000079569 001__ 79569
000079569 005__ 20200716101447.0
000079569 0247_ $$2doi$$a10.1002/jctb.5749
000079569 0248_ $$2sideral$$a109732
000079569 037__ $$aART-2019-109732
000079569 041__ $$aeng
000079569 100__ $$aBaldino, L.
000079569 245__ $$aProduction, characterization and testing of antibacterial PVA membranes loaded with HA-Ag3PO4 nanoparticles, produced by SC-CO2 phase inversion
000079569 260__ $$c2019
000079569 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079569 5203_ $$aBACKGROUND: Silver-loaded hydroxyapatite nanoparticles were incorporated into poly(vinyl alcohol) (PVA) membranes obtained by supercritical CO2 (SC-CO2) assisted phase inversion. Ag3PO4 crystals of 2.2 ± 0.6 nm were dispersed in synthesized needle-like hydroxyapatite nanoparticles (20 × 65 nm) and were uniformly deposited on the internal surfaces of the PVA membranes. Operative conditions to produce membranes by SC-CO2, PVA concentration and the effect on membrane porosity and morphology were studied. RESULTS: Solutions at 20% w/w PVA produced membranes with cellular morphology and nanoporous walls, whereas 30% and 50% w/w solutions produced nanostructured membranes. Silver ions were released from PVA membranes mainly by diffusion according to the Peppas–Sahlin model. Membranes obtained at 20% w/w PVA showed a significant E. coli inhibition at an Ag concentration of 9 ppm, reaching the minimal inhibitory concentration (MIC) and improving the bactericidal activity of the nanoparticles. CONCLUSION: A concentration of Ag3PO4 crystals of about 22 ppm was calculated as being capable of completely destroying these bacteria, reaching the minimum bactericidal concentration (MBC).
000079569 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000079569 590__ $$a2.75$$b2019
000079569 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b72 / 156 = 0.462$$c2019$$dQ2$$eT2
000079569 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b84 / 177 = 0.475$$c2019$$dQ2$$eT2
000079569 591__ $$aENGINEERING, CHEMICAL$$b60 / 143 = 0.42$$c2019$$dQ2$$eT2
000079569 591__ $$aENGINEERING, ENVIRONMENTAL$$b28 / 53 = 0.528$$c2019$$dQ3$$eT2
000079569 592__ $$a0.661$$b2019
000079569 593__ $$aInorganic Chemistry$$c2019$$dQ1
000079569 593__ $$aChemical Engineering (miscellaneous)$$c2019$$dQ1
000079569 593__ $$aFuel Technology$$c2019$$dQ2
000079569 593__ $$aWaste Management and Disposal$$c2019$$dQ2
000079569 593__ $$aOrganic Chemistry$$c2019$$dQ2
000079569 593__ $$aPollution$$c2019$$dQ2
000079569 593__ $$aRenewable Energy, Sustainability and the Environment$$c2019$$dQ2
000079569 593__ $$aBiotechnology$$c2019$$dQ2
000079569 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079569 700__ $$aAragón, J.
000079569 700__ $$0(orcid)0000-0003-2293-363X$$aMendoza, G.$$uUniversidad de Zaragoza
000079569 700__ $$0(orcid)0000-0002-2966-9088$$aIrusta, S.$$uUniversidad de Zaragoza
000079569 700__ $$aCardea, S.
000079569 700__ $$aReverchon, E.
000079569 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000079569 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000079569 773__ $$g94, 1 (2019), 98-108$$pJ. chem. technol. biotechnol.$$tJOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY$$x0268-2575
000079569 8564_ $$s1350027$$uhttps://zaguan.unizar.es/record/79569/files/texto_completo.pdf$$yPostprint
000079569 8564_ $$s59436$$uhttps://zaguan.unizar.es/record/79569/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079569 909CO $$ooai:zaguan.unizar.es:79569$$particulos$$pdriver
000079569 951__ $$a2020-07-16-09:04:05
000079569 980__ $$aARTICLE