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RF Power Amplifier Linearization in
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Abstract — This paper is focused on the linearization of the radio is sampled and compared to the input, by applying both
frequency power amplifier of a professional digital handheld by  signals to an error amplifier. The need of a feedback path, the
means of an artificial neural network. complexity of the Cartesian feedback algorithm and the wide

The simplicity of the neural network that is used, together with . L . . . .
the fact 'E)hat g feedback path is unnecessary makegthis solution p.”r.]ted Cl.rcun board a.rea requm_—zd to_lmplement this solution,
ideal to reduce both the cost of a handheld and its hardware difficult its electronic realization in low-cost compact
complexity, while fully maintaining its performance. devices. Some commercial Application Specific Integrated

A compensation system is also needed to keep the linearization Circuits (ASIC) integrate the Cartesian Feedback Loop and
characteristics of the neural network stable against frequency, simplify the design, but greatly increasing the price and
temperature and voltage variations. making the design of the equipment fully dependent of the
The whole solution that comprises both the neural network and  |ife cycle of the ASIC, this is: there are not pin to pin
the compensation system has been implemented in the DSP 0f &, 1o atives and therefore the design is not protected against
real handheld and afterwards fully tested. It has proved to be . .

satisfactory to meet the telecommunication standard unexpected obsolescgnce or price flyctuatlons of the ASIC.
requirements |n a” frequency, temperature and Vo|tage ranges DeSpIte a." the CarteSIan methOd IS St|” the Only methOd used
under consideration, while efficient to lower the computational to linearize amplifiers in handhelds, because the other
cost of the handheld and to make its internal hardware simpler methods proposed until today increase the complexity of the

in comparison with other traditional linearization techniques. system since they are not designed to be implemented in this
The results obtained demonstrate that a neural network can be type of low cost terminals.

used to linearize the power amplifiers that are used in "', 4or to reduce those drawbacks of the Cartesian
transmitters of telecommunication equipment, leading to a

significant reduction of both their hardware cost and method, we propose the introduction of an Atrtificial Neural

complexity. Network (ANN) [16] to determine the predistortion to be
added to the input of the amplifier, therefore compensating

Index terms — Linearization, neural network, power amplifier,  the non-linear distortion introduced by the radio frequency

predistortion, radio frequency. (RF) amplifier (Figure 2), hence reducing the corresponding
Adjacent Channel Power (ACP). The ACP is the frequency
| INTRODUCTION spectrum of the signal generated in a channel that interferes

) . into the adjacent frequency channels [17]. The reduction of
In order to increase efficiency and to meet th‘?‘ne ACP allows transmitting at higher RF power levels but

telecommunications standard_s, many dlfferenF teChn'quE§ing the same amplifier, therefore increasing its efficiency.
have been proposed and applied to extend the linear range c*

the power amplifier response: Cartesian Feedback [1],
Feedforward [2], Volterra series [3], Memory Polynomials
[4], Wiener and Hammerstein models [5], Lookup Tables "
(LUT) [6], Artificial Neural Networks (ANN) [7]-[13],
Neural-Fuzzy systems [14], Genetic Algorithms [15], etc.
One of these telecommunications standards is TETRA.
Terrestrial Trunked Radio (TETRA) is a professional

Antenna

Predistorted signal Output signal

Coupler

DSP: Cartesian Loop

communications standard designed for use in emergency | BB Generation D/A AsIC e
services, public safety and transport services. Main
characteristics of TETRA terminals are low cost, reliability Input signal I
and energy efficiency. Lo
For this purpose, the most commonly used linearization Figure 1. Linearization using Cartesian Feedback.

method in TETRA is the Cartesian Feedback technique [11
(Figure 1). In this technique the output of the power amplifie
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Figure 2. Basis of Neural Network Linearization.
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The introduction of the ANN will simplify the hardware implementation of the proposed technique in the low-cost
and will reduce the cost of a commercial Tetra terminal. F@SP available; finally, Section VII presents the conclusions
this, it is essential to obtain a neural network architecture abthis work.
simple as possible, so that it can be programmed into the DSP
of the terminal, without the need of additional hardware. II. BASELINE SPECIFICATION

Usually, the predistortion methods applied to linearize a oy this work a commercial TETRA handheld that operates
power amplifier [2]-[15] require high computing resourcesiy the 806 MHz — 870 MHz band has been selected. It has a
thus demanding the use of additional hardware computighssical 7.4 V transistor (PD54003L-E from ST Microelec-
devices as field-programmable gate arrays (FPGA), or @bnics) which works as a power amplifier and is supplied
least, much more powerful DSPs to allow processing in thgith two 3.7 V lithium cells. In order to reduce the cost of the
shortest time possible (fewer clock cycles possible). Theggndheld, that transistor has been replaced by a RF5110G RF
solutions can be easily implemented in expensivempiifier from RFMD [19], whose voltage supply range is
telecommunication infrastructures, which present much 7.4 8 v. Therefore, it can be powered by a single lithium
larger space and energy resources available than a portallg This amplifier has a Power Output Compression Point
terminal. But, the use of these solutions in terminals, highlp14g), of about 31.5 dBm. The P1dB is the output power
would increase its cost, size and energy requirements, th{gt generates a gain compression of 1dB in the amplifier
jeopardizing its commercialization. . [17]. As the output power of the amplifier approaches P1dB,

_ For this, the pre-distortion technique to be implementéfle amplifier is entering in the non-linear region of operation.
into a portable terminal must be efficient and computationally his amplifier has a maximum gain of 34 dB that can be

simple enough to be implemented in the low cost DSHgited by controlling the voltage value at the power control
available in those terminals, without additional hardwarﬁ]put pins (Vcontrol). It makes this amplifier a versatile

requirements. The currently available methods for linearizingsection suitable to minimize the cost of the handheld. Table
RF power amplifiers in infrastructures and terminals argshows a comparison between the classical 7.4V transistor
shown in Figure 3, including the neural network method fosp54003L-E and the selected RF5110GDS amplifier.
terminals proposed in this work.
TABLE 1.
COMPARATIVE BETWEEN A CLASSICAL7.4V TRANSISTOR AND THE
SELECTEDRF5110GDS\MPLIFIER.

RF5110GDS PD54003L-E
Gain 34dB 18dB
Variable gain control Yes No
P1dB 31.5dBm 32.5dBm
Vcce 2.7-4.8V 5-10V
Eff @ Pout=1W 35% 30%
Package 3x3mm 5x5mm

Figures 4 and 5 show respectively the experimental AM-
AM and AM-PM characteristics [17] of the RF5110G power
amplifier, acquired with an Agilent E5061B ENA Network
Analyzer.
The ACP can also be characterized when the amplifier is
excited with a TETRA standard signal to transmit an output
Figure 3. Methods for linearizing RF amplifiers in infrastructures and power of 1 W. Under these conditions, an ACP of 44 dBc can
terminals. be achieved at the output (Figure 6). Measurements were

The aim of this work is to design a low-cost, compacf?erformed using an Agilent N9030A PXA Signal Analyzer.

simple and efficient ANN-based power linearization system,
that can be introduced in the DSP of an ultra low-cost TETRA
handheld powered by a single 3.7 V lithium battery, capable
of transmitting 1 W of RF power in the 806-870 MHz band

and able to meet the TETRA standard requirements [18] in
all the frequency, supply voltage and temperature working
ranges.

This paper is structured as follows: Section Il describes a
baseline specification of the selected amplifier; Section Il
explains all considerations that were taken into account
before the neural network was developed; section IV presents
the results that were obtained for an ideal configuration of the
neural network without changes in the external working
conditions; Section V shows the compensation techniques
applied for variations in the external working conditions
(frequency, temperature and voltage), in order to guarantee
the linearity under any condition; Section VI focuses on the Figure 4. AM-AM characteristic of the RF5110G amplifier.

0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTE.2018.2842780, IEEE
Transactions on Industrial Electronics

3

linearization system. An Agilent ESG E4438C Vector Signal
Generator provides the RF input signal to the amplifier
according to the 1Q signals previously defined using Matlab.
The TETRA Output signal of the amplifier is demodulated
using an Agilent N9030A PXA Signal Analyzer, obtaining
the corresponding | and Q vectors that will be compared to
the input 1Q signals:

¢} = (}0cofem, 1) - ) Csirlaet) 1
Whereo(t) is the RF signall(t) andQ(t) are the phase and

quadrature baseband components, anrdis the angular
frequency of the RF carrier.

Figure 5. AM-PM characteristic of the RF5110G amplifier.
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Figure 7. Scheme for data capture.

4 PAinput - Caﬁrr 2 ‘w f M AAAAAA
MMI- MW"U'W ﬂ}vmh WWWWW}\W The input data must be as representative as possible, in
Center 838 MHz Span 80 kHz . . .
#Res BW 3 kHz VBW 300 Hz sweep 2207ms| Order to cover all possible inputs [16]. In this case we select
Total Carrier Power 0052 dBm 25 00 k- ACP-IBW 200 T1 TETRA wanted signals, each consisting of 18 frames.
Lower Upper

Carrier Power
T

Fiter  oOfsctFreq  mecBW  dbe B o dEm  Filer Each frame is composed of three blocks. Frames 1 to 17 are
e O | o e g S T e composed by the same normal burst, while frame 18 is
composed by a synchronization burst. The total size of the
input signal is 18360 bits. The generation and structure of the
T1 signal is shown in [18].

The data set to be collected will be the output of the power

Figure 6. TETRA ACP of the RF5110G without previous linearization. amplifier using T1 signal as input at the following different

The selected amplifier model has been exposed to a proc@’%k'ng condition ranges:
of early aging, obtaining that the gain and the P1dB of the - Frequency: from 806 MHz to 870 MHz
amplifier keep constant. Thus, the non-linearity function - Supply voltage: from 2.7 to 4.8 V
maintains and therefore it can be assumed that the aging is- Temperature: from -30 °C to 60 °C
not going to deteriorate the correction applied by the Neural The changes in the PA behavior due to variations in

Network. frequency, supply voltage and temperature along these ranges
make necessary a suitable data collection covering them,
. NEURAL NETWORKIMPLEMENTATION therefore allowing an accurate network training, so that it can
CONSIDERATIONS be capable to conditioning all the input signals. However, in
The process to obtain a suitable neural network, requirg&der to reduce the system complexity, a suitable datasets
the next steps: selection must be carried out by means of a properly
1. Collecting data sets for the training and test. sampling. In our case, selected values are:

2. Configure the neural network (number of neurons and - Frequency: 806, 816, 827, 838, 847, 859, 870 MHz
layers, training functions, transfer functions, - Battery voltage:2.7,3.0,3.3,3.6,3.9,4.2,45,48V

performance estimation functions). - Temperature: -30, 25, 60 °C
3. Train the network minimizing the training error. The more input data are used for training (more samples
4. Verify generalization ability. along the whole three ranges), the better the neural network
will work for input signals along the frequency, supply
A. Data collection for training and test sets voltage and temperature ranges. However, it makes more

One of the most important considerations dealing witfifficult the ~convergence to an accurate network
neural networks, is the acquisition of a suitable set of data fe@nfiguration. As will be seen, to avoid this we have split the
their training and test. full problem in three simpler ones (one for frequency, one for

Figure 7 shows the acquisition system developed to gef#PPly voltage, and one for temperature), thus reducing the
suitable set of experimental data to be used in ti@tal complexity. Firstly (Section IV), selecting a neural
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network architecture to compensate the PA non-linearities @ynchronization Channel Sequence) and TCH (Traffic
nominal working conditions, next (Section V) compensatin@hannel Sequence).
the rest of undesired effects.

) ] A)Non linear PA: B) Training objective:
B. Neural network configuration
. . e N | )

_ As the goal of this work is to embed a power amplifie it m olt) o) | e | Al
linearization system based on an ANN into a low-cost low V n(t)
size TETRA hano}held, a tradeoff betweer? efficiency, syste bower Amplifier (PAJ: Training objective: n(t) = h(t)
complexity and size must be reached. It is thus necessary A= constant gain of PA
select the minimum size of the neural network that allows hit) = non-linearity of

meet ACP TETRA requirements.

. C) When NN i lied to a signal, th -linearity i ted:
The ANN development was performed using the Matla ) When NN is applied to a signal, the non-linearity is correcte

Neural Network Toolbox [20]. In order to optimize the Inputsignal Predistorted signal Outputsignal ~ Antenna
training process many schemes have been tested [16]: N Neural ~ S
Training functions: O Network M Ax(t)
- Scaled conjugate gradient backpropagation (SCG) n(t) = h{t)
- Gradient descent with momentum and adaptive learnir _ Power Amplifier (PA)
rate backpropagation (GDX) Figure 8. Training objective of the ANN.

- Levenberg-Marquardt backpropagation (LM)

- Bayesian regularization backpropagation (BR)
Transfer functions:

- Hyperbolic tangent sigmoid transfer function (Tanh)

- Linear transfer function (Linear)

IV. NEURAL NETWORKDEVELOPMENTUNDER
NOMINAL WORKING CONDITIONS

Prior to implementing the ANN into the TETRA handheld,
it is necessary to verify that the selected architecture meets
. : _ . the previously defined requirements. For this purpose, the
- Log-sigmoid tr.ansf.er functpn (Logistic) predistorted 1Q signals are generated using Matlab, and are
Performance estimation functions: _sent to the power amplifier through the Vector Signal
- Mean squared normalized error performance functiogenerator E4438C, which can be configured as an arbitrary

(MSE) generator, providing modulated RF signals from the
- Sum squared error performance function (SSE) corresponding IQ signals.
- Mean absolute error performance function (MAE) Some different ANN configurations have been tested in

- . . order to select the most suitable architecture that minimizes
C. Training and its objective the ACP. The results presented in this Section are average
As can be seen in Figure 8A, if we consider that the P@yj,es from 10 different training cases.
transfer function isA*h(t), whereA is the constant gain and  Taple 1| shows the effect of varying the training function
h(t) represents the non-linearity, the RF output signal is givejhen a single hidden layer consisting of 20 neurons is used.
by: As Table Il shows, the simpler first order algorithms SCG and
o(t= AEh(t)[I (t) (2) GDX are not able to provide an ACP value standard-
compliant, while both the Levenberg-Marquardt and
The objective of the training process (Figure 8B) is tBayesian regularization backpropagation do. Otherwise, the
calculate the neural network weight set that compensates Huditional complexity of the BR algorithm compared to the
effect ofh(t), so that for an input o(t) the network provides alassical LM does not improve the results obtained.
signal output the closest @*i(t), or put another way, the Table Il shows the results obtained using different
transfer function of the neural network n(t) must be as simila@erformance functions applied to a neural network with the
as possible tbi(t) (Figure 8C). aforementioned configuration, trained using the Levenberg-
To achieve this goal, we use the different data sekdarquardt (LM) algorithm [16].
consisting of phase and quadrature signals previouslyTable IV shows the effect of varying the transfer function
collected. These data sets (Figure 9) are composed by tiéoth the hidden and the output layer in the same network
output signals from the non-linearized P#&(tf), and the using LM training and mean square error (MSE) performance
ideally linear PA output signal&fi(t)). function. In order to a more general analysis, it has been
The result obtained from this training process will be thiested neural networks using different transfer functions in
weights of the neural network that better fit to the objectiveach layer. As expected, network architectures using linear
n(t) = h'l(t), therefore minimizing the training error. functions in the hidden processors provide worst results,
while those architectures where the hyperbolic tangent is the
hidden output function provide the best results.
i Finally, table V shows the different tested architectures and
Once the network has been properly configureqyqir corresponding results when the LM training function,
minimizing the training error, its generalization ability isy;gg performance function and the hyperbolic tangent

verified using 100 different new TETRA patterns [18], NOhiqden layer) and linear (output layer) transfer functions are
used in the training process: PN9 (9 bits Pseudorand

Number Sequence, PNS), PN11 (11 bits PNS), PN15 (15 bits
PNS), PN20 (20 bits PNS), PN23 (23 bits PNS), SCH

D. Verify generalization ability
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TABLE Il function (training error):
ACP vS TRAINING FUNCTION. EXPERIMENTAL CONDITIONS. TEMPERATURE
=25C; FREQUENCY= 838MHz; VsupPPLY= 3.3V; VCONTROL=2.65V. T AT
Training function ACP (Ru = 30dBm) Weg =Wk -[3 I+ pll"J'e 3)
SCG 45 dBc
GDX 34 dBc wherelJ is the Jacobian matrix that contains first derivatives
Iél\g 55;75"5; of the network errors with respect to the weights and biases,
> BC | is the identity matrix, ané is a vector of network errors
TABLE III. (MSE in this case).
ACP Vs PERFORMANCEFUNCTION. EXPERIMENTAL CONDITIONS The scalar value ¢fis variable. The term is decreased after
TEMPERATURE= ZWJEES::SLCS i:;f/MHZ' VSUPPLY=3.3V, each successful step (MSE reduction) and is increased only
o Veon P (P 3005 when a tentative step would .incr.ease the MSE value. In this
MSE 57 dBc way, the performance function is always reduced at each
SSE 56.8 dBc iteration of the algorithm.
MAE 52 dBc
TABLE IV. INPUT i HIDDEN LAYER i OUTPUT

ACP VS TRANSFERFUNCTION. EXPERIMENTAL CONDITIONS
TEMPERATURE= 25°C; FREQUENCY= 838MHz; VSUPPLY= 3.3V;
VCONTROL=2.65V.

Transfer functions (hidden / output layers)  ACR.(® 30dBm)
Linear Linear 47 dBc
Logistic Linear 52 dBc

Tanh Linear 57 dBc
Linear Logistic 32 dBc
Linear Tanh 34 dBc
Logistic Tanh 56 dBc

Tanh Tanh 56.5 dBc

TABLE V.

ACP vs NUMBER OFHIDDEN LAYERS — NEURONS EXPERIMENTAL
CONDITIONS. TEMPERATURE= 25C; FREQUENCY= 838MHz; VSUPPLY=
3.3V, VCONTROL= 2.65V. b ‘ ] )
Number of hidden layers and neuron ACR,P30dBm) Figure 9. Neural Network configuration.

1-5 49 dBc _
1-10 54 dBc The gradient can be computed as:
1-15 55.5 dBc A=JTe @)
1-16 55.8 dBc . ) .
1-17 56 dBo The evolution of the gradient apdover time can be seen
1-18 56.4 dBC in figure 10.
1-19 56.6 dBc
1-20 57 dBc " Gradient = 9.7954e-007, at epoch 201
1-30 57.2 dBc =,
2 - 20 (1st hidden), 10@ 57.3 dBc R
10" : : : : L L !
Because the ACP limit in TETRA standard is 55 dBc, it is , M= 001 at epoch 201
advisable to select an architecture giving a wider value, thus 0 — —
compensating possible tolerances in the amplifier. In z [‘
addition, it must be noted that the ACP values are given in 100 e
Iogarlthmlg dBc scale, so that a dlﬁerence of 1.5 dBc (as is Figure 10. Gradient andevolution over time for a 1-20-1 ANN
the case in the 1-15 and 1-20 architectures, see Table V) configuration.

represents a linear factor of about 1.4.

According to the results shown in Tables Il to V, an ANN During the training process, the network performance
compliant with the aforementioned requirements will consigtvolves according to Figure 11. The best training
of one hidden layer with 20 processors working with @erformance obtained with these conditions was -2(%8
hyperbolic tangent output function, linear function in thavith a minimum gradient of 9:80". The data used for
output layer, using the Levenberg-Marquardt algorithm in tH&aining is composed by 160 T1 signals (the 80% dataset),
training process with MSE performance function. Thavhile network performance test is calculated using the
resultant neural network is showed in Figure 9. remaining 40 T1 signals (20% of the dataset).

The number of weights of the final network will be 102, Figure 12 shows the regression plot, comparing the real
what is fully assumable allowing to introduce the neuradutput of the network with the desired output (target). In some
network in the DSP of the handheld. occasions a reduced MSE value can be obtained having

The Levenberg-Marquardt algorithm updates the weighfiimerous very poorly adjusted training examples (provided
(w) of the neural network during the training, regarding ththe rest have a much lower error), leading to a bad adjustment.

next equation and in order to minimize the performancEhis figure is of particular relevance, showing that the low
MSE achieved corresponds to a good match for the full data

0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTE.2018.2842780, IEEE

Transactions on Industrial Electronics

set.

processor or field programmable gate array, and therefore

Under these conditions the achieved ACP is 57 dBc (Talteoving away from the main purpose of this work.

V1), meeting the TETRA standard limit (55 dBc) [18]. In this
way, the ACP of the power amplifier achieves 13 dBA

TABLE VIl

CP VS FREQUENCY. EXPERIMENTAL CONDITIONS TEMPERATURE= 25C,;

improvement, compared to the amplifier without a  vsuppLy=3.3v;0uTPUT POWERE 30dBm;VCONTROL= 2.65V.
linearization technique (see Section Il). Frequency| ACP with ANN linearization, withojt ACP TETRA
frequency effect compensation | standard limit
806 MHz 49.5 dBc 55 dBc
838 MHz 57 dBc 55 dBc
870 MHz 54 dBc 55dBc
TABLE VIII.

ACP VS SUPPLY VOLTAGE EXPERIMENTAL CONDITIONS TEMPERATURE=
25C; FREQUENCY= 838MHz; OuTPUT POWER= 30dBm; VCONTROL=
2.65V.

Vsupply | ACP with ANN linearization, withouy ACP TETRA
voltage effect compensation standard limit
27V 42 dBc 55 dBc
3V 47 dBc 55 dBc
33V 57 dBc 55 dBc
Figure 11. Performance over time for a 1-20-1 ANN. Best MSE value is 36V 47 dBc 55 dBc
obtained after 200 iterations. 39V 42 dBc 55 dBc
42V 41 dBc 55 dBc
45V 38 dBc 55 dBc
48V 35 dBc 55 dBc
TABLE IX.

ACP vS TEMPERATURE EXPERIMENTAL CONDITIONS FREQUENCY=
838MHz; VsuppLY= 3.3V; OUTPUT POWER= 30dBm;VCONTROL= 2.65
vV

Temperature ACP with ANN linearization, | ACP TETRA
without temperature effect standard limit
compensation
-30°C 44 dBc 45 dBc
25°C 57 dBc 55 dBc
60 °C 53 dBc 45 dBc

A. Frequency effect compensation

It is possible to define three transmission frequency ranges

Figure 12. Regression plot after network convergence (maximum allowe(i':igure 13) in order to compensate the frequency effect
MSE reached). ’ . . . '

Then, for each range of frequency, a different ANN is trained,

TABLE VL. thus obtaining different weight values, while maintaining the
ACP AND EVM ACHIEVED FOR DIFFERENT PATTERNS same architecture.
Tl PN9 PN11 PN15 PN2Q PN2 SCH TCH
EVM
%) 2.3 2.2 2.2 2.2 2.2 2.2 2.3 2.3
ACP
@pe) | 57 | 572| s72| s72| s7a) 574 57 57

V.COMPENSATIONTECHNIQUESFORCHANGESIN
WORKING CONDITIONS

The Cartesian method has a feedback loop that allows toThis suggests the existence of three different neural
correct the non-linearity of the PA even when the externaktworks with the same structure but different coefficients
conditions change. However, our solution, in order to reduckepending on the frequency used. This frequency
costs, does not have any feedback loop and therefore wismgmentation avoids the use of additional inputs, and
transmission frequency (f), supply voltage (Vsupply) otherefore reduces the computational complexity of the global
operation temperature (T) change, the power amplifier altesslution at a low increase of use of data storage resources.
its transfer function, thus reducing the efficiency of th&able X and Figure 14 show the ACP results for the full
proposed system, therefore reducing the ACP improvemefrequency range.

These effects are shown in Tables VII to IX, applying the TABLE X

obtained architecture to the validation dataset previouslyacp arrerFrReQUENCYCOMPENSATION EXPERIMENTAL CONDITIONS
generated. In order to consider those effects, it is possible toTEMPERATURE= 25°C; VsuPPLY= 3.3V; OUTPUT POWER= 30 dBm;
add the corresponding inputs to a larger linearization ANN. VCONTROL=2.65V.

Figure 13. Frequency ranges.

. . . . Frequency ACP with / without ANN linearization
However, this approach can dramatically increase both size
q tational lexity of th | network. th 806 - 827 MHz 55 dBc / 42 dBc
and computational complexity of the neural network, thus |—-—g7eye 57 dBo/ 44 dBo
hindering its implementation in a low-cost electronic [—g15-870vnz 56 dBc/ 43 dBe
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As can be seen, the ACP obtained is slightly better in theltage to determine the battery power level and its operating
central sub-band than in the lower and upper ones, mainly dife; hence, no additional computing requirements are needed
to the inherent linearity of the power amplifier in thisand computational complexity is reduced, overcoming in this

frequency range. way the need of increase both the ANN structure and the data
set size.
60
58 60
56 e
55 O
54 // \\
52 '/' ‘\\
50 / \
2
5 20 Ve N
a = A AN
g s 7
T L .
4 = e 3
---ACP without frequency compensation 40 S
44 —ACP with frequency compensation \\\
«eerns ACP limit ---ACP without voltage compensation Sl
42 35 —ACP with voltage compensation T
40 weees ACP limit
806 810 814 818 822 826 830 834 838 842 846 850 854 858 862 866 870 30
Frequency (MHz) 272829 3 3.13.23.33.43.53.63.73.83.9 4 4.1424.34.4454.64.74.8
Figure 14. ACP after ANN linearization: before (dash line) and after ) Supply voltage (V) )
(continuous line) frequency compensation. Figure 16. ACP after ANN linearization: before (dash line) and after

(continuous line) supply voltage compensation.

B. Voltage effect compensation

The effect of supply voltage variations can be compensated
by modifying the input power of the power amplifier

according to changes in the supply voltage. This input pow\éff1

of the PA can be set by controlling the Vg signal in Figure 1§_ain control of the amplifier (varying Vcontrol in Figure 15)

Table Xl shows the input power variations required and tHE order fo m;\prove the AEP' T;\t:cle Xrl: anddl_:flrgure 1 ST(C.)W
corresponding ACP obtained at the output. the results that were achieved for three different working

temperatures.
" parie o veueely As in the case of supply voltage compensation, this
o a solution requires a continuous temperature monitoring in
- o/A > Modulator order to properly modify the voltages Vg and Vcontrol.

Compensation of the temperature effect

Similarly, temperature effects can be compensated by
rying the input power (varying Vg in Figure 15) and the

T Again, because the handheld permanently monitors the
temperature in order to compensate several different features,
Vg Local . . -
osiutor Veontrol the proposed solution results in the use of no additional
computing or electronic resources.
Figure 15. Block diagram of the linearization solution. TABLE XIL.
TABLE XI ACP AFTER TEMPERATURECOMPENSATION EXPERIMENTAL CONDITIONS
. VsuppLY= 3.3V; FREQUENCY= 838MHz.
ACP AFTERV syppLy COMPENSATION EXPERIMENTAL CONDITIONS Temperature P(Vg) Vé?ontrol P ACP
TEMPERATURE= 25C; FREQUENCY= 838MHz; VCONTROL=2.65V. . : ke
Vsupply Input power | Output power ACP with -30°C -3.1dBm 215V 30.7dBm _ 56.2 dBc
Py (VG) P VG = (Veurm) 25°C -2.6 dBm 2.65V 30.1dBm)  57dB
27V 24dBm 8.3 dBm 575 dBC 60 °C -2 dBm 2.65V 30.1dBm 57 dBd
3V -3.6 dBm 29.2 dBm 57.5 dBc 60
33V -2.6 dBm 30.1dBm 57 dBc 58
36V -1.9 dBm 30.9 dBm 57dBc 56 RN,
39V -1.2 dBm 31.6 dBm 56 dBc " Y
42V -0.3dBm 32.0dBm 56 dBc .
45V 0.4 dBm 32.7 dBm 55 dBc = ;
48V 1.1dBm 33.1dBm 55 dBc g0 :
§ 48 Pt
As can be seen in Table XI, the output power varies whe “° i~
the input power is varied. However, the output power keep * ==~ ACP without temperature compensation
. .. —ACP with i
meeting the limits of the TETRA standard [18]. Results for T e B
the whole supply voltage range are shown in Figure 16. 40

Th I . . . I I -30-25-20-15-10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60
is solution requires a continuous supply voltage Temperature (<0

monitoring in order to properly modify th? iNnput POWer.  Figure 17. ACP after ANN linearization: before (dash line) and after
However, the handheld permanently monitors the supply (continuous line) temperature compensation.

0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTE.2018.2842780, IEEE
Transactions on Industrial Electronics

DS P Vsupply
Frequency Variable Gain
" 1Q Amplifier
Data Low Pass RRC Filter 1Q
(I y (— NN
gen. Filter D/A Modulator
ve Local
Oscilator
Voltage Voltage
Compensation Compensation Veontrol
Look-up Table Look-up Table
(LUT) (LUT)
h T Fy
Voltage sensor Temperature
sensor

Figure 18. Global solution scheme for the power amplifier linearization by using a neural network.

After considering the aforementioned proposed Figure 19 shows the signal spectrum at the input and output
compensation techniques, Figure 18 presents the complefeahe power amplifier with and without ANN linearization.
scheme that has been used to increase the linear range ofTthe ACP improvement applying the ANN linearization
power amplifier by means of an ANN, including thesystem is 13 dB. Measurements were obtained using an
compensation of frequency, temperature and supply voltagegilent N90O30A PXA Signal Analyzer.
variations.

Due to the frequency, supply voltage and temperatufe
compensation techniques, the training of the neural network
is carried out only during the manufacturing process of the
handheld. This greatly reduces the complexity, allowing
simplify both the hardware (a feedback loop is not required)
and the software (it is not necessary to recalculate the neyral
network coefficients), and making feasible the introduction
of the neural network in the handheld.

VI. IMPLEMENTATION OF THE NEURAL NETWORK
IN A LOW-COSTTETRAHANDHELD

Once the neural network has been trained and validated, it
is possible to study its implementation in the standard digitgal
signal processor (DSP) included in the TETRA handheld that
has been selected. Other issues have been reported inlthe
literature referring to ANNs implemented in a DSP [22] [25]. Figure 19. Power amplifier input and output spectrum with and without

In particular, the OMAP5910 dual core processor of Texas ANN linearization.

Instruments is mounted in this handheld. This processg
includes a dual MAC (multiply-accumulate) TMS320C55x
DSP architecture. This DSP performs the following
functions:
- It generates the TETRA frame
- Itapplies the predistortion to the TETRA frame by usin(
the ANN
- It selects the suitable ANN architecture and modifies t
gain parameters according to the frequency, supp
voltage and temperature values

Processing data with an ANN adds a time delay in t
output signal. In particular, for the proposed architectu
using 20 neurons in the hidden layer and employing th
TMS320C55x DSP at 144MHz, the number of clock cycle
to calculate the ANN output is around 25000, which Figure 20. Constellation and EVM after applying the neural network.

corresponds to a time delay of no more than p35fully . .
compatible with the timing requirements of the TETRA Figure 20 shows the EVM (E.Tmr Vect_or Magmtude) [21]
standard [18]. of the output signal of the amplifier, obtained by applying the
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ANN linearization. As it can be seen in the constellatioshown in Table XIV. The only contras that the proposed
diagram, both magnitude and phase errors are complying wittethod presents with respect to the Cartesian Loop are the
the requirements of the TETRA standard [18], which meamequirement of an initial training of the neural network, and
that the ANN does not increase the in-band distortion of thke need for two analog outputs of the DSP. However, neither
amplifier. Measurements were obtained using an Aeroflég relevant, since the initial training is only carried out during
IFR 2310 TETRA Signal Analyzer. the manufacturing process of the terminal using external
Table XIIlI shows the results obtained using the methaddstrumentation, and the need for an additional analog output
proposed in this paper, compared to the Cartesian Feedb#ckasily obtainable with the DSP.
Loop method implemented in the original handheld, and

without linearization method. \ Vst Gain
Py 1Q amplifier -
Cartesian a Power
TABLE XlII DAC ’ Feedback [——Jmodulator Amplifier
. Loop
COMPARISON BETWEENCARTESIAN AND ANN LINEARIZATION METHOD.
Without Cartesian Proposed Neural
Linearization Feedback Loop Network veo
EVM 2.2% 2.4% 2.3%
ACP 44dBc 57.2dBc 57dBc

Figure 21. Original transmitter system including Cartesian Feedback loop

As can be seen, the proposed method provides the se™~ predistortion.
performance than the original Cartesian Feedback Lot
method, but greatly decreasing the complexity. Vasishle Gain T

DSP 1Q amplifier
VII. CONCLUSIONS E } ol Ar:?i\:felrer
This paper demonstrates the feasibility of applying a
artificial neural network to increase the power transmissic
efficiency in a low-cost professional RF communication:
handheld, based on TETRA standard and able to transmi veo
watt in the 806-870MHz frequency band.
The simple architecture of the ANN required for this task
allows its implementation in the low cost Digital Signal

Processor (DSP) embedded in the handheld at no significantjike previous works that apply complex ANNs to

resource cost. In addition, it is possible to establish a stratggysorize RF power amplifiers [7]-[13] requiring additional

of dividing the predistortion process in different sub-tasks bé’omputing hardware as FPGAs or powerful DSPs (thus

selecting the ANN parameters according to the frequengyienting this solutions to static infrastructures), this work
band. Furthermore, the effects of supply voltage angh forms the practical implementation of a simple ANN into

temperature can be compensated by varying the amplifigfs psp of a radio terminal, and the compensation of possible
gain with the information provided by the defined LUTSchanges in working conditions such as frequency,

(Look-up Tables). _temperature and supply voltage, therefore allowing to
Afirst look to the advantages of the new proposed solutiQfiy ity and eliminate parts of hardware that until now were
using ANN, compared to the traditional Cartesian feedbagte essary. This will have repercussions in a reduction of cost
loop, can be shown by comparing Figures 21 and 22. In thay sjze of the terminals. The cost reduction due to the
original TETRA handheld block diagram (Figure 21), theyplementation of the neural network in the DSP of the
DSP is responsible for generating the TETRA frame befoig;gheld can be increased with an additional 17% by using
its Ilne_arlzat|on using th_e _Carte3|an feedback loop. Thee RF5110G amplifier that can be supplied with only one
Cartesian feedback loop is implemented on an ASIC. If the7 v jithium cell, instead of the normally used transistors
ANN system is applied instead of the original Cartesiaghat need two lithium cells (7.4V). This means that the

feedback loop (Figure 22), the use of an ASIC to implemeptqnosed linearization technique can reduce the handheld
the linearization algorithm and the need of a RF feedbagi«t in more than a 25%.

path are no longer required, thus leading to an important
reduction of the Printed Circuit Board (PCB) area and a 10% TABLE XIV.
reduction of the cost of the terminal, as well as eliminating— COMPARISON BETWEENCARTESIAN AND PROPOSEDANN METHOD.

Figure 22. New transmitter system including ANN predistortion.

the reliance on pos§ible ASIC stock variations, obsollesce.r €€ artesian | Not ini:;fs leaming Feedbaci?g;;)afequired.
or unexpected cost increase. Although the ANN predistortion Feedback | required. Higher economic cost.
method requires continuous adjustment (Vg and Vcontrol jn  Loop Only one DSP analog Greater PCB area required.
Figure 18), this adjustment is made automatically by the output required (Vg). | Possible need of an ASIC.
algorithm implemented in the DSP without any additiongl = ANN Less economic cost. | Initial learning required.
hardware cost, while the continuous adjustment made for thénearization | Less PCB area required. Two DSP analog outputs
Cartesian loop requires additional hardware to implement the :e%tuireﬁedb“k loop required (Vg and Veontrol

feedback loop. A resume of pros and contras between

Cartesian feedback loop and the proposed ANN predistortiongq, future works, it will be interesting to apply this neural
method for RF power amplifiers linearization in terminals i§,enwork method:
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In the 300-400MHz Tetra band. [11]

- With amplifiers with other technologies such as LDMOS
or GaN.

- With wide band modulations such as LTE.

(12]

This work is a real alternative to the Cartesian Feedback
Loop method used in low cost terminals for linearizing thg3]
RF power amplifier. In addition, though this work has been
focused on TETRA standard, it can be extrapolated easilytQ;
any mobile phone terminal, which makes this work a
tremendously attractive solution for the telecommunications
industry due to its design simplicity, which allows an easy
implementation into the DSP of any low cost terminal, so that
can be applied to other digital modulation standards like

GSM, UMTS, LTE, etc., simplifying the hardware of th

e[|16]

devices and hence reducing the cost of terminals, while
maintaining their performance and meeting the standards[f]
each modulation.

(18]

ACKNOWLEDGMENTS [19]

This work has been partially funded by TEC2015-6575Q20;
R (MINECO/FEDER, UE) and by the company Teltronic.

The authors would like to thank the company Teltronic fo!
the collaboration in the tests that have been described in thig
work.

(1]

(2

(3]

(4]

(5]

(6]

(7]

8l

19

[10]

REFERENCES (23]

Pipilos, S, Papananos, Y., Naskas, N., Zervakis, M., Jakob Jongsma,
Gschier, T., Wilson, N., Gibbins, J., Carter, B., Dann, G., “A
transmitter IC for TETRA systems based on a Cartesian feedback loop
linearization technique”, IEEE Journal of Solid State Circuits, vol. 4024]
no. 3, pp. 707-718, Mar. 2005.

Gokceoglu, A.; Ghadam, A.; Valkama, M., “Steady-State Performance
Analysis and Step-Size Selection for LMS-Adaptive Wideband
Feedforward Power Amplifier Linearizer’, IEEE Transactions or[25]
Signal Processing, vol. 60, no. 1, pp. 82-99, Jan. 2012.

Haoran Yu, Kamal El-Sankary and Ezz |. El-Masry, “Distortion
Analysis Using Volterra Series and Linearization Technigue of Nano-
Scale Bulk-Driven CMOS RF AmplifierlEEE Transactions on
Circuits and Systems I: regular papers, vol. 62, no. 1, pp. 19-28, Jan.
2015.

Morgan, D.R. ; Zhengxiang Ma ; Jaehyeong Kim ; Zierdt, M.G. ;
Pastalan, J., “A Generalized Memory Polynomial Model for Digital
Predistortion of RF Power Amplifiers”, IEEE Transactions on Signal
Processing, vol.54, no. 10, pp 3852-3860, Oct. 2006.

Gilabert, P.L.; Montoro, G.; Bertran, E., “On the Wiener and
Hammerstein models for power amplifier predistortion”, Microwave
Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference
Proceedings, vol. 2.

Bo Ai ; Zhi-Xing Yang ; Chang-Yong Pan ; Shi-gang Tang ; Tao—ta%f
Zhang, “Analysis on LUT Based Predistortion Method for HPA with

10
F. Mkadem, S. Boumaiza, “Physically Inspired Neural Network Model
for RF Power Amplifier Behavioral Modeling and Digital

Predistortion,” in IEEE Trans. Microwave Theory and Techniques, vol.
59, no. 4, pp. 913-923, Apr. 2011

M. Rawat and F. M. Ghannouchi, “Distributed Spatiotemporal Neural
Network for Nonlinear Dynamic Transmitter Modeling and Adaptive
Digital Predistortion,” IEEE Trans. Instrumentation and Measurement,
vol. 61, no. 3, pp. 595-608, Mar. 2012.

Naskas N., Papananos Y., "Neural-Network-Based Adaptive Baseband
Predistortion Method for RF Power Amplifiers”, IEEE Trans. Circuits
and Systems-Il, vol. 51, no. 11, pp. 619-623, Nov. 2004.

Jiménez, V.P.G. ; Jabrane, Y. ; Armada, A.G. ; Said, B.AE. ;
Ouahman, A.A., “High Power Amplifier Pre-Distorter Based on
Neural-Fuzzy Systems for OFDM Signals”, |IEEE Transactions on
Broadcasting, vol. 57, no. 1, pp. 149 — 158, Mar. 2011.

Moritz, R. ; Leung, H. ; Xinping Huang, “Nonlinear Compensation for
High Power Amplifiers using Genetic Programming”, |EEE
International Symposium on Circuits and Systems, 2007. ISCAS 2007,
pp. 2323 — 2326.

S. Haykin, Neural Networks and Learning Machines, 3rd ed. Upper
Saddle River, NJ: Prentice-Hall, 2009.

P.B. Kenington, High-Linearity RF Amplifier Design. Boston, MA:
Artech House, 2000.

ETSI EN300 394-1 V3.1.1 (2007-11). Terrestrial Trunked Radio
(TETRA); Conformance testing specification; Part1: Radio.

RFMD Datasheet DS110914: RF5110G, 3V general purpose GSM
power amplifier.

Hudson M., Hagan M.T., Demuth H.B., “Matlab. Neural Network
Toolbox. User's Guide”, ed. R2014b, Oct. 2014.

Fugin Xiong, Digital Modulation Techniques, 2nd ed. Artech House,
2006.

Kim N, Kehtarnavaz N, Yeary MB, Thornton S., “DSP-based
hierarchical neural network modulation signal classification”, |IEEE
Transactions on Neural Networks, vol. 14, no. 5, pp. 1065-1071, Sept.
2003.

Yang F., Paindavoine M., “Implementation of an RBF neural network
on embedded systems: real-time face tracking and identity
verification”, IEEE Transactions on Neural Networks, vol. 14, no. 5,
pp. 1162-1175, Sept. 2003.

Seul Jung, Sung Su Kim, “Hardware Implementation of a Real-Time
Neural Network Controller with a DSP and an FPGA for Nonlinear
Systems”, IEEE Transactions on Industrial Electronics, vol. 54, no. 1,
pp. 265-271, Feb. 2007.

Muller, U.A. ; Gunzinger, A. ; Guggenbuhl, Walter, “Fast neural net
simulation with a DSP processor array”, IEEE Transactions on Neural
Networks, vol. 6, no. 1, pp. 203-213, Jan. 1995.

Rall Gracia was born in Zaragoza, Spain.
He received the B.Sc. degree in
Telecommunications Engineering from the
University of Zaragoza, Zaragoza, Spain,
in 1999.
Currently, he is working towards the Ph.D.
degree at the Electronic Engineering and
Communications Department, University
Zaragoza, while working at Teltronic. His research

Memory”, IEEE Transactions on Broadcasting, vol. 53, no. 1, Mainterests include neural networks application for radio

2007.
Zhan Su, Janusz Kolbusz, and Bogdan M. Wilamowski, “Linearization
of Bipolar Amplifiers Based on Neural-Network Training Algorithm”,
IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3737-
3744, June 2016.

S. Boumaiza and F. Mkadem, “Wideband RF power amplifier
predistortion using real-valued time-delay neural networks,” in
Proceedings 39th European Microwave Conference, October 2009, pp.
1449-1452.

M. Rawat, K. Rawat, and F. M. Ghannouchi, “Adaptive Digital
Predistortion of Wireless Power Amplifiers/Transmitters Using
Dynamic Real-Valued Focused Time-Delay Line Neural Networks,”
IEEE Trans. Microwave Theory and Techniques, vol. 58, no. 1, pp. 9
104, Jan. 2010.

frequency systems, radio communications and microwaves.

Nicolas Medrano (M'96) was born in
Zaragoza, Spain. He received the B.Sc.
and Ph.D. degrees in Physics from the
University of Zaragoza, Zaragoza, Spain,
in 1989 and 1998, respectively.

He is currently an Associate Professor of
Electronics with the Faculty of Physics
and a Member of the Group of Electronic

%esign, Aragon Institute of Engineering Research, University

F. Mkadem, M. B. Ayed, S. Boumaiza, J. Wood, and P. Aaefdf Zaragoza. His current research interests include adaptive
“Behavioral modeling and digital predistortion of power amplifierssignal processing, integrated sensor interfaces, wireless
with memory using two hidden layers artificial neural networks,” ingensor networks, and intelligent instrumentation.

IEEE MTT-S Int. Microw. Symp. Dig., 2010, pp. 656-659.

0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



