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Resumen

En los últimos años, la investigación en el campo de la Fotograf́ıa Compu-
tacional ha dado lugar a numerosos avances en las múltiples disciplinas que
lo componen, rebasando los ĺımites de la fotograf́ıa convencional. Uno de
estos ĺımites es la incapacidad de las cámaras fotográficas de representar to-
da la gama de luminancias presentes en una escena, y que se solucionó tras
la aparición de la técnica del alto rango dinámico o HDR (High Dynamic
Range). Esta técnica permite fusionar una serie de imágenes de una es-
cena, capturadas con distintos parámetros de exposición, de modo que la
imagen resultante recoge todo el rango dinámico conjunto de las imágenes
empleadas para su obtención.

En este proyecto se ha trabajado con imágenes HDR, y en particular
con el problema de reenfocado de las mismas. El desenfoque, provocado
por la limitada profundidad de campo o por una incorrecta elección de los
parámetros de la cámara, es un problema clásico en fotografia. Se han imple-
mentado y analizado dos técnicas diferentes de reenfocado de imágenes
HDR. La primera de ellas consiste en el empleo de aperturas codifi-
cadas, máscaras que se colocan en la lente de la cámara y que permiten
codificar el desenfoque, facilitando su corrección a posteriori mediante técni-
cas computacionales. El empleo de aperturas codificadas es habitual en el
reenfocado de imágenes convencionales de bajo rango dinámico o LDR (Low
Dynamic Range), pero hasta la fecha estas técnicas no se hab́ıan extendido
a las imágenes HDR y se desconoćıa su viabilidad.

La segunda técnica que se estudia es la de generación y reenfoque de
imágenes HDR con aperturas múltiples. Con esta técnica se emplean
imágenes de una misma escena obtenidas variando el tamaño de la aper-
tura, por lo que no sólo vaŕıa la exposición entre ellas, sino también el
desenfoque. Gracias a ello, se permite obtener al mismo tiempo información
sobre la luminancia y sobre la profundidad de la escena, permitiendo obte-
ner fotograf́ıas HDR de la misma, que además pueden ser reenfocadas como
se desee.

La primera parte del proyecto ha dado lugar a una publicación que
ha sido enviada al Congreso Español de Informática Gráfica (CEIG
2012), y que a fecha de hoy está pendiente de aceptación.
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3.6.2. Algoritmo genético . . . . . . . . . . . . . . . . . . . . 35

4



3.6.3. Evaluación de los patrones obtenidos . . . . . . . . . . 36
3.7. Validación f́ısica de los patrones obtenidos . . . . . . . . . . . 38
3.8. Resultados de la validación f́ısica . . . . . . . . . . . . . . . . 39

4. Aperturas múltiples 45
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4.5.2. Recuperación de luminancia L y tamaño de blur en
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Caṕıtulo 1

Introducción

Uno de los objetivos de la Fotograf́ıa Computacional es obtener mejores
representaciones de las escenas reales que las que se consiguen empleando
técnicas de fotograf́ıa convencionales. En este sentido, uno de los problemas
que presentan las cámaras fotográficas comerciales es la limitación del sen-
sor a la hora de capturar imágenes de escenas con un rango de luminancias,
o rango dinámico, elevado.

Aśı, cuando el fotógrafo se dispone a capturar una de estas escenas, de-
be escoger el rango de luminancias de interés y variar adecuadamente los
parámetros de exposición de la cámara para realizar la captura según su
necesidad. Sin embargo, se da una pérdida importante de información, ya
que aquellas partes de la escena que presenten una luminancia fuera del ran-
go seleccionado no podrán ser representadas de forma correcta. A aquellos
ṕıxeles que correspondan con las zonas de mayor luminancia, el sensor les
asignará invariablemente el máximo valor, y al revés para aquellos que se
correspondan con las zonas más oscuras, de modo que al tratar de represen-
tar escenas con un rango dinámico elevado la pérdida de detalle será muy
alta.

En este contexto, surge el concepto de imágenes de alto rango dinámico
o HDR (High Dynamic Range). Este tipo de imágenes permiten representar
un rango de luminancias más amplio que las fotograf́ıas convencionales o de
bajo rango dinámico, LDR (Low Dynamic Range), permitiendo una mejor
representación de la extensa gama de niveles de intensidad presentes en las
escenas reales.

La obtención de estas imágenes se consigue capturando una serie de
fotograf́ıas de una misma escena con distintos tiempos de exposición y fu-
sionándolas posteriormente, mediante técnicas que se encuentran implemen-
tadas en la mayoŕıa del software fotográfico convencional [4].
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Este proyecto gira en torno a este tipo de imágenes. En concreto se
centra en la codificación de la señal en su captura, para poder realizar un
reenfoque de las mismas a posteriori tras un procesado. En función de cómo
se realizan esta codificación y este procesado se divide el trabajo en dos
partes bien diferenciadas.

La primera parte consiste en la extensión a las imágenes HDR de las
técnicas existentes de aperturas codificadas para corrección de desenfoque
[13, 14, 19]. Es sabido que el efecto producido al capturar una fotograf́ıa
desenfocada puede modelarse como una convolución entre la escena perfec-
tamente enfocada y un kernel que viene determinado por la forma de la
apertura. Aśı pues, conociendo esta forma, puede parecer sencillo recupe-
rar la imagen bien enfocada mediante un simple proceso de deconvolución.
Sin embargo, las aperturas circulares convencionales ofrecen una respuesta
frecuencial muy desfavorable, ya que producen serias atenuaciones en las
frecuencias más altas de la imagen, al tiempo que presentan varios cruces
por cero en el dominio frecuencial, haciendo imposible recuperar correcta-
mente la imagen.

Estos problemas motivan la aparición de las aperturas codificadas, como
máscaras que se colocan delante de la lente de la cámara y que permiten
cambiar la forma de la apertura y, por tanto, codificar el desenfoque, ob-
teniendo patrones que eviten los problemas que presentan las aperturas
circulares.

En la actualidad existe una gran variedad de aperturas que presentan
un buen comportamiento para la corrección de desenfoques [13, 14, 19], y
está sobradamente demostrada su viabilidad.

Sin embargo, hasta la fecha no se ha estudiado la utilidad de emplear es-
tas aperturas codificadas en la captura de imágenes HDR. Además, las aper-
turas existentes han sido optimizadas para ser usadas con imágenes LDR, y
dado que las HDR presentan una serie de diferencias en las estad́ısticas de
imagen (e.g. espectro frecuencial o distribución del histograma) respecto de
las primeras [16], cabe pensar que los patrones existentes quizá no sean ópti-
mos para HDR. Aśı pues, se hace necesario un estudio a fondo del problema.

La segunda parte del proyecto consiste en el estudio de la novedosa
técnica de generación y reenfoque de imágenes HDR mediante aperturas
múltiples [9, 10], cuya principal peculiaridad radica en que la obtención de
las distintas exposiciones de la escena se realiza dejando fijo el tiempo de
exposición y modificando el tamaño de la apertura, teniendo en cuenta que
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cuanto menor sea el diámetro de ésta, menor será la cantidad de luz que
llega al sensor.

Manipulando el tamaño de la apertura, vaŕıa no sólo la exposición sino
también el desenfoque, ya que una apertura más pequeña presentará una
profundidad de campo mayor, permitiendo obtener una fotograf́ıa enfocada
de la mayor parte de la escena, mientras que una apertura más grande lleva
asociada una profundidad de campo menor, por lo que aquellas partes de la
escena que se encuentren lejos de la focal aparecerán desenfocadas.

Ésto puede parecer problemático a la hora de fusionar las exposiciones
para obtener la imagen HDR. Sin embargo, puede obtenerse una ventaja de
este problema, ya que capturando las exposiciones de esta manera se obtie-
ne al mismo tiempo información sobre la luminancia de la escena y sobre
el desenfoque, permitiendo, tras procesar las imágenes de forma adecuada,
obtener una fotograf́ıa de la escena en HDR que además puede ser reenfo-
cada como se desee.

Aśı pues, los objetivos principales de este proyecto son los siguientes:

Estudio exhaustivo del empleo de las aperturas codificadas en
imágenes HDR.

Implementación y análisis de la técnica de captura y reenfoque de
imágenes HDR mediante aperturas múltiples [9, 10].

Para la consecución del primero de los objetivos, se ha seguido el proce-
dimiento que se detalla a continuación:

Se ha comprobado la viabilidad del uso de aperturas codificadas en
imágenes HDR, empleando algunas aperturas conocidas [19], simulan-
do la captura de las imágenes desenfocadas y su posterior reenfoque.

Se han obtenido patrones de aperturas calculados espećıficamente para
imágenes HDR, empleando algoritmos genéticos.

Se han obtenido las aperturas f́ısicas y se han realizado una serie
de experimentos reales tomando fotograf́ıas desenfocadas con ellas,
evaluando su comportamiento.

Para la consecución del segundo objetivo, el procedimiento llevado a
cabo es el siguiente:

Se ha implementado un sistema simplificado de generación y reenfo-
cado de imágenes HDR mediante aperturas múltiples a partir de los
trabajos ya existentes [9, 10].
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Se ha comprobado el funcionamiento de dicho sistema con una serie
de imágenes, tanto simuladas como capturadas en un escenario real.

Todo el trabajo se ha desarrollado dentro del Graphics and Imaging
Lab, perteneciente al Grupo de Informática Gráfica Avanzada (GIGA) de
la Universidad de Zaragoza. La parte de aperturas codificadas para imáge-
nes HDR ha dado lugar a una publicación enviada al Congreso Español de
Informática Gráfica (CEIG 2012), que se encuentra pendiente de aceptación.

La duración del proyecto ha sido de un año aproximadamente, durante el
cual se han desarrollado una serie de actividades cuya distribución temporal
se muestra en el diagrama de Gantt de la Figura 1.1.

Figura 1.1: Diagrama de Gantt de las actividades realizadas

Esta memoria está estructurada en 5 caṕıtulos, incluyendo el presente
caṕıtulo introductorio. En el Caṕıtulo 2 se resumen los antecedentes del pro-
yecto realizado, introduciendo los conceptos de las imágenes de alto rango
dinámico y de las aperturas codificadas, explicando algunas de las técnicas
en que se apoya este trabajo y resumiendo brevemente las ĺıneas de investi-
gación relacionadas con él.

En el Caṕıtulo 3 se describe el trabajo realizado correspondiente a la
primera parte del proyecto, sobre aperturas codificadas para corrección de
desenfoques en imágenes HDR, explicando las técnicas que se han desa-
rrollado y los procedimientos y experimentos que se han llevado a cabo y,
finalmente, mostrando y evaluando los resultados.

En el Caṕıtulo 4 se describe el trabajo referido a la segunda parte del
proyecto, que trata del empleo de aperturas múltiples para obtención y
reenfocado de imágenes HDR. Se explican las técnicas y el procedimiento
empleados, se detallan los experimentos realizados y se muestran y discuten
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los resultados obtenidos.

En el Caṕıtulo 5 se exponen las conclusiones del trabajo realizado y se
ofrecen una serie de sugerencias para investigaciones futuras, aśı como al-
gunas apreciaciones de carácter personal.

Finalmente, se incluyen tres apéndices. El Apéndice A ofrece un breve
resumen sobre el software comercial empleado para la fusión de imágenes
HDR. El Apéndice B describe el procedimiento de inserción de una apertura
codificada en el objetivo empleado durante los experimentos. Por último, el
Apéndice C incluye el art́ıculo Analysis of Coded Apertures for Defocus De-
blurring of HDR Images, resultante de la investigación correspondiente a la
primera parte del proyecto y sometido al Congreso Español de Informática
Gráfica (CEIG 2012).
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Caṕıtulo 2

Antecedentes

2.1. Fotograf́ıa Computacional

La Fotograf́ıa Computacional es un campo multidisciplinar que combina
elementos de óptica, procesado de imágenes, electrónica, visión por compu-
tador, informática gráfica o percepción. Este campo ha crecido enormemen-
te en los últimos años, persiguiendo generalmente el objetivo de superar los
ĺımites de la fotograf́ıa convencional y obtener mejores representaciones y
mayor cantidad de información de las escenas reales.

Tradicionalmente, las cámaras fotográficas se han diseñado con la idea
de obtener representaciones bidimensionales y tricromáticas de las escenas,
pero la Fotograf́ıa Computacional va más allá, introduciendo nuevas propie-
dades y conceptos como, entre otros muchos, espectros de color, variaciones
espaciales y temporales, cambios en la dirección de la luz, extensión del
rango dinámico o aperturas codificadas, siendo estos dos últimos objeto de
estudio de este proyecto.

2.2. Fotograf́ıa de alto rango dinámico

2.2.1. Concepto del rango dinámico

En fotograf́ıa, se conoce como rango dinámico a la diferencia de lumino-
sidad presente entre las partes más luminosas y las partes más oscuras de
una escena. Se mide en diferencias de Valor de Exposición o Exposure Value
(EV), también conocidas como stops. Estrictamente, el EV no es una medi-
da de luminosidad propiamente dicha, sino una relación entre los distintos
parámetros de la cámara que determinan la exposición de una fotograf́ıa, y
viene dado por la ecuación:

EV = log2
N2

t
, (2.1)

13



donde N es la apertura relativa, que determina el nivel de iluminación y
t es el tiempo de exposición en segundos, que viene dado por la velocidad
del obturador. No obstante, se emplea el EV como medida de luminosidad,
relacionándolo con la luminancia para la cual una cámara empleaŕıa ese
EV para obtener la imagen correctamente expuesta. Por ejemplo, si en una
escena determinada se necesita un Valor de Exposición de EV1 stops para
obtener una exposición correcta de las zonas más oscuras, y otro de EV2
stops para obtener la exposición correcta de las zonas más luminosas, el
rango dinámico de esa escena seŕıa:

DR = EV2 − EV1 (2.2)

El rango dinámico que las cámaras fotográficas convencionales son ca-
paces de capturar correctamente es bastante inferior al que puede distinguir
el ojo humano. Además de las limitaciones de los sensores, los conversores
analógico-digitales restringen todav́ıa más el rango dinámico de las foto-
graf́ıas. En el Cuadro 2.1 puede verse una relación entre los bits de precisión
del conversor y el rango dinámico que permitiŕıan obtener1.

Bits de precisión Ratio de contraste Rango dinámico (stops)

8 256:1 8

10 1024:1 10

12 4096:1 12

14 16384:1 14

16 65536:1 16

Cuadro 2.1: Rango dinámico respecto al número de bits de precisión.

Aśı, un conversor A/D con 8 bits de precisión permitiŕıa obtener imáge-
nes con 8 bits de profundidad, es decir, con valores de ṕıxel que iŕıan entre
0 y 255, lo que se traduce en un rango dinámico de 8 stops. Sin embargo,
todav́ıa existe otra limitación debida a los niveles de ruido, que provoca
una reducción aún mayor del rango dinámico. De este modo, aunque los
conversores A/D que se emplean habitualmente en las cámaras digitales co-
merciales presentan entre 10 y 14 bits de precisión, el rango dinámico que
son capaces de manejar se ve reducido hasta los 5-9 stops, muy por debajo
de los cerca de 14 stops que el ojo humano es capaz de percibir. Estas limita-
ciones justifican la aparición de las imágenes de alto rango dinámico o HDR
(High Dynamic Range), respondiendo a la necesidad de conseguir mejores
aproximaciones del sistema visual humano a la hora de capturar fotograf́ıas.

1Adaptado de http://www.cambridgeincolour.com/tutorials/dynamic-range.htm
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2.2.2. Creación de imágenes de alto rango dinámico

En 1997, con la expansión de las cámaras fotográficas digitales en el mer-
cado, y ante las limitaciones de rango dinámico comentadas anteriormente,
surge la técnica de creación de imágenes de alto rango dinámico a partir de
una serie de fotograf́ıas de la misma escena realizadas con distintos paráme-
tros de exposición, desarrollada por Paul E. Debevec y Jitendra Malik [4].

Esta técnica se basa en la recuperación, a partir de esta serie de imáge-
nes, de la curva de respuesta del proceso de formación de la imagen en la
cámara (g). Conociendo esta función, se pueden procesar las distintas ex-
posiciones y fusionarlas en una sola imagen de alto rango dinámico, cuyos
ṕıxeles presentan valores proporcionales a los valores reales de luminancia
presentes en la escena, atendiendo a la siguiente fórmula:

ln Ei =

∑P
j=1w(Zij)(g(Zij)− ln ∆tj)∑P

j=1w(Zij)
(2.3)

Donde P es el número de fotograf́ıas empleadas, Zij es el valor del ṕıxel
i en la fotograf́ıa j, ∆tj es el tiempo de exposición de la fotograf́ıa j, y w
es una función de pesos que se emplea para suavizar el resultado final. Ha-
bitualmente suele emplearse una función triangular o una gaussiana para
cumplir este objetivo. Para información más detallada sobre el proceso de
recuperación de la función g y otras especificaciones matemáticas de esta
técnica se recomienda consultar la publicación original [4].

El rango dinámico de la imagen resultante comprende el rango dinámico
total de las imágenes que la conforman, y los valores de los ṕıxeles se alma-
cenan en un vector de valores en coma flotante de 32 bits, en contraste con
los 8 bits que se emplean habitualmente en las imágenes convencionales de
bajo rango dinámico, lo que supone un aumento del contraste máximo de
256:1 hasta 4.2950e9:1.

En la Figura 2.1 se muestra un ejemplo de imagen de alto rango dinámi-
co obtenida gracias a esta técnica, a partir de una serie de imágenes con
distintos parámetros de exposición. Puede verse claramente cómo tanto las
partes más luminosas como las más oscuras quedan perfectamente represen-
tadas en la imagen resultante, mientras que en cada una de las exposiciones
individuales aparecen zonas subexpuestas, como la libreŕıa en 2.1(b) y so-
breexpuestas, como la parte de la ventana en 2.1(d). A la imagen HDR se
le ha aplicado una operación conocida como reproducción de tono o tone-
mapping. Esta operación consiste en una reducción del contraste global de
la imagen, generalmente a cambio de un aumento de los contrastes locales.
En HDR se emplea para obtener un registro completo de todos los niveles
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de brillo de la escena original, y se hace necesaria a la hora de mostrar una
imagen HDR en displays LDR o en papel.

(a) Fusión HDR con reproducción de tono

(b) Imagen subexpuesta (c) Exposición central (d) Imagen sobreexpuesta

Figura 2.1: Imagen HDR (a) creada a partir de la fusión de tres exposiciones (b,c,d).
Nótese cómo se consigue representar correctamente todo el rango de luminancias de la es-
cena, mientras que en las tres exposiciones aparecen inevitablemente zonas sobreexpuestas
y subexpuestas.

2.2.3. Ĺıneas de investigación en HDR

En la actualidad, la técnica de creación de imágenes HDR desarrolla-
da por Debevec y Malik sigue vigente y está implementada en gran parte
del software fotográfico convencional (Photoshop, Luminance HDR, Photo-
matix Pro). Basándose en esta técnica, una de las ĺıneas de investigación
actuales trata de analizar la secuencia óptima de exposiciones que se deben
tomar para emplearlas en la formación de la imagen de alto rango dinámico
y obtener los mejores resultados, como hicieron Grosberg y Nayar en 2003
[6]. En la misma ĺınea aparece en 2006 el trabajo de Akyüz y Reinhard [2], y
el de Hasinoff et al. en 2010 [8], con el añadido de que ambos consideran la
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ISO2 de la cámara entre los parámetros variables para optimizar la captura
de las exposiciones.

Otra ĺınea de investigación se desarrolla en torno al análisis de las pro-
piedades estad́ısticas de las imágenes de alto rango dinámico. En este campo
destaca el trabajo de Pouli et al. [16], que establece una serie de regulari-
dades estad́ısticas en imágenes LDR y HDR, observando claras diferencias
entre ambas. La principal importancia de este estudio recae en que muchos
procesos de optimización requieren del conocimiento de información a prio-
ri sobre las regularidades estad́ısticas de imágenes naturales para obtener
resultados adecuados. A esta información se la conoce como prior, y entre
otras muchas aplicaciones se emplea, como se verá más adelante, en la ob-
tención de aperturas codificadas para corrección de desenfoques. El hecho
de que existan estas claras diferencias entre las regularidades estad́ısticas de
las imágenes de bajo rango dinámico y las de alto rango dinámico implicaŕıa
que los priors existentes para las primeras no seŕıan óptimos para usarse en
aplicaciones HDR.

Otra dirección a destacar es la que comenzaron Hasinoff y Kutulakos en
2007 [9, 10] que permite construir una imagen HDR a partir de fotograf́ıas
tomadas variando el tamaño de la apertura en lugar del tiempo de exposi-
ción, y que es uno de los objetos de estudio de este proyecto.

En cuanto a hardware fotográfico también se han logrado varios avances
importantes en los últimos años. A la hora de aumentar el rango dinámico
que son capaces de capturar las cámaras en una sola fotograf́ıa, destaca el
trabajo de Nayar y Branzoi [15], consistente una adaptación individual de la
exposición de cada ṕıxel en el sensor, permitiendo capturar imágenes HDR
con un solo disparo. También aparecen nuevas técnicas de hardware a la
hora de facilitar la captura de las distintas exposiciones antes de fusionarlas
en una imagen HDR. En este sentido, Aggarwal y Ahuja desarrollaron un
dispositivo [1] para dividir el camino óptico en la cámara fotográfica em-
pleando prismas, de modo que cada uno de los haces resultantes alcanza
un sensor diferente, obteniendo distintas exposiciones de una misma imagen
con un solo disparo y permitiendo incluso la captura de v́ıdeo de alto rango
dinámico.

2Sensibilidad de la cámara fotográfica. A mayor ISO, menor es la cantidad de luz que
se requiere para realizar una fotograf́ıa, a costa de un aumento del nivel de ruido.
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2.3. Aperturas codificadas para corrección de des-
enfoque

2.3.1. Desenfoque por profundidad de campo

Según el modelo de lente delgada, cuando un objeto está situado en el
plano focal de la lente de la cámara, todos los rayos provenientes de un
mismo punto de ese objeto convergen en un mismo punto del sensor. Sin
embargo, al alejar el objeto del plano focal, los rayos ya no convergen en un
mismo punto sino en varios, que se corresponden con el llamado ćırculo de
confusión, dando lugar a una imagen desenfocada.

En la Figura 2.2 se muestra un esquema del modelo de lente delgada. Tal
como se ha dicho, el objeto situado en el plano focal, a una distancia F de
la lente, da lugar a una imagen ńıtida puesto que todos sus rayos convergen
en un único punto del sensor. En cambio, los objetos situados a distancias
D1 y D2 darán lugar a imágenes desenfocadas, puesto que los rayos que
provienen de un mismo punto convergen en múltiples puntos del sensor de
la cámara, dando lugar al ćırculo de confusión. Además, cuanto mayor sea
la distancia del objeto al plano focal, mayor será el grado de desenfoque de
la imagen, es decir, mayor será el diámetro del ćırculo de confusión.

Figura 2.2: Modelo de lente delgada en 2D mostrando el efecto de desenfoque por pro-
fundidad de campo. Cuanto mayor es la distancia del objeto al plano focal, mayor es el
ćırculo de confusión y, por tanto, el desenfoque.

2.3.2. Análisis frecuencial del desenfoque

Matemáticamente, el proceso de creación de la imagen f desenfocada en
la cámara fotográfica se modela como una convolución entre la escena per-
fectamente enfocada f0 y un kernel k que representa la PSF (Point Spread
Function) o respuesta del sistema óptico a un impulso en la entrada, y que
tiene la forma de la apertura con un tamaño variable en función de la pro-
fundidad, más un ruido η que habitualmente se asume gaussiano:
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f = f0 ∗ k + η (2.4)

Como puede verse en la Figura 2.3, cuanto más próxima esté la escena
a la distancia focal, menor será el tamaño del kernel, y por tanto menor el
desenfoque, de manera que para una fotograf́ıa bien enfocada el kernel se
puede aproximar por un punto, de modo que el resultado de la convolución
entre f0 y k será la propia f0.

Figura 2.3: Tamaño de la PSF en relación a la distancia del plano focal. Cuanto mayor
es esta distancia, mayor es el tamaño. Adaptada de Levin et al. [11].

En el dominio frecuencial, la ecuación se puede escribir como:

F = F0 ·K + ζ (2.5)

Donde F, F0 y ζ son las transformadas discretas de Fourier de f, f0 y η,
respectivamente.

Conociendo esto, puede parecer trivial recuperar una imagen enfocada a
partir de otra desenfocada sin más que realizando la correspondiente decon-
volución. Sin embargo el resultado no es todo lo bueno que cabŕıa esperar,
dado que las aperturas circulares presentan una respuesta frecuencial muy
desfavorable, introduciendo una atenuación muy grande en las frecuencias
más altas, aśı como varios cruces por cero que imposibilitan la recuperación
de la información en esas componentes frecuenciales.

A partir de este problema surge la idea del empleo de aperturas codifica-
das para la corrección de desenfoques. Se trata de máscaras que, colocadas
delante de la lente de la cámara (ver Figura 2.4), modifican la forma de la
apertura, permitiendo codificar la luz que llega al sensor. Aśı se consigue
una doble ventaja, ya que se obtiene un mayor control en la captura de
la imagen codificando la forma del desenfoque, al tiempo que se resuelven
los problemas de las aperturas circulares, creando patrones con respuestas
frecuenciales más favorables para la corrección de desenfoque.
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Figura 2.4: Objetivo con una de las aperturas codificadas desarrolladas por Zhou y Nayar
[19]. Colocando una máscara en la lente del objetivo se consigue codificar el desenfoque,
haciendo más sencilla su corrección.

En la Figura 2.5 puede verse la respuesta frecuencial de una de las aper-
turas de Zhou y Nayar [19], la misma que aparece en la Figura 2.4, frente a
la respuesta frecuencial de la circular.

Figura 2.5: Logaritmo de la potencia espectral de una de las aperturas codificadas de
Zhou [19] frente a la de la apertura circular. La apertura codificada ofrece una respuesta
más favorable, al eliminar los cruces por cero y reducir la atenuación en las frecuencias
altas.

Puede comprobarse cómo esta apertura tiene una respuesta frecuencial
mucho más favorable que la circular, ya que la atenuación en las frecuencias
altas es mucho menor y evita los cruces por cero.
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2.3.3. Ĺıneas de investigación con aperturas codificadas

El origen de las aperturas codificadas se remonta a los años 60. Habi-
tualmente se empleaban en astronomı́a para resolver los problemas de ruido
en la formación de imágenes sin lentes a partir de rayos X y rayos γ [3]. En
esta ĺınea aparecieron muchos trabajos y se desarrollaron numerosos patro-
nes de aperturas, de entre los que destacan los patrones MURA (Modified
Uniformly Redundant Array) [5].

Con el auge de la fotograf́ıa computacional, aparece el trabajo de Veera-
raghavan et al., que emplea aperturas codificadas para obtener light fields
4D mediante una cámara convencional modificada [17].

En lo referente al problema del desenfoque y su relación con la pro-
fundidad (depth from defocus), Levin et al. consiguen una recuperación si-
multánea de la imagen enfocada y el mapa de profundidad, diseñando una
apertura óptima basada en un criterio de discriminación de profundidad y
explotando la caracterización estad́ıstica de las imágenes [11]. Zhou et al.
consiguen el mismo objetivo empleando pares de aperturas codificadas, ob-
tenidas con algoritmos genéticos [18]. Zhou et al. también desarrollan una
métrica para evaluar la calidad de las aperturas codificadas para recupera-
ción de enfoque, basada en la calidad de las imágenes reenfocadas y teniendo
en cuenta las estad́ısticas de imágenes naturales, obteniendo aperturas ópti-
mas [19]. Masiá et al. introducen las métricas perceptuales en el proceso
de obtención de aperturas óptimas para corrección de desenfoques [14] y
exploran el uso de valores no binarios en las aperturas codificadas [13].
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Caṕıtulo 3

Aperturas codificadas para
corrección de desenfoques en
imágenes HDR

3.1. Introducción

En esta parte del proyecto se estudia la aplicación de las técnicas de
aperturas codificadas para corrección de desenfoques en imágenes HDR.

En primer lugar se proponen tres modelos de procesado diferentes para
adaptar estas técnicas a las imágenes HDR, y se estudia su viabilidad me-
diante una serie de simulaciones, contrastadas con la captura y procesado
de una imagen HDR real con apertura codificada.

A continuación se estudia la obtención de aperturas codificadas para
HDR basándose en algoritmos genéticos y con priors estad́ısticos HDR y
LDR.

Finalmente se realiza una validación por soporte f́ısico de las aperturas
obtenidas, insertando el patrón de la apertura codificada en el objetivo de la
cámara y capturando las imágenes necesarias para su posterior procesado.

3.2. Modelos de procesado

Para estudiar la viabilidad del empleo de aperturas codificadas en imáge-
nes HDR se simula el proceso de captura de las mismas y se trata de re-
cuperar la imagen bien enfocada a partir de la imagen simulada. Como se
ha comentado anteriormente, el proceso de creación de una imagen f en la
cámara fotográfica, con un kernel k a partir de una escena f0 viene dado
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por la Ecuación 2.4:

f = f0 ∗ k + η

Aśı, para simular la captura de una imagen LDR desenfocada con una
apertura codificada basta con realizar una convolución entre una imagen
bien enfocada y el patrón de la apertura y añadirle un ruido gaussiano
η ∼ N(0, σ2). Sin embargo, esta simulación que es válida para LDR sólo
seŕıa válida para HDR en el caso de que pudiéramos capturar la imagen de
alto rango dinámico a partir de una sola fotograf́ıa. Aunque existen cáma-
ras capaces de capturar imágenes con rangos dinámicos más altos que las
cámaras convencionales, como se ha comentado anteriormente en la mayoŕıa
de los casos la obtención de una imagen HDR se realiza capturando una
serie de N exposiciones de la escena y fusionándolas posteriormente. Aśı,
siendo fLDR0n , (n = [1...N ]) las distintas exposiciones de una escena fHDR0

correctamente enfocada, podemos simular la captura de una fotograf́ıa HDR
desenfocada de esa misma escena fHDRsimulando las capturas por separado
de cada una de las exposiciones fLDRn como:

fLDRn = fLDR0n ∗ k + η (3.1)

Y fusionándolas posteriormente:

fHDR = g(fLDR1 , fLDR2 , ..., fLDRN ) (3.2)

Una vez obtenida fHDR se recupera la imagen HDR enfocada f̂HDR0

realizando una deconvolución. Sin embargo, teniendo las imágenes LDR
desenfocadas de cada una de las exposiciones, también será posible recuperar
las exposiciones enfocadas f̂LDR0n , (n = 1, ...N) por separado, realizando N
deconvoluciones, y fusionarlas posteriormente para obtener la imagen HDR
recuperada:

f̂HDR0 = g(f̂LDR01 , f̂LDR02 , ..., f̂LDR0N ) (3.3)

A partir de lo anterior definimos tres tipos de procesado diferentes que
se resumen de la siguiente manera:

1. Procesado de la imagen HDR obtenida a partir de una sola
captura: Éste procedimiento sólo es válido con cámaras fotográficas
que permitan capturar imágenes con un rango dinámico superior al
de las cámaras convencionales, por lo que sólo podrá ser validado en
simulación al no disponer del material necesario para realizar experi-
mentos reales. Su esquema se muestra en la Figura 3.1.
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Figura 3.1: Esquema del procesado 1. GWN representa el ruido gaussiano, K el kernel
del desenfoque y * el operador de convolución.

2. Procesado de la imagen HDR obtenida a partir de una se-
rie de exposiciones: En primer lugar se simula la captura de una
serie de exposiciones desenfocadas de la imagen (Ecuación 3.1) pa-
ra fusionarlas en una sola imagen HDR (Ecuación 3.2) de la que se
obtendrá la imagen recuperada a partir de una deconvolución. Su es-
quema se muestra en la Figura 3.2

Figura 3.2: Esquema del procesado 2. GWN representa el ruido gaussiano, K el kernel
del desenfoque y * el operador de convolución.

3. Procesado de las distintas exposiciones antes de obtener la
imagen HDR: Se simula la captura de una serie de exposiciones
desenfocadas (Ecuación 3.1) a partir de las cuales se obtendrán las
exposiciones recuperadas mediante una serie de deconvoluciones. A
continuación se obtiene la imagen HDR recuperada fusionando las
exposiciones recuperadas (Ecuación 3.3). Su esquema se muestra en
la Figura 3.3

Figura 3.3: Esquema del procesado 3. GWN representa el ruido gaussiano, K el kernel
del desenfoque y * el operador de convolución.

Las operaciones necesarias para llevar a cabo cada una de las simulacio-
nes se resumen en el Cuadro 3.1. Como puede verse, el procesado 1 es el que
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menos coste computacional presenta, al requerir tan sólo una convolución
y una deconvolución, si bien, como ya se ha comentado, sólo podrá com-
probarse su viabilidad en simulación. El procesado 3 es el más costoso al
requerir una deconvolución por cada exposición. Sin embargo este último
procesado es el único que ofrece garant́ıas de funcionamiento a priori, ya
que está demostrada la viabilidad del empleo de aperturas codificadas en
imágenes LDR [19], por lo que es de suponer que la recuperación de las
distintas exposiciones ofrecerá buenos resultados, que se extenderán a la
imagen HDR recuperada tras la fusión.

Procesado 1 Procesado 2 Procesado 3

Convolución 1 N N

Fusión HDR 0 1 1

Deconvolución 1 1 N

Cuadro 3.1: Operaciones necesarias para cada procesado empleando N exposiciones.

3.3. Simulación de los modelos de procesado

Para realizar las simulaciones de los distintos modelos de procesado,
empleamos una de las aperturas de Zhou, la misma que se muestra en el
Apartado 2.3.2, cuya validez para la corrección de desenfoques en imágenes
LDR está demostrada [19].

Estudiamos los distintos modelos realizando simulaciones con cuatro ni-
veles de ruido gaussiano diferentes (desviaciones t́ıpicas: σ =0.0005, 0.001,
0.005, 0.05) y para tres modelos de deconvolución a partir de la deconvolu-
ción de Wiener, que viene dada por la siguiente ecuación:

F̂0 =
F · K̄

|K|2 + |C|2
(3.4)

Donde F̂0 es la imagen recuperada, K̄ es el complejo conjugado de K,
|K|2 = K · K̄ y |C|2 = |σ/F0|2 es la matriz de relación ruido a señal NSR
(Noise to Signal Ratio) de la imagen original.

Aśı pues, a partir de esta fórmula estudiaremos estas tres variantes:

Deconvolución de Wiener sin prior, con NSR constante. Susti-
tuyendo |C|2 en la Ecuación 3.4 por una constante. Se probaron varios
valores, encontrando que al aumentarlo se obtienen resultados menos
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ruidosos a costa de un aumento del ringing1. Finalmente se decide
emplear un valor intermedio |C|2 = 0,005, alcanzando un compromiso
entre ambos efectos.

Deconvolución de Wiener empleando un prior de imágenes
naturales HDR. Sustituyendo F0 en |C|2 = |σ/F0|2 por un prior
estad́ıstico AHDR, una matriz que promedia la potencia espectral de
una serie de 198 imágenes HDR naturales, en la Ecuación 3.4.

Deconvolución de Wiener empleando un prior de imágenes
naturales LDR. Sustituyendo F0 en |C|2 = |σ/F0|2 como en el an-
terior, pero con un prior ALDR de 198 imágenes LDR.

También se estudió la posibilidad de emplear el modelo de deconvolu-
ción de Richardson-Lucy, pero al tratarse de una deconvolución iterativa
era necesario realizar un número de repeticiones muy elevado para alcanzar
soluciones aceptables y, en todo caso, peores que las obtenidas con la decon-
volución de Wiener, incrementando considerablemente el tiempo de cálculo,
por lo que se descartó esta idea.

Para estudiar la validez de los modelos se escoge un set de siete foto-
graf́ıas HDR obtenidas cada una de ellas a partir de tres exposiciones, con
diversos rangos dinámicos y distintos parámetros de captura. Algunas de es-
tas imágenes se muestran en la Figura 3.4. Se trata de recuperar la imagen
original y se emplea la métrica HDR-VDP2 2[12] para obtener una medida
de calidad de los resultados.

(a) (b) (c)

Figura 3.4: Algunas de las imágenes HDR empleadas en la simulación de los procesos.
Todas se muestran tras aplicar reproducción de tono.

1Artefacto indeseado que aparece habitualmente en las transiciones bruscas de una
señal. En el caso de las imágenes, se muestran como oscilaciones alrededor de los bordes,
y aparecen frecuentemente tras una deconvolución al perder información en las altas
frecuencias.

2Se trata de una métrica perceptual que compara una imagen de referencia con otra
distorsionada, dando medidas de calidad y de visibilidad (probabilidad de que el usuario
detecte las diferencias entre ambas imágenes).

26



3.3.1. Construcción de los priors

Para construir los priors escogemos una muestra suficientemente grande
de imágenes HDR y LDR, de modo que la información estad́ıstica obtenida
sea lo bastante fiable y generalizada. Empleamos 198 imágenes de cada tipo,
obtenidas de la base de datos de Pouli3[16]. De cada imagen se calcula la
potencia espectral como:

S = F · F̄ (3.5)

Siendo F la transformada de Fourier de una imagen y F̄ su complejo
conjugado. Se obtiene el promedio de las potencias espectrales de todas las
imágenes HDR para obtener el prior AHDR y lo mismo con las LDR para
ALDR.

3.4. Resultados de simulación

3.4.1. Modelo de procesado 1

La calidad Q media de las siete imágenes, obtenida con la métrica HDR-
VDP2 [12], para cada tipo de deconvolución y nivel de ruido se muestra en
la Figura 3.5(a). Puede comprobarse cómo, para niveles altos de ruido, la
deconvolución de Wiener se comporta mejor empleando priors. Igualmen-
te, se observa que el empleo de un prior HDR tiene ventajas claras sobre
el empleo de un prior LDR cuando el ruido es muy alto. Para niveles de
ruido bajos, los tres tipos de deconvolución de Wiener presentan resultados
similares.

3.4.2. Modelo de procesado 2

La calidad Q media de las siete imágenes, obtenida con la métrica HDR-
VDP2 [12], para cada tipo de deconvolución y nivel de ruido se muestra en la
Figura 3.5(b). Puede observarse cómo el empleo de prior LDR en la decon-
volución ofrece peores resultados que el empleo de prior HDR. En general, la
deconvolución con NSR constante parece ofrecer bastante similares, aunque
levemente superiores, a la deconvolución con prior HDR.

3.4.3. Modelo de procesado 3

Dado que las exposiciones que se procesan con este modelo son de bajo
rango dinámico, no tiene sentido emplear la deconvolución de Wiener con
un prior HDR para recuperar las imágenes, de modo que se omite este tipo
de deconvolución para este modelo de procesado.

3http://taniapouli.co.uk/ research/statistics/
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La calidad Q media de las siete imágenes, obtenida con la métrica HDR-
VDP2 [12], para cada tipo de deconvolución y nivel de ruido se muestra en la
Figura 3.5(c). Puede observarse cómo empleando NSR constante se obtienen
resultados ligeramente mejores, aunque muy similares.

3.4.4. Comparativa de los modelos

Observando la figura 3.5 puede verse cómo el procesado 1 ofrece glo-
balmente mejores resultados que los otros dos. En cuanto al procesado 2,
aunque para nivel de ruido alto parece ofrecer resultados de calidad similar
a los otros dos, conforme disminuye el ruido se comporta mucho peor.

(a) Modelo de procesado 1 (b) Modelo de procesado 2 (c) Modelo de procesado 3

Figura 3.5: Q media obtenida con cada tipo de deconvolución (con NSR constante,
con prior HDR y con prior LDR) para los distintos niveles de ruido, empleando los tres
modelos de procesado diferentes.

3.4.5. Comparativa de los priors

A la vista de los resultados vistos en la Figura 3.5 se entiende que el
prior HDR ofrece ventajas sobre el prior LDR a la hora de realizar la de-
convolución de una imagen HDR (procesados 1 y 2). En la Figura 3.6 se
observan los resultados de una de las imágenes recuperada con los dos priors
distintos con el ruido de desviación t́ıpica σ = 0,0005. Se puede comprobar
cómo la recuperada con prior HDR ofrece un resultado más favorable que
la recuperada con deconvolución con prior LDR, al reducir sensiblemente el
ringing. Nótese que se trata de una imagen particularmente desfavorable y
la distorsión presente en ambas imágenes es alta, pero en todo caso inferior
al emplear prior HDR.

3.5. Validación f́ısica de los modelos de procesado

Como se ha comentado anteriormente, al no disponer de una cámara
que capture imágenes de alto rango dinámico con un solo disparo, no se
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(a) Con prior HDR (b) Con prior LDR

Figura 3.6: Ejemplo de imágenes HDR poco ruidosas, recuperadas los dos priors diferen-
tes empleando el procesado 2. Nótese la reducción de ringing que se consigue al emplear un
prior HDR en lugar de un prior LDR. A ambas imágenes se les ha aplicado reproducción
de tono.

puede validar f́ısicamente el modelo de procesado 1, por lo que, de ahora
en adelante, el proyecto se centrará en los modelos 2 y 3, que en lo suce-
sivo y por comodidad se denominarán Procesado HDR y Procesado LDR
respectivamente.

3.5.1. Captura de las imágenes desenfocadas con apertura
codificada

Para evaluar estos métodos se capturan tres exposiciones distintas de
una misma escena4. La escena está colocada a 60 cm del plano de enfoque,
y éste a 120 cm de la cámara, como se muestra en la Figura 3.7. Para ob-
tener las distintas exposiciones se emplea la opción de multibracketing de
la cámara con EV relativos de -2, 0 y 2 stops. La misma apertura descrita
en simulación [19] (Ver Figura 2.5) se imprime en papel de transparencia
y se coloca en la lente del objetivo Canon EF 50mm f/1.8 II que se va a
emplear. El procedimiento para insertar una apertura codificada en la lente
está descrito en el Apéndice B. Para las capturas se emplea una cámara
reflex Canon EOS 500D.

Además de estas exposiciones, se capturan las tres exposiciones corres-
pondientes con la escena bien enfocada, a fin de tener una imagen de refe-
rencia de la escena.

4Parámetros de captura: ISO = 100; F = 2,0 stops; texp1 = 1/5 s; texp2 = 1/20 s;
texp3 = 1/80 s

29



Figura 3.7: Esquema de montaje para la captura de las exposiciones.

3.5.2. Obtención de las PSFs

Para poder recuperar las imágenes bien enfocadas a partir de las des-
enfocadas se debe conocer la PSF del sistema de captura (respuesta a un
impulso), para poder emplearlo como kernel en la deconvolución. Para con-
seguir este impulso, empleamos un sencillo montaje con un LED colocado
tras una cartulina negra a la que se ha aplicado un pequeño orificio, de modo
que el efecto de la luz del LED al atravesar el agujero sea lo más puntual
posible. Se coloca este montaje en el lugar de la escena, manteniendo fijo
el plano de enfoque. Cabe pensar que existirán diferencias entre las PSF de
las tres distintas exposiciones que se han capturado de la escena, de modo
que se deben obtener una PSF para cada una de ellas. Para ello, en primer
lugar se capturan tres imágenes del montaje con los mismos parámetros de
exposición que se han empleado anteriormente.

Aunque existe una distorsión radial de la lente, que provoca una ligera
variación de la PSF conforme se aleja del centro de la imagen, ésta se puede
considerar despreciable, por lo que no se tiene en cuenta y se toman las cap-
turas con la PSF centrada en la imagen. En la Figura 3.8 puede observarse
el detalle central de las tres imágenes obtenidas con este procedimiento. Se
puede comprobar cómo la forma de la respuesta al impulso es similar a la
forma de la apertura, tal como se indica en el Apartado 2.3.2.

Una vez obtenidas estas imágenes, se recortan las zonas donde aparecen
los patrones, se les aplica un umbral a cada uno de los ṕıxeles que los con-
forman5, de modo que a aquellos que estén por debajo de éste se les da un
valor cero, y se obtienen las PSF normalizando los resultados por la suma
de todos sus ṕıxeles.

También se obtiene una PSF para emplear en la deconvolución de la
imagen HDR, fusionando las tres imágenes para obtener una fotograf́ıa del
patrón de alto rango dinámico. Ésta se procesa de la misma manera que

5Umbrales de 0.39, 0.5 y 0.8 para las imágenes subexpuesta, intermedia y sobreexpues-
ta, respectivamente. Nótese que el umbral a emplear aumenta al aumentar la exposición
debido a la mayor luminosidad de la imagen.
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Figura 3.8: Detalle central de las imágenes empleadas para obtener las PSFs. De iz-
quierda a derecha: imagen sobreexpuesta, exposición central e imagen subexpuesta

se indica en el párrafo anterior6. Tanto las exposiciones como las imágenes
empleadas para recuperar las PSFs están tomadas en formato RAW con
un tamaño de 4752x3168, pero por motivos de coste computacional se les
aplica un resize de factor 0.2, hasta un tamaño de 951x634. En la Figura
3.9 pueden verse las cuatro PSFs recuperadas tras el resize. Su tamaño
aproximado es de unos 14x14 ṕıxeles.

Figura 3.9: PSFs recuperadas tras el resize para la deconvolución. De izquierda a dere-
cha: PSF recuperadas de la imagen sobreexpuesta, de la exposición central y de la imagen
subexpuesta, y PSF recuperada de la imagen HDR.

3.5.3. Recuperación de las imágenes bien enfocadas

Una vez obtenidas las PSFs se recuperan las imágenes bien enfocadas
empleando los dos tipos de procesado. Para el procesado HDR se fusionan
las tres exposiciones desenfocadas y se trata de recuperar la imagen bien
enfocada a partir de ella con una sola deconvolución (como se muestra en el
esquema de la Figura 3.2), empleando la PSF obtenida especialmente para
HDR. Para ello se emplea la deconvolución de Wiener sin prior de imágenes,
con prior HDR y con prior LDR.

6El umbral empleado en este caso es de 0.2.
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Para el procesado LDR se trata de recuperar las exposiciones bien enfo-
cadas mediante una deconvolución para cada una de ellas (como se muestra
en el esquema de la Figura 3.3), empleando en cada caso la PSF correspon-
diente a su exposición. Se prueban la deconvolución de Wiener sin prior y
con prior LDR. Finalmente se fusionan las exposiciones recuperadas para
obtener la imagen HDR resultante.

Se utiliza la métrica HDR-VDP2 [12] para obtener la medida de calidad
Q en comparación con la imagen de referencia. Esta medida puede obser-
varse en la Figura 3.10.

(a) Procesado HDR (b) Procesado LDR

Figura 3.10: Q obtenida en el escenario real con la métrica HDR-VDP2 para cada tipo
de procesado y deconvolución. Aunque las simulaciones indican que el procesado LDR se
comporta mucho mejor que el HDR, en la realidad ofrecen resultados similares.

Lo más llamativo es que, aunque las simulaciones indican que el pro-
cesado LDR se comporta mucho mejor que el procesado HDR, en realidad
ofrecen resultados de calidad muy semejante. Además, mientras que las si-
mulaciones indican que los resultados son bastante similares tanto emplean-
do priors como sin ellos, en realidad ambos procesados se comportan mucho
mejor cuando no se usa ningún prior en la deconvolución.

Al observar detenidamente las imágenes obtenidas con las deconvolucio-
nes con prior se aprecia una clara distorsión en forma de rejilla en todas
ellas, que no aparece en la simulación, como se muestra en la Figura 3.11.

Esta distorsión reduce sensiblemente la calidad visual de las imágenes
obtenidas tras deconvolución con prior. No obstante puede verse cómo, para
el procesado HDR, la imagen recuperada con el prior HDR 3.11(a) ofrece
mejor resultado que la recuperada con prior LDR 3.11(b), por lo que se con-
firma que el empleo de un prior de imágenes HDR en la deconvolución de
una imagen HDR ofrece resultados de una calidad superior que empleando
un prior de imágenes LDR.
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(a) Procesado HDR con
prior HDR

(b) Procesado HDR con
prior LDR

(c) Procesado LDR con
prior LDR

Figura 3.11: Detalle de las imágenes recuperadas empleando prior en la deconvolución.
Como puede verse, aparece una distorsión en forma de rejilla que reduce la calidad de las
imágenes.

En la Figura 3.12 puede observarse el resultado de los dos mejores pro-
cesados reales en términos de Q, correspondientes a ambos modelos de pro-
cesado (HDR y LDR) empleando deconvolución sin prior. Junto a ellos se
presenta la imagen original HDR desenfocada, obtenida mediante la fusión
de las tres exposiciones desenfocadas, y la imagen HDR de referencia per-
fectamente enfocada. Estas imágenes son la muestra de que el empleo de
aperturas codificadas para la captura de imágenes HDR es viable, como se
queŕıa demostrar. Observando las partes aumentadas se ve claramente cómo
los detalles que en la original son imposibles de distinguir, en las recuperadas
aparecen mucho más ńıtidos.

3.6. Obtención de patrones óptimos

Tras comprobar que el empleo de aperturas codificadas es viable en
imágenes HDR, debido a que la apertura que se ha empleado hasta ahora
[19] está diseñada para ser usada con imágenes LDR se va a tratar de obte-
ner patrones de aperturas óptimos para imágenes de alto rango dinámico.
Para ello se sigue el método empleado por Zhou y Nayar [19], basado en
un algoritmo genético y en el empleo de priors de imágenes naturales. Se
obtendrán una serie de aperturas empleando el prior de imágenes HDR des-
crito en el Apartado 3.3.1. Además, para poder realizar una comparativa
rigurosa, también se obtendrán aperturas empleando el prior de imágenes
LDR (ver 3.3.1).

Una vez obtenidos los patrones, éstos se emplean para realizar una serie
de simulaciones como las detalladas en el Apartado 3.2, siguiendo los esque-
mas de procesado HDR (Figura 3.2) y LDR (Figura 3.3). A los resultados
obtenidos se les aplica nuevamente la métrica HDR-VDP2 [12] para evaluar
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(a) Referencia (b) Original

(c) Recuperada proc. HDR (d) Recuperada proc. LDR

Figura 3.12: Resultados de los mejores procesados HDR y LDR en términos de Q:
empleando deconvolución de Wiener sin prior. Aunque en la imagen original desenfocada
es imposible distinguir ciertos detalles, éstos se aprecian correctamente en las imágenes
recuperadas, tanto con procesado HDR como con procesado LDR, a costa de un ligero
ringing.

su calidad, a fin de establecer una comparativa entre los patrones obtenidos
con el prior HDR y el prior LDR.

3.6.1. Función objetivo

Para obtener patrones óptimos es necesario conocer una función que
evalúe la calidad de los mismos para guiar la optimización. Zhou [19] pro-
pone una métrica que permite evaluar, dado un patrón K, la degradación de
la imagen recuperada en función de la desviación t́ıpica σ del ruido. Viene
dada por la siguiente ecuación:

R(K) =
∑
ξ

σ2

|Kξ|2 + σ2/Aξ
, (3.6)

donde la matriz A es un prior que promedia la potencia espectral de una
serie de imágenes naturales, como los que se han empleado en apartados
anteriores.

Una apertura K será tanto mejor cuanto más pequeño sea el valor de
R(K). La métrica se obtiene a partir del método de deconvolución de Wiener,
cuya formulación, como ya se ha comentado, responde a la ecuación:

F̂0 =
F · K̄

|K|2 + |C|2
,
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donde F̂0 es la imagen recuperada, K̄ es el complejo conjugado de K,
|K|2 = K · K̄ y |C|2 = |σ/F0|2 es la matriz de relación ruido a señal NSR
(Noise to Signal Ratio) de la imagen original. Esta matriz nos es descono-
cida, por lo que se sustituye por el prior antes mencionado |C|2 = |σ/A|2.

Para obtener una apertura óptima es necesario resolver el problema de
optimización dado por la Ecuación 3.6. Para un patrón de apertura dado
por una matriz binaria de tamaño N×N el número de soluciones posibles es
de 2N×N , por lo que se propone el uso de un algoritmo genético que emplea
la Ecuación 3.6 como función de evaluación.

3.6.2. Algoritmo genético

El algoritmo genético es un algoritmo de optimización iterativo inspirado
en la evolución biológica, y que funciona de la siguiente forma:

1. Inicialización: Se genera aleatoriamente una población inicial de S se-
cuencias binarias de longitud L, siendo L = N ×N el tamaño de las
aperturas a generar.

2. Selección: Se evalúa cada una de las S secuencias empleando la métrica
ya comentada:

R(K) =
∑
ξ

σ2

|Kξ|2 + σ2/Aξ

De ellas se seleccionan las M mejores, las que tienen menor R(K), y
se eliminan todas las demás.

3. Reproducción: a partir de las M secuencias seleccionadas, se obtie-
nen S − M nuevas secuencias para completar la población hasta S
secuencias. Estas secuencias se obtienen de la siguiente forma:

Recombinación: se escogen dos de las M secuencias al azar y se
intercambian sus bits con una probabilidad c1, obteniendo dos
nuevas secuencias.

Mutación: para cada nueva secuencia generada mediante recom-
binación, se cambia el valor de todos sus bits con una probabili-
dad c2.

4. Repetición: se repiten los pasos 2 y 3 hasta que se alcanza la última
generación G.

5. Finalización: se evalúan todas las secuencias restantes y la mejor de
ellas se selecciona como salida del algoritmo.

Los parámetros de ejecución del algoritmo genético fueron los siguientes:
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L=121 (para un tamaño de aperturas de 11× 11).

Población inicial: S=4000.

Población final: M =400.

Probabilidad de recombinación: c1 =0.2.

Probabilidad de mutación: c2 =0.05.

Número de generaciones: G=40.

Se emplearon dos niveles de ruido diferentes, σ = 0,0005 y σ = 0,001
y se ejecutó el algoritmo tres veces por cada combinación de prior (HDR y
LDR) y nivel de ruido, para un total de 12 aperturas.

El tiempo total de ejecución para la obtención de los 12 patrones fue
de 54296.32 segundos (15 horas aproximadamente), dando una media de
4524.69 segundos por patrón (1 hora y cuarto)7.

En la Figura 3.13 se muestran los patrones de las aperturas obtenidas.

(a) H0.001 1 (b) H0.001 2 (c) H0.001 3 (d) H0.0005 1 (e) H0.0005 2 (f) H0.0005 3

(g) L0.001 1 (h) L0.001 2 (i) L0.001 3 (j) L0.0005 1 (k) L0.0005 2 (l) L0.0005 3

Figura 3.13: Patrones de aperturas obtenidos. Nótese que el tamaño de los patrones es
de 11x11 ṕıxeles, pero se les ha añadido un marco negro para una mejor visualización. No-
tación de las aperturas: PRIORσ i (Prior empleado: PRIOR=L(DR),H(DR); σ empleada:
σ=0.001,0.0005; Número de ejecución del algoritmo para cada combinación: i=1,2,3).

3.6.3. Evaluación de los patrones obtenidos

Para evaluar los 12 patrones que se han obtenido tras la ejecución del
algoritmo genético se simula para cada uno de ellos el proceso de captura8

y la posterior recuperación con una serie de imágenes HDR y se emplea la

7Procesador: Intel Core i7-950, 3.06GHz. Memoria RAM: 6GB
8La σ empleada en la simulación de cada apertura es la misma que la que se usó en su

obtención con el algoritmo genético.
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métrica HDR-VDP2 [12] para conocer la calidad de los resultados obtenidos.
Se realizan estas simulaciones con los tipos de procesado HDR y LDR defi-
nidos en el Apartado 3.2. Finalmente se obtiene la media aritmética de los
datos obtenidos para cada apertura. Además se evalúa de la misma forma
la apertura de Zhou [19], la misma que ya se empleó anteriormente, a fin
de comparar la calidad de nuestros patrones con uno válido ya conocido.
Para esta apertura se realizan las simulaciones con los dos niveles de ruido
empleados en el algoritmo genético. En la Figura 3.14 se muestra el valor
medio de la medida de calidad Q obtenida para cada una de las aperturas,
para los dos tipos de procesado.

Figura 3.14: Q media obtenida para cada apertura, con procesado HDR (Q HDR) y
procesado LDR (Q LDR). En general, las aperturas obtenidas con el prior HDR se com-
portan mejor que las obtenidas con prior LDR al realizar el procesado HDR. Z0.001 y
Z0.0005 se corresponden con la apertura de Zhou empleando ruidos con σ = 0,001 y
σ = 0,0005 respectivamente.

Puede observarse cómo, en general, las aperturas obtenidas con el prior
de imágenes HDR se comportan mejor que las obtenidas con el prior LDR
al realizar el procesado HDR, aunque las aperturas L0.001 1 y L0.0005 2
ofrecen resultados comparables a las primeras. En cuanto al procesado LDR,
se observa mayor disparidad, encontrando aperturas buenas y malas indis-
tintamente para ambos priors.

Además de esta medida de calidad de las aperturas, se debe compro-
bar su respuesta frecuencial para asegurar que resuelven los problemas de
la apertura circular descritos anteriormente. En la Figura 3.15 se muestra
la representación de los cortes centrales de las respuestas frecuenciales de
las aperturas obtenidas con el prior HDR en comparación con la apertura
circular. La misma representación, esta vez para las obtenidas con el prior
LDR, se muestra en la Figura 3.16.
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Figura 3.15: Logaritmo de la potencia espectral de las aperturas obtenidas con prior
HDR frente a la apertura circular. Todos los patrones ofrecen respuestas frecuenciales más
favorables al reducir la atenuación en las altas frecuencias y eliminar los cruces por cero.

Figura 3.16: Logaritmo de la potencia espectral de las aperturas obtenidas con prior LDR
frente a la apertura circular. Todas las aperturas eliminan los cruces por cero presentes
en la circular, e introducen una menor atenuación en las altas frecuencias.

Puede comprobarse que todas las aperturas obtenidas tienen una res-
puesta frecuencial más favorable que la circular, al evitar los cruces por
cero e introducir una menor atenuación en las frecuencias más altas.

3.7. Validación f́ısica de los patrones obtenidos

Una vez evaluada la calidad de los patrones se escoge el mejor de los ob-
tenidos con cada prior para realizar experimentos con las aperturas f́ısicas.
Concretamente se eligen las aperturas H0.001 1 y L0.001 1 por ofrecer un
buen comportamiento para ambos tipos de procesado.

Se imprimen ambas aperturas junto con la apertura de Zhou [19] (que
ya ha sido validada en el Apartado 3.4) en papel de transparencia, como se
muestra en la Figura 3.17. Con cada una de estas aperturas y con la apertura
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circular se repite el proceso de captura ya descrito en el apartado 3.4. Se
llevan a cabo nuevamente los procesados HDR y LDR, esta vez empleando
tan sólo la deconvolución de Wiener sin ningún prior de imágenes, ya que de
esta manera se obtienen mejores resultados, tal como se ha visto antes, y se
obtiene una vez más la métrica HDR-VDP2 [12]. Igualmente, se simulan los
mismos procesos para comparar los resultados reales con los de simulación.

(a) Prior HDR (b) Prior LDR (c) Zhou

Figura 3.17: Aperturas impresas en papel de transparencia.

3.8. Resultados de la validación f́ısica

En la Figura 3.18(a) se puede ver la imagen HDR de referencia de la es-
cena bien enfocada. Pueden distinguirse dos zonas desafiantes, la zona de la
carta de ajuste fotográfico a la izquierda y la zona de los libros a la derecha.
Como ya se ha comentado, la apertura circular presenta cruces por cero y
atenuaciones en las frecuencias altas. En una imagen las frecuencias altas
se corresponden con gradientes altos entre ṕıxeles vecinos, ya sean bordes,
cambios de color o de intensidad.

En las dos zonas señaladas se producen este tipo de gradientes, a la iz-
quierda, la carta de ajuste presenta muchas variaciones de blanco a negro, y
a la derecha, en la zona de los libros, se puede apreciar una clara diferencia
de exposición entre el pato amarillo, que está recibiendo una luz directa, y
el fondo, que está en penumbra. En las Figuras 3.18(c) y 3.18(d) pueden
apreciarse los resultados obtenidos con la apertura circular. Se observa que
en las zonas de la imagen donde se producen estos gradientes aparece una
fuerte distorsión en forma de ringing. Esto se debe, como se ha comentado,
a la respuesta frecuencial desfavorable de la apertura circular.

Los resultados para el detalle derecho con cada apertura testeada se
muestran en la Figura 3.19, mientras los del detalle de la izquierda se mues-
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(a) Referencia (b) Original desenfocada

(c) Recuperada proc. HDR (d) Recuperada proc. LDR

Figura 3.18: Resultados con la apertura circular. Todas las imágenes se muestran tras
una reproducción de tono. Nótese la incapacidad de recuperar correctamente las imágenes
enfocadas al emplear una apertura circular.

tran en la Figura 3.20. Además, en la Figuras 3.21(a) y 3.21(b) se detallan
los resultados obtenidos al aplicar localmente la métrica HDR-VDP2 [12] en
ambos detalles.

A la vista de las métricas se confirma una vez más, como ya se indica en
el Apartado 3.5, que aunque la simulación del procesado LDR ofrece unos
resultados mucho mejores que la del procesado HDR, en los experimentos
reales ofrecen resultados de calidad muy similar.

Observando detenidamente las imágenes obtenidas con uno y otro pro-
cesado, se puede comprobar cómo, empleando un procesado HDR, aparece
un ringing mayor que el que aparece al emplear el procesado LDR. Este pro-
blema está estrechamente ligado al rango dinámico de la imagen. Como ya
se ha comentado, este ringing aparece en zonas donde las diferencias entre
ṕıxeles vecinos son muy acentuadas. Una imagen de alto rango dinámico re-
presenta la imagen con más bits de profundidad, por lo que estas diferencias
entre ṕıxeles vecinos correspondientes a bordes o a gradientes de intensidad
se acentúan. Dado que en el procesado HDR se está realizando la deconvo-
lución sobre una imagen HDR, el ringing que aparece es mayor, mientras

40



(a) Ideal (b) Original

PROCESADO HDR

(c) Apertura Zhou (d) Apertura con prior HDR (e) Apertura con prior LDR

PROCESADO LDR

(f) Apertura Zhou (g) Apertura con prior HDR (h) Apertura con prior LDR

Figura 3.19: Resultados de ambos procesados para cada una de las aperturas, compa-
radas con la imagen original y la ideal, para el detalle de la derecha. Todas las imágenes
se muestran tras una reproducción de tono. La imagen original que se muestra es la cap-
turada con la apertura circular. Por simplicidad y similitud, no se muestran las originales
de las demás aperturas.

que en el procesado LDR, al estar deconvolucionando las exposiciones de
bajo rango dinámico el ringing que aparece es menor.

Sin embargo, también puede comprobarse cómo el procesado LDR ge-
nera resultados más ruidosos que el procesado HDR, motivo por el cual la
medida de calidad que ofrece la métrica HDR-VDP2 [12] para ambos tipos
de procesado es similar. Esto se debe a que la deconvolución es un proceso
ruidoso per se, y el proceso de fusión de varias exposiciones LDR en una
imagen HDR amplifica el ruido de éstas.

El motivo por el cual el procesado LDR se comporta mejor que el HDR
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en simulación es, probablemente, que el que el modelado del ruido que se
está haciendo no es del todo realista, ya que, aunque generalmente se suele
considerar válida la aproximación gaussiana, en la realidad entran en juego
otros muchos factores. Las simulaciones del procesado HDR ofrecen resulta-
dos más realistas, ya que los gradientes altos entre ṕıxeles vecinos presentes
en la realidad, y que son la mayor causa de distorsión en el resultado final,
también aparecen en la simulación, reduciendo la calidad ofrecida por la
métrica.

En cuanto a la comparación de las tres aperturas, como era de esperar,
en el procesado LDR se comportan mejor aquellas que están optimizadas
para imágenes LDR: la de Zhou [19] y la que se ha obtenido con el algorit-
mo genético con el prior LDR descrito anteriormente. Sin embargo, vemos
que en el procesado HDR, la apertura obtenida con el prior HDR no parece
comportarse mejor que las otras dos, ya que aunque en el detalle de la iz-
quierda śı que ofrece un mejor resultado, en el de la izquierda no es aśı. No
obstante, también es cierto que la apertura elegida de entre las obtenidas
con el prior LDR ya indicaba en las simulaciones un comportamiento válido
con el procesado HDR, como se vio en la Figura 3.14.

Finalmente, cabe destacar que ninguna de las aperturas obtenidas me-
diante el algoritmo genético del Apartado 3.5, con ninguno de los dos priors,
supera a la apertura de Zhou [19] para ninguno de los dos procesados. Es
importante también señalar, en relación con esto, que la métrica que se ha
empleado en el algoritmo genético está basada en la simulación de la cap-
tura de una imagen desenfocada (convolución entre la imagen enfocada y el
kernel, y ruido gaussiano aditivo) y su posterior deconvolución con el méto-
do de Wiener. Ya se explicó en el Apartado 3.2 que esta aproximación es
estrictamente cierta para el modelo de procesado 1, mientras que para los
dos modelos aqúı empleados sólo es una aproximación.
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(a) Ideal (b) Original

PROCESADO HDR

(c) Apertura Zhou (d) Apertura con prior HDR (e) Apertura con prior LDR

PROCESADO LDR

(f) Apertura Zhou (g) Apertura con prior HDR (h) Apertura con prior LDR

Figura 3.20: Resultados del ambos procesados para cada una de las aperturas, compa-
radas con la imagen original y la ideal, para el detalle de la izquierda. Todas las imágenes
se muestran tras una reproducción de tono. La imagen original que se muestra es la cap-
turada con la apertura circular. Por simplicidad y similitud, no se muestran las originales
de las demás aperturas.
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(a) Detalle de la derecha

(b) Detalle de la izquierda

Figura 3.21: Métricas obtenidas para ambos detalles con cada una de las aperturas, tanto
las reales como las de simulación, empleando HDR-VDP2. Se comprueba una vez más
como ambos modelos de procesado ofrecen resultados similares con experimentos reales
a pesar de que las simulaciones indican lo contrario. Además, ninguna de las aperturas
obtenidas supera en calidad a la apertura de Zhou.
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Caṕıtulo 4

Aperturas múltiples

4.1. Introducción

En esta parte del proyecto se estudia la técnica de generación y reen-
foque de imágenes HDR a partir de distintas exposiciones capturadas con
tamaño de apertura variable. Esta es una técnica ya existente, desarrollada
por Hasinoff et al. [9, 10], y de utilidad probada, por lo que el objetivo se
limita a implementarla, aunque de forma simplificada, y estudiar sus pro-
piedades.

En primer lugar, se muestra un modelo de formación de imágenes en
la cámara a partir de una división en capas de profundidad de la escena
y de la luminancia de la misma. Este modelo se emplea para plantear un
problema que puede resolverse con métodos de optimización para recuperar
los parámetros de la imagen: luminancia HDR perfectamente enfocada y
tamaño del desenfoque de cada capa.

Una vez que se conoce la función objetivo del problema, se comprueba su
funcionamiento con imágenes sintetizadas manualmente a partir del modelo
de formación de imágenes mencionado anteriormente. Finalmente, se valida
el funcionamiento del sistema con imágenes reales.

4.2. Fotograf́ıa HDR con apertura variable

Como ya se ha comentado anteriormente, a la hora de obtener una ima-
gen de alto rango dinámico se necesita capturar previamente una serie de
fotograf́ıas de la misma escena con distinta exposición. Habitualmente, esto
se consigue variando la velocidad del obturador en cada una de las capturas,
dejando fijos el resto de parámetros, de modo que el tiempo de exposición, y
por tanto el rango de luminancias que quedarán bien representadas, será di-
ferente en cada fotograf́ıa.
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Esto puede conseguirse también variando el tamaño de la apertura en
cada fotograf́ıa en lugar del tiempo de exposición, dejando fijo éste y el resto
de parámetros, de modo que con un tamaño de apertura pequeño obtendre-
mos una imagen en la que las zonas más oscuras de la escena estarán bien
expuestas, mientras que con un tamaño de apertura grande serán las zonas
más luminosas las que quedarán bien representadas.

Sin embargo, la variación de la apertura no sólo afecta a la exposición
de la imagen, sino también a la profundidad de campo (depth of field), de
forma que una apertura mayor tiene menor profundidad de campo que una
más pequeña, como puede verse en la Figura 4.1. Ésto produce un efecto
adverso ya que, si la profundidad de la escena que se quiere fotografiar es
muy grande, las zonas muy alejadas del punto de enfoque aparecerán des-
enfocadas en las fotograf́ıas tomadas con las aperturas de mayor tamaño, lo
cual resulta problemático a la hora de fusionarlas para obtener la imagen
HDR. Por este motivo suele ser preferible capturar las distintas exposiciones
variando la velocidad del obturador en lugar del tamaño de la apertura.

Figura 4.1: Variación de la profundidad de campo y de la exposición en función del
tamaño de la apertura. Puede verse que para la apertura más pequeña la imagen presenta
una exposición menor a pesar de emplear el mismo tiempo de exposición. También puede
comprobarse cómo con la apertura más pequeña toda la imagen aparece bien enfocada
al encontrarse dentro de la profundidad de campo, mientras que para la más grande sólo
ocurre ésto con la parte central de la escena. (Adaptada de Hasinoff et al [7]).

No obstante, lo que a priori puede parecer un problema se convierte en
una ventaja, ya que capturando las imágenes con apertura variable y me-
diante un procesado correcto se puede extraer información de luminancia y
desenfoque de las imágenes capturadas. Esta información puede emplearse
para crear imágenes de la escena con alto rango dinámico y que pueden ser
reenfocadas post captura.
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Esto se consigue gracias a un modelo de formación de imagen robus-
to a partir de las imágenes de entrada que se empleará para formular un
problema de optimización que permite recuperar la luminancia totalmente
enfocada de la escena y el tamaño del desenfoque en cada capa según el
tamaño de la apertura.

4.3. Modelo de formación de imágenes

El proceso de formación de imágenes en la cámara, fijando la velocidad
del obturador, depende del tamaño de la apertura, de la distancia de los
objetos a la cámara y de la distancia focal. Por śı solo, el tamaño de la
apertura determinará la exposición de la imagen, y en conjunción con los
otros parámetros definirá el desenfoque.

4.3.1. Modelo de exposición

La exposición de la imagen, dejando fijo el tiempo de exposición, o lo
que es lo mismo, la velocidad del obturador, dependerá exclusivamente del
tamaño de la apertura. Aśı, se define un factor de exposición ea que aumenta
conforme aumenta el diámetro de la apertura, de modo que, para una es-
cena L, la imagen L̄ formada en la cámara se podrá aproximar por L̄ = eaL.

Además de esto, hay que tener en cuenta que cuando el valor de un
ṕıxel L̄(x, y) = eaL(x, y) sobrepase al valor máximo permitido por el sensor
dará lugar a un ṕıxel sobreexpuesto, cuyo valor será precisamente este valor
máximo. Para simular correctamente el proceso de captura hay que tener
en cuenta esta sobreexposición. El modelo completo de exposición responde
a la ecuación siguiente:

L̄(x, y) = min[eaL(x, y), 1] (4.1)

4.3.2. Modelo de desenfoque

Como se ha visto en el Apartado 2.3.1, el desenfoque (blur) de una
imagen es mayor conforme más alejada está la imagen del plano focal, ya
que el ćırculo de confusión aumenta. Suponiendo una escena situada en un
plano paralelo al plano focal, siendo L la imagen perfectamente enfocada,
puede expresarse la imagen resultante L̄, para un tamaño de apertura dado,
como:

L̄ = L ∗Bσ (4.2)

Donde Bσ es la PSF del desenfoque, dependiente del llamado blur diameter
o diámetro de blur σ, que viene dado por el diámetro de la apertura D, la
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distancia focal d y la distancia de la cámara a la escena d’, siendo:

σ =
|d′ − d|
d

D (4.3)

En la práctica, se asume que Bσ es una función Gaussiana 2D, siendo σ la
desviación t́ıpica de la PSF:

Bσ(x, y) =
1

2πσ2
e

−(x2+y2)

2σ2 (4.4)

En la Figura 4.2 puede verse una imagen en la que se ha simulado un
desenfoque por profundidad con distintos diámetros de blur, siguiendo el
modelo aqúı descrito.

(a) σ=0 (b) σ=1 (c) σ=2 (d) σ=5

Figura 4.2: Simulación del desenfoque por profundidad con diferentes tamaños de blur.

4.3.3. Modelo de luminancia por capas

Como se ha visto en el apartado anterior, es sencillo simular el desenfo-
que en una escena situada en un sólo plano. Sin embargo, cuando la escena
está situada en varios planos o capas a diferentes profundidades, el diáme-
tro de blur para cada una de ellas será distinto, y probablemente existirán
oclusiones.

Para solucionar esto, en primer lugar se divide la escena en una serie de
K capas binarias empleando una máscara A = {A′k}(k = 1, 2, ...,K) para
seleccionar los ṕıxeles no ocluidos en cada uno de los planos de profundidad.
Esta máscara permite calcular por separado el desenfoque de cada una de las
capas, que luego pueden sumarse para obtener la luminancia de la imagen
desenfocada como se muestra en la siguiente ecuación:

L̄ =
K∑
k=1

[(Ak · L) ∗Bσa ] (4.5)

Además, se define una segunda máscara M = {Mk}(k = 1, 2, ...,K) que
representa la oclusión presente en cada capa y producida por las que se
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encuentran situadas más cerca de la cámara. Para obtener esta máscara se
emplea la ecuación que se detalla a continuación:

Mk =
K∏

j=k+1

(1−Aj ∗Bσj ) (4.6)

Esta máscara se aplica sobre cada una de las capas después de ser des-
enfocadas individualmente y antes de sumarlas para obtener la luminancia
total de la imagen. El proceso completo se muestra en la Figura 4.3, y
responde a la siguiente ecuación:

L̄ =

K∑
k=1

[(Ak · L) ∗Bσa ] ·Mk (4.7)

Figura 4.3: Esquema del modelo de creación de la luminancia de la imagen por capas de
profundidad. La escena se divide en capas de profundidad y éstas son desenfocadas por
separado. (Adaptada de Hasinoff et al [10])

4.3.4. Modelo completo de escena

Resumiendo los apartados anteriores, a partir de la luminancia de la
escena perfectamente enfocada L, la segmentación de la misma en capas de
profundidad A y el diámetro de blur por capa σa, se obtiene la imagen que
se forma en la cámara como:

L̄ = min

[
ea

K∑
k=1

[(Ak · L) ∗Bσa ] ·Mk, 1

]
(4.8)

49



4.4. Optimización

Una vez descrito el modelo de formación de las imágenes en la cámara,
éste se emplea para formular el problema inverso, mediante una función
objetivo que permite, tras una optimización, recuperar la luminancia HDR
perfectamente enfocada L de la escena y el tamaño de blur de cada capa
σk, a partir de una serie de n fotograf́ıas tomadas con distinto tamaño de
apertura y de la división en capas A de la escena.

4.4.1. Función objetivo

Definimos el problema como la estimación de las L y σ que mejor repro-
ducen las imágenes de entrada, para la división en capas A. Aśı, la función
objetivo queda como:

O(L,A, σ) =
1

2

n∑
a=1

‖∆a‖2 (4.9)

Donde ∆a es el error residual existente entre las imágenes sintetizadas me-
diante la Ecuación 4.8, a partir de L, A y σ, y las imágenes de entrada Ia
tomadas con cada una de las n aperturas:

∆a = Ia − L̄(L,A, σ) (4.10)

Juntando las ecuaciones 4.8, 4.9 y 4.10 se obtiene la ecuación completa
de la función objetivo:

O(L,A, σ) =
1

2

n∑
a=1

∣∣∣∣∣∣Ia −min[ea K∑
k=1

[(Ak · L) ∗Bσa ] ·Mk, 1

] ∣∣∣∣∣∣2 (4.11)

4.4.2. Método de optimización

Para resolver el problema de optimización se utiliza la función lsqnonlin1.
de Matlab, por tratarse de un problema de mı́nimos cuadrados no lineales.
Dado el tamaño del problema se le suministra al solver no sólo la función
objetivo sino también la estructura de la matriz jacobiana asociada.

4.4.3. Inicialización

Inicialización de la luminancia de la escena: La aproximación
inicial de la luminancia de la escena se obtiene directamente de las
imágenes de entrada, seleccionando sus ṕıxeles y escalándolos por la
inversa de su factor de exposición 1/ea. El objetivo es seleccionar el

1http://www.mathworks.es/help/toolbox/optim/ug/lsqnonlin.html
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mayor número de ṕıxeles posible de la imagen obtenida con la apertu-
ra más pequeña, ya que es la que menos desenfoque presenta de todas.
Sin embargo, no se pueden escoger los ṕıxeles que presenten valores
muy bajos de intensidad (correspondientes a zonas mas oscuras), ya
que muy probablemente estarán dominados por el ruido de la imagen.
Definimos un umbral k=0.1 de modo que para cada ṕıxel se seleccio-
na la apertura más pequeña para la cual la intensidad de la imagen
está por encima del mismo, o la más grande de todas si no se cumple
para ninguna de ellas.

Asignación de las capas: Aunque el método original [9, 10] incluye
un método automático de asignación de capas, por simplicidad en este
proyecto se asignan las capas manualmente, como input del usuario.

4.5. Definición de los experimentos

Se realizan una serie de experimentos para comprobar la validez del
método. En primer lugar se trata de recuperar la luminancia L a partir de
un input de imágenes sintéticas, con división en capas y tamaño de blur
conocidos, como se muestra en la Figura 4.4. A continuación se emplearán
imágenes reales con luminancia y tamaño de blur por capas desconocido y se
tratará de recuperar ambas a partir de las imágenes obtenidas con distintos
tamaños de apertura y de una división por capas, como se ve en la Figura
4.5.

Figura 4.4: Esquema de la optimización en el experimento con imágenes sintéticas.
Se obtiene la luminancia totalmente enfocada de la escena a partir de las exposiciones
obtenidas con distinto tamaño de apertura, la división en capas de la escena y el tamaño
de blur por capas.

4.5.1. Recuperación de luminancia L en imágenes sintéticas

Para crear la imagen sintética, se escoge una imagen LDR en color de
tamaño 256x256 ṕıxeles y se le simula el alto rango dinámico dividiéndola
en tres bandas verticales y exponiéndolas artificialmente, para obtener la
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Figura 4.5: Esquema de la optimización en el experimento con imágenes reales. Se obtiene
la luminancia totalmente enfocada de la escena y el tamaño de blur por capas a partir de
las exposiciones obtenidas con distinto tamaño de apertura y la división en capas de la
escena.

imagen L que se muestra en la Figura 4.6(a). Además, se divide la imagen
en tres capas asignando diferentes profundidades en tres bandas horizonta-
les (Figuras 4.6(b)-4.6(d)).

Finalmente, se aplica el modelo de formación de imagen para simular
la captura de la escena con tres diferentes tamaños de apertura, situando
el plano de enfoque en la capa central. Las imágenes que se obtienen se
muestran en la Figura 4.7.

Puede observarse cómo la exposición y el desenfoque en las capas pos-
terior y frontal aumentan con el tamaño de la apertura. Para obtener estas
imágenes se ha empleado un diámetro de blur σA = 3 ṕıxeles en las capas
desenfocadas para la apertura mayor. El diámetro de blur σa para cada una
de las otras dos aperturas se obtiene a partir del de la mayor y del factor
de exposición de la apertura ea como:

σa = σA

√
ea
eA
, (4.12)

donde eA es el factor de exposición correspondiente a la mayor de las aper-
turas. Se emplean factores de exposición de 1, 4 y 16 para la apertura más
pequeña, la media y la más grande, respectivamente. A partir de estas tres
imágenes se obtiene una inicialización de la luminancia como se ha indica-
do en el Apartado 4.4.3 y se procede a la optimización para recuperar la
luminancia de la escena.

4.5.2. Recuperación de luminancia L y tamaño de blur en
imágenes reales

Para validar el método con escenas reales, se monta un escenario com-
puesto por tres capas a distintas profundidades y se capturan tres imágenes
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(a) Imagen sintética

(b) Capa posterior (c) Capa central (d) Capa frontal

Figura 4.6: Imagen sintética con exposición artificial para simular el rango dinámico y
división en capas de profundidad. Las tres bandas verticales se exponen artificialmente,
y las tres bandas horizontales se corresponden con capas de distinta profundidad. Todas
las imágenes se muestran tras una reproducción de tono.

de la escena, con tamaños de apertura de f/8, f/4 y f/2 stops. Para el resto
de parámetros de captura se escoge ISO=100 y tiempo de exposición de
1/20 segundos. Las imágenes se capturan en formato RAW con un tamaño
de 4752x3168 ṕıxeles y se elimina la corrección gamma de las mismas para
hacerlas lineales. Posteriormente se recortan y se les aplica un resize para
obtener imágenes de 256x256, con el objetivo de hacerlas más manejables
y reducir el coste computacional. El factor de exposición para estas tres
imágenes es aproximadamente de 1, 1.8 y 3.5 respectivamente.

Esta vez se desconoce el tamaño de blur de cada capa, por lo que se
recuperará simultáneamente junto con la luminancia HDR enfocada de la
escena, empleando las tres imágenes capturadas con los tamaños de apertura
y la división en capas obtenida manualmente. Para ello se alterna la opti-
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(a) Apertura más pequeña (b) Apertura media (c) Apertura más grande

Figura 4.7: Simulación de captura con tres tamaños de apertura diferentes. Puede ob-
servarse una variación tanto en la exposición en toda la imagen como en el desenfoque de
las capas frontal y posterior.

mización para ambos parámetros: en primer lugar se realizan 10 iteraciones
dejando fijo el tamaño de blur inicial σ y optimizando para la luminancia L,
y a continuación otras 10 dejando fija la luminancia L y optimizando para
σ. Este proceso se repite hasta la convergencia.

4.6. Resultados

A continuación, se exponen y discuten los resultados de los experimentos
propuestos en el apartado anterior.

4.6.1. Imágenes sintéticas

Empleando como entrada las imágenes sintéticas mostradas en la Figu-
ra 4.7, fijando el tamaño de blur al mismo valor empleado en su obtención
(σ = 3 ṕıxeles) y empleando la división en capas de la Figura 4.6, se ejecuta
la optimización de la función objetivo. En la Figura 4.8 se muestran tanto
la inicialización de la luminancia como la recuperada al final del proceso.

A la vista del resultado, se observa cómo el algoritmo ha sido capaz de
recuperar a la perfección la luminancia de la escena sintética a partir de las
tres imágenes de entrada (Figura 4.7) a pesar de los errores claros presentes
en la inicialización. Aplicando la norma L2 a la luminancia recuperada con
respecto a la luminancia sintética ideal se obtiene un resultado en tanto por
ciento de L2 = 7,4521e− 008, lo que se traduce en un error insignificante.

4.6.2. Imágenes reales

Se prueba el algoritmo en un escenario real, tratando de recuperar si-
multáneamente la luminancia y el tamaño de blur σ por capa, como se indica
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(a) Inicialización (b) Recuperada

Figura 4.8: Resultado de la optimización para recuperar la luminancia de la imagen
sintética. Ésta se obtiene correctamente y perfectamente enfocada, a pesar de una inicia-
lización claramente distorsionada.

en el Apartado 4.4.2.

El algoritmo converge a partir de la séptima repetición, y emplea un
tiempo de 35373 segundos (aproximadamente diez horas) de media en cada
una de ellas2. En la Figura 4.9 se muestra la luminancia resultante junto
a las imágenes de entrada y la división en capas de la escena. Se aprecia
claramente cómo el algoritmo es capaz de recuperar la escena totalmente
enfocada, aunque aparece una leve distorsión en los bordes entre las capas
debida a la oclusión. El método original resuelve este problema aplicando
procedimientos de inpainting, pero por encontrarse fuera de los objetivos
marcados se optó por no implementarlo.

El tamaño de blur recuperado tras la optimización para la imagen con
apertura más grande es de 1.797 ṕıxeles en la capa frontal, 0 en la capa
intermedia (ya que está en foco) y 1.678 en la posterior. Nótese que cono-
ciendo los valores de σ se puede obtener una estimación de la profundidad
relativa entre capas.

Una vez recuperada la luminancia totalmente enfocada y los tamaños de
blur, aplicando el modelo de formación de imágenes se pueden manipular en
postcaptura los parámetros de captura de la escena de la forma que se desee.
En el CD adjunto a la memoria se incluye un v́ıdeo en el cual se muestra
una reśıntesis completa de los parámetros de la cámara. En la Figura 4.10

2Procesador: Intel Core i5, 2.26GHz. Memoria RAM: 6GB
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se muestra la escena con todo su rango dinámico, reenfocada en cada una
de las capas. También se puede manipular la exposición con toda la escena
perfectamente enfocada, como se muestra en la Figura 4.11, o modificar al
mismo tiempo el enfoque y la exposición como si se estuviera manipulando
el tamaño de la apertura, tal como se muestra en la Figura 4.12.

Como puede verse en estos resultados, el sistema implementado permite
recuperar correctamente la luminancia enfocada de la escena con ligeras dis-
torsiones, aśı como el tamaño de blur correspondiente a cada capa, ofrecien-
do una gran versatilidad en postcaptura al permitir simular sintéticamente
la variación de todos los parámetros de la cámara.
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(a) Luminancia recuperada

(b) f/8 (c) f/4 (d) f/2

(e) Capa posterior (f) Capa intermedia (g) Capa frontal

Figura 4.9: Luminancia recuperada de la imagen real, junto a las imágenes de entrada
y la división en capas. El algoritmo permite recuperar la escena totalmente enfocada a
costa de una ligera distorsión en los bordes entre capas debida a la oclusión.
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(a) Capa posterior (b) Capa central (c) Capa frontal

Figura 4.10: Luminancia HDR recuperada reenfocada en postcaptura a cada una de las
capas.

(a) Menor exposición (b) Exposición intermedia (c) Mayor exposición

Figura 4.11: Manipulación de la exposición en postcaptura con la escena totalmente
enfocada.

(a) f8 (b) f4 (c) f2

Figura 4.12: Manipulación del tamaño de apertura en postcaptura.
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Caṕıtulo 5

Conclusiones

A continuación se exponen las conclusiones del trabajo realizado, aśı co-
mo el grado de consecución de los objetivos que se plantearon. Además se
sugieren algunas ĺıneas de investigación futuras que surgen a ráız del estudio
realizado, y finalmente se exponen una serie de conclusiones personales del
autor del proyecto.

5.1. Conclusiones del trabajo realizado

Se han estudiado dos técnicas distintas de reenfocado de imágenes HDR.
La primera de ellas consiste en aplicar las técnicas conocidas de aperturas
codificadas para corrección de desenfoques a imágenes de alto rango dinámi-
co. El objetivo que se planteó respecto a este punto fue realizar un estudio
exhaustivo del empleo de estas técnicas para comprobar cómo se compor-
taban en este tipo de imágenes. A la vista de los resultados obtenidos se
puede concluir lo siguiente:

Se ha demostrado la validez y la viabilidad del empleo de aperturas
codificadas para corrección de desenfoques en imágenes HDR. Además
se han propuesto tres modelos de procesado diferentes para conseguir
reenfocar una imagen HDR desenfocada y se ha establecido una com-
paración de la calidad que ofrece cada uno de ellos, si bien el primero
sólo ha podido estudiarse en simulación al no contar con el material
necesario para realizar experimentos reales.

En cuanto a los otros dos modelos, llamados procesado HDR y proce-
sado LDR, se ha comprobado que ambos ofrecen resultados de calidad
similar, a pesar de que las simulaciones indican que el primero se com-
porta peor que el segundo. Además, el procesado HDR resulta menos
costoso computacionalmente al requerir de una sola deconvolución,
mientras el procesado LDR necesita una deconvolución por cada ex-
posición.
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Se ha comprobado cómo a la hora de realizar una deconvolución de
una imagen HDR se obtienen mejores resultados empleando un prior
estad́ıstico obtenido a partir de imágenes naturales HDR que con otro
obtenido a partir de imágenes LDR. A pesar de ello, en los resultados
aqúı obtenidos no se aprecia una mejora en el empleo de priors en la
deconvolución con respecto al empleo de NSR constante ya que los
priors aqúı empleados no son del todo óptimos, haciéndose necesaria
una mejora en este campo.

Se han obtenido aperturas codificadas para HDR empleando la métrica
de Zhou [19] con priors de imágenes HDR, sin obtener una mejora de
resultados con respecto a las aperturas obtenidas con priors LDR.

La segunda técnica estudiada consiste en la obtención de la luminancia
HDR perfectamente enfocada de una escena, aśı como el grado de desenfoque
existente en cada capa de profundidad, a partir de una serie de imágenes
de la misma capturadas con distintos tamaños de apertura. De acuerdo con
los resultados, se obtienen las siguientes conclusiones:

La técnica implementada permite obtener correctamente la luminancia
HDR enfocada de una escena, aśı como el tamaño de blur por capas
de profundidad.

Esta técnica ofrece una gran versatilidad, ya que a partir de la división
en capas de la escena, de la luminancia HDR enfocada y del tamaño
de blur por capas de profundidad se pueden obtener imágenes de la
escena variando los parámetros de exposición y enfoque de la forma
que se desee.

A pesar de las ventajas que presenta, se trata de una técnica excesi-
vamente costosa en tiempo de computación, al requerir de una opti-
mización que precisa de varias horas para alcanzar la convergencia.

5.2. Trabajo futuro

A ráız de la investigación desarrollada se proponen algunas ĺıneas de
investigación futuras:

Dado que no ha sido posible realizar experimentos reales con el primero
de los procesados propuestos al no contar con el material necesario
para ello, se propone un estudio más a fondo del mismo empleando
cámaras fotográficas que permitan obtener imágenes HDR con una
sola captura.
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Debido a la inexistencia de priors HDR válidos para la resolución de
problemas HDR, basándose en el trabajo de Pouli et al. [16] y en
los resultados aqúı obtenidos, se propone un estudio a fondo sobre la
construcción de priors basados en estad́ısticas de imágenes HDR.

Aunque no se han logrado obtener aperturas óptimas para HDR, esto
no implica que realmente no existan. La métrica que se ha empleado
en el algoritmo genético está basada en la deconvolución de Wiener
simulando la captura de una imagen desenfocada y su posterior de-
convolución. Esta simulación no es válida del todo para HDR ya que
no tiene en cuenta la fusión de las exposiciones. Aśı, se propone un
estudio a fondo del problema para obtener una métrica más apropia-
da para imágenes HDR, que tenga en cuenta tanto la captura de las
exposiciones como su fusión.

En relación con el punto anterior y con el trabajo de Masiá et al. [14],
se propone también la posibilidad de emplear métricas perceptuales
en la obtención de patrones óptimos para HDR.

5.3. Conclusiones personales

Gracias a este proyecto he podido adentrarme en el mundo de la investi-
gación y descubrir la exigencia de explorar un campo abierto y desconocido,
y la satisfacción final al descubrir que el trabajo da resultado después de
tanto tiempo y esfuerzo.

Durante este tiempo he tenido la oportunidad de trabajar dentro del
Graphics and Imaging Lab del Grupo de Informática Gráfica Avanzada
(GIGA), lo que me ha permitido experimentar desde dentro el d́ıa a d́ıa de
un grupo de investigación de estas caracteŕısticas, y atesorar una serie de va-
liosas experiencias y aprendizajes que me serán muy útiles el d́ıa de mañana.

Además, la investigación correspondiente a la primera parte del proyec-
to ha dado lugar a un art́ıculo que ha sido enviado al Congreso Español de
Informática Gráfica (CEIG 2012). Aunque a fecha de hoy todav́ıa está pen-
diente de aceptación, escribirlo fue una nueva experiencia positiva.
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Apéndice A

Software y procedimientos
de fusión de imágenes HDR

En este apéndice se muestran algunos ejemplos de software comercial
que permiten fusionar imágenes HDR a partir de una serie de exposiciones,
aśı como el procedimiento a seguir en cada uno de ellos para realizar esta
fusión.

A.1. Adobe Photoshop CS5

Precio: desde 1001.82 e(Actualización desde: 293.82 e)
Descarga: http://www.adobe.com/es/products/photoshop.html

Procedimiento de fusión de imágenes HDR:

1. Seleccionar: ”Archivo→ Automatizar→ Combinar para HDR Pro...”

2. Hacer clic en ”Explorar...” y seleccionar las exposiciones correspon-
dientes. Si se desea que el programa trate de alinear las exposiciones
automáticamente, seleccionar la opción ”Intentar alinear automática-
mente las imágenes de origen”. A continuación, hacer clic en ”OK”.

3. Si la imagen está en formato RAW o en algún otro que conserve la
información de exposición, saltar al paso siguiente. En caso contrario
aparecerá una ventana para introducir los parámetros de exposición
de cada fotograf́ıa. Escribirlos y hacer clic en ”OK”.

4. Seleccionar ”Modo: 32 bits” y hacer clic en ”OK”.
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A.2. Luminance HDR

Precio: Gratuito.
Descarga: http://qtpfsgui.sourceforge.net/

Procedimiento de fusión de imágenes HDR:

1. Hacer clic en ”New HDR image”.

2. Seleccionar ”Cargar imágenes” y escoger las exposiciones correspon-
dientes. Hacer clic en ”Abrir”.

3. Introducir el valor de exposición en EVs de cada fotograf́ıa y hacer
clic en ”Siguiente”. Si la imagen está en un formato que conserve los
parámetros de exposición no será necesario introducirlos.

4. Alinear las imágenes si es preciso y hacer clic en ”Siguiente”.

5. Seleccionar uno de los perfiles de creación que determinan la función de
pesos, la curva de respuesta y el modelo de creación, o seleccionar cada
uno por separado escogiendo la opción ”Use custom configuration”.
Hacer clic en ”Finalizar”.

A.3. Photomatix Pro

Precio: desde 39 $.
Descarga: http://www.hdrsoft.com/download.html

Procedimiento de fusión de imágenes HDR:

1. Hacer clic en ”Load Bracketed Photos”.

2. Hacer clic en ”Browse” y escoger las exposiciones correspondientes.

3. Seleccionar la diferencia de EVs entre imágenes consecutivas con ”Spe-
cify the E.V. spacing” o introducir manualmente el valor de EV de
cada fotograf́ıa. Hacer clic en ”OK”.

4. Si se desea que el programa trate de alinear las imágenes automática-
mente, seleccionar ”Align source images” en la ventana ”Preprocessing
Options”. Asimismo, se ofrecen opciones de reducción de ruido, abe-
rraciones cromáticas y efectos de ghosting. Seleccionarlas las que se
deseen y hacer clic en ”OK”.

5. Seleccionar ”Process: Exposure Fusion” y hacer clic en el botón ”Pro-
cess”.
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Apéndice B

Inserción de aperturas
codificadas en el objetivo
Canon EF 50mm f/1.8 II

En este apéndice se detalla el procedimiento de inserción de una aper-
tura codificada en el objetivo Canon EF 50mm f/1.8 II.

Material necesario (ver Figura B.1)

Destornillador pequeño

Paño para limpiar lentes

Contenedor para las partes pequeñas

Cinta aislante

Figura B.1: Objetivo Canon EF 50mm f/1.8 II junto a los materiales empleados.

Es importante trabajar en un espacio ordenado y limpio, y ser cuidadoso
a la hora de manipular el objetivo, pues consta de varias piezas pequeñas
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susceptibles de extraviarse, aśı como partes delicadas que pueden dañarse
irreversiblemente.

Metodoloǵıa:

1. Desenroscar la tapa de atrás. Como se muestra en la Figura B.2, apa-
recerán dos pequeños tornillos que deberán ser retirados. A continua-
ción, poner el objetivo en enfoque manual y girar hacia abajo el disco
de enfoque. Empujar suavemente la parte metálica hacia abajo con
el destornillador, y hacer palanca contra la cubierta de plástico para
sacarla. Es muy importante tener cuidado de no dañar la circuiteŕıa
interior, la lente o los cables.

Figura B.2: Objetivo montado, con la tapa trasera desenroscada.

2. Presionar desde el interior del objetivo para despegar la tapa lateral.
Una vez que ésta ceda, hacer palanca con el destornillador para soltarla
del todo, como se muestra en la Figura B.3.

Figura B.3: Objetivo con la tapa lateral despegada.

3. Quitar el último tornillo y la pieza metálica que sujeta, indicados en la
Figura B.3. Una vez hecho esto, girar el disco de enfoque hacia arriba
y el objetivo quedará desmontado en las tres piezas que se muestran
en la Figura B.4.
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Figura B.4: Objetivo desmontado en sus tres piezas principales.

4. En la pieza de la lente, colocar la apertura codificada como se muestra
en la Figura B.5. Es importante colocarla bien centrada para que todo
el patrón esté dentro del ćırculo de la lente. Sujetarla con pequeñas
tiras de cinta aislante, con cuidado de no tapar el patrón con ella.

Figura B.5: Pieza central con la apertura codificada.

5. Limpiar bien las lentes y volver a ensamblar el objetivo, repitiendo a
la inversa los pasos 1-4.
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Apéndice C

Art́ıculo: Analysis of Coded
Apertures for Defocus
Deblurring of HDR Images

En este apéndice se adjunta el art́ıculo resultante de la primera parte
del proyecto, correspondiente al análisis del empleo de aperturas codificadas
para corrección de desenfoques en imágenes HDR. El art́ıculo fue sometido
al Congreso Español de Informática Gráfica (CEIG 2012), y a d́ıa de
hoy se encuentra pendiente de aceptación.
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Analysis of Coded Apertures for
Defocus Deblurring of HDR Images

Abstract
In recent years, research on computational photography has reached important advances in the field of coded
apertures for defocus deblurring. These advances are known to perform well for low dynamic range images (LDR),
but nothing is written about the extension of these techniques to high dynamic range imaging (HDR).
In this paper, we focus on the analysis of how existing coded apertures techniques perform in defocus deblurring of
HDR images. We present and analyse three different methods for recovering focused HDR radiances from an input
of blurred LDR exposures and from a single blurred HDR radiance, and compare them in terms of the quality of
their results, given by the perceptual metric HDR-VDP2. Our research includes the analysis of the employment of
different statistical deconvolution priors, made both from HDR and LDR images, performing synthetic experiments
as well as real ones.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]:
Enhancement—Sharpening and deblurring

1. Introduction

The field of computational photography has obtained im-
pressive results in last years, improving conventional pho-
tography results. One well known problem that conventional
cameras present is the limitation of the sensor to capture im-
ages with an extended dynamic or luminance range. In a con-
ventional camera the luminance range is limited and parts of
the scene which present luminance out of the range would
not be correctly represented. In this context HDR imaging
(High Dynamic Range imaging) [RWPD05] is a strategy to
capture and represent the extended luminance range present
in real scenes.

Also in terms of defocus deblurring computational pho-
tography has reached important advances. Since image cap-
ture can be modelled as a convolution between the focused
image and the blur kernel plus a noise function, recover-
ing a sharp image is reduced to a deconvolution problem.
However, traditional circular apertures present a very poor
response in frequency domain with multiple zero-crossings
and attenuation in high frequencies. Thus, recovered images
present poor quality. Coded apertures are designed to have
an appropriate frequency response to solve this problem,
placing them in the camera lens in order to code light before
it reaches the camera sensor. The defocus blur is encoded
and high frequencies are better preserved in the original im-
age, obtaining better deblurred images after deconvolution.

This work turns around both approaches, analysing the
use of coded aperture for defocus deblurring techniques in
HDR imaging. While it is well known that the use of coded
apertures for defocus deblurring offers good performance
with LDR images [ZN09], we believe this is the first time
that these techniques are extended to HDR imaging.

For this purpose, we rely in a coded aperture specifically
designed for defocus deblurring of LDR images by Zhou et
al. [ZN09] and use it to analyse this problem in HDR images.
The pattern of this aperture can be seen in Figure 1 beside
its power spectrum compared to that of a circular aperture.
Note that this aperture offers a better frequency response for
defocus deblurring than the circular aperture.

We propose and analyse three different processing mod-
els for recovering focused HDR images, one from a single
blurred HDR radiance and two from an input of blurred
LDR exposures, and analyse them first in simulation envi-
ronment and finally in real scenarios. We also analyse the use
of deconvolution statistical priors, made both from HDR and
from LDR images, taking into account the work of Pouli et
al. [PCR10] and following the approach that, to solve HDR
problems, the use of HDR priors instead of LDR ones would
lead to better results due to the existing statistical differences
between both types of images.
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Figure 1: Power spectra of the coded aperture designed for
defocus deblurring by Zhou et al. [ZN09] and a conventional
circular aperture. Note how the coded aperture pattern of-
fers better frequency response as it avoids zero-crossings
and reduces the attenuation in high frequencies.

2. Previous Work

Coded apertures have been traditionally used in astronomy
since 1960s to address SNR problems related to lensless
imaging, coding the incoming high frequency x-rays and γ-
rays. One well known pattern for this purpose is MURA pat-
tern (Modified Uniformly Redundant Array) [GF89].

More recently, in the field of computational photography,
Veeraghavan et al. [VRA∗07] showed how coded apertures
can be used to reconstruct 4D light fields from 2D sensor
information. Also coded apertures have been used for solv-
ing defocus deblurring problem. The main idea is to obtain
coded apertures with better frequency response than the con-
ventional circular aperture. Levin et al. [LFDF07] designed
an optimal aperture for depth from defocus and a novel de-
convolution method in order to achieve all in-focus images
and depth recovery simultaneously. Another approach to re-
cover focus and depth information of a scene was devel-
oped by Zhou et al. [ZLN09], in this case obtaining a pair
of apertures through genetic algorithms and gradient descent
search. Also Zhou et al. presented a metric that evaluates the
goodness of a coded aperture for defocus deblurring based
on the quality of the resulting deblurred image and image
statistics [ZN09]. Recently, Masia et al. [MCPG12] intro-
duced perceptual metrics in the optimization process leading
to an aperture design and proved the benefits of this percep-
tually optimized coded apertures.

For more information about technical details of HDR
imaging we refer the reader to Reinhard’s book. [RWPD05].

3. Processing methods

The capture process of an image f is given by Equation 1:

f = f0 ∗ k+η (1)

where f0 is the focused scene, η is a gaussian white noise
with standard deviation σ and k is a convolution kernel de-
termined by the aperture shape and the blur size.

In order to study the viability of the employment of coded
apertures for defocus deblurring in HDR images, we simu-
late the capture process and attempt to recover a sharp image
from the simulated blurred image.

Being f HDR
0 an HDR scene, we can use the approximation

given by Equation 2 to simulate the capture of a High Dy-
namic Range radiance f HDR only if we are able to capture it
in one single shot.

f HDR = f HDR
0 ∗ k+η (2)

Some existing cameras allow the capture of extended dy-
namic range, but in most cases HDR images are obtained by
capturing series of LDR exposures and merging them later.

Then, being f LDR
0n ,(n = 1, ...,N) a set of LDR exposures

of the same focused HDR scene f HDR
0 , we can simulate the

capture of the defocused HDR radiance by first simulating
the capture of each exposure following Equation 3, and sec-
ond merging them into a single HDR defocused radiance as
expressed in Equation 4, being g the HDR merging operator.

f LDR
n = f LDR

0n ∗ k+η (3)

f HDR = g( f LDR
1 , f LDR

2 , ..., f LDR
N ) (4)

Once f HDR is obtained, we can recover the focused HDR
radiance f̂ HDR

0 by performing a single deconvolution. How-
ever, as we have the LDR defocused exposures, it is possible
to deblur them separately with a set of N deconvolutions and
merge them later to obtain f̂ HDR

0 , following Equation 5.

f̂ HDR
0 = g( f̂ LDR

01 , f̂ LDR
02 , ..., f̂ LDR

0N ) (5)

According to this, we present three different methods for re-
covering focused HDR radiances:

1. Processing HDR radiance obtained with a single shot:
Following Equation 2 to model the capture and recover-
ing the focused radiance with a single deconvolution, as
seen in Figure 2(a).

2. Processing HDR radiance obtained by merging LDR
exposures: Following Equations 3 and 4 and recover-
ing the focused HDR with a single deconvolution. The
pipeline of this processing is shown in Figure 2(b).

3. Processing LDR exposures separately before merg-
ing: Following Equation 3 to model the N captures, re-
covering the focused LDR exposures with N deconvolu-
tions and merging them as in Equation 5 to obtain the
HDR focused radiance. This pipeline can be seen in Fig-
ure 2(c).
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(a) Pipeline for processing model 1

(b) Pipeline for processing model 2

(c) Pipeline for processing model 3

Figure 2: Pipelines for all different processing models, where k is the convolution kernel, GWN is the Gaussian White Noise, g
is the HDR merging operator and * is the convolution operator.

4. Simulation of processing models

First we analyse these three models by performing simula-
tions in order to study their viability before proceeding to
real experiments. To carry out these, we use one of the coded
apertures developed by Zhou et al. [ZN09], which is shown
in Figure 1. This aperture is known to work well for defocus
deblurring LDR images.

For the simulations we use a set of seven HDR pho-
tographs with different dynamic ranges for the first model,
and their three corresponding LDR exposures for the other
two. One of them is shown in Figure 3. The main goal
is to recover the focused HDR images with all three pro-
cessing methods. We use the perceptual metric HDR-VDP2
[MKRH11] in order to assess the quality of the results. This
metric compares a reference HDR image with its distorted
version, providing quality and visibility (probability of de-
tection) measures based on a calibrated model of the human
visual system. In this work we focus in obtaining the quality
factor Q, a prediction of the quality degradation of the recov-
ered HDR image with respect to the reference HDR image,
expressed as a mean-opinion-score (with values between 0
and 100). This metric can not only work with HDR images,
but also with their LDR counterparts.

We test four different noise levels, with standard devi-

ations of σ =0.0005, 0.001, 0.005, 0.05, and three differ-
ent deconvolution models based on Wiener deconvolution,
which formulation in frequency is given by Equation 6.

F̂0 =
F · K̄

|K|2 + |C|2
(6)

Where F̂0 is the Fourier Transform of the recovered im-
age, K̄ is the complex conjugate of K, |K|2 = K · K̄ and
|C|2 = |σ/F0|2 is the Noise to Signal Ratio (NSR) matrix of
the original image. From this deconvolution, we study these
three different variations:

• Wiener Deconvolution without prior, with constant
NSR matrix. Replacing |C|2 in Equation 6 by a constant
NSR matrix. We tested several values and found that there
is a trade-off between noise and ringing in resulting im-
ages. We finally decided to set |C|2 = 0.005 achieving
good balance between both artifacts.

• Wiener Deconvolution using natural HDR image
prior. Replacing |F0|2 in Equation 6 by an statistical prior
matrix averaging power spectra of a series of 198 HDR
images. We construct the prior employing HDR images
from the database of Tania Pouli (http://taniapouli.
co.uk/research/statistics/).

• Wiener Deconvolution using natural LDR image prior.
Replacing |F0|2 as in the previous, using a prior of 198
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(a) Tone mapped HDR

(b) Overexposed (c) Medium exposed (d) Sub exposed

Figure 3: Example of one of the HDR images used in sim-
ulation, with the three exposures merged to obtain it, with
relative exposures of +2, 0 and -2 stops.

LDR images instead, extracted from the database of Tania
Pouli.

We explore the use of HDR priors in processing models 1
and 2 as we are deconvolving an HDR radiance, inspired by
Pouli et al. [PCR10]. Note that we do not perform process-
ing model 3 with HDR prior since we are deconvolving LDR
images with it. Since the aperture we are using is optimized
for a noise level of σ = 0.005 we set this value for standard
deviation of gaussian noise in our deconvolutions with pri-
ors.

5. Performance comparison

Once all the simulations are finished, we compute the mean
quality factor Q, given by the HDR-VDP2 metric, of the
seven images obtained with the three proposed processing
models shown in Figure 2. For each model we analyse four
different noise levels and the three different deconvolution
variations explained in Section 4. This information is col-
lected in Figure 4.

We can see how the use of priors is strongly recommended
for processing model 1 when image noise is very high. In
this noisy scenario, HDR prior offers better results than LDR
prior, however, when image noise decreases, all three differ-
ent deconvolutions produce similar behaviours.

As expected, HDR prior outperforms LDR prior in pro-
cessing model 2, but we can see how the use of Wiener de-
convolution with constant NSR matrix offers similar or even
better quality all along the noise variation.

For processing model 3, the use of constant NSR matrix in
the deconvolution seems to offer better results than the LDR
prior.

In regard to the comparison between all three processing
models, we can see how processing model 1 clearly derives
in better results than the other two, while processing model
2 seems to be the worst of them. Also, processing model 1
offers the lowest cost as it only requires one deconvolution,
while processing model 2 requires one deconvolution and
one exposure fusion, and processing model 3 requires one
deconvolution for each exposure and one exposure fusion.

In Figure 5 we show the result of one of the noisy simula-
tions (σ = 0.05) using processing model 1, with both priors.
We can see how the use of HDR prior slightly reduces the re-
covered image noise. In Figure 6 we show an example of the
same HDR scene recovered with processing model 2, with
both priors, this time with σ = 0.0005. In this low noise sce-
nario we can appreciate how the use of HDR prior instead of
LDR one results in a reduction of ringing artifacts.

6. Validation in real scenarios

After performing the simulations we proceed to validate the
same processes in real scenarios. We can not validate pro-
cessing model 1 in real scenarios because of the lack of the
required equipment: an HDR camera that allows the capture
of an HDR image with a single shot. For this reason, physical
validation is restricted to processing models 2 and 3, which
for simplicity we call HDR method and LDR method. We
use a DSLR camera Canon EOS 500D with an EF 50mm
f/1.8 II lens for all the tests. The same coded aperture used
in simulation (Figure 1) is printed and inserted into the cam-
era lens.

6.1. Image capture process

We construct a scene with large luminance range and capture
three images using the multi-bracketing camera option set to
relative exposures of +2, 0 and -2 stops. For these captures
we fix the ISO setting value at 100 and aperture size at F2.0,
leading to exposure times of 1/5, 1/20 and 1/80 seconds.

We place the scene 180 cm away from the camera, and set
the focus plane at 120 cm, leading to a defocus distance of 60
cm. We also take three exposures of the well focused scene
to obtain a ground truth HDR image that allows comparison,
using the same capture parameters described above.

All images are taken in RAW format, with a size of
4752x3168 pixels. To reduce computational time and cost
we resize images by a factor of 0.2, reducing them to
951x634 pixels.

6.2. System calibration

In order to recover the focused HDR image of the scene we
need to know the PSF of the capture system as the response
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(a) Processing model 1 (b) Processing model 2 (c) Processing model 3

Figure 4: Mean Q obtained with the HDR-VDP2 metric for each processing model, with all different combinations of noise and
deconvolution prior.

(a) HDR prior (b) LDR prior

Figure 5: Comparison between images recovered after simulation of processing model 1, with HDR and LDR priors and
σ = 0.05. Note how the use of the HDR prior instead of LDR slightly reduces image noise.

to an impulse, to use it as the kernel in the deconvolution
process. To calibrate the PSF at the depth of interest (60 cm)
we use a LED mounted on a pierced thick black cardboard in
order to make a point light source. We lock the focus plane
at 120 cm and place the cardboard with the LED at 180 cm.
In order to be coherent with image capture, we obtain three
images, one for each exposure value, with the same capture
parameters used to capture the scene. The central detail of
these images is shown in Figure 7. We also obtain an HDR
image of the montage to obtain the PSF that we will use in
the deconvolution in the HDR method.

The cropped image of the LED serves us as PSF, after
thresholding it in order to eliminate residual light, and nor-
malizing it to preserve energy in the deconvolution process.
Note that the threshold value changes for each PSF, increas-
ing with the exposure value: 0.39 for underexposed, 0.5 for
well-exposed and 0.8 for overexposed. For the PSF used in
the HDR method the threshold value is 0.2. The resulting
PSFs are shown in Figure 8. After image resizing the kernel,
its size is approximately 14x14 pixels.

Figure 7: Central detail of the three different exposures used
to recover the PSFs.

6.3. Deblurred images recovery

Once we obtain the PSFs we recover the sharp images fol-
lowing the HDR and LDR methods. For the HDR one we
merge the defocused exposures into a defocused HDR radi-
ance and obtain the deblurred HDR image performing a sin-
gle deconvolution using the HDR kernel, as in Figure 2(b).
For the LDR method we perform one deconvolution for each
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(a) HDR prior (b) LDR prior

Figure 6: Comparison between images recovered after simulation of processing model 2, with HDR and LDR priors and
σ = 0.0005. Note how using HDR prior instead of LDR seems to reduce image ringing.

Figure 8: PSFs obtained for deconvolution. From left to
right: PSF for the high, the central and the low exposure,
used in the LDR method, and PSF obtained by merging the
three exposures used in the HDR method.

defocused exposures, using the corresponding PSF for each
one, and merge the resulting recovered exposures into the
focused HDR image, as in Figure 2(c).

We carry out the same Wiener deconvolution models de-
scribed in Section 4, excluding again the use of HDR prior
for the LDR method.

7. Results and discussion

Once we perform all the experiments, we compare the results
of both methods. We compute the quality factor Q given by
the HDR-VDP2 metric of the HDR recovered images and
show the results in two different scenarios. We also check
the effect of the use of the different deconvolution models,
specially those which employ deconvolution priors.

7.1. Methods comparison

For our first scenario, in Figure 9 we show the quality fac-
tor Q, given by the HDR-VDP2 metric, of the HDR images
recovered with each processing. These results indicate that,
while simulation results suggested that the LDR method of-
fered better results than the HDR method (see Figure 4), real

experiments point that both methods offer very similar qual-
ities. Note that, according to these metrics, the use of priors
results in worse performance. We explore this fact further in
Subsection 7.2.

We show the result of both methods, using constant NSR,
in Figure 10, in order to offer a visual comparison of how
both methods perform. We also show the original HDR ra-
diance and the ground truth ideal HDR radiance. We can see
how both methods offer similar results as the metrics indi-
cate, while the HDR method requires only one deconvolu-
tion and the LDR method needs one deconvolution for each
exposure. Furthermore, attending to the highlighted details
and comparing recovered and original images we see how
both methods are able to recover the well focused HDR ra-
diance. These images prove that the employment of coded
apertures for defocus deblurring of HDR images is viable
and presents a good performance.

We test again our approximations performing the exper-
iments in a new scenario, in order to check if the second
results correlate with the first ones. In Figure 11 we show
the quality factor Q given by the HDR-VDP2 metric for this
second scenario.

Again, the use of priors derives in worse results than the
use of constant NSR, for both processing methods. In Figure
12 we show the HDR images of this scenario recovered with
the HDR and LDR methods with constant NSR. As we can
see, both methods offers good results, recovering the focused
image with little ringing artifacts.

7.2. Effects of using prior

As shown in Figures 9 and 11, in real experiments we see
that both HDR and LDR methods perform much better when
no deconvolution prior is used. We check the images recov-
ered with both priors in order to know why this happens.
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(a) HDR method (b) LDR method

Figure 9: Quality factor Q obtained with the HDR-VDP2 metric for our first real scenario, for each processing model and
deconvolution. We can observe how in the HDR method the HDR prior outperforms the LDR one, and how both LDR and HDR
methods using constant NSR offer similar quality.

(a) Ground truth (b) Original

(c) HDR method with constant NSR (d) LDR method with constant NSR

Figure 10: HDR results obtained for our first real scenario with best processing methods in terms of Q (c,d), compared to
ground truth and original images, all of them tone mapped. Here we see how both methods offer good and similar results.

If we carefully observe these images we can appreciate a
grid shaped distortion, as seen in Figure 13. This distortion
clearly reduces the visual quality of the images recovered
with deconvolution prior. Further, we notice again that HDR
prior outperforms LDR prior in the HDR method, as it min-
imizes, but not completely removes, this distortion.

We explore the variation of σ in the deconvolution pro-
cess and see the impact of this alteration in the described

distortion. This variation corresponds to a higher weight for
the deconvolution prior. In Figure 14 we see some of the im-
ages obtained with different σ in the deconvolution process
for the LDR method. We see how increasing this value we
obtain a better reduction of prior distortion and ringing. In
exchange, we find that this increase leads to less sharp re-
sults, resulting in a trade-off between both effects.
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(a) HDR method (b) LDR method

Figure 11: Quality factor Q obtained with the HDR-VDP2 metric for our second real scenario, for each processing model and
deconvolution. Note that in the HDR method the HDR prior outperforms the LDR one, and that in both methods the use of
constant NSR offers the best results.

(a) Ground truth (b) Original (c) HDR method (d) LDR method

Figure 12: HDR results obtained for our second real scenario with best processing methods in terms of Q, compared to ground
truth and original images, all of them tone mapped. Here we see how both methods are able to recover sharp details such as
the book titles.

8. Conclusions and future work

In this paper we explore for the first time, to our knowledge,
the use of coded apertures for defocus deblurring of HDR
images, showing that these techniques, which used to be em-
ployed in LDR images, can be extended for HDR imaging.
We implement three different processing models, either re-
sponding to an input of an HDR defocused radiance or a
series of LDR defocused exposures of the same scene.

The first processing model offers the best results in simu-
lation, but due to the limited dynamic range of our camera,
we are not able to capture defocused HDR images with a
single shot. Thus we could not test this model as properly as
we would like to, so the first future work that follows this pa-
per is to perform more experiments in this way, employing
more advanced cameras that allow the capture of extended
dynamic range images with just one shot.

The two other processing models are validated with real
experiments, finding that both of them are viable and of-
fer good quality results. We show that the proposed HDR
method performs as good as the LDR one, despite the fact
that simulations indicate otherwise, and reduces the compu-
tational cost as it only requires one deconvolution.

We conclude that the use of deconvolution priors made
of HDR images instead of conventional LDR priors leads to
better performance, but due to the fact that the prior we are
employing is far from optimal the best results come when no
prior is employed in the process. From this, and relying on
the work of Pouli et al. [PCR10], we believe that more re-
search related to HDR priors is needed. As many optimiza-
tion problems benefit from the use of statistical regularities
of the images, and taking into account the advances on HDR
imaging, we may think that the construction of good HDR
priors is another avenue of future work.

One of the immediate applications of these new priors,
which is highly related to our work, is the design of optimal
aperture patterns for defocus deblurring of HDR images. As
the aperture we have employed [ZN09] is obtained by means
of a genetic algorithm which uses prior information of LDR
images, we may think that it is possible to obtain new spe-
cific coded apertures optimized for HDR.

Finally, we hope that the results shown in this work
will encourage other researchers to further explore this
line.
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(a) HDR method with HDR prior (b) HDR method with LDR prior (c) LDR method with LDR prior

Figure 13: Detail of our recovered images of the first real scenario using priors, where we can appreciate a clear grid shape
distortion. Note that, in the HDR method, using HDR prior instead of LDR one reduces this effect. All the images are tone
mapped.

(a) σ = 0.0005 (b) σ = 0.005 (c) σ = 0.05

Figure 14: Effect of the variation of σ in the deconvolution seen for the LDR method. We can see a trade-off between the grid
shape distortion and image sharpness. All the images are tone mapped.
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