000079614 001__ 79614
000079614 005__ 20200324135214.0
000079614 0247_ $$2doi$$a10.1016/j.apenergy.2018.06.128
000079614 0248_ $$2sideral$$a106705
000079614 037__ $$aART-2018-106705
000079614 041__ $$aeng
000079614 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000079614 245__ $$aDecision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings
000079614 260__ $$c2018
000079614 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079614 5203_ $$aPower to Gas technology, which converts surplus electricity into synthetic methane, is a promising alternative to overcome the ¿uctuating behavior of renewable energies. Hybridization with oxy-fuel combustion provides the CO2 ¿ow required in the methanation process and allows supplying both heat and electricity, keeping the CO 2 in a closed loop. The complexity of these facilities makes their management a key factor to be economically viable. This work presents a decision-making methodology to size and manage a cogeneration system that combines solar photovoltaic, chemical storage through Power to Gas, and an oxy-fuel boiler. Up to 35 potential situations have been identi¿ed, depending on the surplus electricity, occupancy of the intermediate storages of hydrogen and synthetic methane, and thermal demand. For illustration purposes, the methodology has been applied to a case study in the building sector. Speci¿cally, a building with 270 kW of solar photovoltaic installed power is analyzed under nine energy scenarios. The calculated capacities of electrolysis vary from 65 kW to 96 kW with operating hours between 2184 and 2475 h. The percentage of methane stored in the gas grid varies from 0.0% (no injection) to 30.9%. The more favorable scenarios are those with the lowest demands, showing temporary displacements beyond the month between injection and utilization.
000079614 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2016-76850-R
000079614 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000079614 590__ $$a8.426$$b2018
000079614 591__ $$aENGINEERING, CHEMICAL$$b5 / 138 = 0.036$$c2018$$dQ1$$eT1
000079614 591__ $$aENERGY & FUELS$$b8 / 103 = 0.078$$c2018$$dQ1$$eT1
000079614 592__ $$a3.455$$b2018
000079614 593__ $$aBuilding and Construction$$c2018$$dQ1
000079614 593__ $$aCivil and Structural Engineering$$c2018$$dQ1
000079614 593__ $$aEnergy (miscellaneous)$$c2018$$dQ1
000079614 593__ $$aNuclear Energy and Engineering$$c2018$$dQ1
000079614 593__ $$aFuel Technology$$c2018$$dQ1
000079614 593__ $$aManagement, Monitoring, Policy and Law$$c2018$$dQ1
000079614 593__ $$aMechanical Engineering$$c2018$$dQ1
000079614 593__ $$aEnergy Engineering and Power Technology$$c2018$$dQ1
000079614 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079614 700__ $$0(orcid)0000-0001-9967-5806$$aPeña, Begoña$$uUniversidad de Zaragoza
000079614 700__ $$aLisbona, Pilar
000079614 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, Luis M.$$uUniversidad de Zaragoza
000079614 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000079614 773__ $$g228 (2018), 1032-1045$$pAppl. energy$$tApplied Energy$$x0306-2619
000079614 8564_ $$s1632711$$uhttps://zaguan.unizar.es/record/79614/files/texto_completo.pdf$$yPostprint
000079614 8564_ $$s86401$$uhttps://zaguan.unizar.es/record/79614/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079614 909CO $$ooai:zaguan.unizar.es:79614$$particulos$$pdriver
000079614 951__ $$a2020-03-24-10:01:34
000079614 980__ $$aARTICLE