000079562 001__ 79562
000079562 005__ 20240503120755.0
000079562 0247_ $$2doi$$a10.1016/j.energy.2018.06.149
000079562 0248_ $$2sideral$$a107148
000079562 037__ $$aART-2018-107148
000079562 041__ $$aeng
000079562 100__ $$0(orcid)0000-0003-3330-1793$$aValero, Alicia$$uUniversidad de Zaragoza
000079562 245__ $$aGlobal material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways
000079562 260__ $$c2018
000079562 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079562 5203_ $$aMoving towards a low-carbon economy will imply a considerable increase in the deployment of green technologies, which will in turn increase the demand of certain raw materials. In this paper, the material requirements for 2050 scenarios are assessed in terms of exergy to analyze the impact in natural resources in each scenario and identify which technologies are going to demand more resources. Renewable energy technologies are more mineral intensive than current energy sources. Using the International Energy Agency scenarios, from 2025 to 2050, total raw material demand is going to increase by 30%, being the transport sector the one that experiences the highest increase. Aluminum, iron, copper and potassium are those elements that present a higher share of the material needs for green technologies. Besides, there are five elements that experience at least a six-fold increase in demand in that period: cobalt, lithium, magnesium, titanium and zinc. Comparing those results with Greenpeace's AE [R] scenario, which considers a 100% renewable supply by 2050, this increase is even higher. Therefore, avoiding the dependency on fossil fuels will imply to accept the dependency on raw materials.
000079562 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2017-85224-R
000079562 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000079562 590__ $$a5.537$$b2018
000079562 591__ $$aTHERMODYNAMICS$$b3 / 60 = 0.05$$c2018$$dQ1$$eT1
000079562 591__ $$aENERGY & FUELS$$b15 / 103 = 0.146$$c2018$$dQ1$$eT1
000079562 592__ $$a2.048$$b2018
000079562 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ1
000079562 593__ $$aEnergy (miscellaneous)$$c2018$$dQ1
000079562 593__ $$aBuilding and Construction$$c2018$$dQ1
000079562 593__ $$aPollution$$c2018$$dQ1
000079562 593__ $$aIndustrial and Manufacturing Engineering$$c2018$$dQ1
000079562 593__ $$aMechanical Engineering$$c2018$$dQ1
000079562 593__ $$aCivil and Structural Engineering$$c2018$$dQ1
000079562 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079562 700__ $$0(orcid)0000-0003-0702-733X$$aValero, Antonio$$uUniversidad de Zaragoza
000079562 700__ $$0(orcid)0000-0001-9263-7321$$aCalvo, Guiomar
000079562 700__ $$0(orcid)0000-0002-6148-1253$$aOrtego, Abel
000079562 700__ $$0(orcid)0000-0003-4202-9437$$aAscaso, Sonia
000079562 700__ $$aPalacios, José Luis
000079562 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000079562 773__ $$g159 (2018), 1175-1184$$pEnergy$$tEnergy$$x0360-5442
000079562 8564_ $$s915762$$uhttps://zaguan.unizar.es/record/79562/files/texto_completo.pdf$$yPostprint
000079562 8564_ $$s116982$$uhttps://zaguan.unizar.es/record/79562/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079562 909CO $$ooai:zaguan.unizar.es:79562$$particulos$$pdriver
000079562 951__ $$a2024-05-03-12:03:25
000079562 980__ $$aARTICLE