Memoria PFC:
Auto-generador de clases Java a partir de

metadatos de una base de datos

Alejandro Lecina Laplana
Ingenieria en Informatica
Junio 2012

indice de contenido

1= INtrodUCCION Pag. 3
L.1- Contexto del PFCo Pag. 3
1,25 MIOTIVACTON. ...t Pag. 3

1.2.1- Relacion referencial entre tablas. ... Pag. 3
1.2.2- Claves “engordadas” y nivel de profundidad de una clave..................c..ccoco Pag. 5
L35 ODJOEIVOS. ... Pag. 6
1.3.1- Formalizacién de las tablas en ficheros XML.............occooiiiiiiiiiii e Pag. 6
1.3.2- Generacion de clases java y formularios para el acceso a la base de datos........................... Pag. 6
1.3.3- Obtener informacion adicional de las tablas referenciadas.......................cooo Pag. 6
1.4- Productos OBtENIAOS.c.oiiiiiii i Pag. 7
1.5- Contenido de 1a MEemOTIA.ooiiiiiiiiiiii i Pag. 7

2- Aspectos generales.................... Pag. 8
2.1- Recopilacion de requisitos del sistema...............cooooiiiiiiiiiiiiii Pag. 8
2.2- Entorno de desarrollo de la aplicacion...................ocoooiiiiiiiiiiiiiiii Pag. 9
2.3- conexion a la base de datos............o.ooiiiiiiiiiiiii Pag. 9
2.4- Fichero .properties. Claves del siSstema...............c.coooiiiiiiiiiii Pag. 10
2.5- Repositorio para los ficheros generados. ... Pag. 10
2.6- Transformaciones XS, Pag. 11

3- Formalizacion de las tablas en XML Pag. 13
3.1- Estructura de 108 XML ..o Pag. 13
3.2- Generacion de 10s XML, Pag. 14
3.3- Eficiencia al generar 10s XIML.............oooii Pag. 16
3.4- XML NOrmaliZzadOs.o.ooiiiiiiiiii i Pag. 16

4- Generacion de clases java y formularios.. Pag. 19
4.1- Generar 1as Clases Java.............ooooiiiiiii i Pag. 19

4.1.1- Clases auxiliares para las clases Java generadas...............c..coooiiiiiiiiiiiii Pag. 20
4.2- Generar los formularios para la insercion de datos..................c..ooooiiii Pag. 21
4.3- Generar los formularios para la visualizacion de datos...............c.cococ Pag. 22

4.3.1- Clases auxiliares usadas por el formulario de visualizacion de datos................................. Pag. 23

4.3.2- La busqueda en profundidad en la pagina de visualizacion de datos.................................. Pag. 24

5- Uso de las clases java y formularios generados................................... Pag. 26

6- ConCIUSIONES ... Pag. 27
6.1- Valoracion del trabajo desarrollado..................ooi Pag. 28
6.2- Valoracion personal y experiencia adquirida.................cooooiiii Pag. 28

T- ReT@Ir@NCIAS. ... Pag. 29

1- Introduccion

1.1- Contexto del PFC

Este Proyecto de Fin de Carrera fue ofrecido por el Observatorio Tecnologico HP durante el curso 2010-
2011.

El Observatorio Tecnologico HP de la Universidad de Zaragoza es un espacio dentro de la universidad donde
los estudiantes pueden realizar sus Proyectos Fin de Carrera supervisados por personal especializado de la
empresa Hewlett-Packard. [1]

El director del proyecto, Javier Diaz, fue el empleado de HP que superviso el proyecto.

El proyecto surgié como una herramienta paralela de ayuda para el producto SILO desarrollado por el
departamento de logistica de HP, especialmente para la interaccion con la base de datos del mismo.

HP Warehouse Management System (SILO) es un producto que proporciona software y servicios para
gestionar las actividades de almacén, personal, desempefio, y el inventario, asi como los recursos fisicos,
como las paletas, la robdtica, los camiones y de almacenamiento. [2]

El proyecto parte de una motivacion concreta y pretende alcanzar unos objetivos bien definidos usando unas
determinadas herramientas. El proceso para alcanzar los objetivos no estaba definido, y es una de las partes
mas importantes del proyecto.

1.2- Motivacion

Las aplicaciones empresariales necesitan, para tareas de soporte, pantallas que accedan directamente a los
datos "en crudo" contenidos en las tablas de la base de datos, y que permitan editar, visualizar o insertar
nuevos. Existen algunas herramientas que permiten generar una version inicial de las clases Java que
conforman estas pantallas, pero requieren siempre de ajustes manuales para que sean debidamente utilizables
por un usuario. Esto se debe a varias causas, que estan relacionados con la falta de visibilidad sobre la
relacion referencial (claves externas) entre las diversas tablas de una aplicacion.

Pensando en el software SILO, se propone crear un generador automatico de clases Java que tenga en cuenta
los metadatos que cualquier base de datos contiene acerca de la estructura referencial de las entidades que la
componen, y los utilice para adecuar un conjunto de plantillas existentes y asi generar clases Java que
conformen pantallas de soporte finales, sin necesidad de ajustes posteriores por parte de desarrolladores.

Por otra parte, las aplicaciones Web has aumentado su popularidad en los ultimos afios debido a lo practico
del navegador web como cliente ligero, a la independencia del sistema operativo, asi como a la facilidad para
actualizar y mantener aplicaciones web sin distribuir e instalar software a miles de usuarios potenciales. [3]
El software SILO es una aplicacion compleja y cerrada. Una idea que interesa en un futuro es poder
interactuar con la compleja base de datos que gestiona a través de paginas web, tal como lo haria una
aplicacion web, por las razones previamente explicadas.

Como antes también se ha detallado, una herramienta que genere las clases y plantillas de acceso
correspondientes a las tablas de una base de datos sin tener en cuenta los metadatos de las mismas ni las
relaciones entre ellas tendra una serie de carencias respecto a clases y plantillas que si los tengan en cuenta.
Las siguientes secciones (1.2.1 y 1.2.2) detallan una serie de situaciones que se dan en una base de datos y
que llevaron al interés de abordar el problema tratado en este proyecto.

1.2.1- Relacion referencial entre tablas

La base de datos que gestiona la aplicacion SILO es compleja y consta de tablas con una gran cantidad de
columnas importadas de otras tablas (claves ajenas). Resulta interesante que al generar una clase
correspondiente a una tabla, exista informacion a cerca del origen de los datos de las columnas que son
claves importadas para poder obtener una informacion mas detallada de los datos guardados en dicha tabla.
Ademas se da el caso de que en la base de datos gestionada por SILO la mayoria de las tablas contienen una
clave primaria en formato de codigo numérico o alfanumérico. Esto hace que cuando se muestra al usuario
un dato de una tupla de una tabla con columnas que son claves importadas de otras tablas, el valor de dichas
columnas no sea facilmente identificable por un usuario si no sabe relacionar el cddigo que identifica a la

tupla referenciada, cosa que puede ser muy complicado si las tablas tienen una gran cantidad de datos
almacenados, como en el caso de la aplicacion SILO.
El grafico 1.1 muestra un ejemplo que detalla este problema para una base de datos de ejemplo.

JOB_HISTORY

EMPLOYEE_ID 200

START_DATE 01/07/2002

END_DATE 31122003

JOB_ID AC_ACCOUNT

DEPARTMENT_ID 90

Grafico 1.1- Tupla de una tabla sin conocer las
referencias

El grafico 1.1 corresponde a una tupla de la tabla JOB_HISTORY. La tabla corresponde al historial de
trabajos de un trabajador. Tiene 5 columnas (Identificador del trabajador, fecha de inicio del trabajo, fecha de
finalizacion del trabajo, identificador del trabajo y identificador del departamento para el que se realiza el
trabajo). Sin mas informacioén a cerca de que columnas contiene claves importadas y sin saber de que tabla se
importan, los datos de la tupla son dificilmente interpretables por un usuario, ya que el dato de que el
trabajador 200 realizo un trabajo de “AC_ACCOUNT” para el departamento 90 no aporta mucha
informacion.

En el grafico 1.2 vemos lo que sucede si tenemos la informacion que relaciona las columnas que son claves
importadas con la tabla y clave de la que proceden.

JOBS JOB_HISTORY EMPLOYEES
JOB_ID AC_ACCOUNT § EMPLOYEE_ID 200 < EMPLOYEE_ID 200
JOB_NAME |Public Accountant START_DATE 01/07/2002 NAME Alejandro Lecina

END_DATE 31/12/2003

< JOB_ID AC_ACCOUNT

DEPARTMENTS

’ DEPARTMENT_ID a0

DEPARTMENT_ID 20

DEPARTMENT_NAME | Executive

Grdfico 1.2- Tupla de una tabla de la que se conocen las referencias

Con toda la informacion a cerca de los metadatos y restricciones de la tabla JOB_ HISTORY, podemos saber
el origen de los datos de las columnas que son claves importadas (EMPLOYEE 1D, JOB IDy
DEPARTMENT ID). Accediendo a la tupla correspondiente de las tablas referenciadas por las claves ajenas,
que seran aquellas tuplas que tengan el valor de la clave primaria igual al valor de la clave importada de la
tupla original, podemos acceder a datos adicionales que nos permiten interpretar con mayor facilidad la tupla
mostrada, como se muestra en el grafico 1.3

JOB_HISTORY

EMPLOYEE_ID 200 Alejandro Lecina
START_DATE 01/07/2002
END_DATE 31/12/2003
JOB_ID AC_ACCOUNT | Public Accountant
DEPARTMENT_ID 90 Executive

Grdfico 1.3- Tupla de una tabla afiadiendo valores referenciados

Seria interesante que la aplicacion que generase las clases y las plantillas de acceso a la base de datos fueran
capaces de realizar esta funcion de afiadir informacion a las columnas que sean claves importadas.

1.2.2- Claves “engordadas” y nivel de profundidad de una clave.

La base de datos que gestiona la aplicacion ha de ser lo suficientemente genérica para adaptarse a el mayor
numero posible de escenarios logisticos, que es para lo que esta pensada. Debido a esto y a la naturaleza de
alguno de las tablas que se pueden encontrar en la base de datos, sucede el echo de que algunas tablas tienen
a lo que en este proyecto se van a denominar “claves engordadas”.

Llamaremos “clave engordada” a una clave primaria multiple (formada por mas de una columna), en la que
alguna de estas columnas es importada de otra tabla (Es decir, la clave primaria contiene una o mas claves
importadas).

En el grafico 1.4. vemos un ejemplo de la base de datos de la aplicacion SILO de una clave “engordada”.

PALET ELEMENTO ALMACEN

PAL_NUMERO _— ELE_ALMACEN

ALM_NUMERO

.-

PAL_ALM SITU ~ ELE_CODIGO

PAL_POS_SITU| &

Grdfico 1.4- Ejemplo de clave "engordada”

En el grafico 1.4 nos fijamos solo en las columnas que son clave primaria (con fondo gris) y en las columnas
importadas. La tabla ELEMENTO contiene una clave primaria engordada, ya que la columna

ELE ALMACEN que forma parte de la clave primaria referencia a la clave primaria de la tabla ALMACEN.
La tabla PALET importa esta clave engordada (Columnas PAL ALM_SITU y PAL POS_SITU). También
puede darse el caso de que una clave engordada contenga una clave engordada y asi sucesivamente. Si en
este ejemplo las 3 columnas mostradas de la tabla PALET formaran la clave primaria (cosa que es
perfectamente posible), seria una clave engordada que contendria la clave engordada de la tabla.

Durante el proyecto se hara referencia al termino “nivel de profundidad de una clave”. Este termino se
aplica generalmente a las claves engordadas, ya que son las unicas que pueden tener un nivel de profundidad
mayor que 1.

El nivel de profundidad de una clave es la distancia en numero de tablas de la que proviene la columna
importada.

Volvemos a fijarnos en el grafico 1.4. La columna PAL_POS_SITU de la tabla PALET tiene un nivel de
profundidad 1 respecto a la columna ELE_CODIGO de la tabla ELEMENTO.

Por otro lado, la columna PAL ALM_SITU de la tabla PALET respecto a la columna ELE. ALMACEN de
la tabla ELEMENTO tiene nivel de profundidad 1, y respecto a la columna ALM_NUMERO de la tabla
ALMACEN tiene nivel de profundidad 2, ya que la columna es importada a través de 2 tablas, la de origen,
tabla ALMACEN y luego a través de la tabla ELEMENTO. Por lo tanto, también se dice que la columna

PAL_ALM_SITU de la tabla PALET tiene nivel maximo de profundidad 2.

A la hora de generar la solucion para el problema planteado, habra que tener mucha atencion a estas claves
“engordadas” y a las claves multiples, ya que afiaden dificultad al cddigo a desarrollar para que la aplicacion
resultante pueda generar las clases a partir de cualquier base de datos con tablas con distintos tipos de
estructuras

Se desea guardar esta informacion en las clases generadas para poder trazar con exactitud el origen de las
columnas importadas.

1.3- Objetivos

El objetivo del proyecto es generar una aplicacion web java que sea capaz de cubrir los tres siguientes
objetivos:

1.3.1- Formalizacion de las tablas en ficheros XML

La aplicacion web ha de ser capaz de conectarse a una base de datos y listar las tablas contenidas en ella para
poder seleccionar aquellas de las que se desean generar las clases java y las plantillas de soporte para el
accedo a los datos.

Si el proceso de generar las clases y las plantillas esta implementado dentro del codigo de la aplicacion,
cualquier modificacion posterior a la hora de modificar la estructura de algtn fichero de salida generado
requeriria modificar el c6digo. Esto siempre es complicado ya que exige conocer con exactitud el codigo de
la aplicacion.

Debido a esto, se generara un fichero XML por cada tabla deseada, con una estructura fija a definir, y que
contenga toda la informacion a cerca de los metadatos y las restricciones (claves primarias, claves
importadas y su nivel de profundidad) de dicha tabla.

A partir de estos XML se generaran los ficheros deseados.

1.3.2- Generacion de clases java y formularios para el acceso a la base de datos

Usando los XML antes generados, y mediante transformaciones XSL [4], se generaran las clases java con la
informacién de los metadatos y restricciones de las tablas, asi como las plantillas que permitiran el acceso a
las tablas.

Los ficheros de salida generados estan pensados para ser usados por una aplicacion web java. Debido a esto,
las plantillas de soporte finales para el acceso a los datos seran paginas xhtml.

Por cada tabla deseada se generara una clase java, una pagina xhtml que nos permita visualizar los datos de
la tabla y otra pagina xhtml que nos permite insertar y modificar datos. Las paginas xhtml usaran las clases
java generadas para interactuar con la base de datos.

1.3.3- Obtener informacion adicional de las tablas referenciadas

En el caso de las paginas que listan los datos de una tabla, se creara una metodologia que permita importar
campos clave de las tuplas referenciadas por las columnas que son claves importadas, para asi poder mostrar
los datos de una manera mas facilmente interpretable por un usuario, tal como se explico en el apartado 1.2.1
(Relacion referencial entre tablas).

1.4- Productos obtenidos

Los productos obtenidos durante el desarrollo del proyecto son los siguientes:

1- Una aplicacion Web llamada xsltGenerator que nos permite generar los siguientes ficheros de salida a
partir de unas tablas seleccionadas en una base de datos:

— Ficheros XML con los metadatos de las tablas.

— Clase java con los metadatos.

— Xhtml para la insercion y modificacion de datos.

— Xhtml para la visualizacion de datos importando datos adicionales par las columnas que son claves
referenciadas.

2- Una aplicacion Web llamada xsitUse pensada para usar los ficheros generados y crear una aplicacion que
los use para el propdsito de los mismos. Incluyendo los ficheros generados de manera correcta, la aplicacion
permite insertar, modificar y listar los datos de las tablas de la base de datos de la que se han generado los
ficheros.

1.5- Contenido de la memoria

Esta memoria contiene el trabajo realizado durante el proyecto. Esta informacion ha sido estructurada en 5
secciones principales.

La primera comenta algunos aspectos generales del proyecto, tales como los requisitos que la aplicacion
generada debe cubrir y las tecnologias usadas en el proyecto (Base de datos, entorno de desarrollo,
frameworks, tipo de aplicacion, transformaciones, etc)

Los puntos 3 y 4 detallan los métodos desarrollados en la aplicacion xsltGenerator, que es la encargada de
cumplir los objetivos del proyecto (Generacion de clases java y formularios xhtml para el acceso a datos).
También se describen las decisiones tomadas a la hora de implementar dichos métodos.

La seccion 5 describe el modo en el que hay que usar los ficheros generados para que cumplan las funciones
para las que han sido pensadas.

Finalmente, el punto 6 describe una valoracion general del trabajo desarrollado, incluyendo posibilidades
adicionales que ofrece y una valoracion personal a cerca de las experiencias adquiridas durante el desarrollo
del mismo.

Adicionalmente, se afiade una indice que referencia paginas web consultadas para la elaboracion del trabajo.
Dichas referencias incluyen paginas web de las tecnologias usadas, tutoriales consultados, paginas usadas
para resolver dudas concretas y paginas con informacién detallada a cerca de conceptos usados en la
aplicacion.

También se incluye un seccion de Anexos, en la que principalmente se encuentra un manual de usuario de la
aplicacion final que genera los archivos (xsltGenerator) y el de una aplicacion que usa los ficheros generados
(xsltUSe). Estos manuales de usuario describen tanto la manera de usar las aplicaciones como los procesos
internos que se dan en ellos, generalmente con mas detalle que los expuesto en la memoria.

2- Aspectos generales

2.1- Recopilacion de requisitos del sistema

Durante distintas reuniones con el director del proyecto se fueron definiendo los requisitos que la aplicacion
final debia cumplir.
El grafico 2.1 muestra la recopilacion de estos requisitos. La columna “seccion” referencia al apartado de la
memoria donde se detalla la manera de cubrir el requisito.

XML.

Requisito | Descripcion Seccién
RF 1 El programa debe dar la opcion de elegir la base de datos a conectarse y el esquema o tablas a 23
convertir a XML
RF 2 Formalizacion en XML de los meta datos de las tablas seleccionadas. 3
RNF 1 Meta datos a guardar de una tabla en los XML: 3.1
tabla: (tabla + esquema + catalogo)
columnas: (nombre + tipo + tamaiio + posibilidad de campo nulo)
restricciones: (clave primaria ={nombre de columna + nombre de la clave}
claves ajenas ={nombre de columna + nombre de la clave + tabla referenciada +
columna referenciada y sus datos + profundidad de la bisqueda})
RF 3 Tipo de aplicacion: Aplicacion web que usa el framework JSF 2.0. 2.2
RNF 2 Generar el codigo y la documentacion en ingles. Cédigo
RF 4 Configurar la pantalla inicial para permitir usar un pool para la conexion a la base de datos. 23
RF 5 Una vez generados los XML, usar estos para generar un xhtml para la insercion de datos. 4.2
RF 6 Una vez generados los XML, usar estos para generar un xhtml para la actualizacion de datos. 4.2
RF 7 Una vez generados los XML, usar estos para generar un xhtml para mostrar los datos de las 43
tablas.
RF 8 Una vez generados los XML, usar estos para generar las clases java necesarias para acceder a 4.1
la base de datos a través de las paginas xhtml.
RF 9 Chequear la validez de los datos para poder insertar o modificar una fila en la base de datos a 4.1
través de las paginas web.
RF 10 Gestionar todas las claves del programa en un archivo .properties. 2.4
RF 11 Permitir configurar el nivel de profundidad a investigar en la base de datos a la hora de 32
obtener la informacion de las claves ajenas de las tablas.
RF 12 Usar un thread para generar el XML correspondiente a una tabla. 33
RF 13 Colocar los ficheros XML y xhtml de salida en una carpeta accesible para la aplicacion para 2.5
poder visualizarlos en tiempo de ejecucion en el navegador.
RF 14 Usar transformaciones XSL para generar las clases java y las paginas xhtml a partir de los 2.6

Grafico 2.1- Requisitos del sistema

2.2- Entorno de desarrollo de la aplicacion

Un requisito para la elaboracion del proyecto es que la aplicacion que generase las claves y los formularios
fuera una aplicacion web. Los ficheros generados también estan pensados para ser usados por aplicaciones
web.

Existen varios frameworks para el desarrollo de aplicaciones web en lenguaje Java.

Un framework para aplicaciones web es un paquete software disefiada para ayudar al desarrollo de webs
dinamicas, aplicaciones web y servicios web. Un framework tiene como objetivo aliviar la sobrecarga
asociada a las actividades comunes que se realizan en el desarrollo Web. [5]

En principio, el framework a usar constaba de tres opciones: GWT (Google Web Toolkit), Spring o JSF (Java
Server Faces).

No tenia conocimiento de ninguno de los frameworks antes detallados. Después de investigar algo a cerca de
ellos [6], y ayudado por las recomendaciones del director del proyecto, se decidi6 usar el framework JSF 2.0
(Java Server Faces, version 2.0).

Se decidio usar este framework ya que era el que tenia una menor curva de aprendizaje que los otros dos.
Ademas, es ideal para empezar a aprender conceptos del mundo de las aplicaciones web y viene integrado en
el entorno de desarrollo NetBeans IDE 7.0.1, [7] que fue el usado para generar la aplicacion web.

El primer paso antes de empezar a desarrollar la aplicacion fue familiarizarse con el funcionamiento del
framework JSF 2.0. El principal tutorial seguido fue el de la pagina de “coreserviets”. [8]

El interfaz de la aplicacion fue generado mediante paginas xhtml. JSF implementa las tareas de
comunicacion entre las paginas que forman el interfaz y las clases java que forman el modelo de la
aplicacion.

Se necesitaba una base de datos para realizar el proyecto. La elegida fue la base de datos gratuita de Oracle
“Oracle Database XE 11.2”. [9] Para realizar las pruebas a la hora de generar clases y formularios se uso las
tablas del esquema “HR” que viene por defecto en la base de datos, ademas de un modelo simplificado de la
base de datos usada por la aplicacion SILO.

Para ejecutar una aplicacion web se necesita un servidor de aplicaciones Java EE. El usado fue Glassfish
Server 3.1 [10] debido a que viene integrado en el entorno de desarrollo NetBeans IDE 7.0.1.

2.3- conexion a la base de datos

El paquete java.sql [11] sera la API usada para conectarse y procesar los datos de las base de datos.
La aplicacion xsltGenerator implementa dos maneras de conectarse a una base de datos: “conexion manual”
y conexion mediante un connection pool (agrupacion de conexiones).

En la conexion manual se muestra un formulario (grafico 2.2) con 4 campos de texto de entrada.
Introduciendo los datos adecuados nos conectaremos a la base de datos deseada.

CONNECTION TO THE DATA BASE

OPTIONS URL: jdbc:oraclethin@localhost 152 1:XE
Use pool DRIVER: oracle.jdbe. OracleDriver
Mamual connection [JSER-
PASSWORD:
| Connect|

Grdafico 2.2- Conexion manual a la base de datos

La segunda opcién para la conexién a la base de datos es la de usar un connection pool.

En el caso de trabajar con una conexidon manual, cada vez que la aplicacién se comunica con la base
de datos tiene que abrir una conexion. El pool de conexiones supone una mejora ya que genera un
grupo de conexiones que se mantiene abierta el tiempo que dura la ejecucion del programa y solo es
cerrada al finalizar el trabajo de la aplicacion con la base de datos. Al mantenerse abierto un grupo

9

de conexiones, éstas son atribuidas a los diferentes hilos de ejecucion tinicamente el tiempo de una
transaccion con la base de datos. Al finalizar su utilizacion, la conexion se pone a disposicion de

otro hilo de ejecucion que necesite de ese recurso, en lugar de cerrarla o de asignarla

permanentemente a un tnico hilo de ejecucion.

El connection pool se configura en el servidor de aplicaciones. La manera de configurar un connection pool
para el servidor de aplicaciones GlassFish esta detallada en el anexo “Manual de usuario de la aplicacion
xsltGenerator” seccion 2.1.1- conexion mediante un connection pool.

El formulario en el que se inserta el nombre del pool de conexiones deseado para conectarse a una base de
datos se muestra en el grafico 2.3

CONNECTION TO THE DATA BASE

OPTIONS
Use pool Insert a JDBC resource
Manual connection
jdbe/ oracleXg]|
| Connect |

Grdfico 2.3- Uso de un connection pool

Una vez que el programa se conecte correctamente a la base de datos, llamara a un método que ejecutara la
consulta SQL "SELECT table name FROM user_tables" que devolvera todas las tablas de la base de datos.
Estas se almacenaran en una lista. A través del interfaz de la aplicacion se podran seleccionar las tablas de la
base de datos de las que se pretende generar un XML con sus metadatos.

2.4- Fichero .properties. Claves del sistema

Los ficheros .properties son archivos que nos permiten almacenar variables de configuracion de nuestra
aplicacion. En la practica, no deja de ser un fichero de texto donde almacenar por cada linea, un par clave
valor, indicando el nombre de la variable y su valor. [12]

El fichero myKeys.properties situado en el paquete properties de la aplicacion xs/tGenerator contiene las
claves del sistema.

Para obtener las cadenas definidas aqui se usa la clase myProperties.java situado en el mismo paquete.

En este fichero se establecen las claves que definen el nombre de las etiquetas y sus atributos que tendran los
xml generados, la ruta donde guardar los ficheros generados y la ruta de las plantillas xsl que se usaran para
las transformaciones XSL.

Para informacion mas detallada del fichero .properties usado, mirar el anexo “Manual de usuario de la
aplicacion xsltGenerator” seccion 4. 1- Fichero myKeys.properties.

2.5- Repositorio para los ficheros generados

El repositorio de datos es el lugar donde se colocan los ficheros generados por la aplicacion: ficheros xml,
formularios xhtml y clases java.

Se quiere que los ficheros generados por la aplicacion xsltGenerator se almacenen en un lugar accesible por
la aplicacion en tiempo de ejecucion. El servidor de aplicaciones Glassfish no permite acceder a rutas locales
por razones de seguridad. La unica excepcion a esto es la carpeta “docroot” situada en el dominio de
ejecucion de Glassfish.

Es en esta carpeta donde se guardaran los ficheros generados.

En el fichero myKeys.properties se definen las rutas donde se almacenaran los ficheros generados (carpetas
dentro del directorio docroot del dominio de Glassfish).

En la carpeta docroot se generaran 5 carpetas (usando el fichero myKeys.properties por defecto) con los
ficheros generados:

10

java_output: Contiene las clases java con informacion detallada de las tablas.

norm_output: Contiene ficheros xml intermedios usados para la generacion de los archivos. Se tratan de
ficheros xml generados mediante transformaciones XSL a partir de los xml generados de las tablas de la base
de datos.

simplejava_output: Contiene las clases java simplificadas de las tablas.

xhtml_output: Contiene los ficheros xhtml generados, por cada tabla, se obtienen dos xhtml, uno para
insertar y modificar datos, y otro para listar todos los datos de una tabla.

xml_output: Contiene los fichero xml generados directamente a partir de las tablas.

Para informacion mas detallada a cerca del repositorio de datos, mirar el anexo “Manual de usuario de la
aplicacion xsltGenerator” seccion 2.3- repositorio de datos.

2.6- Transformaciones XSL

Una vez que tengamos los xml generados, usaremos transformaciones XSL para generar los archivos de
salida.

XSLT o Transformaciones XSL es un estandar de la organizacion W3C que presenta una forma de
transformar documentos xml en otros e incluso a formatos que no son xml. Las hojas de estilo

XSLT realizan la transformacion del documento utilizando una o varias reglas de plantilla (definidas en un
fichero .xsl). Estas reglas de plantilla unidas al documento fuente a transformar alimentan un procesador de
XSLT, el que realiza las transformaciones deseadas poniendo el resultado en un archivo de salida [13].

El esquema para la generacion de los ficheros de salida se ilustra en el grafico 2.4

XML
XML
HTML
—_—
ETC.
XSLT Processor
XSLT

Grdfico 2.4- Transformaciones XSL

Existen numerosas paginas con informacion y tutoriales a acerca de las transformaciones XSLT. El mas
utilizado fue el de w3schools.com [14], apoyado por la pagina oficial, de contenido mas extenso, de XSLT de
la organizacion W3C [15].

Los ficheros .xsl son los que contienen las reglas de plantilla para transformar los ficheros XML.

Un fichero XSL consta principalmente de 3 elementos:

<xsl:stylesheet>: Este elemento especifica la version XSLT y los espacios de nombres usados. Un espacio de
nombres (namespace) es un identificador utilizado para distinguir entre los nombres de elementos XML y los
nombres de los atributos usados en el fichero XSLT que pueden ser iguales. [16]

Los espacios de nombres usados en el fichero XSLT se definen en este elemento de la siguiente manera:
xmlns:(prefijo de los elementos del namespace)="URI del namespace"

<xsl:output>: Define el formato del documento de salida segun el valor del atributo “method”. Este valor
puede ser xml, html o text.

<xsl:template>: Este elemento define las plantillas. Estas plantillas se aplican a los elementos del xml de
entrada que coincidan con el valor del atributo “match”. Las acciones mas comunes que se pueden definir en

11

una plantilla son extraer valores de un nodo del xml de entrada, definir parametros o variables locales, crear
elementos con atributos en el fichero de salida, recorrer todos los nodos de un tipo y ejecutar sentencias
condicionales sobre un nodo.

Principalmente, las transformaciones XSL permiten agregar / quitar elementos y atributos hacia o desde el
archivo de salida. También puede reorganizar y ordenar elementos, realizar pruebas y tomar decisiones sobre
cuales son los elementos para ocultar y mostrar.

El entorno de desarrollo NetBeans incorpora un editor de ficheros XSL y un procesador XSLT accesible
desde el interfaz. Basta con pulsar sobre un fichero XSL con el boton derecho y elegir la opcion
“transformacion XSLT”. Una pantalla como la mostrada en el grafico 2.5 nos permitira seleccionar el XML
de origen y la salida.

@ XSLTtoSimpleJava. xs|] <xsl:output method="xml"/>

0 Transformacien X5L 53

_I . o

H

Secuenda de comandes XSLT: |ansProjects/xsltGenerator fsrcfjavafX5LT K5 TtoSimplelava. xs Examinar
Salida:
Salida del proceso: e T

fl | Aceptar | | Cancelar | | Ayuda

]
|

Grafico 2.5- Procesador XSLT integrado en NetBeans

Este procesador XSLT fue muy ttil a la hora de realizar pruebas y lograr los resultados finales deseados.
No obstante, se desea que las transformaciones sean producidas en tiempo de ejecucion. El codigo java para
aplicar una transformacién XSL en tiempo de ejecucion es el siguiente:

File fileOut = new File(<Ruta para fichero de salida> + <nombre del fichero de salida>),

Result result = new StreamResult(fileOut);

/I Se crea el fichero de salida en el directorio de salida deseado y se le asigna a un flujo de salida.
File fileIn = new File(<Ruta del fichero de entrada> + <nombre del fichero XML de entrada>);
Source source = new StreamSource(fileln);

/I Se abre el fichero xml de entrada y se le asigna a un flujo de entrada.

TransformerFactory tFactory = TransformerFactory.newlInstance();

Transformer transformer =

tFactory.newTransformer(newStreamSource(<Ruta del fichero xsl con las plantillas XSLT>));

// Se crea una nueva instancia de la clase TransformerFactory. La instancia "transformer" de la clase
"Transformer" es la que ejercera de procesador XSLT. Para ello usamos el método newTransformer()
usando como parametro la ruta del fichero xsl deseado.

transformer.transform(source, result);

// El método transform de la instancia del procesador XSLT es el que ejecuta la transformacion. Usa el
flujo de entrada (el fichero xml) y guarda el resultado en el flujo de salida (El fichero de salida)

Para ver con detalle el codigo de un ejemplo concreto de como se aplica una transformacion XSL en la
aplicacion xsltGenerator, mirar el anexo “Manual de usuario de la aplicacion xsltGenerator” seccion 4.3-
Transformaciones XSL.

12

3- Formalizacion de las tablas en XML

El primer paso que hay que realizar con la aplicacion xsltGenerator para poder generar las clases java y los
formularios es generar las xml de las tablas seleccionadas para poderlos usarlos como ficheros de entrada
para las transformaciones XSL

3.1- Estructura de los XML

Los metadatos de las tablas a almacenar en los XML fueron definidos como un requisito de la aplicacion y
son los siguientes:

Tabla: Nombre de la tabla + Esquema al que pertenece + Catalogo al que pertenece.

Columnas: Nombre + Tipo + Tamafio + Posibilidad de campo nulo (Nullable)

Clave primaria = Nombre de las columnas que la forman + Nombre de la clave.

Claves ajenas = Nombre de las columnas que la forman + Nombre de la clave + Tabla referenciada +

Columna referenciada y sus datos + Nivel de profundidad de la busqueda.

Al director del proyecto le interesaba el echo de que el XML generado tuviera una estructura que favoreciera
comprender con facilidad la estructura de la tabla. Debido a esto, se separa la informacion de las columnas
de la informacién de las claves ajenas y importadas.

Por cada columna se crea un elemento con la informacion de la columnas.

En el caso de la clave primaria, se crea un elemento que contiene el nombre de la clave y las columnas que la
forman.

Por ultimo, para las claves importadas, se crea un elemento con el nombre de la clave y la tabla a la que
referencia. Por cada columna que forma la clave, se sefiala que columna de la tabla forma parte de la clave
importada y los valores de la columna y tabla a la que referencia por cada nivel de profundidad de la clave,
hasta llegar al nivel de profundidad méaxima.

Gracias a esto, podemos ver agrupada toda la informacion de las claves. Esto ayuda a comprender la
estructura de la tabla, sobre todo para el caso de claves compuestas por mas de 1 columnas, ya que de una
manera rapida podemos ver todas las columnas que forman parte de la clave.

La otra opcion planteada fue incluir todos los datos, también los relativos a claves, en un elemento por
columna. Este caso se desecho por lo antes mencionado, ya que habia que comprobar todas las columnas y el
nombre de la clave a la que pertenecen para deducir una clave compuesta.

Los elementos y sus atributos que podemos encontrar en los XML generados son los siguientes:

<TABLE>: Una etiqueta por tabla. Contiene la informacion de la tabla.

Atributos Descripcion

catalog Catalogo de la base de datos a la que pertenece la tabla.
name Nombre de la tabla.

schema Esquema de la base de datos a la que pertenece la tabla.

<PRIMARYKEY>: Contiene la columnas que forman parte de la clave primaria de la tabla.
Atributos Descripcion

name Nombre de la clave primaria.

<FOREIGNKEY>: Contiene informacion a cerca de una clave importada.

Atributos Descripcion
name Nombre de la clave ajena
referencedTable Tabla de la que se importa la clave ajena.

13

<COLUMN>: Informacidn de las columnas de la tabla.

Atributos Descripcion

name Nombre de la columna.

type Tipo de la columna.

size Tamafo del tipo de la columna. Si es del tipo NUMBER, también incluye los decimales.
sizeDec Decimales que puede tener el valor de la columna. Solo se usa para el tipo NUMBER.
nullable 1 si la columna puede tener valor nulo, 0 si se requiere un valor.

columnName | Nombre de la columna. Este atributo aparece solo para el elemento COLUMN, ya que

describir una columna que forma parte de una clave. La etiquete sera un elemento hijo del
elemento que define la clave a la que pertenece.

<FKMETADATA>: Por cada nivel de busqueda en profundidad de una columna que es clave importada,
almacena los valores de la columna a la que referencia la clave importada.

Atributos Descripcion

depth Nivel de profundidad de la busqueda para la clave.

Name Nombre de la columna de la tabla de la cual se exporta la clave.

Nullable Muestra si la columna de la tabla de la cual se exporta la clave es nullable o no.
size Tamaiio del tipo de la columna exportada.

SizeDec Decimales posibles de la columna exportada (tipo NUMBER)

table Tabla de la cual se exporta la clave

type Tipo de la columna importada

El grafico 3.1 muestra la jerarquia de los elementos generados en los xml.

<xml=

<TABLE:=>

<PRIMARYKEY>= <COLUMN> <FOREIGNKEY>
| |
<COLUMN = <COLUMN>
|

<FKMETADATA=>

Grdfico 3.1- Jerarquia de los elementos del xml

En el anexo “Manual de usuario de la aplicacion xsltGenerator” seccion 3.1- xml generados” podemos ver
un ejemplo de un xml generado para una tabla descrita en SQL.

3.2- Generacion de los XML

Los xml generados tendran el mismo nombre que la tabla a partir de las que se generan.

El primer paso es el de extraer de las tablas de la base de datos seleccionadas los metadatos que nos
interesan. Se uso la API java.sql para esta labor.

La conexion a la base de datos ha sido definida en el interface “connection” del paquete java.sql.

14

Para obtener los meta datos de las tablas de la base de datos, se usan principalmente 4 métodos.

DatabaseMetaData getMetaData() throws
SQLException

Este método esta definido para el interface Connenction. Devuelve un objeto del tipo
“DatabaseMetaData” que contiene los meta datos de la base de datos.

A continuacion, para la tabla deseada hay que extraer la informacion de las columnas, las claves
primarias y las claves importadas. Para ello se usan los siguientes métodos, definidos para la clase
“DatabaseMetaData”[17].

ResultSet getColumns(String catalog, String schema, String table, String column) throws SQLException

Esta funcion nos devuelve la informacion deseada de las columnas para el elemento de la base de
datos definido en los parametros. En nuestro caso interesa la informacion de las columnas de una
tabla, por lo que el método sera invocado con los siguientes parametros de entrada:
getColumns(null, null, tabla_deseada, null),

ResultSet getPrimaryKeys(String catalog, String schema, String table) throws SQLException

Este método nos devuelve la informacion de las columnas que forman parte de la clave primaria de
la tabla definida en los parametros de entrada.

ResultSet getImportedKeys(String catalog, String schema, String table) throws SQLException

Este ultimo método nos devuelve la descripcion de las columnas que forman parte de la clave primaria de las
tablas referenciadas por las claves importadas de la tabla.

El método para implementar la busqueda en profundidad de las claves importadas es el siguiente:

Cuando se obtiene una columna que forma parte de una clave importada, se invoca al siguiente método
recursivo, definido en la aplicacion xsltGenerator:

private void foreignKeySearchDepth(String table, String pkColumnImported, int depth);

A dicho método hay que pasarle la tabla referenciada por la clave importada y la columna de dicha tabla que
es importada (la cual formara parte de la clave primaria de la tabla referenciada).

En la primera ejecucion del método, el valor de profundidad sera 1.

El método comprueba si la columna exportada en la tabla es a su vez una clave importada de otra tabla, es
decir, si la columna forma parte de la clave primaria y también de una clave ajena. Si no esa si, el método
finalizara. Si determina que la clave exportada es a su vez importada, buscara la tabla y la columna de la cual
se importa la clave, y volvera a ejecutar el método para la tabla y la columna que importa el dato, con un
nivel de profundidad igual al anterior

La estructura que guarda todos estos meta datos es una lista enlazada de cadenas. Esta lista se pasara al
constructor de una clase de la aplicacion xs/tGenerator para que genere el XML.

Con esta lista, y con la ayuda de la API DOM para Java (paquete org.w3c.dom.*) se iran generando los
elementos, afadiendo los atributos a los mismos y afiadiéndolos al objeto XML de la manera correcta.
DOM (Document Object Model) es una plataforma que permite modelar objetos XML. Expone un
documento XML como una estructura de arbol compuesta por nodos. El DOM permite navegar por el arbol
de la programacion y afadir, cambiar y borrar alguno de sus elementos.

Los estandares de programacion de la interfaz DOM son definidos por el W3C. [18]

15

3.3- Eficiencia al generar los XML

Durante las pruebas realizadas sobre la base de datos instalada para generar los xml de las tablas, se observo
que el proceso era algo lento (4 minutos 18 segundo para un esquema de 13 tablas). Después de investigar el
codigo y consultar informacion, se encontrd que el problema radica en el uso del método getImportedKey(),
ya que implica complejas condiciones de unidn sobre tablas a nivel del sistema , y solo se recomienda su uso
si es imprescindible. [19]

En nuestro caso es imprescindible usar este método, ya que es el unico que ademas de devolvernos las
columnas que forman parte de una clave importada de una tabla, también nos devuelve toda la informacion
de las columnas originales que son importadas.

Originalmente se llamaba al método que extraia los metadatos de la base de datos (y que usa el método
getImportedKeys) de manera secuencial para todas las tablas elegidas. Se opto por mejorar la eficiencia del
codigo llamando al método que extrae los metadatos paralelamente mediante hilos de ejecucion. De esta
manera se mejoraba el rendimiento a la hora de generar los xml, tal como se muestra en el grafico 3.2.

300
250
200
150
H Segundos

100

50

Ejecucion paralela
Ejecucion secuencial

Grdafico 3.2- Rendimiento secuencial vs Rendimiento paralelo

El grafico 3.2 muestra el rendimiento original para la ejecucion secuencial que extraia los metadatos de una
base de datos de 13 tablas y generaba los xml respecto al rendimiento para la misma base de datos si se
invoca a un hilo que extraiga los datos y genere los xml.

El equipo en el que se desarrollaron estas pruebas fue un Intel core 2 duo, T5200, 1,60 Ghz, 2GB RAM y la
base de datos Oracle Database XE 11.2.

Se observa que usando hilos se logra un incremento en un 180% aproximadamente para este caso.

3.4- XML Normalizados

Los xml generados a partir de los metadatos de las tablas debia tener una estructura con una serie de detalles
que eran requisitos para la aplicacion, tales como el echo de que fueran facilmente interpretables por un
usuario a simple vista.

A lo hora de generar las plantillas para las transformaciones XSLT para obtener los ficheros deseados, se
observo que la estructura de los XML no era la mas adecuada debido a que separaba los metadatos de las
columnas de las restricciones (claves primarias y importadas).

Debido a esto, se introdujo el concepto de “XML Normalizados”. Estos XML normalizados son ficheros xml
con los metadatos de las tablas que nos interesan pero agrupados todos por columnas. Es decir, a un elemento
que representa una columna de una tabla se le afladen los datos necesarios si la columna forma parte de una
clave primaria o una clave importada.

Estos XML normalizados se generan a partir de los XML generados y usando la plantilla XSLT

“NormalizeXML.xsl”. Por tanto, seran un paso intermedio para las transformaciones XSLT entre los XML
originales y los ficheros de salida.

16

Ademas, el xml original contiene la informacioén que nos permite trazar una busqueda para las columnas que
son claves importadas. En los XML normalizados almacenaremos esta informacion con el fin de tener una
estructura que nos ayude a generar automaticamente las consultas necesarias para importar datos adicionales
de las columnas que son importadas para mostrarlos en los formularios para la visualizacion de los datos de

una tabla.

Las etiquetas que encontramos en los XML normalizados son las siguientes:

Etiqueta Contenido

<TABLE> Metadatos de la tabla y la informacion para consultas de claves importadas.

<NAME> Nombre del elemento padre.

<COLUMN> Define los metadatos de una columna.

<TYPE> Tipo de una columna.

<SIZE> Tamafio del tipo de una columna.

<SIZEDEC> Decimales para el tipo NUMBER.

<NULLABLE> 1 si no puede ser nulo, 0 si lo puede ser.

<PK> Si la columna forma parte de la clave primaria, nombre de la clave.

<FK> Si la columna forma parte de una clave importada, informacion de la clave.

<FKNAME> Nombre de la clave importada a la que pertenece la columna.

<REFERENCES> Tabla a la que referencia una columna.

<FINALREFERENCES> Tabla a la que referencia una columna para el nivel maximo de profundidad.

<FINALCOLREFERENCES> | Columna de la tabla a la que referencia una columna para el nivel maximo de
profundidad.

<FKNUM> Usada para ordenar correctamente las columnas agregadas a los xhtml

<FKSELECT> Informacion para la busqueda en profundidad de claves importadas.

<FKSELECTWHERE> Informacion a cerca de en que tablas y columnas estas relacionadas.

<FKCOLUMN> Columna de la tabla que es clave importada.

<TABLEREFERENCED> Tabla referenciada por la clave.

<PKCOLUMN> Columna de la tabla referenciada que es exportada (clave primaria).

<DEPTH> Nivel de la busqueda en profundidad

El grafico 3.3 muestra la jerarquia de los elementos de los xml normalizados.

<FKCOLUMN>
<TABLE
REFEREN CED>
<PKCOLUMN>

<TABLE>

4| <COLUMN=>

<FKSELECT>
<FKSELECT
WHERE>

<NAME=> <FKNAME=>

<TYPE>
<SIZE>
<SIZEDEC>

<NULLABLE> <REFERENCES>

<FINAL
REFERENCES>

<PK> |

<FINALCOL
REFERENCES>

<FKNUM>

I

Grdfico 3.3- Jerarquia del XML normalizado

17

Resumiendo, los xml generados directamente de la base de datos estan pensados desde el punto de vista del
usuario, y los xml normalizados desde el punto de vista del codigo. Estos xml normalizados seran los que se
usen de entrada junto a las plantillas XSLT para generar las clases java y los formularios.

La aplicacion también guarda en el repositorio de datos estos xml normalizados.

Para mas detalles a cerca de la transformacion XSL aplicada para generar estos XML normalizados, mirar el
anexo “Manual de usuario de la aplicacion xsltGenerator” seccion 4.3.1- Normalizar los xml.

18

4- Generacion de clases java y formularios

Para generar las clases java y los formularios xhtml es preciso haber generado previamente los xml con los
metadatos de las tablas.

Cuando se elige la opcion de generar algtn tipo de estos archivos, se cargan los nombres de los xml
generados y almacenados en el repositorio de datos de la aplicacion xsltGenerator. De esta manera solo se
permite generar uno de estos ficheros si el xml correspondiente a la tabla a sido previamente generado.
Como se ha explicado previamente, antes de generar la clase o formulario, se generara el xml normalizado a
partir del xml como paso intermedio, y se usara el xml normalizado para generar el fichero deseado. Ambos
seran generados aplicando transformaciones XSL.

Las plantillas XSLT usadas para la generacion de archivos se pueden encontrar en el anexo “Plantillas para
las transformaciones XSL”.

4.1- Generar las clases Java

Los ficheros java generados estdn pensados para guardar la maxima informacion posible a cerca de las tablas
y para ser usados junto a las paginas xhtml generadas para interactuar con la base de datos. Para ello, se
desarrollaron dos clases auxiliares que se usaran junto a los javas generados para el correcto funcionamiento
de las mismas.

Las clases generadas tendran el nombre de la tabla y los siguientes atributos y métodos:

Nombre de la Tabla

private List<column> listColumns;
private String msg;
private Connection connection;

Nombre de la Tabla(Connection);
void insertRow();

void searchRow();

void updateRow();

Los detalles de los meta datos de las columnas iran en la lista enlazada “listColumns”.

Cuando se inicialice la clase, habra que pasarle como parametro el objeto “connection” que gestiona
la conexion con la base de datos.

El parametro “msg” servird para guardar los mensajes resultantes de interactuar con la base de
datos.

El método “insertRow()” llamara a la clase auxiliar functionlnsertRow y nos permitira insertar una
tupla en la base de datos usando los valores del atributo "value" de cada columna.

"searchRow()" permite cargar una tupla de la tabla que coincida con los valores definidos para una
tupla (Los valores en blanco se ignoraran).

Finalmente, el método "updateRow()" sirve para modificar una tupla de la base de datos. La mejor
opcion para modificar una tupla es usar el método “searchRow()” definiendo los valores de las
claves primarias, y una vez cargada la tupla en el formulario xhtml, modificar los campos deseados
antes de usar el método.

Para mas detalles a cerca de la transformacion XSL aplicada para generar estos XML normalizados, mirar el
anexo “Manual de usuario de la aplicacion xsltGenerator” seccion 4.3.2- Generar Javas.

19

4.1.1- Clases auxiliares para las clases Java generadas.

Column.java:

Column

private String columnName;
private String value;

private String type;

private int size;

private int sizeDec;

private int inputSize;
private String typeOutput;
private boolean nullable;
private String pk;

private String fk;

private String references;
private String finalReferences;

boolean validateInput();

Esta clase tiene como atributos los posibles metadatos para una columna extraibles del xml

normalizado.

El atributo sypeQOutput nos permite guardar en una cadena el tipo mas en tamafio en un formato

pensado para ser presentado en un formulario. El atributo value es el valor de la columna. Sirve tanto como
atributo de salida, después de hacer un select en la base de datos, como atributo de entrada, definiendolo
antes de un insert.

Ademas, el método “validatelnput()” nos permite ver si el atributo value es correcto para el tipo y el tamafio
de la columna.

Esta clase se utilizara para guardar los metadatos de las columnas de una tabla como una lista

enlazada de instancias de la clase “column”.

FunctionInsertRow.java:

functionlnsertRow

private Connection connection;
private List<column> listColumns;
private String msg;

private String tableName;

void executelnsertRow();

Esta clase es la que nos permitird construir la sentencia SQL necesaria para introducir una tupla en una tabla
de la base de datos, invocandola desde la clase java generada y pasandole como parametros la lista con la
informacidn de las columnas y la conexion a la base de datos.

Si nos fijamos es la plantilla XSLT que genera las clases Java (XSLTtoJava.xsl), el punto mas interesante se

centra en generar el constructor de la clase. En el constructor es donde se afadira la informacién de los meta
datos de las columnas a la clase:

20

<!-- Constructor de la clase generada -->
public <xsl:value-of select="$table"/>(Connection connection) {
this.listColumns = new LinkedList&It;column>();
<!-- < = cardcter '<' -->
this.connection = connection;
this.msg ="";
<!-- Rellenar la estructura listColumns con la informacion de las columnas -->
<xsl:for-each select="TABLE/COLUMN">
<!-- Para cada columna del xml normalizado, crear un objeto column inicializandolo con los valores
adecuados de la columna del xml y ariadirlo a la lista de columnas-->
this.listColumns.add(new column("<xsl:value-of select="NAME"/>""" "<xsl:value-of select="TYPE"/>",
<xsl:value-of select="SIZE"/>,<xsl:value-of select="SIZEDEC"/>,
<xsl:value-of select="NULLABLE = 1"/>,"<xsl:value-of select="PK"/>",
"<xsl:value-of select="FK/FKNAME"/>",
"<xsl:value-of select="FK/REFERENCES"/>",
"<xsl:value-of select="FK/FINALREFERENCES"/>"

)

</xsl:for-each>

}

4.2- Generar los formularios para la insercion de datos

El grafico 4.1 muestra el ejemplo de una pagina xhtml generada por la aplicacion xs/tGenerator para una
tabla de una base de datos (En este ejemplo la tabla JOB_HISTORY).

ﬂ INSERT ROW TABLE JOBE_HISTORY

lichul

M] localhost:8080/xsltUse/faces/generatedinsert/JOB_|

HISTORY_insert.chtm| H\\'f’ Wikipedia (en)

| Column | Input | Type ‘Nlllah]e | PK | FK ‘ References | finalReferences
[EMPLOYEE ID | INUMBER(6) false |THIST_EMP_ID_ST_DATE_PK JHIST EMP_FK EMPLOYEES [EMPLOYEES
[START DATE | IDATE fae |JHIST EMP_ID ST DATE PK | |

BODAE | PAE e | | | |

PoB_ID | [VARCHAR2(10) false | /HIST_JOB_FK |JOBS [oBs
[DEPARTMENT_ID | INUMBER(®#) frue | VHIST DEPT FK DEPARTMENTS [DEPARTMENTS
[DENTIFICADOR | [VARCHAR2(S0) true | | \ |

[Insert][Select “ Update]

Un formulario para la insercion de datos (boton /nsert) también nos permite cargar una tupla de la tabla
(boton Select) introduciendo los valores de los campos de la tupla que se quiere buscar, y actualizar una tupla
(boton Update), que modificara los valores de la tupla que tenga los valores introducidos para las columnas
que forman la clave primaria.

Los formularios generados para la insercion de datos y visualizacion de los mismos son paginas
xhtml que se ejecutaran dentro del framework JSF. Para que las paginas tengan este formato hay
que definir los siguientes elementos de la cabecera de la plantilla xsl de la siguiente manera:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmins="http://www.w3.0rg/1999/xhtml"
version="1.0">
<xsl:output method="xml" indent="yes" encoding="UTF-8" />
Se afiaden los espacios de nombres xmlins:f'y xmlns:h a la informacién de estilo del documento XSL.
Representan elementos propios de las paginas xhtml usadas por el frameworj JSF.

21

La manera de asociar la tabla de datos mostrada la pagina y la estructura con la informacion de las
columnas de la clase java correspondiente es la siguiente:

<xsl:variable name="class">
#{connectionDDBB.<xsl:value-of select="TABLE/NAME"/>.listColumns}
</xsl:variable>
<h:dataTable border="1" bgcolor="#B9B9B9" var="item" value="{$class}">
<h:column> ... </h:column>
<h:column> ... </h:column>

</h:dataTable>

La variable class contiene la ruta de la clase y su parametro a la que se asocian los datos de la tabla.
En el framework el parametro al que se asocia un valor se sefiala encerrandolo entre llaves y con un
corchete delante. En este caso los datos de la tabla se asociaran con la clase generada para la misma
tabla, y que se encontrara definida en una clase llamada connectionDDBB.

En la etiqueta JSF dataTable asociamos el valor con la lista de la clase (etiqueta value) y la
usaremos dentro de la estructura como el valor item (atributo var). ltem contendrad un valor de la
lista de columnas.

La etiqueta column contiene el valor mostrado para la columna.

Por ejemplo, el valor de la columna nombre sera:

<h:column>
<!-- Cadena que aparece en la cabecera de la columna-->
<f:facet name="header"><xsl:text>Column</xsl:text></f:facet>
<xsl:variable name="item">#{item.columnName} </xsl:variable>
</-- La variable item contiene el nombre de la columna-->
<h:outputLabel value="{$item}"/> </-- El nombre de la columna se mostrara como una etiqueta de texto->
</h:column>

El tnico caso particular es el campo de texto disponible para introducir datos, el cual se define de la
siguiente manera:

<h:column>
<f:facet name="header"><xsl:text>Input</xsl:text></f:facet>
<xsl:variable name="item">#{item.value}</xsl:variable>
<xsl:variable name="size">#{item.inputSize } </xsl:variable>
<h:inputText value="{$item}" maxlength="{S$size}"/>
<!-- caja de texto de entrada que admite un tamario de caracteres igual a la longitud del tipo -->
</h:column>

Por ultimo, generaremos los botones para las acciones disponibles: insertar, buscar y modificar:

<xsl:variable name="action">

#{connectionDDBB.<xsl:value-of select="TABLE/NAME"/>.insertRow()}
</xsl:variable>
<h:commandButton value="Insert" action="{S$action}"/>
<xsl:variable name="action2">

#{connectionDDBB.<xsl:value-of select="TABLE/NAME"/>.searchRow()}
</xsl:variable>
<h:commandButton value="Select" action="{$action2 }"/>
<xsl:variable name="action3">

#{connectionDDBB.<xsl:value-of select="TABLE/NAME"/>.updateRow()}
</xsl:variable>
<h:commandButton value="Update" action="{S$action3}"/>

22

4.3- Generar los formularios para la visualizacion de datos

El grafico 4.2 muestra un formulario xhtml generado para la visualizacion de los datos de una tabla.

(@) SELECT FROM JOB_HISTORY - Moxzilla Firefox 8 o ll= =]
Archivo Editar Ver Historial Marcadores Herramientas Ayuda
| €] SELECT FROM JOB_HISTORY [-

QB_HISTORY _select.xhtm U\V Wikipedia (en) DL

<)) O ﬁ (El localhost:8080/xsltUse/faces/generate
[S S | S bl \DEI.ARTMINTJD [PENTIHCADOR _-_

100 % ig};?g’jj_m 4D _PRES 180 Steven King President Executive
‘m ‘w ﬁgoﬂlnltz“l ‘AC ACCOUNT |110 ;E_;rg‘“;fmm’ Neena Kochhar i‘;:i‘fmm Accounting
102 % ﬁg%ﬁgowu ‘H’ PROG 50]I;’_‘D?;?am Lex De Haan Programmer ‘n

114 % ﬁg[’wfg 3V \sr crmrx 5o ?:__‘;;f;ﬁhmy Den Raphaely Stock Clerk Shipping
121 Lu'g?uﬂu—:luﬂu—lﬂ ;g[ﬁg})%m ST MAN Adam Fripp 10/10/00 | Adam Fripp Stock Manager

122 w ﬁg[’wfg U \sr crere 5o gi’?&ﬂf“ﬁ‘g Payam Kanfling Stock Clerk Shipping
176 83007000100] ﬁg[;‘[;l[fgﬂ ‘SA MAN Lﬂ g‘;ﬁﬁgﬂ Lt [Jonathon Taylor Sales Manager |Sales

176 ‘;guﬂﬁﬂuﬂaﬂu ;go[:l-lozggl ‘SA EEE ‘ﬁ iﬁrﬁ’lﬂ;ﬂ e i eyl :.ae:::esenrni\'e S

19050017
ﬂﬂ 00:00

[Jennifer Whalen Executive

]
=

2001-06-17 Jennifer Whalen Administration
00:00:00 AD_ASST @ 17/09/95 Assistant

Grdfico 4. 2 Formularlo xhtml de visualizacion de datos de una tabla

Hay que pulsar el boton Load para cargar los datos correctamente, ya que si no se pueden mostrar datos

de anteriores consultas a la base de datos.

Las columnas en verde representan los datos almacenados en la tabla. En negrita y subrayado se muestran los
valores que perteneces a la clave primaria, y en cursiva y subrayado las columnas que son claves importadas.
Las columnas en color rojo corresponden a informacién adicional para las columnas correspondientes que
son claves importadas.

La plantilla XSLT para la generacion del formulario consta de los siguientes pasos:

El primer paso es generar una cadena en una estructura que sera interpretada por la aplicacion, usando la
informacion para consultas de los XML normalizados, y que servira para construir la consulta que obtiene
los datos, incluyendo las consultas adicionales que afiaden informacion a cerca de las claves importadas.

A continuacion se enlaza el boton Load con el método que ejecutara la consulta, la cadena generada con la
informacion de la consulta se pasara como parametro al invocar el método. El valor devuelto por la consulta
se mostrara en una tabla de datos. A la tabla de datos se le afiaden tantas columnas como columnas tenga la
tabla mas el numero de columnas de la tabla que pertenecen a claves importadas.

Para informacion detallada de la plantilla XSLT que genera los formularios para la visualizacion de datos,
mirar el anexo “Manual de usuario de la aplicacion xsitGenerator” seccion 4.3.5- Generar formularios de
visualizacion de datos.

4.3.1- Clases auxiliares usadas por el formulario de visualizacion de datos

Las siguientes clases java seran usadas por el formulario de visualizacidén de datos principalmente para
generar y ejecutar las consultas y para almacenar los valores devueltos por las mismas.

La primera clase auxiliar que se explica aqui es la que gestiona los datos devueltos por una consulta SQL y que
permite mostrarlos en el formulario de visualizacion de datos:

23

row Values

private List<String> listData;

void addData(String s);
String returnData(int 1);

Como vemos es una clase cuyo Unico parametro es una lista enlazada de cadenas. Dicha lista contendra los
valores de las columnas de una tupla extraida de la base de datos. Por tanto, al realizar una consulta SQL para ver
todos los datos de una tabla, los valores devueltos se almacenaran en una lista de instancias de la clase rowValues.

La siguiente clase es una ayuda a la hora de estructurar las consultas SQL necesarias para las
busqueda de claves en profundidad.

selectData

private String foreirgKey;

private String tableReferenced;
private String tableReferencedPK;
private int depth;

Esta clase no tiene métodos (aparte de los getters y setters), ya que se usara para crear una lista con
instancias de la misma en la clase que ayudara a definir la manera en la que se estructura la consulta
SQL.

Por ultimo, esta la clase que genera las consultas en la base de datos. La clase incorpora los
métodos y estructuras necesarias para poder realizar la busqueda en profundidad de las claves y
extraer los campos identificativos de las mismas en sus tablas originales.

functionSelect

private Connection connection;
private List<row Values> rowsValues;
private List<String> selectQuerys;
private String tableName;

functionSelect(Connection connection, String selectQuery);
Private void restructureQuery(String selectQuery);

Private void generateQuery();

Private void generateFinalSelectQuery();

Private void executeSelect();

Private void executeComplexQuery();

La lista RowValues contiene los valores devueltos por la consulta y la lista selectQuerys almacenara todas las
subconsultas necesarias para obtener la consulta final.

El atributo de entrada selectQuery contiene la cadena con la informacion para generar la consulta y las
subconsultas. Al llamar al constructor, se ejecutara el método “restructureQuery()”, que decodificara la
cadena "selectQuery" de entrada y la almacenara en unas estructuras internas para su posterior utilizacion.
Luego el método “generateQuery()” usara dichas estructuras para formar subconsultas.

El método “generateFinalSelectQuery()” generara la consulta final que use los valores devueltos por las
subconsultas.

Finalmente, el método executeComplexQuery lanzara la consulta contra la base de datos y almacenara los
valores devueltos para su posterior uso. Puede darse el caso de que se quieran visualizar los datos de una
tabla que no tenga claves ajenas. Este caso se detectara en el método “restructureQuery()”, y dado a que el
proceso para generar la consulta se simplifica mucho, se llamara directamente al método “executeSelect() .

24

4.3.2- La busqueda en profundidad en la pagina de visualizacion de datos

El proceso para decodificar la cadena con la informacion para las consultas y formar la consulta y
subconsultas que obtenga las tuplas de la tabla y la informacion adicional para las columnas que forman
parte de las claves importadas es un proceso complejo, que esta definido con amplitud en el anexo “Manual
de usuario de la aplicacion xsltGenerator” seccion 4.4- La busqueda en profundidad en la pagina de
visualizacion de datos.

En esta seccion se repasaran los puntos mas importantes de este proceso, que lleva a cabo la clase
functionSelect.

El proceso para anadir informacion a cerca de una columna que es clave importada es el siguiente:

La cadena con la informacion para la consulta almacena para una columna importada la tabla y la columna a
la que referencia por cada nivel de profundidad. Con esta informacion, para una columna que es clave
importada, se accede a la tabla referenciada y se busca la tupla que tiene un valor para la clave primaria igual
al valor de la clave importada. Esta tupla contiene todos los valores a los que referencia la clave importada.

El problema que se encontro era qué informacion de esta tupla se podia importar para afiadir informaciéon que
fuera realmente facil de identificar por un usuario.

La solucion tomada fue la siguiente:

Para cada tupla referenciada se anadiria siempre el valor de una columna llamada “identificador”, y que
contendria una cadena con una descripcion facilmente interpretable por un usuario a cerca del contenido de
la tupla.

Obviamente, las tablas de la base de datos no tienen por que tener esta columna, asi que hay que crearla.

En un script SQL se modifican todas las tablas de la base de datos para afiadir la columna “identificador” del
tipo VARCHAR.

A continuacion se estudian las tablas y su estructura para identificar que campos nos podrian dar una
informacion facil de identificar a cerca de una tupla contenida en la tabla.

Se afiade al script SQL una sentencia que actualice la columna “identificador” de las tablas afiadiéndole la
informacion deseada que queremos mostrar en los formularios para la visualizacion de datos como
informacién adicional para las claves importadas.

El nombre de la columna identificativa de la tupla (en nuestro caso “identificador”) se encuentra definido en
el fichero de claves myKeys.properties, de modo que si interesa usar otro nombre para esta columna basta
con modificar el fichero de claves.

De este modo ya tendremos la base de datos preparada para ser usada por los ficheros generados por la
aplicacion.

En el anexo “Manual de usuario de la aplicacion xsitUse” seccion 5.1- Campo identificador y preparacion
de la base de datos” Podemos ver un ejemplo de como se preparo la base de datos usada para las pruebas
durante el desarrollo del proyecto.

El otro punto a tener en cuenta a la hora de afiadir informacion a las claves es la manera de estructuras las
subconsultas para obtener los campos identificativos deseados.

El primer problema a tratar era el caso de claves importadas compuestas (formadas por mas de una
columna). En este caso las columnas que forman la clave importada apuntaran a las columnas de la clave
primaria de la tabla a la que apuntan. Es imprescindible que para estas claves se busque la tupla referenciada
que coincida con todos los valores de las columnas de la clave, ya que si solo coincide alguno, el valor
devuelto no sera el deseado. Este problema se soluciono definiendo correctamente en los XML normalizados
(que contienen la informacion que genera la cadena para la consulta) cuando una clave era compuesta y las
columnas que la componian, de manera que la clase funcionSelect sera capaz de identificarlas y buscarlas de
manera correcta.

La naturaleza de las consultas que obtenian la informacion de las claves referenciadas tuvo que ser
modificada para arreglar unos problemas de las primeras versiones.

25

Originalmente se usaba un SELECT de todos los datos de la tabla mas la columna identificativa de las tablas
referenciadas por las claves importadas usando una clausula AND entre las claves importadas de la tabla y la
claves primarias de las tablas a las que referenciaban cada clave.

El problema de este método radica en que alguna columna que forma parte de una clave importada puede ser
nula (columna con la restriccion nullable). En este caso una de las clausulas AND no encuentra resultado, y
por tanto devuelve un valor nulo para toda la consulta, por lo que la tupla de la tabla no se mostraba en el
formulario.

Se opto por elaborar una soluciéon mas compleja que resolviera este problema.

En primer lugar, por cada clave importada se genera una vista que obtendra el valor identificativo de la tupla
referenciada.

En cada vista se guardaran los valores de la clave primaria de la tabla original mas el valor identificador de la
tupla apuntada por una clave importada. Para obtener este valor se usara una clausula LEFT JOIN entre la
tabla y la tabla referenciada, de modo que, aunque el valor de la clave sea nulo, la vista obtenida almacenara
la informacion de que para esa clave el valor es nulo, informacion que podra ser usada para formar la
consulta final.

En la consulta final se muestran todas las columnas de la tabla mas los valores importados, que se encuentran
guardados en las vistas.

El grafico 4.3 representa un ejemplo del proceso que se sigue para obtener informacidn adicional de las
claves importadas de la tabla JOB_HISTORY.

JOB_HISTORY
EMPLOYEE_ID START_DATE END_DATE JOB_ID DEPARTMENT_ID
100 17/06/03 03/05/12 null 90

VISTA A =JOB_HISTORY LEFT JOIN EMPLOYEES
EMPLOYEE_ID START_DATE | IDENTIFICADOR
100 17/06/03 Steven King

VISTA B = JOB_HISTORY LEFT JOIN JOBS
EMPLOYEE_ID START_DATE JOB_ID IDENTIFICADOR
100 17/06/03 null null

VISTA C = JOB_HISTORY LEFT JOIN DEPARTMENTS
EMPLOYEE_ID START_DATE |DEPARTMENT_ID| IDENTIFICADOR

100 17/06/03 90 Executive

CONSULTA FINAL

EMPLOYEE_ID START_DATE END_DATE JOB_ID DEPARTMENT_ID| EMPLOYEE ID JOB_ID DEPARTMENT_ID

100 17/06/03 03/05/12 null 90 Steven King null Executive

grdfico 4.3- Generacion de la consulta con los datos adicionales para las claves importadas

Las columnas EMPLOYEE IDy START DATE forman la clave primaria de la tabla JOB_HISTOTY. Dicha
tabla tiene 3 claves importadas: EMPLOYEE ID, JOB _IDy DEPARTMENT ID.

Las vista A, B y C se han generado haciendo un LEFT JOIN entre la tabla y la tabla referenciada por cada
clave segun el valor de la columna que forma parte de la clave. Observamos que estas vistas ya contienen la
informacion identificativa para cada una de las claves importadas. Finalmente, obtenemos todos los datos de
la tabla afiadiéndole la informacion identificativa almacenada en las vistas.

26

S- Uso de las clases java y formularios generados

En la fase final del proyecto se desarrollo la aplicacion xs/tUse. Se trata de una aplicacion web para el
framework JSF que contiene un esqueleto que permite afiadir directamente los ficheros generados para que
cumplan el objetivo para los que has sido creados.

El anexo “Manual de usuario de la aplicacion xsitUSe” contiene todos los detalles de como afiadir los
ficheros generados para poder usarlos.

Principalmente el proceso a seguir consta de 4 pasos y son el siguientes:
En primer lugar se han de afiadir los formularios xhtml generados (Los de insercion y los de visualizacion de
datos) dentro de la carpeta “Web Pages” de la aplicacion. Estos formularios serviran como interfaz para

interactuar con la base de datos.

En segundo lugar hay que afiadir todas las clases auxiliares modeladas para usar por las clases java y los
formularios. El esqueleto de la aplicacion xs/tUse ya las contiene.

A continuacion se afiaden las clases java generadas. Estas clases deberan ser instanciadas y inicializadas para
poder ser usadas a través de los formularios xhtml.

Finalmente se adapto la base de datos de las tablas afiadiéndole en campo identificativo y actualizandolo con
los valores deseados usando un script SQL. También se afiadio el fichero myKeys.properties con las claves

necesarias: (El nombre a usar para las columnas identificativas y la ubicacién de los formularios afiadidos).

Siguiendo estos pasos, la aplicacion xs/tUse es capaz de interactuar con las tablas de la base de datos de
prueba usada durante el desarrollo de la aplicacion.

27

6- Conclusiones

6.1- Valoracion del trabajo desarrollado

El objetivo del proyecto era el de generar una aplicacion capaz de generar clases Java y formularios para el
acceso a datos para poder ser usados por otras herramientas.

Como el trabajo desarrollado esta enfocado a una aplicacion de ayuda al desarrollo de otras aplicaciones, era
complicado hacer que los ficheros generados sirviesen para el amplio numero de aplicaciones Java que se
pueden desarrollar.

Debido a esto, habia que separar algunos procesos generales de otros que se enfocan a la tecnologia usada en
el proyecto (aplicacion web java para el framework JSF).

Un paso critico a la hora de elaborar el programa era la generacion de los XML con los metadatos. Con la
ayuda del director del proyecto se defini6 una estructura que representase correctamente los metadatos de
una tabla. Este paso es importante ya que es independiente del tipo de aplicacion o del framework.

Las clases java generadas también son independientes al framework, y representan con exactitud los
metadatos de la tabla. Para ello fue necesario crear la clase auxiliar column.java,ya que sin esta era dificil
modelar con exactitud la tabla.

La principal ventaja de la aplicacion radica en el uso de las transformaciones XSL que se usan para generar
los formularios y los métodos de las clases java. Estos formularios estan pensados para un framework en
concreto, pero conociendo su funcionamiento y las plantilla XSLT que los generan, es facil poder adaptarlas
a otros tipos de frameworks o aplicaciones.

El proyecto también incluye lo que se podria denominar un “generador de consultas SQL a partir de
metadatos de una base de datos” ya que las consultas SQL ejecutadas para obtener informacion adicional de
las claves referenciadas se generan automaticamente. Esta funcion podria ser tenida en cuenta a la hora de
sacar provecho al codigo de la aplicacion o para poder tener la capacidad de generar consultas mas
complicadas y personalizadas afiadiendo el c6digo y los procesos necesarios.

Los formularios xhtml estan pensados para ser usadas junto a las clases para acceder a la base de datos sin
tener que adaptarlas por un programador. No obstante, se generan con todas las columnas y su descripcion
para una tabla de la base de datos. A algun desarrollador le podria interesar separar la logica con la que se
conecta a la base de datos y quedarse con la estructura de la tabla de datos generada, para luego usarlos para
los distintos intereses que desee. Aunque los formularios generados no tiene mucha informacion de estilo, se
les puede anadir a través de hojas de estilo CSS para darles la apariencia deseada sin tener que tocar los
elementos generados.

En resumen, el echo de usar transformaciones XSL hace que los ficheros generados se puedan adaptar a
multiples usos solo con modificar las plantillas XSL.

En cuanto a las posibilidades adicionales que se le pueden afadir al trabajo desarrollado, se podrian aumentar
el numero de opciones disponibles para la interaccion con la base de dato. Se podria afadir la opcion para
borrar un dato, o un formulario que permita editar los metadatos de una tabla que usara la informacion de las
referencias de las claves para poder modificar los metadatos de una columna y que se modificaran también
todas las columnas relacionadas con ella.

También se podrian generar formularios para modificar, afiadir o borrar columnas de una tabla.

Usando toda la informacion referencial de las claves de las tablas de la base de datos almacenadas en los
xml, se podria crear una aplicacion que construyera un esquema general (graficamente o en algun tipo de
estructura) de las tablas de la base de datos y sus relaciones.

28

6.2- Valoracion personal y experiencia adquirida

Las experiencias adquiridas durante el desarrollo del proyecto se pueden distinguir en tres puntos.

El primero es el echo de haber aprendido a utilizar tecnologias desconocidas antes de empezar el desarrollo
del proyecto y muy utiles y usadas en el mundo real.

En primer lugar aprendi a desarrollar una aplicacion web Java y a usar un framework (Java Server Facer)
para el desarrollo de la aplicacion. Ademas, el conocimiento del framework JSF servira para poder
comprender mejor y aprender mas facilmente otros framework pensados para el desarrollo de aplicaciones
web.

También se aprendi6 a usar las transformaciones XSL, incluyendo espacios de nombres que definen
elementos y funciones adicionales a los estandares de XSLT que ayudan a potenciar la funcionalidad de la
tecnologia.

Aunque ya tenia conocimientos sobre Java, bases de datos y entornos de programacion. Pude profundizar en
el conocimiento de los mismos, aprendiendo a usar mejor y mas eficientemente la documentacion web
oficial de Java y la de la API para el driver JDBC que gestiona la conexion de una base de datos de una
aplicacion Java. Se adquirieron a su vez nuevos conocimientos a la hora de usar el entorno de desarrollo
NetBeans tales como el funcionamiento del servidor de aplicaciones GlassFish o el procesador XSLT que
lleva integrado.

En segundo lugar, se aprendid a usar estas tecnologias para solucionar los problemas que planteaba el
proyecto. Debido a que la estructura para las clases java y los formularios asi como la manera de
comunicarse entre ellas dependia de mi, tuve que tomar decisiones a la hora estructurar las clases y los
métodos que lograrian que los ficheros generados consiguieran los objetivos planteados al inicio del
proyecto. En resumen, la tarea no solo era desarrollar codigo, si no que lo mas dificil era determinar que
necesidades tenia para asi poder implementar el codigo que mejor las cubria.

Finalmente, tuve la oportunidad de interactuar con miembros de HP Zaragoza para tener una primera
aproximacion del mundo real en cuanto al trabajo se refiere. Me introdujeron en las tecnologias que se usan
en el mundo real asi como ensefiarme las ventajas que estas ofrecen. La experiencia obtenida en las
reuniones, tanto desde el punto de vista de la aplicacion como en el personal, fueron de gran valor.

29

7- Referencias

1- Pagina web del Observatorio Tecnologico HP (http://bifi.es/observatorio/index.php)

2- Pagina del servicio SILO de HP (http://www8.hp.com/bo/es/services/services-detail. html?
compURI=tcm:247-823415)

3- Wikipedia.es. Aplicaciones Web (http://es.wikipedia.org/wiki/Aplicacion _web)

4- Wikipedia.en. XSLT (Extensible Stylesheet Language Transformations) (http://en.wikipedia.org/
wiki/XSLT)

5- Wikipedia.en. Web application framework
(http.//en.wikipedia.org/wiki/Web_application_framework)

6- Wikipedia.en. Comparison of web application frameworks
(http://en.wikipedia.org/wiki/Comparison_of web_application_frameworkst#Java)

7- NetBeans IDE (http.//netbeans.org/index.html)

8- Coreserviets.com. Tutorial JSF 2.0 (http://www.coreservlets.com/JSF-Tutorial/jsf2/)

9- Oracle Database Express Edition 11g Release 2
(http.//www.oracle.com/technetwork/products/express-edition/downloads/index. html)

10- Pagina de Glassfish (http://glassfish.java.net/)

11- Documentacion del paquete java.sql (Java Platform SE 6)
(http://docs.oracle.com/javase/6/docs/api/java/sql/package-summary.html)

12- Java y los ficheros .properties (http://www.v3rgul.com/blog/476/2011/programacion/java-y-
los-ficheros-properties/)

13- Wikipedia.es. Extensible Stylesheet Language Transformations
(http.//es.wikipedia.org/wiki/Extensible Stvlesheet Language Transformations)

14- XSLT Tutorial de w3schools.com. (http://www.w3schools.com/xsl/)

15- W3C: XSL Transformations (XSLT) Version 1.0 (http:/www.w3.org/TR/xslt)

16- Understanding XML Namespaces (http://www.xmlpdf.com/namespaces.html)

17- java.sql Interface DatabaseMetaData
(http://docs.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData. html)

18- Java DOM Tutorial (http://www.roseindia.net/xml/dom/)

19- Consejos sobre el rendimiento del controlador JDBC (http://publib.boulder.ibm.com/infocenter/
iseries/vSr3/index.jsp?topic=/rzaha/idbcperf.htm)

30

http://bifi.es/observatorio/index.php
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzaha/jdbcperf.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzaha/jdbcperf.htm
http://www.roseindia.net/xml/dom/
http://docs.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://www.xmlpdf.com/namespaces.html
http://www.w3.org/TR/xslt
http://www.w3schools.com/xsl/
http://es.wikipedia.org/wiki/Extensible_Stylesheet_Language_Transformations
http://www.v3rgu1.com/blog/476/2011/programacion/java-y-los-ficheros-properties/
http://www.v3rgu1.com/blog/476/2011/programacion/java-y-los-ficheros-properties/
http://docs.oracle.com/javase/6/docs/api/java/sql/package-summary.html
http://glassfish.java.net/
http://www.oracle.com/technetwork/products/express-edition/downloads/index.html
http://www.coreservlets.com/JSF-Tutorial/jsf2/
http://netbeans.org/index.html
http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#Java
http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/XSLT
http://en.wikipedia.org/wiki/XSLT
http://es.wikipedia.org/wiki/Aplicaci%C3%B3n_web
http://www8.hp.com/bo/es/services/services-detail.html?compURI=tcm:247-823415
http://www8.hp.com/bo/es/services/services-detail.html?compURI=tcm:247-823415

