000079515 001__ 79515
000079515 005__ 20231221135828.0
000079515 0247_ $$2doi$$a10.1007/s10854-016-6309-0
000079515 0248_ $$2sideral$$a97894
000079515 037__ $$aART-2017-97894
000079515 041__ $$aeng
000079515 100__ $$aÖzçelik, B.
000079515 245__ $$aEffect of Na substitution and Ag addition on the superconducting properties of Bi-2212 textured materials
000079515 260__ $$c2017
000079515 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079515 5203_ $$aThe effect of Ag addition on the structural and superconducting properties of Bi2Sr2Ca0.925Na0.075Cu2Oy + x wt% Ag materials with x = 0, 1, 3, and 5 prepared by sol–gel method, followed by directional growth using the laser floating zone (LFZ) technique has been investigated. Powder XRD measurements demonstrate that all samples are composed by nearly single Bi-2212 phase. SEM micrographs and EDX results confirms that Bi-2212 is the major phase with minor amounts of a Bi-free one (Sr, Ca)CuO2 and metallic Ag. According to the magnetic results, Ag does not modify the superconducting critical temperature, Tc, but significantly increases the magnetic hysteresis loop area. The magnetic critical current density is maximum in the 3 wt% Ag containing samples, due to the larger grain clusters found in these samples, reaching 2.1 × 105 A/cm2 at 10 K. Moreover, Ag addition also improves the rods mechanical properties, determined by three point bending tests. The highest bending stress is also reached in the 3 wt% Ag samples.
000079515 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T12$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2014-52105-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2013-46505-C3-1-R
000079515 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000079515 590__ $$a2.324$$b2017
000079515 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b100 / 260 = 0.385$$c2017$$dQ2$$eT2
000079515 591__ $$aPHYSICS, CONDENSED MATTER$$b32 / 67 = 0.478$$c2017$$dQ2$$eT2
000079515 591__ $$aPHYSICS, APPLIED$$b55 / 146 = 0.377$$c2017$$dQ2$$eT2
000079515 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b118 / 283 = 0.417$$c2017$$dQ2$$eT2
000079515 592__ $$a0.503$$b2017
000079515 593__ $$aAtomic and Molecular Physics, and Optics$$c2017$$dQ2
000079515 593__ $$aBiomedical Engineering$$c2017$$dQ2
000079515 593__ $$aElectronic, Optical and Magnetic Materials$$c2017$$dQ2
000079515 593__ $$aElectrical and Electronic Engineering$$c2017$$dQ2
000079515 593__ $$aCondensed Matter Physics$$c2017$$dQ2
000079515 593__ $$aBiophysics$$c2017$$dQ3
000079515 593__ $$aBiomaterials$$c2017$$dQ3
000079515 593__ $$aBioengineering$$c2017$$dQ3
000079515 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079515 700__ $$aNane, O.
000079515 700__ $$0(orcid)0000-0001-7056-0546$$aSotelo, A.$$uUniversidad de Zaragoza
000079515 700__ $$0(orcid)0000-0003-2212-447X$$aAmaveda, H.$$uUniversidad de Zaragoza
000079515 700__ $$0(orcid)0000-0002-0794-3998$$aMadre, M. A.$$uUniversidad de Zaragoza
000079515 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000079515 773__ $$g28, 8 (2017), 6278–6283 [16p]$$pJ. mater. sci., Mater. electron.$$tJournal of Materials Science: Materials in Electronics$$x0957-4522
000079515 8564_ $$s1582240$$uhttps://zaguan.unizar.es/record/79515/files/texto_completo.pdf$$yPostprint
000079515 8564_ $$s59696$$uhttps://zaguan.unizar.es/record/79515/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079515 909CO $$ooai:zaguan.unizar.es:79515$$particulos$$pdriver
000079515 951__ $$a2023-12-21-13:41:12
000079515 980__ $$aARTICLE