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Abstract: Melatonin is produced in the pineal gland as well as many other organs, including the 

enterochromaffin cells of the digestive mucosa. Melatonin is a powerful antioxidant that resists 

oxidative stress due to its capacity to directly scavenge reactive species, to modulate the 

antioxidant defense system by increasing the activities of antioxidant enzymes, and to stimulate 

the innate immune response through its direct and indirect actions. In addition, the dysregulation 

of the circadian system is observed to be related with alterations in colonic motility and cell 

disruptions due to the modifications of clock genes expression. In the gastrointestinal tract, the 

activities of melatonin are mediated by melatonin receptors (MT2), serotonin (5-HT), and 

cholecystokinin B (CCK2) receptors and via receptor-independent processes. The levels of 

melatonin in the gastrointestinal tract exceed by 10-100 times the blood concentrations.  Also, 

there is an estimated 400 times more melatonin in the gut than in the pineal gland.  Gut 

melatonin secretion is suggested to be influenced by the food intake. Low dose melatonin 

treatment accelerates intestinal transit time whereas high doses may decrease gut motility. 

Melatonin has been studied as a co-adjuvant treatment in several gastrointestinal diseases 

including irritable bowel syndrome (IBS), constipation-predominant IBS (IBS-C), diarrhea-

predominant IBS (IBS-D), Crohn‟s disease, ulcerative colitis, and necrotizing enterocolitis. The 

purpose of this review is to provide information regarding the potential benefits of melatonin as 

a co-adjuvant treatment in gastrointestinal diseases, especially IBS, Crohn‟s disease, ulcerative 

colitis, and necrotizing enterocolitis. 

Keywords: Gastrointestinal diseases; Crohn‟s disease; melatonin; ulcerative colitis; irritable 

bowel syndrome; necrotizing enterocolitis. 
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1. Introduction: 

 Gastrointestinal melatonin is produced by enterochromaffin cells (EC) of the digestive 

mucosa where its concentrations may exceed those in the blood [1]. One of melatonin‟s 

characteristics is its high lipophilicity allowing it to diffuse into deeper layers through the 

mucosa and submucosa, to act on the muscularis mucosae or the myenteric plexus. The amount 

of gastrointestinal (GIT) melatonin is estimated to be at least 400 times greater than in the 

pineal gland [2]. Its secretion from the EC cells may be influenced by food intake [3], its actions 

in the GIT are mediated by membrane receptors including (MT2), serotonin (5-HT) receptors, 

and its capacity of activate sympathetic neurons through the brain-gut connection system, and 

its antioxidant actions [4-8]. Melatonin produces smooth muscle relaxation by stimulating 5-

HT4 receptors, whereas it may also cause smooth muscle contraction by acting on 5-HT3 

receptors. 5-HT also modulates visceral sensation [6, 9]. Moreover, it was observed recently 

that melatonin may inhibit the activity of the serotonin transporter, which controls the reuptake 

of 5-HT by intestinal epithelial cells, and inhibits NK2 receptor-triggered 5-HT release by 

acting at a MT3 melatonin receptor located in the cells of the mucosal layer [10].  Low dose 

melatonin is also observed to accelerate intestinal transit time while high doses may decrease 

GIT motility by interacting with cholecystokinin B receptor (CCK2) and 5-HT3 receptors, 

present on the vagal afferent fibers inducing, via this means, vago-vagal inhibitory reflexes [3, 

4]. Those findings are supported by melatonin‟s modulatory role on gastric emptying due to its 

capacity to alleviate the inhibitory effect of the lipid related ileal break [11]. 

 Other roles related to motility regulation by melatonin have been suggested. The 

indoleamine reduces the nitrergic component of the smooth muscle inhibitory junction potential 

through a direct inhibition of nitric oxide synthase (NOS) activity at enteric synapses. Melatonin 

may also block nicotinic channels, or interact with Ca2+-activated K+ channels generating an 

inhibitory effect through an apamin-sensitive reaction [12, 13]. Melatonin also modulates 

acetylcholine-induced contractions of intestinal strips by an extracellular calcium dependent 

pathway [14]. In addition, melatonin may reverse lipopolysaccharide-induced motility 
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disturbances, which involves a reduction in lipid peroxidation and an increase of mitogen-

activated protein kinase activation, nuclear factor kappaB (NF-κB) activation, inducible NOS 

(iNOS) expression, and finally nitrite production [15].  Finally, melatonin regulates myoelectric 

activity by relaxing the bowel during phasic contractions [16]. 

 Antinociceptive effects of melatonin have been reported, but the mechanisms are not 

well defined. A recent study suggested that these actions of melatonin were probably not 

directly at the level of the GIT since luzindole (a non-specific MT1 and MT2 receptor 

antagonist), or naltrexone (a non-specific opioid receptor antagonist), blocked the 

antinociceptive actions; this suggested viscero-motor response and modulation of lumbosacral 

spinal neuronal activity [17]. 

 Gastrointestinal melatonin may also modulate the immune response by inhibiting 

macrophage activity through the reduction of NF-κB levels, COX-2 and iNOS activity; also, it 

modulates secretion elicited by prostaglandin E2 and regulates gene expression of 

proinflammatory cytokine levels including interleukins (IL-1), tumor necrosis factor alpha 

(TNF-α) and IFN-γ [18, 21]. In addition, gastrointestinal melatonin has antioxidant effects [22, 

23], reduces prostaglandin degradation by prostaglandin reductase and limits gastric lesions and 

hydrochloric acid secretion [22-24]; it also antagonizes 5-HT actions, which are related to 

gastric ulcer formation [3]. 

 Melatonin and its metabolites function as free radical scavengers and neutralize 

superoxide (O2
·-), hydrogen peroxide (H2O2), and the hydroxyl radical (·OH) [25-29], a highly 

reactive oxygen species (ROS)[30], as well as nitric oxide (NO·) and the peroxynitrite anion 

(ONOO·-) [31, 32], which are reactive nitrogen species (RNS) [33]. In addition, the indoleamine 

stimulates the cellular antioxidant defense system increasing mRNA levels and the activities of 

several important antioxidant enzymes including superoxide dismutase (SOD, which catalyzes 

the conversion of O2
·- to H2O2) and glutathione peroxidase (GPx) and glutathione reductase 

(GRd) [34-36]. Catalase (CAT) is also stimulated by melatonin and causes direct breakdown of 
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H2O2 to O2 and H2O [37, 38]. Moreover, the indoleamine inhibits iNOS, an enzyme involved in 

NO· generation [39]. Melatonin also promotes the synthesis of another important antioxidant, 

glutathione (GSH) [40] and it synergizes with other classic antioxidants to reduce oxidative 

damage [41]. Finally, melatonin chelates transition metals thereby reducing the formation of the 

highly toxic ·OH which significantly limits the number of essential molecules that are 

oxidatively mutilated [42, 43]. 

Herein, we summarize the protective actions of melatonin against several 

gastrointestinal diseases, including irritable bowel syndrome, Crohn‟s disease, ulcerative colitis, 

and necrotizing enterocolitis. To the authors‟ knowledge, this is the first review related to these 

subjects.  

 

2. Irritable bowel syndrome: 

Irritable bowel syndrome (IBS) is a common disorder (prevalence reported between 10-

20%) characterized by recurrent abdominal pain or discomfort, in combination with disturbed 

bowel habits in the absence of identifiable organic cause [44]. IBS is 3-fold more prevalent in 

women than in men, and in the postmenopausal period this number increases to 6-fold. This 

may be a consequence of drop in melatonin secretion preceded by the rise in follicle-stimulating 

hormone (FSH) concentration in postmenopausal women [45, 46]. Its pathophysiology has been 

associated with abnormal gastrointestinal motor functions, visceral hypersensitivity, 

psychosocial factors, autonomic dysfunction, mucosal inflammation, and intestinal microbiota 

imbalance [47, 48]. Moreover, corticotropin releasing factor (CRF) is released during stress, and 

stimulates colonic motor activity via either central [49, 50] or peripheral CRF receptors [51] 

resulting in colon hyperkinesis. Depending of the IBS predominant symptoms, there are two 

clinical types: constipation predominant IBS (IBS-C) and diarrhea-predominant IBS (IBS-D). 

IBS-D is associated with reduced 5-HT reuptake, while IBS-C is related with lack of 5-HT 

release [9].  
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 Sleep disorders are also present in 26–55% of IBS patients [52] and are related to rapid 

eye movement (REM) sleep modifications [53]. In addition, the severity of IBS symptoms is 

observed to vary with the quality of the previous night‟s sleep [54]. It is suggested that sleep 

disorders are a result of an increase in the activity of the kynurenine pathway (a tryptophan 

metabolite) (Figure 1) with a reduction in the serotonin/melatonin pathway [55-57]. This theory 

was considered since some studies reported reduced ratios of kynurenine/tryptophan in IBS 

patients [58]. One human study observed increased cortisol levels with a reduced 

melatonin/tryptophan ratio in IBS [58]. The mechanisms responsible for the sleep disorders in 

IBS patients remain unexplained. 

 6-Hydroxymelatonin sulphate (6-OHMs) is a hepatic metabolite of melatonin that is 

excreted in the urine.  Urinary levels of 6-OHMs over a 24-hour period correlate well with 

plasma melatonin levels [59]. Human studies reported increased levels of 6-OHMs in 

premenopausal and postmenopausal women afflicted with IBS-C or IBS-D [60]. The authors 

did not observed significant statistical differences between IBS-C symptoms in premenopausal 

and postmenopausal females and the excretion of 6-OHMs, but a slight increase in levels of 

metabolite excretion was observed in patients with moderate symptoms. 6-OHMs, 

concentrations were found to be higher in postmenopausal women affected with IBS-D than in 

premenopausal females with a large increase in women with exacerbated symptoms. These 

results support the theory that melatonin levels in IBS women are lowered after menopause [61, 

62]. Salivary melatonin levels, which are also well correlated with melatonin plasma 

concentrations [63], are reduced in IBS patients. The salivary melatonin concentrations increase 

if melatonin is orally administered [63]. 

 Physicians usually treat IBS with antispasmodics, psychopharmacological treatments, 

psychotherapy, and newer drugs such as linaclotide, prucalopride, tegaserod, and lubiprostone, 

but disparate results are observed [64]. Antagonists of the serotonin 5-HT3 receptor are usually 

used in patients affected with IBS-D, whereas the partial agonist of serotonin 5-HT4 receptor 

alleviates symptoms of IBS-C [65, 66]. It is suggested that melatonin treatment may play an 
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important role in the regulation of intestinal motility by inhibiting nicotinic channels in the 

neurons of the submucosal plexus to regulate the cholinergic transmission and relax muscle 

contraction through an interaction with small conductance K+-channels [12, 67], or by inhibiting 

the activity of 5-HT and CRF, which are increased in IBS patients [68]. 

 Water avoidance stress generates motility disorders and increases fecal output [69]. In 

one study it was also observed that melatonin (10 mg/kg i.p.) attenuated the fecal output and 

reduced the dry weight of the stool. Furthermore, 5-HT serum levels were depressed in 

melatonin-treated animals suggesting that the modulatory effect may be mediated through the 5-

HT pathway. Melatonin also was observed to lower the amplitude of spontaneous contractions 

of colonic smooth muscle strips as well as ACH-induced and KCl-mediated contractions. This 

was presumed to be due to an interaction between melatonin and Ca2+-activated calmodulin 

preventing the latter from activating myosin light-chain kinase and inducing a reduced muscle 

contraction [70]. K+-induced contractions are attributed to a Ca2+ effect [71].  Melatonin may 

have reduced the influx of calcium. 

 Oral melatonin (3 mg) treatment has been also observed to significantly increase colonic 

transit time of healthy subjects [72]. A similar effect was observed in IBS patients, as in 

previous studies [63, 68], suggesting a predominant beneficial effect of melatonin in IBS-C 

patients.  

 In reference to abdominal pain, it was observed that 3 mg of melatonin given orally for 

2 weeks significantly reduced the discomfort with a tendency towards a greater reduction of 

abdominal distension, stool frequency, and total bowel symptoms. The authors also observed 

that rectal distension pressure and volume thresholds, which induce the sensations of urgency 

and pain, were significantly decreased [73]. Similar beneficial effects were obtained in a study 

in which melatonin improved the quality of life due to the modulation of colonic symptoms 

including pain severity and frequency, bloating, bowel habit dissatisfaction, and life 

interference. Extracolonic IBS symptoms such as headache, lethargy, nausea, early satiety, or 
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urinary disturbances were also improved [74]. Chojnacki et al. [62], in a recent study in 

postmenopausal women, observed that melatonin therapy significantly reduced pain and 

abdominal bloating in IBS-C patients.  The authors did not find similar results in IBS-D patients 

or modifications in colonic transit time in either IBS-C or IBS-D subjects. In their study, 

researchers gave melatonin twice daily (in the morning and in the evening).  Thus, they deduced 

that melatonin administration in a divided dose may be more effective because of melatonin‟s 

short half-life (30−60 min.) [75]. IBS patients usually have symptoms during the day and rarely 

at night. 

 

3. Crohn’s disease 

Inflammatory bowel diseases (IBD) include Crohn‟s disease (CD) and ulcerative colitis 

(UC), both chronic inflammatory disorders of the gastrointestinal tract which are characterized 

by a relapsing and remitting course [76]. In the United States, CD incidence is estimated to be 

6-8 per 100,000, with a prevalence of 100-200 per 100,000 [77]. IBD is a result of a 

miscommunication between the gut microbiota and the intestinal mucosal immune system, 

resulting in the failure of mucosal homeostasis. The integrity of the epithelial barrier, 

determined by genetic defects, and the presence of triggering environmental factors are also 

required to generate chronic inflammation [78]. A genetic polymorphism is not sufficient alone 

to generate the inflammatory phenotype of IBD [79]. Smoking is observed to be protective for 

UC and harmful for CD [80]. Moreover, drugs, stress, and dietary habits are also related with 

IBD pathogenesis [81]. Two recent studies show that melatonin in the gut microbiome may 

relate to melatonin‟s beneficial actions in patients with IBD [82, 83]. 

 Like UC, there exists a relationship between sleep quality and colon disease activity. A 

poor sleep quality and fatigue are common in clinically active disease compared with inactive 

disease patients [84, 85]. This effect is more pronounced in those patients with CD compared 

with UC patients. In addition, it was observed that CD patients with impaired sleep have a two-
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fold greater risk of active disease in 6 months, whereas no such relationship has been described 

in UC patients [86]. Furthermore, symptoms activity is increased in the mornings following a 

poor night of sleep, and this effect is also more usual in CD patients [87]. However, the 

relationship between sleep disorders and CD and UC diseases are poorly understood [88]. 

Figure 2 summarizes these relations.   

 Melatonin treatment for CD is rare. We found a single article related to the effects of 

melatonin (3 mg) in a CD patient [89]. The authors observed disease activation after melatonin 

treatment in a single previously inactive patient. 24 hours after stopping melatonin treatment, 

the symptoms abated. The authors suggested that melatonin may have activated a number of 

cytokines (i.e., IL-2 and IL-12) which could have exacerbated the symptoms. This presumption 

is based on the findings that Th1 and Th17 pathways appear to predominate in the inflamed 

mucosa of CD patients, whereas Th2 and Th17 factors are abundant in UC [90]. Moreover, it is 

known that Th1 increases the IFN-γ production in CD [91], and CD patients exhibit elevated 

lamina propria IL-12 production as compared to controls [92]. Melatonin promotes a Th1-

response by increasing IL-12 and IFN-γ levels [93, 94]. The observations of Calvo and co-

workers [89] require additional studies in a larger population of CD patients. 

 JAK kinase family is associated with intracellular signaling, which is initiated by the 

action of various cytokines. When JAK kinase activity is blocked, this cascade is suspended 

[95]. Usual treatments such as tofacitinib inhibit JAK1 and JAK3 [96]. A recent study suggested 

that Neu-P11 (piromelatine, N-(2-(5-methoxy-1H-indol-3-yl)ethyl)-4-oxo-4H-pyran-2 

carboxamide), a novel melatonin (MT1/MT2) and 5-HT1A/1D receptor agonist [97] protected 

the cells via activation of the JAK2 survival pathway [98]. A recent meta-analysis determined 

that a JAK2 rs10758669 polymorphism was significantly associated with CD and UC 

susceptibility [99]. Moreover, it is known that the activation of JAK2 in IL-R receptor results in 

the phosphorylation of STAT3 in activated macrophages and dendritic cells [100]. In IBD, 

JAK2/STAT3 pathway interferes with Th1, Th2, and Th17 cells [101, 102]. 
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 SMAD7 and SMAD2 also act as inhibitors of TGF-β1 and were found to be upregulated 

in CD [103, 104]. New CD treatments such as mongersen inhibits SMAD7 expression thereby 

restoring TGF-β1 levels; this leads to the suppression of inflammatory cytokine production 

[104]. Melatonin also inhibits SMAD6 and SMAD7 expression, but facilitates SMAD2 

activation [105]. In addition, miR-200b prevents this effect by targeting SMAD2, but its levels 

are inversely correlated with the TGF-β1 levels in IBD [103]. Recent studies showed that failure 

of the integrity of the intestinal epithelial barrier may be an early event in the natural history of 

IBD; this allows for the uncontrolled influx of bacterial products into the lamina propria and the 

propagation of proinflammatory mucosal responses [106]. 

 TGF-β and IL-6 are also important inducers of Th17 cells producing IL-17 and IL-22. 

IL-23 interacts with differentiated Th17 cells and causes “stabilization” and/or expansion of 

Th17 cells [107-109]. In vitro, the addition of melatonin suppresses the polarization of human T 

helper cells into the Th17 lineage [110]. However, IL-23p19 deficient mice exhibit increased 

numbers of regulatory T cells (Foxp3+ T cells) [111, 112] and, because of this, CD may develop 

because of the observed important role of Th1 pathway which causes an 40-fold greater IFN-γ 

production compare to that induced by IL-17 production [113, 114]. 

 

4. Ulcerative colitis: 

The incidence of UC is estimated to be 9-12 per 100,000, with a prevalence of 205-240 

per 100,000 [77]. Moreover, approximately 20 percent of people with UC have a close relative 

with IBD [115]. Like CD, the integrity of the epithelial barrier, genetic polymorphisms, and the 

presence of triggering environmental factors are required to generate the chronic inflammation 

[78]. Moreover, the incidence of colon cancer is increased in patients with UC, and the risk of 

colitis-associated colon carcinogenesis (CACC) augments with increased extent and duration of 

UC [116]. As stated above, Th2 and Th17 pathways are predominant in UC [90]. In addition, 

IBD-specific changes in the gut microbiota play an important role in UC disease and, because of 
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that, antibiotics or probiotics may be not effective in some cases [117]. However, probiotics like 

VSL#3 have high efficacy in preventing the development or recurrence of pouchitis in patients 

with UC who have undergone ileal-pouch-anal anastomosis [118]. The epithelial barrier also 

plays an important role in UC and treatment with phosphatidylcholine may restore barrier 

function and ameliorate intestinal inflammation [119]. Molecules such as tofacitinib, which 

inhibits JAK1 and JAK3, and several cytokines [78], are effective anti-inflammatory treatments 

in UC due to inhibition of the differentiation of effector lymphocytes of the Th2 and Th17 types 

[120]. Elevated IL-4, IL-13, and TGF-β levels are associated with the Th2 pathway [90, 121]. 

Vedolizumab is a humanized monoclonal antibody with anti-efficacy inflammatory effects on 

the gut without affecting trafficking of other sites [122]. Etrolizumab also has demonstrated 

beneficial effects against UC disease [123].  

 The number of myenteric neurons is reduced in patients affected with UC disease [124]. 

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a protective factor for different cells and 

tissues against inflammation and oxidative stress [125]. Nrf2 deficiency is observed to increase 

oxidative stress and inflammatory processes through an increased production of COX-2, iNOS, 

IL-1β, IL-6, and TNF-α. Furthermore, in these situations, decreased expression of 

antioxidant/phase II detoxifying enzymes such as heme oxygenase-1 (HO-1), quinone 

oxidoreductase (NQO-1), UDP-glucuronosyltransferase 1A1, and GST Mu-1 is observed [126]. 

It is known that, under oxidative stress conditions, Nrf2 is released from its repressor Kelch-like 

ECH-associated protein 1 (Keap1) and transforms into its activated form; this results in an 

activation of antioxidants or detoxifying enzymes [127]. Several studies reported that melatonin 

regulates Nrf2 expression [128-130]. In rats, Nrf2 expression is reduced in UC [131]. In this 

study, melatonin upregulated Nrf2 expression thereby ameliorating the histopathological 

disturbances, including the preservation of myenteric neurons, which play an important role in 

the regulation of motility and sensitivity of the intestine. 

 EC proliferation, hydroxyindole-O-methyltransferase (HIOMT) expression (an enzyme 

involved in melatonin synthesis), and increased urine excretion of 6-OHMs is apparent in the 
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acute phases of ulcerative proctitis and UC. Consequently, the augmentation of melatonin 

secretion may have a beneficial effect in anti-inflammatory and defense mechanisms [132]. 

Melatonin levels are typically lower in active patients than in patients in remission [133]. 

 Sleep deprivation plays an important role in UC by downregulating gene expression. 

These disturbances are reduced after using melatonin (10 mg/kg i.p.) [134]. In addition, 

microvascular thrombosis and oxygen free radical-induced injury are known to be important in 

UC pathogenesis [135, 136]. UC is a Th2 and Th17-like disease associated with increased IL-13 

production [137]. IL-17 levels are also elevated in UC due to Th17 activity, but its levels are 

lower in CD [114]. IL-13, IL-4, and TGF-β levels are also increased in an oxazolone-colitis 

model; however, IFN-γ levels remain normal [138, 139]. IL-13 is the most important cytokine 

involved in UC disease. As a result, treatments such as IFN-β are effective in this illness 

through a reduction in IL-13 levels [121]. Unlike in CD, melatonin may be effective in the 

treatment of UC via its capacity of attenuate IL-13 levels [140]. In addition, elevated 

homocysteine (HCY) concentrations stimulate vascular smooth muscle cell proliferation, 

increase collagen formation and deposition, lead to vascular stenosis and accelerate thrombosis 

[141, 142]. UC patients have increased plasma and intestinal mucosal levels of HCY [143-145] 

with reduced levels of melatonin [132]. HCY inhibits GPx levels, decreases NO· bioavailability, 

and generates H2O2
 [146]. However, a relationship between melatonin and HCY levels was not 

observed [132]. 

 Melatonin has been studied as a UC adjuvant treatment. Melatonin benefits against UC 

syndrome are summarized in table 1. The findings indicate melatonin may reverse the macro- 

and microscopic lesions. This relates to melatonin‟s capacity to limit lipid peroxidation (LPO), 

myeloperoxidase activity (MPO), reduce inflammatory cytokine levels, and stimulate 

antioxidant enzymes; these are all oxidative stress markers and are modified during UC [54, 

164]. Moreover, STAT-3, an important mediator in IBD, is elevated during UC since this 

disease is associated with elevated levels of IL-6, which induces STAT3 [165, 166]. NF-κB is 

important for the inflammatory process; low levels of peroxides induce its activation whereas 
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some antioxidants reduce its translocation [167, 168]. NF-κB upregulates the expression of 

TNF-α, IL-1β, iNOS, and COX-2 [169]. Elevated pentraxin-3 (PTX-3) levels, an acute phase 

protein related to C-reactive protein, is present during inflammatory conditions [170], and a 

reduction of PTX-3 gene activity results in an inflammatory process in the vascular wall with 

augmented macrophage accumulation [171]. Moreover, PTX-3 is involved in immune defense 

in inflamed colon tissue, in particular, in crypt abscess lesions of patients with UC [172]. As 

summarized in table 1, melatonin reportedly attenuates inflammatory processes thereby 

alleviating colitis. 

 Melatonin treatment also significantly enhances expression of Nrf2 and NQO-1, while 

decreasing matrix metalloproteinase-9 [158]. All these are markers of oxidative stress [173-

175]. MMPs mediate cellular infiltration, cytokine activation, cell migration, tissue damage, 

remodeling and repair [176]. TNF-α stimulates MMP-9 expression while melatonin reduces the 

levels of this cytokine [147]. 

 From the findings summarized in table 1, one report indicates a detrimental effect of 

melatonin (1-2 mg/kg) in the evolution of the lesions, levels of TNF-α and MPO activity as well 

as the hydroxyproline production, an indicator of fibrosis [144]. This latter parameter may be of 

special interest because fibrosis is a major complication of IBD [177]. These differential effects 

may be a consequence of diurnal variations of melatonin binding sites during the day [178], 

with a maximal affinity of the receptors detected in the evening [179]. It is also known that the 

capacity of melatonin to stimulate gene expression of antioxidant enzymes controls biorhythms 

[180]. This is consistent with observations in a gastric model of damage that involved ischemia–

reperfusion, where melatonin clearly diminished the number and severity of the ulcers in 

animals treated late in the afternoon while no protection was detected when treatments were 

applied in the morning [181]. Perhaps the articles with the greatest importance in table 1 are the 

human studies, which yielded good results when melatonin was used in addition to mesalazine; 

this suggests a new therapeutic option for this disease. 
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 Melatonin benefits against colitis-associated colon carcinogenesis (CACC) have been 

uncovered. In a mouse model, melatonin (1 mg/kg) reduced inflammatory markers (MPO, IL-

17, IL-6, TNF-α, NF-Kβ, STAT-3, and COX-2), oxidative stress markers (TBARS), autophagy 

markers (including Beclin-1, LC3B-II/LC3B-I ratio and p62), and DNA damage. Conversely, 

Nrf2, HO-1, and NQO-1 expression were elevated by melatonin. The benefits of melatonin were 

also reflected at the histopathological level with a decrease of tumor frequency and dysfunction 

of calcium-activated calcium channels.  The findings indicate that reduced inflammation and 

oxidative stress due to melatonin intervention in mice inhibits autophagy and prevents CACC 

malfunctions [182]. 

 

5. Necrotizing enterocolitis 

Necrotizing enterocolitis (NEC) is the most common neonatal gastrointestinal 

emergency requiring surgical intervention [183, 184]. The prevalence of the disorder is about 

7% among infants with a birth weight between 500 and 1500 g, and the estimated rate of death 

is between 20 and 30% [185].The pathogenesis of NEC is likely multifactorial, including 

immature gut function, impaired intestinal barrier, disturbed gastrointestinal motility, and 

circulatory factors [186]. Platelet-activating factor, intestinal toll-like receptors, TNF-α, 

interleukins (IL-1β, IL-6, IL-8, IL-10, IL-12), lipopolysaccharide, nitric oxide (NO), and 

oxygen-derived free radicals may also play pivotal roles in NEC pathogenesis [187-191]. In a 

preterm infant study [192], the authors measured non-protein bound iron (a marker of potential 

oxidative stress risk), and markers of free radical damage (advanced oxidation protein products 

and total hydroperoxides) in the cord blood and observed these were significantly higher in 

babies with NEC than in healthy infants. Moreover, they reported that toll-like receptor-4 is a 

crucial component of NEC vulnerability [193]. 

 Human neonates, especially those born prematurely, have an incompletely developed 

system to detoxify free radicals [194]. Thus, treatments that modulate antioxidative defense and 
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anti-inflammatory protection including hyperbaric oxygen [195], medical ozone [196],  

N-acetylcysteine [197], and glutamine alone or in conjunction with arginine [198] have been 

studied. Melatonin, a molecule that clearly upregulates these systems, ameliorated oxidative 

stress by reducing MDA levels, an index of lipid peroxidation [199], protein carbonyl content, 

TNF-α, and IL-1β levels, and stimulated SOD and GPx activities in a rat model of NEC [200]. 

Melatonin treatment combined with PGE1 [201], a cytoprotective agent in the gastrointestinal 

system mucosa, had a preventive effect against bacterial invasion and reduced inflammation and 

tissue injury [2020, 203]. Each provided preventive effects individually but melatonin was more 

effective in reducing MDA levels and elevating SOD and GPx activities. These results were 

also reflected at histopathological level.  The best results were observed using melatonin and PG 

concurrently. 

 

6. Conclusions: 

 IBD and IBS patients exhibit poor sleep quality and reduced levels of melatonin. 

Moreover, gender and aging are important risk factors for individuals suffering with IBS, with 

women exhibiting this disease more frequently than men. In IBS-C, melatonin improves life 

quality and decreases pain. In IBS-D patients the benefits of melatonin are much less apparent 

possibly because 5-HT receptors play a different role in this pathology. IBD has more 

similarities to UC, since Th2 and Th17 are involved in both and melatonin has beneficial effects 

by modulating these pathways. Recent studies also suggest that melatonin may be effective in 

preventing the progression of colitis-associated colon carcinogenesis due to its capacity to 

attenuate the induction of autophagy. In contrast, Th1 and Th17 are the major pathways 

involved in CD, and melatonin increases Th1 activity which induces more injury in the affected 

tissues. More studies are necessary to identify the potential beneficial effects of melatonin in 

these illnesses.  The potential of melatonin as a treatment for these conditions should be pursued 

because the usual treatments are not often effective and may have negative secondary effects. 
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Melatonin may be effective when given in combination with the routinely-used drugs, if for no 

other reason than, to reduce the side effects of those medications. 
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Figure 1: Kynurine and melatonin pathways. It is suggested that sleep disorders generated in 

patients affected of irritable bowel syndrome are a result of an increase in the activity of the 

kynurenine pathway with a reduction in the serotonin/melatonin pathway.  

Figure 2: Sleep disruption increases ulcerative colitis and Crohn‟s disease disturbs. However, 

these alterations may also induce sleep disruption, generating a loop not well understood yet.  
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Table 1: Studies related to melatonin‟s benefits in ulcerative colitis (UC).  MEL, Melatonin, 

MPO; myeloperoxidase, MDA; malondialdehyde, iNOS; inducible nitric oxide synthase, NO·; 

nitric oxide, PGE2; prostaglandin, E2; GSH, glutathione, MMP, matrix metallopeptidase; SOD, 

superoxide dismutase; PTX-3: pentraxin-3.  

Studies Model Melatonin dose Comments 
Cuzzocrea et al., 2001 

[147] 

Dinitrobenzene 
sulfonic acid 
(DNBS)–induced 
colitis in rats 

15 mg/kg i.p. MEL ameliorated the disruption of the colonic architecture, reduced MPO activity, MDA 
levels, appearance of nitrotyrosine, PARS immunoreactivity, ICAM-1 expression, and the 
expression of P-selectin. Staining degree of COX-2 and iNOS were also reduced. 

Dong et al., 2003 

[148] 

Acetic-acid (AA) or 
trinitrobenzene 
sulfonic  acid 
(TNBS)-induced 
colitis in rats 

2.5, 5.0, 10.0mg/kg i.c. MEL, in a dose-dependent manner, inhibit iNOS and COX-2 expression, decreased NO· 
and PGE2 levels,  

Li et al., 200 [149] TNBS-induced 
colitis in rats 

2.5, 5.0, 10.0mg/kg i.c. MEL treatment, in a dose-dependent manner, reduced macro/microscopic lesions, TNF-α, 
and ICAM-1 protein expression, and NF-κB activation. MEL 10 mg/kg obtained similar 
results to 5-aminosalicylic acid (5-ASA) group.  

Mei et al., 2005 [150] TNBS-induced 
colitis in rats 

2.5, 5.0, 10.0mg/kg i.c. MEL, in a dose-dependent manner, attenuates macro/microscopic lesions, reduced MPO 
activity, MDA, and NO· levels.  

Marquez et al.,2006 

[151] 

TNBS-induced 
colitis in rats 

0,5 mg/kg, 1 mg/kg and 2 
mg/kg i.p. 

MEL, in a dose-dependent manner, attenuates macroscopic lesions, body weight loss, and 
fibrosis markers expression. TNF-α level and MPO activity were also reduced due to MEL 
effect. Detrimental effects were observed in long-term treated animals (21 days). 

Mazzon et al., 2006 

[152] 

DNBS–induced 
colitis in rats 

15 mg/kg i.p. MEL attenuates macro/microscopic lesions, reduced the degree of the expression of JNK, 
attenuates TNF-α and IL-1β levels, and NF-κB, Bcl-2 and Bax expression.  

Nosál'ová et al., 2007 

[153] 

AA-induced colitis 
in rats 

5 mg/kg and 10 mg/kg 
i.p.or i.c. 

In a dose-dependent manner, MEL reduced macroscopic lesions, increased GSH levels, 
and decreased MPO activity. 

Esposito et al., 2008 

[154] 

DNBS–induced 
colitis in rats 

15 mg/kg i.p.  MEL treatment reduced macro/microscopic lesions, MDA levels and TNF-α level. MEL 
also reduced MMP-2 and MMP-9 activities after DNBS-induced colitis.   

Akcan et al., 2008  

[155] 

TNBS-induced 
colitis in rats 

10 mg/kg i.p.  MEL treatment reduced macro/microscopic lesions, TNF-α level, MPO and caspase-3 
activities, and bacterial translocation.  

Tahan et al., 2010 

[156] 

AA-induced colitis 
in rats 

100 mg/kg i.p. AA produced macro/microscopic lesions, increased MPO activity, and increased MDA, 
IL-1β, IL-6, and TNF-α levels. MEL attenuates significant statistical all these disturbs. 
GSH and SOD activity were also increased. 

Sayyed et al., 2013 

[157] 

AA-induced colitis 
in rats 

10 mg/kg i.p. Groups: 
Pre-treatment during 15 
days, treatment after 15 
days, treatment after 4 
weeks 

MEL treatment reduced macro/microscopic lesions, and maintain body and colon weight. 
MEL also attenuates the positive staining of NF-κb, the increased PTX-3 and lipid 
peroxides serum levels, and the decreased thiols levels. These changes are present due to 
AA effect. MEL short treatment was the most effective group. 

Trivedi and Jenna, 

2013 [158] 

Dextran sulfate 
sodium (DSS)-
induced colitis in 
rats 

2 mg/kg, 4 mg/kg, 8 
mg/kg orally 

MEL, in a dose-dependent manner, decreased UC activity, increased colon length, 
decreased MPO activity, NF-Κb, COX-2 and STAT3 levels, increased IL.6, IL-17 and 
TNF-α levels, reduced oxidative stress cytokine levels and DNA damage, and attenuates 
fibrosis.  

Chung et al., 2014 

[142] 

DSS-induced colitis 
with sleep 
deprivation in rats 

10 mg/kg i.p. MEL not recovered weight loss, but prevented weight loss and gene modification due to 
DSS-induced colitis + sleep deprivation. 

Esiringü et al., 2015 

[159] 

AA-induced colitis 
in rats 

Intracolonic melatonin 
gel  

MEL attenuates NO· levels and histological lesions, but any effects were showed in MDA 
and GSH levels.  

Trivedi et al., 2015 

[160] 

DSS-induced colitis 
associated colon 
carcinogenesis 

1 mg/kg i.p. MEL reduced UC activity, tumor multiplicity, and progression of colon carcinogenesis, 
caused a significant decrease in NF-κB, COX-2, and STAT3 levels, attenuates oxidative 
stress, autophagy and DNA damage, and caused a significant increase in Nrf2, NQO-1, 
and HO-1 levels. 

Shang et al., 2016 

[130] 

DNBS–induced 
colitis in rats 

2.5 mg/kg i.p.  MEL ameliorated the histopathological disturbs caused by DNBS, reduced MDA SOD, 
and MPO levels. Nrf2 and HO-1 reduced expression due to DNBS was modified in MEL 
rats with an upregulation of its levels. 

Tasdemir et al., 2011 

[161] 

DNBS–induced 
colitis in rats 

MEL 5mg/kg i.p. + 
erythropoietin (EPO) 
(1000 IU/kg s.c.) 

MEL groups obtained better results than EPO groups reducing histological injury, CD4 
and CD8 expression. However, MEL + EPO groups showed better results than these 
antioxidants alone. 

Mann, 2003 [162] Human model 3 mg orally UC activity was reduced during MEL treatment 

Maldonado and 

Calvo, 2008 [163] 

Human model 3 mg orally MEL triggers UC symptoms. After 24-48h of the stop of melatonin consumption, UC 
activity ceased. 

Chojnacki et al., 2011 

[132] 

Human model 5 mg orally  MEL reduced UC activity, c-reactive protein levels, and attenuates the decreased 
hemoglobin concentration in blood observed in non-melatonin treatment group. 
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