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Abstract – This paper is focused on the linearization of the radio 
frequency power amplifier of a professional digital handheld by 
means of an artificial neural network.  
The simplicity of the neural network that is used, together with 
the fact that a feedback path is unnecessary, make this solution 
ideal to reduce both the cost of a handheld and its hardware 
complexity, while fully maintaining its performance. 
A compensation system is also needed to keep the linearization 
characteristics of the neural network stable against frequency, 
temperature and voltage variations. 
The whole solution that comprises both the neural network and 
the compensation system has been implemented in the DSP of a 
real handheld and afterwards fully tested. It has proved to be 
satisfactory to meet the telecommunication standard 
requirements in all frequency, temperature and voltage ranges 
under consideration, while efficient to lower the computational 
cost of the handheld and to make its internal hardware simpler 
in comparison with other traditional linearization techniques. 
The results obtained demonstrate that a neural network can be 
used to linearize the power amplifiers that are used in 
transmitters of telecommunication equipment, leading to a 
significant reduction of both their hardware cost and 
complexity. 
 
Index terms – Linearization, neural network, power amplifier, 
predistortion, radio frequency. 

 

I. INTRODUCTION 

In order to increase efficiency and to meet the 
telecommunications standards, many different techniques 
have been proposed and applied to extend the linear range of 
the power amplifier response: Cartesian Feedback [1], 
Feedforward [2], Volterra series [3], Memory Polynomials 
[4], Wiener and Hammerstein models [5], Lookup Tables 
(LUT) [6], Artificial Neural Networks (ANN) [7]-[13], 
Neural-Fuzzy systems [14], Genetic Algorithms [15], etc. 

One of these telecommunications standards is TETRA. 
Terrestrial Trunked Radio (TETRA) is a professional 
communications standard designed for use in emergency 
services, public safety and transport services. Main 
characteristics of TETRA terminals are low cost, reliability 
and energy efficiency.  

For this purpose, the most commonly used linearization 
method in TETRA is the Cartesian Feedback technique [1] 
(Figure 1). In this technique the output of the power amplifier 
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is sampled and compared to the input, by applying both 
signals to an error amplifier. The need of a feedback path, the 
complexity of the Cartesian feedback algorithm and the wide 
printed circuit board area required to implement this solution, 
difficult its electronic realization in low-cost compact 
devices. Some commercial Application Specific Integrated 
Circuits (ASIC) integrate the Cartesian Feedback Loop and 
simplify the design, but greatly increasing the price and 
making the design of the equipment fully dependent of the 
life cycle of the ASIC, this is: there are not pin to pin 
alternatives and therefore the design is not protected against 
unexpected obsolescence or price fluctuations of the ASIC. 
Despite all the Cartesian method is still the only method used 
to linearize amplifiers in handhelds, because the other 
methods proposed until today increase the complexity of the 
system since they are not designed to be implemented in this 
type of low cost terminals. 

In order to reduce those drawbacks of the Cartesian 
method, we propose the introduction of an Artificial Neural 
Network (ANN) [16] to determine the predistortion to be 
added to the input of the amplifier, therefore compensating 
the non-linear distortion introduced by the radio frequency 
(RF) amplifier (Figure 2), hence reducing the corresponding 
Adjacent Channel Power (ACP). The ACP is the frequency 
spectrum of the signal generated in a channel that interferes 
into the adjacent frequency channels [17]. The reduction of 
the ACP allows transmitting at higher RF power levels but 
using the same amplifier, therefore increasing its efficiency. 

 
Figure 1. Linearization using Cartesian Feedback. 

 

 
Figure 2. Basis of Neural Network Linearization.  
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The introduction of the ANN will simplify the hardware 
and will reduce the cost of a commercial Tetra terminal. For 
this, it is essential to obtain a neural network architecture as 
simple as possible, so that it can be programmed into the DSP 
of the terminal, without the need of additional hardware. 

Usually, the predistortion methods applied to linearize a 
power amplifier [2]-[15] require high computing resources, 
thus demanding the use of additional hardware computing 
devices as field-programmable gate arrays (FPGA), or at 
least, much more powerful DSPs to allow processing in the 
shortest time possible (fewer clock cycles possible). These 
solutions can be easily implemented in expensive 
telecommunication infrastructures, which present much 
larger space and energy resources available than a portable 
terminal. But, the use of these solutions in terminals, highly 
would increase its cost, size and energy requirements, thus 
jeopardizing its commercialization. 

For this, the pre-distortion technique to be implemented 
into a portable terminal must be efficient and computationally 
simple enough to be implemented in the low cost DSPs 
available in those terminals, without additional hardware 
requirements. The currently available methods for linearizing 
RF power amplifiers in infrastructures and terminals are 
shown in Figure 3, including the neural network method for 
terminals proposed in this work. 

 

 
Figure 3. Methods for linearizing RF amplifiers in infrastructures and 

terminals. 
 

The aim of this work is to design a low-cost, compact, 
simple and efficient ANN-based power linearization system, 
that can be introduced in the DSP of an ultra low-cost TETRA 
handheld powered by a single 3.7 V lithium battery, capable 
of transmitting 1 W of RF power in the 806-870 MHz band 
and able to meet the TETRA standard requirements [18] in 
all the frequency, supply voltage and temperature working 
ranges. 

This paper is structured as follows: Section II describes a 
baseline specification of the selected amplifier; Section III 
explains all considerations that were taken into account 
before the neural network was developed; section IV presents 
the results that were obtained for an ideal configuration of the 
neural network without changes in the external working 
conditions; Section V shows the compensation techniques 
applied for variations in the external working conditions 
(frequency, temperature and voltage), in order to guarantee 
the linearity under any condition; Section VI focuses on the 

implementation of the proposed technique in the low-cost 
DSP available; finally, Section VII presents the conclusions 
of this work. 

II. BASELINE SPECIFICATION 

For this work a commercial TETRA handheld that operates 
in the 806 MHz – 870 MHz band has been selected. It has a 
classical 7.4 V transistor (PD54003L-E from ST Microelec-
tronics) which works as a power amplifier and is supplied 
with two 3.7 V lithium cells. In order to reduce the cost of the 
handheld, that transistor has been replaced by a RF5110G RF 
amplifier from RFMD [19], whose voltage supply range is 
2.7-4.8 V. Therefore, it can be powered by a single lithium 
cell. This amplifier has a Power Output Compression Point 
(P1dB), of about 31.5 dBm. The P1dB is the output power 
that generates a gain compression of 1dB in the amplifier 
[17]. As the output power of the amplifier approaches P1dB, 
the amplifier is entering in the non-linear region of operation. 

This amplifier has a maximum gain of 34 dB that can be 
limited by controlling the voltage value at the power control 
input pins (Vcontrol). It makes this amplifier a versatile 
selection suitable to minimize the cost of the handheld. Table 
I shows a comparison between the classical 7.4V transistor 
PD54003L-E and the selected RF5110GDS amplifier. 

 

TABLE I. 
COMPARATIVE BETWEEN A CLASSICAL 7.4V TRANSISTOR AND THE 

SELECTED RF5110GDS AMPLIFIER. 
  RF5110GDS PD54003L-E 

Gain 34dB 18dB 
Variable gain control Yes No 

P1dB 31.5dBm 32.5dBm 
Vcc 2.7-4.8V 5-10V 

Eff @ Pout=1W 35% 30% 
Package 3x3mm 5x5mm 

 
Figures 4 and 5 show respectively the experimental AM-

AM and AM-PM characteristics [17] of the RF5110G power 
amplifier, acquired with an Agilent E5061B ENA Network 
Analyzer. 

The ACP can also be characterized when the amplifier is 
excited with a TETRA standard signal to transmit an output 
power of 1 W. Under these conditions, an ACP of 44 dBc can 
be achieved at the output (Figure 6). Measurements were 
performed using an Agilent N9030A PXA Signal Analyzer. 

 

 
Figure 4. AM-AM characteristic of the RF5110G amplifier. 



0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2018.2842780, IEEE
Transactions on Industrial Electronics

3 
 

 

Figure 5. AM-PM characteristic of the RF5110G amplifier. 
 

 

Figure 6. TETRA ACP of the RF5110G without previous linearization. 
 

The selected amplifier model has been exposed to a process 
of early aging, obtaining that the gain and the P1dB of the 
amplifier keep constant. Thus, the non-linearity function 
maintains and therefore it can be assumed that the aging is 
not going to deteriorate the correction applied by the Neural 
Network. 

III.  NEURAL NETWORK IMPLEMENTATION 

CONSIDERATIONS 

The process to obtain a suitable neural network, requires 
the next steps: 

1. Collecting data sets for the training and test. 
2. Configure the neural network (number of neurons and 

layers, training functions, transfer functions, 
performance estimation functions). 

3. Train the network minimizing the training error. 
4. Verify generalization ability. 
 

A. Data collection for training and test sets 

One of the most important considerations dealing with 
neural networks, is the acquisition of a suitable set of data for 
their training and test. 

Figure 7 shows the acquisition system developed to get a 
suitable set of experimental data to be used in the 

linearization system. An Agilent ESG E4438C Vector Signal 
Generator provides the RF input signal to the amplifier 
according to the IQ signals previously defined using Matlab. 
The TETRA Output signal of the amplifier is demodulated 
using an Agilent N9030A PXA Signal Analyzer, obtaining 
the corresponding I and Q vectors that will be compared to 
the input IQ signals: 

 ( ) ( ) ( ) ( ) ( )tsintQ-tcostI = to cc ϖϖ ∗∗  (1) 

Where o(t) is the RF signal, I(t) and Q(t) are the phase and 
quadrature baseband components, and ωc is the angular 
frequency of the RF carrier. 

 
Figure 7. Scheme for data capture. 

 
The input data must be as representative as possible, in 

order to cover all possible inputs [16]. In this case we select 
200 T1 TETRA wanted signals, each consisting of 18 frames. 
Each frame is composed of three blocks. Frames 1 to 17 are 
composed by the same normal burst, while frame 18 is 
composed by a synchronization burst. The total size of the 
input signal is 18360 bits. The generation and structure of the 
T1 signal is shown in [18]. 

The data set to be collected will be the output of the power 
amplifier using T1 signal as input, at the following different 
working condition ranges: 

- Frequency: from 806 MHz to 870 MHz 
- Supply voltage: from 2.7 to 4.8 V 
- Temperature: from -30 ºC to 60 ºC 

The changes in the PA behavior due to variations in 
frequency, supply voltage and temperature along these ranges 
make necessary a suitable data collection covering them, 
therefore allowing an accurate network training, so that it can 
be capable to conditioning all the input signals. However, in 
order to reduce the system complexity, a suitable datasets 
selection must be carried out by means of a properly 
sampling. In our case, selected values are: 

- Frequency: 806, 816, 827, 838, 847, 859, 870 MHz 
- Battery voltage: 2.7, 3.0, 3.3, 3.6, 3.9, 4.2, 4.5, 4.8 V 
- Temperature: -30, 25, 60 ºC 

The more input data are used for training (more samples 
along the whole three ranges), the better the neural network 
will work for input signals along the frequency, supply 
voltage and temperature ranges. However, it makes more 
difficult the convergence to an accurate network 
configuration. As will be seen, to avoid this we have split the 
full problem in three simpler ones (one for frequency, one for 
supply voltage, and one for temperature), thus reducing the 
total complexity. Firstly (Section IV), selecting a neural 
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network architecture to compensate the PA non-linearities at 
nominal working conditions, next (Section V) compensating 
the rest of undesired effects. 

B. Neural network configuration 

As the goal of this work is to embed a power amplifier 
linearization system based on an ANN into a low-cost low-
size TETRA handheld, a tradeoff between efficiency, system 
complexity and size must be reached. It is thus necessary to 
select the minimum size of the neural network that allows to 
meet ACP TETRA requirements. 

The ANN development was performed using the Matlab 
Neural Network Toolbox [20]. In order to optimize the 
training process many schemes have been tested [16]: 

Training functions:  
- Scaled conjugate gradient backpropagation (SCG) 
- Gradient descent with momentum and adaptive learning 

rate backpropagation (GDX) 
- Levenberg-Marquardt backpropagation (LM) 
- Bayesian regularization backpropagation (BR) 

Transfer functions: 
- Hyperbolic tangent sigmoid transfer function (Tanh) 
- Linear transfer function (Linear) 
- Log-sigmoid transfer function (Logistic) 

Performance estimation functions:  
- Mean squared normalized error performance function 

(MSE) 
- Sum squared error performance function (SSE) 
- Mean absolute error performance function (MAE) 

C. Training and its objective 

As can be seen in Figure 8A, if we consider that the PA 
transfer function is A*h(t), where A is the constant gain and 
h(t) represents the non-linearity, the RF output signal is given 
by: 

 ( ) ( )tIthA = o(t) ∗∗  (2) 
 

The objective of the training process (Figure 8B) is to 
calculate the neural network weight set that compensates the 
effect of h(t), so that for an input o(t) the network provides a 
signal output the closest to A*i(t) , or put another way, the 
transfer function of the neural network n(t) must be as similar 
as possible to h-1(t) (Figure 8C). 

To achieve this goal, we use the different data sets 
consisting of phase and quadrature signals previously 
collected. These data sets (Figure 9) are composed by the 
output signals from the non-linearized PA (o(t)), and the 
ideally linear PA output signals (A*i(t) ). 

The result obtained from this training process will be the 
weights of the neural network that better fit to the objective 
n(t) = h-1(t), therefore minimizing the training error. 

 

D. Verify generalization ability 

Once the network has been properly configured, 
minimizing the training error, its generalization ability is 
verified using 100 different new TETRA patterns [18], not 
used in the training process: PN9 (9 bits Pseudorandom 
Number Sequence, PNS), PN11 (11 bits PNS), PN15 (15 bits 
PNS), PN20 (20 bits PNS), PN23 (23 bits PNS), SCH 

(Synchronization Channel Sequence) and TCH (Traffic 
Channel Sequence). 

 

 

Figure 8. Training objective of the ANN. 

IV.  NEURAL NETWORK DEVELOPMENT UNDER 

NOMINAL  WORKING CONDITIONS 

Prior to implementing the ANN into the TETRA handheld, 
it is necessary to verify that the selected architecture meets 
the previously defined requirements. For this purpose, the 
predistorted IQ signals are generated using Matlab, and are 
sent to the power amplifier through the Vector Signal 
Generator E4438C, which can be configured as an arbitrary 
generator, providing modulated RF signals from the 
corresponding IQ signals. 

Some different ANN configurations have been tested in 
order to select the most suitable architecture that minimizes 
the ACP. The results presented in this Section are average 
values from 10 different training cases. 

Table II shows the effect of varying the training function 
when a single hidden layer consisting of 20 neurons is used. 
As Table II shows, the simpler first order algorithms SCG and 
GDX are not able to provide an ACP value standard-
compliant, while both the Levenberg-Marquardt and 
Bayesian regularization backpropagation do. Otherwise, the 
additional complexity of the BR algorithm compared to the 
classical LM does not improve the results obtained. 

Table III shows the results obtained using different 
performance functions applied to a neural network with the 
aforementioned configuration, trained using the Levenberg-
Marquardt (LM) algorithm [16]. 

Table IV shows the effect of varying the transfer function 
of both the hidden and the output layer in the same network 
using LM training and mean square error (MSE) performance 
function. In order to a more general analysis, it has been 
tested neural networks using different transfer functions in 
each layer. As expected, network architectures using linear 
functions in the hidden processors provide worst results, 
while those architectures where the hyperbolic tangent is the 
hidden output function provide the best results. 

Finally, table V shows the different tested architectures and 
their corresponding results when the LM training function, 
MSE performance function and the hyperbolic tangent 
(hidden layer) and linear (output layer) transfer functions are 
used. 
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TABLE II. 
ACP VS TRAINING FUNCTION. EXPERIMENTAL CONDITIONS: TEMPERATURE 

= 25ºC; FREQUENCY = 838MHZ; VSUPPLY = 3.3V; VCONTROL = 2.65V. 
Training function ACP (Pout = 30dBm) 

SCG 45 dBc 
GDX 34 dBc 

LM 57 dBc 
BR 55.5 dBc 

 

TABLE III. 
ACP VS PERFORMANCE FUNCTION. EXPERIMENTAL CONDITIONS: 
TEMPERATURE = 25ºC; FREQUENCY = 838MHZ; VSUPPLY = 3.3V; 

VCONTROL = 2.65V. 
Performance function ACP (Pout = 30dBm) 

MSE 57 dBc 
SSE 56.8 dBc 
MAE 52 dBc 

 

TABLE IV. 
ACP VS TRANSFER FUNCTION. EXPERIMENTAL CONDITIONS: 

TEMPERATURE = 25ºC; FREQUENCY = 838MHZ; VSUPPLY= 3.3V; 
VCONTROL = 2.65V. 

Transfer functions (hidden / output layers) ACP (Pout = 30dBm) 
Linear Linear 47 dBc 
Logistic Linear 52 dBc 
Tanh Linear 57 dBc 
Linear Logistic 32 dBc 
Linear Tanh 34 dBc 
Logistic Tanh 56 dBc 
Tanh Tanh 56.5 dBc 

 
TABLE V. 

ACP VS NUMBER OF HIDDEN LAYERS – NEURONS. EXPERIMENTAL 

CONDITIONS: TEMPERATURE = 25ºC; FREQUENCY = 838MHZ; VSUPPLY = 

3.3V; VCONTROL = 2.65V. 
Number of hidden layers and neurons ACP (Pout = 30dBm) 

1 – 5 49 dBc 
1 - 10 54 dBc 
1 - 15 55.5 dBc 
1 - 16 55.8 dBc 
1 - 17 56 dBc 
1 - 18 56.4 dBc 
1 – 19 56.6 dBc 
1 - 20 57 dBc 
1 - 30 57.2 dBc 

2 - 20 (1st hidden), 10 (2nd) 57.3 dBc 
 

Because the ACP limit in TETRA standard is 55 dBc, it is 
advisable to select an architecture giving a wider value, thus 
compensating possible tolerances in the amplifier. In 
addition, it must be noted that the ACP values are given in 
logarithmic dBc scale, so that a difference of 1.5 dBc (as is 
the case in the 1-15 and 1-20 architectures, see Table V) 
represents a linear factor of about 1.4. 

According to the results shown in Tables II to V, an ANN 
compliant with the aforementioned requirements will consist 
of one hidden layer with 20 processors working with a 
hyperbolic tangent output function, linear function in the 
output layer, using the Levenberg-Marquardt algorithm in the 
training process with MSE performance function. The 
resultant neural network is showed in Figure 9. 

The number of weights of the final network will be 102, 
what is fully assumable allowing to introduce the neural 
network in the DSP of the handheld. 

The Levenberg-Marquardt algorithm updates the weights  
( w ) of the neural network during the training, regarding the 
next equation and in order to minimize the performance 

function (training error): 
 

 eJµI]J[J-ww T-1T
KK +=+1  (3) 

 

where J is the Jacobian matrix that contains first derivatives 
of the network errors with respect to the weights and biases, 
I is the identity matrix, and e is a vector of network errors 
(MSE in this case). 
The scalar value of μ is variable. The term µ is decreased after 
each successful step (MSE reduction) and is increased only 
when a tentative step would increase the MSE value. In this 
way, the performance function is always reduced at each 
iteration of the algorithm.  

 

 
Figure 9. Neural Network configuration. 

 
The gradient can be computed as: 

 eJT=∆  (4) 
The evolution of the gradient and μ over time can be seen 

in figure 10. 
 

 
Figure 10. Gradient and μ evolution over time for a 1-20-1 ANN 

configuration. 
 

During the training process, the network performance 
evolves according to Figure 11. The best training 
performance obtained with these conditions was 2.18·10-4, 
with a minimum gradient of 9.8·10-7. The data used for 
training is composed by 160 T1 signals (the 80% dataset), 
while network performance test is calculated using the 
remaining 40 T1 signals (20% of the dataset).   

Figure 12 shows the regression plot, comparing the real 
output of the network with the desired output (target). In some 
occasions a reduced MSE value can be obtained having 
numerous very poorly adjusted training examples (provided 
the rest have a much lower error), leading to a bad adjustment. 
This figure is of particular relevance, showing that the low 
MSE achieved corresponds to a good match for the full data 
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set. 
Under these conditions the achieved ACP is 57 dBc (Table 

VI), meeting the TETRA standard limit (55 dBc) [18]. In this 
way, the ACP of the power amplifier achieves 13 dB 
improvement, compared to the amplifier without a 
linearization technique (see Section II). 

 

 
Figure 11. Performance over time for a 1-20-1 ANN. Best MSE value is 

obtained after 200 iterations. 

 
Figure 12. Regression plot after network convergence (maximum allowed 

MSE reached). 
 

TABLE VI. 
ACP AND EVM ACHIEVED FOR DIFFERENT PATTERNS 

 T1 PN9 PN11 PN15 PN20 PN23 SCH TCH 
EVM 
(%) 

2.3 2.2 2.2 2.2 2.2 2.2 2.3 2.3 

ACP 
(dBc) 

57 57.2 57.2 57.2 57.1 57.1 57 57 

V. COMPENSATION TECHNIQUES FOR CHANGES IN 

WORKING CONDITIONS 

The Cartesian method has a feedback loop that allows to 
correct the non-linearity of the PA even when the external 
conditions change. However, our solution, in order to reduce 
costs, does not have any feedback loop and therefore when 
transmission frequency (f), supply voltage (Vsupply) or 
operation temperature (T) change, the power amplifier alters 
its transfer function, thus reducing the efficiency of the 
proposed system, therefore reducing the ACP improvement. 
These effects are shown in Tables VII to IX, applying the 
obtained architecture to the validation dataset previously 
generated. In order to consider those effects, it is possible to 
add the corresponding inputs to a larger linearization ANN. 
However, this approach can dramatically increase both size 
and computational complexity of the neural network, thus 
hindering its implementation in a low-cost electronic 

processor or field programmable gate array, and therefore 
moving away from the main purpose of this work. 

 
TABLE VII. 

ACP VS FREQUENCY. EXPERIMENTAL CONDITIONS: TEMPERATURE = 25ºC; 
VSUPPLY = 3.3V; OUTPUT POWER = 30 dBm; VCONTROL = 2.65 V. 

Frequency ACP with ANN linearization, without 
frequency effect compensation 

ACP TETRA 
standard limit 

806 MHz 49.5 dBc 55 dBc 
838 MHz 57 dBc 55 dBc 
870 MHz 54 dBc 55dBc 

 
TABLE VIII. 

ACP VS SUPPLY VOLTAGE.  EXPERIMENTAL CONDITIONS: TEMPERATURE = 

25ºC; FREQUENCY = 838MHZ; OUTPUT POWER = 30 dBm; VCONTROL = 

2.65 V. 
Vsupply ACP with ANN linearization, without 

voltage effect compensation 
ACP TETRA 
standard limit 

2.7 V 42 dBc 55 dBc 
3 V 47 dBc 55 dBc 

3.3 V 57 dBc 55 dBc 
3.6 V 47 dBc 55 dBc 
3.9 V 42 dBc 55 dBc 
4.2 V 41 dBc 55 dBc 
4.5 V 38 dBc 55 dBc 
4.8 V 35 dBc 55 dBc 

 
TABLE IX. 

ACP VS TEMPERATURE. EXPERIMENTAL CONDITIONS: FREQUENCY = 

838MHZ; VSUPPLY = 3.3V; OUTPUT POWER = 30 dBm; VCONTROL = 2.65 

V. 
Temperature ACP with ANN linearization, 

without temperature effect 
compensation 

ACP TETRA 
standard limit 

-30 ºC 44 dBc 45 dBc 
25 ºC 57 dBc 55 dBc 
60 ºC 53 dBc 45 dBc 

A. Frequency effect compensation 

It is possible to define three transmission frequency ranges 
(Figure 13), in order to compensate the frequency effect. 
Then, for each range of frequency, a different ANN is trained, 
thus obtaining different weight values, while maintaining the 
same architecture. 

 

 
Figure 13. Frequency ranges. 

 
This suggests the existence of three different neural 

networks with the same structure but different coefficients 
depending on the frequency used. This frequency 
segmentation avoids the use of additional inputs, and 
therefore reduces the computational complexity of the global 
solution at a low increase of use of data storage resources. 
Table X and Figure 14 show the ACP results for the full 
frequency range. 

 

TABLE X. 
ACP AFTER FREQUENCY COMPENSATION. EXPERIMENTAL CONDITIONS: 

TEMPERATURE = 25ºC; VSUPPLY = 3.3V; OUTPUT POWER = 30 dBm; 
VCONTROL =2.65V. 

Frequency ACP with / without ANN linearization 
806 - 827 MHz 55 dBc / 42 dBc 
827 - 848 MHz 57 dBc / 44 dBc 
848 - 870 MHz 56 dBc / 43 dBc 
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As can be seen, the ACP obtained is slightly better in the 
central sub-band than in the lower and upper ones, mainly due 
to the inherent linearity of the power amplifier in this 
frequency range. 

 

 
Figure 14. ACP after ANN linearization: before (dash line) and after 

(continuous line) frequency compensation. 
 

B. Voltage effect compensation 

The effect of supply voltage variations can be compensated 
by modifying the input power of the power amplifier 
according to changes in the supply voltage. This input power 
of the PA can be set by controlling the Vg signal in Figure 15. 
Table XI shows the input power variations required and the 
corresponding ACP obtained at the output. 

 
Figure 15. Block diagram of the linearization solution. 

 
TABLE XI. 

ACP AFTER VSUPPLY COMPENSATION. EXPERIMENTAL CONDITIONS: 
TEMPERATURE = 25ºC; FREQUENCY = 838MHZ; VCONTROL =2.65V. 

Vsupply Input power 
Pin (Vg) 

Output power 
Pout 

ACP with 
Vg = f(Vsupply) 

2.7 V -4.4 dBm 28.3 dBm 57.5 dBc 
3 V -3.6 dBm 29.2 dBm 57.5 dBc 

3.3 V -2.6 dBm 30.1 dBm 57 dBc 
3.6 V -1.9 dBm 30.9 dBm 57dBc 
3.9 V -1.2 dBm 31.6 dBm 56 dBc 
4.2 V -0.3 dBm 32.0 dBm 56 dBc 
4.5 V 0.4 dBm 32.7 dBm 55 dBc 
4.8 V 1.1 dBm 33.1 dBm 55 dBc 

 
As can be seen in Table XI, the output power varies when 

the input power is varied. However, the output power keeps 
meeting the limits of the TETRA standard [18]. Results for 
the whole supply voltage range are shown in Figure 16. 

This solution requires a continuous supply voltage 
monitoring in order to properly modify the input power. 
However, the handheld permanently monitors the supply 

voltage to determine the battery power level and its operating 
life; hence, no additional computing requirements are needed 
and computational complexity is reduced, overcoming in this 
way the need of increase both the ANN structure and the data 
set size. 

 

 
Figure 16. ACP after ANN linearization: before (dash line) and after 

(continuous line) supply voltage compensation. 
 

C. Compensation of the temperature effect 

Similarly, temperature effects can be compensated by 
varying the input power (varying Vg in Figure 15) and the 
gain control of the amplifier (varying Vcontrol in Figure 15) 
in order to improve the ACP. Table XII and Figure 17 show 
the results that were achieved for three different working 
temperatures. 

As in the case of supply voltage compensation, this 
solution requires a continuous temperature monitoring in 
order to properly modify the voltages Vg and Vcontrol. 
Again, because the handheld permanently monitors the 
temperature in order to compensate several different features, 
the proposed solution results in the use of no additional 
computing or electronic resources. 

 
TABLE XII. 

ACP AFTER TEMPERATURE COMPENSATION. EXPERIMENTAL CONDITIONS: 
VSUPPLY = 3.3V; FREQUENCY = 838MHZ. 

Temperature Pin (Vg) Vcontrol Pout ACP 
-30 ºC -3.1 dBm 2.75 V 30.7 dBm 56.2 dBc 
25 ºC -2.6 dBm 2.65 V 30.1 dBm 57 dBc 
60 ºC -2 dBm 2.65 V 30.1 dBm 57 dBc 

 
Figure 17. ACP after ANN linearization: before (dash line) and after 

(continuous line) temperature compensation. 
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Figure 18. Global solution scheme for the power amplifier linearization by using a neural network. 

 
After considering the aforementioned proposed 

compensation techniques, Figure 18 presents the complete 
scheme that has been used to increase the linear range of the 
power amplifier by means of an ANN, including the 
compensation of frequency, temperature and supply voltage 
variations.  

Due to the frequency, supply voltage and temperature 
compensation techniques, the training of the neural network 
is carried out only during the manufacturing process of the 
handheld. This greatly reduces the complexity, allowing to 
simplify both the hardware (a feedback loop is not required) 
and the software (it is not necessary to recalculate the neural 
network coefficients), and making feasible the introduction 
of the neural network in the handheld. 

VI.  IMPLEMENTATION OF THE NEURAL NETWORK 

IN A LOW-COST TETRA HANDHELD 

Once the neural network has been trained and validated, it 
is possible to study its implementation in the standard digital 
signal processor (DSP) included in the TETRA handheld that 
has been selected. Other issues have been reported in the 
literature referring to ANNs implemented in a DSP [22] [25]. 

In particular, the OMAP5910 dual core processor of Texas 
Instruments is mounted in this handheld. This processor 
includes a dual MAC (multiply-accumulate) TMS320C55x 
DSP architecture. This DSP performs the following 
functions: 

- It generates the TETRA frame 
- It applies the predistortion to the TETRA frame by using 

the ANN 
- It selects the suitable ANN architecture and modifies the 

gain parameters according to the frequency, supply 
voltage and temperature values 

Processing data with an ANN adds a time delay in the 
output signal. In particular, for the proposed architecture 
using 20 neurons in the hidden layer and employing the 
TMS320C55x DSP at 144MHz, the number of clock cycles 
to calculate the ANN output is around 25000, which 
corresponds to a time delay of no more than 175 µs, fully 
compatible with the timing requirements of the TETRA 
standard [18]. 

Figure 19 shows the signal spectrum at the input and output 
of the power amplifier with and without ANN linearization. 
The ACP improvement applying the ANN linearization 
system is 13 dB. Measurements were obtained using an 
Agilent N9030A PXA Signal Analyzer.  

 

 
Figure 19. Power amplifier input and output spectrum with and without 

ANN linearization. 
 

 
Figure 20. Constellation and EVM after applying the neural network. 

 

Figure 20 shows the EVM (Error Vector Magnitude) [21] 
of the output signal of the amplifier, obtained by applying the 
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ANN linearization. As it can be seen in the constellation 
diagram, both magnitude and phase errors are complying with 
the requirements of the TETRA standard [18], which means 
that the ANN does not increase the in-band distortion of the 
amplifier. Measurements were obtained using an Aeroflex 
IFR 2310 TETRA Signal Analyzer. 

Table XIII shows the results obtained using the method 
proposed in this paper, compared to the Cartesian Feedback 
Loop method implemented in the original handheld, and 
without linearization method. 

TABLE XIII. 
COMPARISON BETWEEN CARTESIAN AND ANN LINEARIZATION METHOD. 

 Without 
Linearization 

Cartesian 
Feedback Loop 

Proposed Neural 
Network 

EVM 2.2% 2.4% 2.3% 
ACP 44dBc 57.2dBc 57dBc 

 
As can be seen, the proposed method provides the same 

performance than the original Cartesian Feedback Loop 
method, but greatly decreasing the complexity. 

 
VII.  CONCLUSIONS 

This paper demonstrates the feasibility of applying an 
artificial neural network to increase the power transmission 
efficiency in a low-cost professional RF communications 
handheld, based on TETRA standard and able to transmit 1 
watt in the 806-870MHz frequency band.  

The simple architecture of the ANN required for this task 
allows its implementation in the low cost Digital Signal 
Processor (DSP) embedded in the handheld at no significant 
resource cost. In addition, it is possible to establish a strategy 
of dividing the predistortion process in different sub-tasks by 
selecting the ANN parameters according to the frequency 
band. Furthermore, the effects of supply voltage and 
temperature can be compensated by varying the amplifier 
gain with the information provided by the defined LUTs 
(Look-up Tables). 

A first look to the advantages of the new proposed solution 
using ANN, compared to the traditional Cartesian feedback 
loop, can be shown by comparing Figures 21 and 22. In the 
original TETRA handheld block diagram (Figure 21), the 
DSP is responsible for generating the TETRA frame before 
its linearization using the Cartesian feedback loop. The 
Cartesian feedback loop is implemented on an ASIC. If the 
ANN system is applied instead of the original Cartesian 
feedback loop (Figure 22), the use of an ASIC to implement 
the linearization algorithm and the need of a RF feedback 
path are no longer required, thus leading to an important 
reduction of the Printed Circuit Board (PCB) area and a 10% 
reduction of the cost of the terminal, as well as eliminating 
the reliance on possible ASIC stock variations, obsolescence 
or unexpected cost increase. Although the ANN predistortion 
method requires continuous adjustment (Vg and Vcontrol in 
Figure 18), this adjustment is made automatically by the 
algorithm implemented in the DSP without any additional 
hardware cost, while the continuous adjustment made for the 
Cartesian loop requires additional hardware to implement the 
feedback loop. A resume of pros and contras between 
Cartesian feedback loop and the proposed ANN predistortion 
method for RF power amplifiers linearization in terminals is 

shown in Table XIV. The only contras that the proposed 
method presents with respect to the Cartesian Loop are the 
requirement of an initial training of the neural network, and 
the need for two analog outputs of the DSP. However, neither 
is relevant, since the initial training is only carried out during 
the manufacturing process of the terminal using external 
instrumentation, and the need for an additional analog output 
is easily obtainable with the DSP. 

 

 
Figure 21. Original transmitter system including Cartesian Feedback loop 

predistortion. 

 
 

Figure 22. New transmitter system including ANN predistortion. 
 

Unlike previous works that apply complex ANNs to 
linearize RF power amplifiers [7]-[13] requiring additional 
computing hardware as FPGAs or powerful DSPs (thus 
orienting this solutions to static infrastructures), this work 
performs the practical implementation of a simple ANN into 
the DSP of a radio terminal, and the compensation of possible 
changes in working conditions such as frequency, 
temperature and supply voltage, therefore allowing to 
simplify and eliminate parts of hardware that until now were 
necessary. This will have repercussions in a reduction of cost 
and size of the terminals. The cost reduction due to the 
implementation of the neural network in the DSP of the 
handheld can be increased with an additional 17% by using 
the RF5110G amplifier that can be supplied with only one 
3.7 V lithium cell, instead of the normally used transistors 
that need two lithium cells (7.4V). This means that the 
proposed linearization technique can reduce the handheld 
cost in more than a 25%. 

 
TABLE XIV. 

COMPARISON BETWEEN CARTESIAN AND PROPOSED ANN METHOD. 
 Pros Contras 

Cartesian 
Feedback 

Loop 

Not initial learning 
required. 
Only one DSP analog 
output required (Vg). 

Feedback loop required. 
Higher economic cost. 
Greater PCB area required. 
Possible need of an ASIC. 

ANN 
linearization 

Less economic cost. 
Less PCB area required. 
Not feedback loop 
required. 

Initial learning required. 
Two DSP analog outputs 
required (Vg and Vcontrol). 

For future works, it will be interesting to apply this neural 
network method: 
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- In the 300-400MHz Tetra band. 
- With amplifiers with other technologies such as LDMOS 

or GaN. 
- With wide band modulations such as LTE. 

This work is a real alternative to the Cartesian Feedback 
Loop method used in low cost terminals for linearizing the 
RF power amplifier. In addition, though this work has been 
focused on TETRA standard, it can be extrapolated easily to 
any mobile phone terminal, which makes this work a 
tremendously attractive solution for the telecommunications 
industry due to its design simplicity, which allows an easy 
implementation into the DSP of any low cost terminal, so that 
can be applied to other digital modulation standards like 
GSM, UMTS, LTE, etc., simplifying the hardware of the 
devices and hence reducing the cost of terminals, while 
maintaining their performance and meeting the standards of 
each modulation. 
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