000079566 001__ 79566
000079566 005__ 20200117212654.0
000079566 0247_ $$2doi$$a10.1016/j.physrep.2018.06.007
000079566 0248_ $$2sideral$$a108653
000079566 037__ $$aART-2018-108653
000079566 041__ $$aeng
000079566 100__ $$ade Arruda, G.F.
000079566 245__ $$aFundamentals of spreading processes in single and multilayer complex networks
000079566 260__ $$c2018
000079566 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079566 5203_ $$aSpreading processes have been largely studied in the literature, both analytically and by means of large-scale numerical simulations. These processes mainly include the propagation of diseases, rumors and information on top of a given population. In the last two decades, with the advent of modern network science, we have witnessed significant advances in this field of research. Here we review the main theoretical and numerical methods developed for the study of spreading processes on complex networked systems. Specifically, we formally define epidemic processes on single and multilayer networks and discuss in detail the main methods used to perform numerical simulations. Throughout the review, we classify spreading processes (disease and rumor models) into two classes according to the nature of time: (i) continuous-time and (ii) cellular automata approach, where the second one can be further divided into synchronous and asynchronous updating schemes. Our revision includes the heterogeneous mean-field, the quenched-mean field, and the pair quenched mean field approaches, as well as their respective simulation techniques, emphasizing similarities and differences among the different techniques. The content presented here offers a whole suite of methods to study epidemic-like processes in complex networks, both for researchers without previous experience in the subject and for experts.
000079566 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E19$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-87519-P
000079566 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000079566 590__ $$a28.295$$b2018
000079566 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b2 / 81 = 0.025$$c2018$$dQ1$$eT1
000079566 592__ $$a8.684$$b2018
000079566 593__ $$aPhysics and Astronomy (miscellaneous)$$c2018$$dQ1
000079566 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/acceptedVersion
000079566 700__ $$aRodrigues, F.A.
000079566 700__ $$0(orcid)0000-0002-0895-1893$$aMoreno, Y.$$uUniversidad de Zaragoza
000079566 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000079566 773__ $$g756 (2018), 1-59$$pPhys. rep.$$tPHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS$$x0370-1573
000079566 8564_ $$s3760223$$uhttps://zaguan.unizar.es/record/79566/files/texto_completo.pdf$$yPostprint
000079566 8564_ $$s72996$$uhttps://zaguan.unizar.es/record/79566/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079566 909CO $$ooai:zaguan.unizar.es:79566$$particulos$$pdriver
000079566 951__ $$a2020-01-17-21:22:25
000079566 980__ $$aARTICLE