between start and end of a task) for measuring time
efficiency, and the peak memory consumption for measuring
space efficiency.

Once the indexes for the assessment are defined, the last task
is to establish the conditions for passing the examination. A
naïve condition is to define, for example, a maximum threshold
for the relative error used as index for the correctness analysis.
More complex conditions may consider the sensitivity of the
GSPN solvers to one or more features of the repository.

2) Select the Input Set: A different input set of GSPN mod-
els can be selected from the repository, according to the GSPN
solvers constraints (such as the fulfillment of logical proper-
ties) and the features of the repository that are of interest for
the assessment.

Therefore, a first task is the selection of those GSPN mod-
els that fulfill the logical properties which are a prerequisite
for the use of the GSPN solver under analysis. As shown in
Table I, the considered logical properties are satisfied by the
majority of the models; however, there are also some nets that
only satisfy a subset of properties. Consider for instance a
state-based GSPN solver. Hence, in this case only bounded
models shall be selected for analysis.

The second selection task is carried out with the help of
the features of the repository summarized in Table II. Since
the features can be also used for the sensitivity analysis of the
GSPN solvers, the choice of using a feature as selection or
sensitivity criterion depends on the goals of the assessment.

III. GSPN SIMULATION

This section informally introduces simulation techniques for
GSPN models, and the selected tools to be benchmarked with
the evaluation framework. Three GSPN tools are considered
in this paper: 1) GreatSPN (batch simulator); 2) PeabraiN
(replication simulator with discrete stochastic simulation algo-
rithm); and 3) TimeNET (batch simulator with spectral vari-
ance analysis), mainly because of their accessibility to the
authors as well as their distribution in the research community.
The tools implement different variants of steady-state simula-
tion algorithms, for which the individual optimization details
are outside the scope of this paper. Moreover, the tools usu-
ally contain several variants such as rare-event simulation and
transient as well as stationary simulations, out of which we
only consider the (standard) steady-state simulation here.

Monte Carlo simulation [46] can be used as a solution tech-
nique for (G)SPN models and is often the alternative choice
to state-based techniques when the state space of the model
is too large to be analyzed as a whole. Simulation enables to
estimate performance and reliability measures by generating
and analyzing randomly chosen paths through the state space.
For each measure of interest, the simulation provides the esti-
mated value and the precision error at a confidence interval,
i.e., the real (unknown) value falls into this interval with a
certain probability (i.e., confidence level) and with a precision
error [46]. The width of the confidence interval is a measure
of the accuracy of the estimated value.

Different simulation approaches exist. A common approach
is replication, where N statistically independent simulation
runs are executed and the measure is estimated considering the
N independent measurements collected during different runs.
A parallel variant simulates N models concurrently, and sam-
ples from the resulting independent paths. Other approaches
can be used when the aim of the analysis is the estimation
of steady state measures. Indeed, in such cases just a single
simulation run can be executed, where the simulation time is
“long enough” to bring the modeled system in steady state and
measurements are taken across time (rather than measurements
taken across replications). For example, the batch method [47]
partitions the simulation interval into successive epochs and
for each epoch a measurement is collected to avoid common
pitfalls of correlated subsequent samples. The computational
cost of the simulation depends on various factors.

1) The length of transient period, i.e., the simulation time
until the steady state is reached.

2) The length of the simulation time needed to collect a
representative sample.

3) The length of the epochs needed to ensure statistical
independence of successive measurements.

It is worth to observe that such factors depend on the model
under analysis, so the choice of simulation input parameters
is a critical point since both statistical quality of the simula-
tion results and computer time that is required to simulate a
desired amount of system time rely on them. Concerning the
choice of the length of the epochs, a possible approach is the
regenerative points method [48], where a regeneration point is
a time instant at which the system enters a given state (e.g.,
in an SPN model, the initial marking).

Statistical issues and very long simulation times may arise
in case of rare events, for example when the measure to be
estimated is a very small probability such as the system fail-
ure probability. So-called variance reduction techniques have
been developed to overcome these issues [49], as well as
specific methods such as RESTART [50] that allows for esti-
mating probabilities as low as 10−100 within a reasonable time.
Other possible approaches propose an approximate acceler-
ated stochastic simulation approaches to reduce computation
time [51].

IV. COMPARATIVE ANALYSIS

In this section, we use the proposed GSPN benchmark for
a comparative analysis of the three GSPN simulator tools



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RODRÍGUEZ et al.: EVALUATION FRAMEWORK FOR COMPARATIVE ANALYSIS OF GSPN SIMULATION TECHNIQUES 5

considered in this paper (namely, GreatSPN, PeabraiN,
and TimeNET). The details of each simulation algorithm have
been described in Section III.

We compare the tools under correctness and efficiency cri-
teria. Regarding the correctness criterion, we are interested in
how good the results provided by the simulation tools are.
Hence, we compute the analytic results for each net in the
benchmark (when feasible) and use these values as a reference
for comparison. Regarding the efficiency criterion, we measure
the execution time and the maximum memory consumption of
the simulation tools for the benchmark models.

A. Correctness and Accuracy of Simulation Results

To evaluate the accuracy of the simulation results, we first
need to compute analytic results of the nets and validate
them. For this purpose we analytically solve the underlying
CTMC of the nets (when feasible) using the analytic solvers
of GreatSPN and TimeNET.

Table III summarizes the comparison of analytic results
computed by GreatSPN and TimeNET solvers, consider-
ing the benchmark nets with low marking. As indicated, for
some models the analytic results could not be obtained because
these nets are unbounded or the state-space explosion problem
applies (i.e., huge state space and P-semiflows explosion).
These results are highlighted (in light blue) in Table III. For
instance, net43, net44, and net45 have a huge state-space such
that the analytic solvers exhaust the available memory when
solving the underlying CTMC. For two particular models, the
TimeNET solver was unable to compute analytical results:
net26 has a huge state space that TimeNET is unable to handle
properly and the performance measurement in net17 and net48
is defined over an immediate transition. However, TimeNET
does not compute throughput values of immediate transitions
directly. The last column in Table III shows the relative error
between both solvers. As it is shown, both tools achieve a
very similar value for the reference transition throughput con-
sidered in each model. Hence, we conclude that these analytic
results are valid for comparison.

Fig. 1 shows the comparison of simulation results with
regard to analytic ones. We simulated 100 times each net con-
sidering a low marking (see Section II-A) with two different
precision errors and confidence levels. In particular, we set a
precision of 5% at the 95% confidence level and of 1% at
the 99%. Both results are plotted in Fig. 1(a) and (b), respec-
tively. The mark in each error bar represents the average of
the simulation results, while the lower and upper vertical error
bars represent the quantile of 95% (99%) and 5% (1%) of the
collected results, respectively. Furthermore, we also plotted an
horizontal line indicating the predefined precision error of 5%
and 1% in each graph.

The plots show interesting results. Regarding the precision
of 5% at the 95% confidence level [Fig. 1(a)], for all sim-
ulation tools the average of relative errors are close to 0%.
Namely, only for the net10 and net17 models the relative
errors reach almost 3% and 5%, respectively. The results of
the PeabraiN simulation tool show, however, some mod-
els for which the average of error results are above/below

TABLE III
COMPARISON OF ANALYTIC RESULTS

the precision boundaries (see net10, net14, or net16). In any
event, the average error results are always in the 10% bound-
aries. Considering the quantiles, the PeabraiN simulation
tool is the one showing more models whose quantiles exceed
the precision boundaries.

Furthermore, the average results of PeabraiN simulation
tool for the net49 model are outside the precision boundaries
[reaching almost 20% of precision error, which was left out-
side the axes boundaries for the sake of visibility in both
Fig. 1(a) and (b)]. This indicates that the simulation is not cor-
rect. In summary, the results show that in general the stopping
criteria of all simulation tools are accurate, but the PeabraiN
simulation tool needs further analysis.

Regarding the precision of 1% at the 99% confidence level
[Fig. 1(b)], the results show that the GreatSPN simula-
tion tool has the most accurate intervals, since for almost



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(a)

(b)

Fig. 1. Comparative simulation results for GreatSPN, TimeNET, and PeabraiN with regard to analytic results. Precision of (a) 0.05 at the 0.95 confidence
level and (b) 0.01 at the 0.99 confidence level.

all the models the lower and upper error bars are in the
precision bound of ±1%. As before, the average error results
are close to 0% for all models, but for net10 and net17 mod-
els. The PeabraiN simulation tool presents similar errors
as in the previous settings, showing in all the cases quan-
tile intervals outside the precision boundaries. Thus, this

confirms that the simulation method and stopping criterion
of the PeabraiN simulation tool needs further development.
Surprisingly, the quantile intervals of the TimeNET simula-
tion tool exceed the precision error bounds for all the models.
In summary, the GreatSPN tool shows the better behavior,
while the stopping criterion of both TimeNET and PeabraiN



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RODRÍGUEZ et al.: EVALUATION FRAMEWORK FOR COMPARATIVE ANALYSIS OF GSPN SIMULATION TECHNIQUES 7

(a) (b) (c)

(d) (e)

Fig. 2. Results of experiments: execution time. (a) net14 (general net). (b) net15 (FRT net). (c) net22 (FC net). (d) net25 (DSSP net). (e) net47 (mono
T-semiflow net).

shall be revised. In the beta version of TimeNET, enhanced
stopping criteria [52] are being evaluated.

B. Execution Time and Memory Peak Consumption

Regarding the efficiency criterion, we are interested in mea-
suring both execution time and memory peak consumption
of the simulation tools. Since the GSPN benchmark is com-
posed of 50 nets and we do not want to overwhelm the reader
with tens of graphs, only a subset of models is considered
for performance evaluation. In particular, we selected one net
of each Petri net subclass available in the GSPN benchmark.
These subclasses are mono T-semiflow, FC, freely related T-
semiflow, DSSP, and general nets. The subset of the GSPN
benchmark used for the efficiency comparison is thus com-
posed of five nets. The selection criterion of the each net was
as follows: first, to have analytic results; and then, a net with
larger number of places and transitions. Considering those cri-
teria, the selected nets are: net47 (monoT), net22 (FC), net15
(FRT), net25 (DSSP), and net14 (general).

For the experiment configuration, we varied the initial mark-
ing from 1 to 100 in all nets to verify whether the simulators
are in some way affected by the number of tokens. Any
other aspect of the net was left as in the original models.
Experiments were performed in a Debian GNU/Linux x86-
64 with an Intel Core i7-4790 CPU @ 3.60 GHz and 4 GB
of RAM memory, running as a virtual machine on top of
a Proxmox Virtual Environment version 4.1-5/f910ef5c. The
versions of the tools evaluated were, namely, GreatSPN

version 2016, TimeNET version 4.3, and PeabraiN version
1.2 (plus OpenJDK Runtime Environment IcedTea 2.6.11). A
shell script was prepared to execute batch simulations with a
precision of 0.05 at the 0.95 confidence level and collect sim-
ulation results. In particular, we performed 20 iterations and
then compute the average of the obtained results. Execution
times and memory peak consumption data were collected
through GNU’s time command.

Fig. 2 plots the execution time (in seconds) for each net
considered in experimentation. Results show that for the FRT
and the mono T-semiflow nets, the number of tokens does
not affect the simulation time of any of the simulation tools
under study. It is worth noting that for both types of nets
GreatSPN clearly outperforms the others. Both GreatSPN
and TimeNET have times lower than 1 s for those nets, unlike
PeabraiN, which has an execution time near to nine times
the one of TimeNET. For the DSSP and FC nets, our results
illustrate that the convergence of the PeabraiN simulation
method is linearly and exponentially affected, respectively, by
the number of tokens. Surprisingly, the convergence of the
TimeNET simulation tool is (exponentially) affected by the
number of tokens for general nets. In this case, the execution
time of PeabraiN simulation tool is near to two orders of
magnitude with regard to the GreatSPN tool, with values
ranging from 1.96 to 2.34 s. This overhead might be caused
by the execution of Java Virtual Machine. On the contrary, the
results of GreatSPN range from 0.02 to 138 s (indeed, the
latter execution time occurs with 24 tokens). The difference
between GreatSPN and TimeNET is small in absolute values



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(a) (b) (c)

(d) (e)

Fig. 3. Results of experiments: maximum peak of memory consumption. (a) net14 (general net). (b) net15 (FRT net). (c) net22 (FC net). (d) net25 (DSSP net).
(e) net47 (mono T-semiflow net).

but systematic, which may be based on a different implemen-
tation architecture - TimeNET compiles some model details
into C code to be used in an efficient simulation for longer run
times. As our models did not cover this case explicitly, there
is no conclusion on relative run times for “harder” simulation
problems.

However, a reason for the higher values of execution time
of TimeNET is that some of the results of GreatSPN and
PeabraiN are invalid and the simulation stops too early.
A careful inspection of the results showed that most of the
execution times of both simulators converge rapidly and pro-
vide a throughput value of zero. We empirically analyzed
net14 and found out that it becomes saturated very early with
regard to the variation of number of tokens. Furthermore,
the transition rates in net14 differ in several order of magni-
tude, i.e., the transition rates setting is similar to a rare-event
system. We have also verified that the stopping criteria of
GreatSPN and PeabraiN simulation algorithms do not
consider a minimum firing time of the transitions of interest.
Based on these findings, we conclude that the stopping cri-
terion used in both GreatSPN and PeabraiN simulation
algorithms does not work properly in rare-event (or similar)
setting and deserves further improvements, while TimeNET
handles these cases correctly. This is a starting point to improv-
ing the stopping criterion of both algorithms, considering the
current state-of-the-art.

Based on our experimentation results, we conclude that
PeabraiN is the simulator tool that needs more time

to converge at the precision and confidence level given.
Furthermore, its simulation method is the one most affected
by the number of tokens, especially for DSSP and FC nets.

Fig. 3 plots the results of the maximum memory resident
size (in kilobytes) for each net considered in the experi-
mentation. Results clearly show that for all type of nets
but FC nets the maximum peak of memory used remains
constant, regardless the number of tokens. Regarding FC
net, the behavior of PeabraiN simulator is close to an
exponential line. In all cases, GreatSPN outperforms the
other two simulation tools. Although the difference between
GreatSPN and TimeNET is very narrow, it is totally the
opposite for PeabraiN: the results clearly show a huge con-
sumption of memory. We believe that, again, this might be
mainly motivated because of the execution of the Java Virtual
Machine.

As conclusions, based on our results GreatSPN would
be our first choice as simulation tool for short simulation
problems, immediately followed by TimeNET. These results
also indicate that the batch simulator method outperforms the
replication method. Finally, we would like to remark that
although the PeabraiN simulation tool is not as good as
expected regarding GSPN simulation features, PeabraiN
provides other interesting features that enriches the analysis of
GSPN model, particularly the structural analysis. Furthermore,
PeabraiN was designed to provide an easily extendable
framework for fast prototyping of techniques of the realm of
linear programming problems applied to Petri net analysis.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RODRÍGUEZ et al.: EVALUATION FRAMEWORK FOR COMPARATIVE ANALYSIS OF GSPN SIMULATION TECHNIQUES 9

V. RELATED WORK

This section revises the related works in the literature. We
divided this section into two parts: we first review the SPN
tools—with focus on the status of the standard interchange
file format PNML—and, then, the availability of model bench-
marks.

A. On SPN Tools

There is a large variety of modeling and evaluation tools
for SPN. A comprehensive list of these tools is found in the
PN database maintained by the University of Hamburg [53]. A
recent survey in [54] drew up a ranking of SPN tools accord-
ing to a set of criteria including: multiplatform support, open
source, embedded graphical animation, structural analysis, and
stochastic and colored Petri Net support. In this paper, we con-
sider three Petri net tools (namely, GreatSPN, PeabraiN,
and TimeNET) that provide support to performance evaluation
of GSPN [12] through different solution techniques, including
simulation.

Concerning PNML import/export features, all the aforemen-
tioned tools support them. However, since the PN timing and
stochastic PNML extensions is not standardized so far, each
tool provides its own solution. The compliance of the PNML
specification is thus limited to the untimed PN (i.e., the net
structure and initial marking).

B. On Model Benchmarks

Model benchmarks can be found mainly in the model check-
ing community for testing algorithm implementations that
support verification of qualitative properties [17], [55]–[57].
The BEEM benchmark [55] contains a predefined set of para-
metric models expressed in a low-level modeling language
based on communicating extended finite state machines, and
supported by the tool DiVinE. The VLTS benchmark suite [56]
collects labeled transition systems modeling communication
protocols and concurrent systems. The MIST toolset [57]
includes a repository of models, some of them place/transitions
(P/Ts) net models that can be used for verifying coverability
and reachability properties. The BenchKit [17] is the refer-
ence benchmark tool for the model-checking context yearly
events, organized within the Petri net conference, and provides
a repository of colored Petri nets and P/T nets. In particular,
the repository is yearly updated with new parameterized PN
models [58]; most of them refer to well-known problems or
their variants (e.g., Kanban model and Lamport mutex algo-
rithm), instead of real scenarios as our GSPN benchmark does.
For each PN model, a description is provided together with
the set of satisfied properties (e.g., reversibility and DF). Other
benchmark commonly used is the ISCAS benchmark [59],
which contains a set of combinational and sequential circuits.
Although this benchmark was initially designed for circuit test-
ing, there are works in the literature of Petri net community
using it to validate performance estimation approaches.

Automatic generation of PN benchmarks have been also
proposed [60]–[62]. The approach in [60] enables to generate
random workflow nets (i.e., a structural class of PNs used to
model workflow processes), according to a set of properties

given as input such as the length of the shortest path from
the source to the sink place, number of nodes, soundness, etc.
The generation algorithm has been implemented as a plugin of
the process-mining tool ProM. In [61], the PN benchmark is
automatically generated for evaluating the efficiency of pattern
matching in graph transformation algorithms. In [62], a tool
is developed to automatically generate S4PR, a particular sub-
class of Petri nets useful for modeling concurrent sequential
processes with shared resources.

None of the aforementioned benchmarks, but the one gener-
ated with the tool introduced in [62], consider Petri nets with
timing and stochastic specifications. Hence, these benchmarks
based on untimed Petri net classes are unsuitable for compar-
ing performance solvers. The automatic benchmark generated
with the tool introduced in [62] could be useful for this pur-
pose, although the generated models are limited to a single
class of Petri net and they do not represent any real scenario,
unlike the GSPN benchmark introduced in this paper.

VI. CONCLUSION

This paper has introduced a framework for the comparison
of software tools supporting the performance evaluation of
GSPNs. Apart from the technical design of the framework
itself, a repository of 50 models from the literature has been
collected and made available to the public. This benchmark
suite covers a wide area of applications and thus serves as a
comprehensive validation base line for algorithms and tools
now and in the future.

Three tools have been selected and evaluated, with spe-
cial emphasis on their simulation components: GreatSPN,
PeabraiN, and TimeNET. The numerical results of the
presented comprehensive experiments show that the results are
in most cases in the expected range of accuracy, thus validating
the trustfulness of academic software tools. As a side result,
characteristic run time and memory consumption profiles have
been derived.

The experimental results allow us to analyze how the
tools perform, pointing out possible problems and algorith-
mic optimization opportunities. Future algorithm development
and tool implementation can benefit from this approach by
checking if the results are correct, and by allowing a com-
parative run time and memory consumption evaluation. This
will increase the quantitative rigor of computer algorithm
engineering efforts in this area.

REFERENCES

[1] W. F. Tichy, “Where’s the science in software engineering?: Ubiquity
symposium: The science in computer science,” Ubiquity, vol. 2014,
pp. 1–6, Mar. 2014.

[2] C. U. Smith, “Introduction to software performance engineering: Origins
and outstanding problems,” in Proc. 7th Int. Conf. Formal Methods
Perform. Eval., Berlin, Germany: Springer-Verlag, 2007, pp. 395–428.

[3] Standard Performance Evaluation Corporation. Accessed: Oct. 20,
2017. [Online]. Available: https://www.spec.org/

[4] Transaction Processing Corporation. Accessed: Oct. 20, 2017. [Online].
Available: http://www.tpc.org

[5] Defence Advanced Research Projects Agency. Accessed: Oct. 20, 2017.
[Online]. Available: http://www.darpa.mil

[6] J. Waller, “Performance benchmarking of application monitoring frame-
works,” Ph.D. dissertation, Kiel Comput. Sci. Series, Dept. Comput. Sci.,
Kiel Univ., Kiel, Germany, Dec. 2014.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[7] Model Checking Contest at Petri Nets. Accessed: Oct. 20, 2017.
[Online]. Available: https://mcc.lip6.fr

[8] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[9] I. Grobelna, R. Wiśniewski, M. Grobelny, and M. Wiśniewska, “Design
and verification of real-life processes with application of petri nets,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 11, pp. 2856–2869,
Nov. 2017.

[10] X. Han, Z. Chen, Z. Liu, and Q. Zhang, “Calculation of siphons and
minimal siphons in Petri nets based on semi-tensor product of matrices,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 3, pp. 531–536,
Mar. 2017.

[11] G. Liu, P. Li, Z. Li, and N. Wu, “Robust deadlock control for auto-
mated manufacturing systems with unreliable resources based on Petri
net reachability graphs,” IEEE Trans. Syst., Man, Cybern., Syst., to be
published, doi: 10.1109/TSMC.2018.2815618.

[12] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
Modelling With Generalized Stochastic Petri Nets (Wiley Series in
Parallel Computing). Chichester, U.K.: Wiley, 1995.

[13] Systems and Software Engineering—High-Level Petri Nets—Part 2:
Transfer Format, Int. Org. Stand., Geneva, Switzerland, 2008.

[14] E. G. Amparore, G. Balbo, M. Beccuti, S. Donatelli, and
G. Franceschinis, “30 years of GreatSPN,” in Principles of Performance
and Reliability Modeling and Evaluation (Springer Series in Reliability
Engineering), L. Fiondella and A. Puliafito, Eds. Cham, Switzerland:
Springer, 2016, pp. 227–254.

[15] R. J. Rodríguez, “A Petri net tool for software performance estimation
based on upper throughput bounds,” Autom. Softw. Eng., vol. 24, no. 1,
pp. 73–99, Jan. 2017.

[16] A. Zimmermann, “Modelling and performance evaluation with
TimeNET 4.4,” in Proc. 14th Int. Conf. Quant. Eval. Syst. (QEST),
Berlin, Germany, Sep. 2017, pp. 300–303.

[17] F. Kordon and F. Hulin-Hubard, “BenchKit, a tool for massive concur-
rent benchmarking,” in Proc. 14th Int. Conf. Appl. Concurrency Syst.
Design (ACSD), La Marsa, Tunisia, 2014, pp. 159–165.

[18] S. Bernardi and J. Campos, “Computation of performance bounds for
real-time systems using time Petri nets,” IEEE Trans. Ind. Informat.,
vol. 5, no. 2, pp. 168–180, May 2009.

[19] S. Bernardi and J. Campos, “On performance bounds for interval time
Petri nets,” in Proc. 1st Int. Conf. Quant. Eval. Syst. (QEST), Enschede,
The Netherlands, Sep. 2004, pp. 50–59.

[20] J. Campos, “Performance bounds for synchronized queueing networks,”
Ph.D. dissertation, Departamento de Ingeniería Eléctrica e Informática,
Universidad de Zaragoza, Zaragoza, Spain, Oct. 1990.

[21] E. P. Naumovich and S. Bernardi, “Modelado de redes de Petri con
intervalos de tiempo mediante la herramienta ITPN-PerfBound,” in
Proc. V Encuentro De Investigadores Y Docentes De Ingeniera (EnIDI),
Mendoza, Argentina, 2009, pp. 154–167.

[22] S. Bernardi, J. Campos, and J. Merseguer, “Timing-failure risk assess-
ment of UML design using time Petri net bound techniques,” IEEE
Trans. Ind. Informat., vol. 7, no. 1, pp. 90–104, Feb. 2011.

[23] S. Bernardi and G. Balbo, “Concurrent generalized Petri nets:
Regenerative conditions,” in Proc. IEEE 9th Int. Workshop Petri Nets
Perform. Models, Aachen, Germany, 2001, pp. 125–134.

[24] S. Bernardi, S. Marrone, J. Merseguer, R. Nardone, and V. Vittorini,
“Towards an MDE approach for NFPs assessment using multiformalism:
An application to performability,” Group Discr. Event Syst. Eng., Univ.
Zaragoza, Zaragoza, Spain, Rep., 2015.

[25] L. Berardinelli, S. Bernardi, V. Cortellessa, and J. Merseguer, “The
fault-error-failure chain: A challenge for modeling and analyzing per-
formability in UML-based software architectures,” Group Discr. Event
Syst. Eng., Univ. Zaragoza, Zaragoza, Spain, Rep., 2010.

[26] S. Bernardi and J. Merseguer, “Performance evaluation of UML design
with stochastic well-formed nets,” J. Syst. Softw., vol. 80, no. 11,
pp. 1843–1865, 2007.

[27] S. Bernardi and J. Merseguer, “QoS assessment via stochastic analysis,”
IEEE Internet Comput., vol. 10, no. 3, pp. 32–42, May 2006.

[28] L. Berardinelli, S. Bernardi, V. Cortellessa, and J. Merseguer, “UML
profiles for non-functional properties at work: Analyzing reliability,
availability and performance,” in Proc. 2nd Int. Workshop Non Funct.
Syst. Properties Domain Specific Model. Lang. Affiliated MoDELS
(NFPinDSML), vol. 553. Denver, CO, USA, Oct. 2009, pp. 1–15.
[Online]. Available: http://www.CEUR-WS.org

[29] J. Merseguer, J. Campos, and E. Mena, “Analysing Internet software
retrieval systems: Modeling and performance comparison,” Wireless
Netw., vol. 9, no. 3, pp. 223–238, 2003.

[30] A. Zimmermann, Stochastic Discrete Event Systems—Modeling,
Evaluation, Applications. Berlin, Germany: Springer, 2008.

[31] S. Bernardi and J. Campos, “A min-max problem for the computa-
tion of the cycle time lower bound in interval-based time Petri nets,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 5, pp. 1167–1181,
Sep. 2013.

[32] E. Gómez-Martínez and J. Merseguer, “Performance modeling and anal-
ysis of the universal control hub,” in Proc. 7th Eur. Perform. Eng.
Workshop Comput. Perform. Eng. (EPEW), vol. 6342. Berlin, Germany:
Springer, Sep. 2010, pp. 160–174.

[33] E. Gómez-Martínez and J. Merseguer, “Impact of SOAP implementa-
tions in the performance of a Web service-based application,” in Proc.
Int. Workshops Front. High Perform. Comput. Netw. (ISPA), vol. 4331.
Berlin, Germany: Springer, Dec. 2006, pp. 884–896.

[34] E. Gómez-Martínez, S. Ilarri, and J. Merseguer, “Performance analysis
of mobile agents tracking,” in Proc. 6th Int. Workshop Softw. Perform.
(WOSP), Buenos Aires, Argentina, Feb. 2007, pp. 181–188.

[35] D. Perez-Palacin, J. Merseguer, and S. Bernardi, “Performance aware
self-managed software: Evaluation using Petri nets,” Univ. Zaragoza,
Zaragoza, Spain, Rep., 2013.

[36] S. Bernardi, J.-M. Colom, J. Albareda, and C. Mahulea, “A model-based
approach for the specification and verification of clinical guidelines,” in
Proc. IEEE Emerg. Technol. Factory Autom. (ETFA), Barcelona, Spain,
Sep. 2014, pp. 1–8.

[37] J. Campos, G. Chiola, and M. Silva, “Ergodicity and throughput bounds
of Petri nets with unique consistent firing count vector,” IEEE Trans.
Softw. Eng., vol. 17, no. 2, pp. 117–125, Feb. 1991.

[38] J. Desel and J. Esparza, Free Choice Petri Nets. New York, NY, USA:
Cambridge Univ., 1995.

[39] J. Campos and M. Silva, “Structural techniques and performance bounds
of stochastic Petri net models,” in Advances in Petri Nets (Lecture Notes
in Computer Science), vol. 609. Berlin, Germany: Springer-Verlag, 1992,
pp. 352–391.

[40] Y. Souissi, “Deterministic systems of sequential processes: A class
of structured Petri nets,” in Advances in Petri Nets (Lecture Notes
in Computer Science), vol. 674, G. Rozenberg, Ed. Berlin, Germany:
Springer, 1993, pp. 406–426.

[41] GSPN Repository. Accessed: Nov. 4, 2017. [Online]. Available:
https://bitbucket.org/simbern/gspn-benchmark/wiki/Home

[42] J. M. Colom, E. Teruel, and M. Silva, “Logical properties of P/T systems
and their analysis,” in Performance Models for Discrete Event Systems
With Synchronization: Formalisms and Analysis Techniques, G. Balbo
and M. Silva, Eds. Zaragoza, Spain: Kronos, 1998, pp. 185–232.

[43] E. G. Amparore, “Reengineering the editor of the GreatSPN frame-
work,” in Proc. Int. Workshop Petri Nets Softw. Eng. (PNSE), vol. 1372,
Jun. 2015, pp. 153–170.

[44] L.-M. Hillah, F. Kordon, C. Lakos, and L. Petrucci, Extending PNML
Scope: A Framework to Combine Petri Nets Types. Berlin, Germany:
Springer, 2012, pp. 46–70.

[45] D. Beyer, S. Löwe, and P. Wendler, “Benchmarking and resource mea-
surement,” in Proc. 22nd Int. Symp. Model Checking Softw. (SPIN),
vol. 9232, Springer, Aug. 2015, pp. 160–178.

[46] R. Rubinstein and D. Kroese, Simulation and the Monte Carlo Method.
Hoboken, NJ, USA: Wiley, 2008.

[47] J. Banks, J. Carson, B. Nelson, and D. Nicol, Discrete Event System
Simulation. Upper Saddle River, NJ, USA: Prentice-Hall, 2000.

[48] G. S. Shedler, Regenerative Stochastic Simulation. Boston, MA, USA:
Prentice-Hall, 1992.

[49] D. Gillespie, “Approximate accelerated stochastic simulation of chem-
ically reacting systems,” J. Chem. Phys., vol. 115, no. 4, p. 1716,
2001.

[50] M. Villen-Altamirano and J. Villen-Altamirano, “RESTART: A straight-
forward method for fast simulation of rare events,” in Proc. Win. Simulat.
Conf., Dec. 1994, pp. 282–289.

[51] P. Heidelberger, “Fast simulation of rare events in queueing and relia-
bility models,” ACM Trans. Model. Comput., vol. 5, no. 1, pp. 43–85,
1995.

[52] A. Zaliaeva, “Better stopping criterion for SCPN simulation,” M.S.
thesis, Dept. Comput. Sci. Autom., Technische Universität Ilmenau,
Ilmenau, Germany, Oct. 2017.

[53] University of Hamburg. Petri Net Tool Database. Accessed: Oct. 1, 2015.
[Online]. Available: http://www.informatik.uni-hamburg.de/
TGI/PetriNets/tools/db.html

[54] A. Charalambous, “Extension of PIPE2 to support coloured gener-
alised stochastic Petri nets,” Ph.D. dissertation, Dept. Comput., Imperial
College London, London, U.K., 2010.

http://dx.doi.org/10.1109/TSMC.2018.2815618


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RODRÍGUEZ et al.: EVALUATION FRAMEWORK FOR COMPARATIVE ANALYSIS OF GSPN SIMULATION TECHNIQUES 11

[55] R. Pelánek, “BEEM: Benchmarks for explicit model checkers,” in Model
Checking Software (Lecture Notes in Computer Science), vol. 4595,
D. Bošnacki and S. Edelkamp, Eds. Berlin, Germany: Springer, 2007,
pp. 263–267.

[56] S. Blom and H. Garavel. Very Large Transition Systems (VLTS)
Benchmark Suite. Accessed: Oct. 20, 2015. [Online]. Available:
http://cadp.inria.fr/resources/vlts/

[57] P. Ganty. Coverability Checkers Included in Mist. Accessed: Oct. 1,
2015. [Online]. Available: https://github.com/pierreganty/mist/wiki

[58] L. M. Hillah and F. Kordon, “Petri nets repository: A tool to bench-
mark and debug Petri net tools,” in Proc. 38th Int. Conf. Appl. Theory
Petri Nets Concurrency (PETRI NETS). Cham, Switzerland: Springer
Int., Jun. 2017, pp. 125–135.

[59] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Proc. IEEE Int. Symp. Circuits Syst.,
vol. 3. Portland, OR, USA, May 1989, pp. 1929–1934.

[60] K. M. van Hee and Z. Liu, “Generating benchmarks by random step-
wise refinement of Petri nets,” in Proc. Workshops 31st Int. Conf. Appl.
Theory Petri Nets Models Concurrency (PETRI NETS) 10th Int. Conf.
Appl. Concurrency Syst. Design (ACSD), vol. 827. Braga, Portugal,
Jun. 2010, pp. 403–417. [Online]. Available: http://www.CEUR-WS.org

[61] G. Bergmann, A. Horváth, I. Ráth, and D. Varró, “A benchmark eval-
uation of incremental pattern matching in graph transformation,” in
Graph Transformations (Lecture Notes in Computer Science), vol. 5214,
H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer, Eds. Heidelberg,
Germany: Springer, 2008, pp. 396–410.

[62] R. J. Rodríguez and J. Campos, “On throughput approxima-
tion of resource-allocation systems by bottleneck regrowing,”
IEEE Trans. Control Syst. Technol., to be published,
doi: 10.1109/TCST.2017.2768512.

Ricardo J. Rodríguez (M’13) received the M.S.
and Ph.D. degrees in computer science from the
University of Zaragoza, Zaragoza, Spain, in 2010
and 2013, respectively.

He is currently an Assistant Professor with the
Centro Universitario de la Defensa, General Military
Academy, Zaragoza. He was a Visiting Researcher
with Cardiff University, Cardiff, U.K., in 2011 and
2012, and Mälardalen University, Västerås, Sweden,
in 2014. He was also a Visiting Professor with the
Second University of Naples, Caserta, Italy, during

a three-month period in 2016, and Technische Universität Ilmenau, Ilmenau,
Germany, in 2017. His current research interests include performability and
dependability analysis, program binary analysis, and contactless card security.

Dr. Rodríguez has been involved in reviewing tasks for international con-
ferences and journals. He is a member of the IEEE Computer Society and
the IEEE IES Technical Committee on Factory Automation Subcommittee on
Fault Tolerant and Dependable Systems.

Simona Bernardi received the M.S. degree in math-
ematics and the Ph.D. degree in computer science
from the University of Turin, Turin, Italy, in 1997
and 2003, respectively.

She is an Assistant Professor with the Department
of Computer Science and Systems Engineering,
University of Zaragoza, Zaragoza, Spain. She has
been a Visiting Researcher with Carleton University,
Ottawa, ON, Canada, the Università degli Studi
of L’Aquila, L’Aquila, Italy, and the Università
Federico II of Napoli, Naples, Italy. She has

co-authored the book entitled Model-Driven Dependability Assessment of
Software-Systems (Springer). Her current research interests include software
engineering and process mining, in particular model driven engineering, verifi-
cation and validation of performance, dependability and survivability software
requirements, and formal methods for the modeling and analysis of software
systems.

Dr. Bernardi has been serving as a Referee for international journals, and a
Program Committee Member for over 30 different international conferences
and workshops.

Armin Zimmermann (M’06) received the Diploma,
Ph.D., and Habilitation degrees in computer sci-
ence from Technische Universität Berlin, Berlin,
Germany, in 1993, 1997, and 2006, respectively.

He is a Professor of Systems and Software
Engineering and the Director of the Institute for
Computer and Systems Engineering, Technische
Universität Ilmenau, Ilmenau, Germany. He was a
Visiting Researcher with the University of Zaragoza,
Zaragoza, Spain, in 1999. He is the Head of the
TimeNET tool development since the late 1990’s. He

has authored the book entitled Stochastic Discrete Event Systems (Springer).
His current research interests include discrete-event system modeling and
performance evaluation/rare-event simulation as well as their tool support with
applications in reliability and embedded systems.

Dr. Zimmermann has been serving as an Associate Editor for the IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS since 2008. He is a mem-
ber of the Industrial Automated Systems and Controls Subcommittee of the
IEEE IES Technical Committee on Factory Automation.

http://dx.doi.org/10.1109/TCST.2017.2768512

