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Abstract

The weighting matrix is a key element in the speci�cation of a spatial model.
Typically, this matrix is �xed a priori by the researcher, which is not always sat-
isfactory. Theoretical justi�cation for the chosen matrix tends to be very vague,
and the selection problem is seldom reconsidered. However, several recent pro-
posals advocate a more data-driven approach. In fact, if we have panel data, the
weighting matrix can be estimated from the data; this facilitates the development
of statistical procedures for testing various hypotheses of interest. In the paper,
we focus on the assumption of stability, through time, of this matrix by adapting a
collection of covariance matrix stability tests, developed in a multivariate context.
The tests are compared in a Monte Carlo; two examples illustrate the proposal.
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1 Introduction

Brun et al. (2005) draw attention to an interesting fact: most of the liter-
ature on gravity models �nds estimated distance coe¢ cients that increase,
rather than decrease, through time. This is unexpected because (p. 103) "the
common perception of globalization is that distance should be becoming less
important for international trade, implying decreasing rather than increasing
values of the estimated coe¢ cient of distance". The puzzle is solved after
correcting some mis-speci�cations in the gravity equation. Then the authors
(p. 117) announce the death of distance, estimating an "11% decrease in
the impact of distance on bilateral trade over the 35-year period 1962-1996".
This is just one example, that makes clear that spatial relations are not static
but evolve over time. Not only may the strength of estimated spatial depen-
dence change, but also the pattern of such dependence, often represented
by a matrix, W. Another example is the model for household demand of
Case (1991), where the weights in theW matrix depend on incomes of the
di¤erent districts (so-called income distance), which means weights (i) may
be endogeneous and (ii) may change continuously.
The case of an endogenous W matrix is well-known, though technically

di¢ cult. Only recently have Kelejian and Piras (2014) and Qu and Lee (2015)
formalized its treatment using algorithms (such as generalized method of mo-
ments, GMM, or instrumental variables, IV) with good properties. Ahrens
and Bhattacharjee (2015) develop a two-step Lasso algorithm to estimate the
weights in a spatial autoregressive panel data model. The Lasso approach
allows the authors to circumvent at the same time the problems of endo-
geneity, associated with the spatial lags of the endogenous variable, and of
high dimensionality of the equation. Let us note that they treat the weights
of W as unknown coe¢ cients to be estimated so sparseness of this matrix
is a key assumption (more sparseness, fewer parameters to estimate, faster
convergence).
We are aware of few papers that deal with changes in theW matrix across

time. Druska and Horrace (2004) in their study of Javan rice farm e¢ ciency,
may be the �rst to work formally with a time-varying W; they use a two
seasons model which involves two di¤erent pre-speci�ed weight matrices, one
for the dry season, the other for the wet season. Obviously, season changes
are known in advance, and so are exogenous. Lee and Yu (2012) develop
a quasi-maximum likelihood estimation, QML, of dynamic panel data mod-
els where spatial weights matrices are also time-varying; they are assumed
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exogeneous and known. QML estimates are consistent and asymptotically
normal when both the number of spatial units and time periods increase.
Moreover, Lee and Yu also detect signi�cant biases in the case of substantial
misspeci�cation, with a time invariant weighting matrix assumed when the
true process has time varying matrices. The magnitude of the bias increases
for the estimates of the marginal direct/indirect e¤ects. Angulo et al. (2016)
focus on the problem of testing for changes in the matrix across time, build-
ing the weights by means of exponential and inverse distance decay functions;
a likelihood ratio test with good properties, even for very small samples, is
obtained. Our goal is along the same lines, trying to provide tools to detect
changes in the weighting matrix.
The discussion below is con�ned to the most common situation in ap-

plied work, where the weighting matrix is exogenous (probably depending
on physical distance or some other measure of separation). One of the main
di¢ culties for testing hypotheses in relation to W is the potential problem
of high-dimensionality given that, usually, the cross sectional dimension is
larger than the temporal dimension of the data. This prevents the use of
standard approaches such as maximum-likelihood, which is badly equipped
to deal with singularity of the covariance matrix. Another di¢ culty is the
lack of identi�cation that a¤ects most spatial models, in the sense that is
di¢ cult to separate the impact of a spatial coe¢ cient from the e¤ect of the
W matrix to which it is applied. However, given the unambiguous relation
that exists between the weighting matrix and the covariance matrix, the lit-
erature devoted to the second appears to o¤er a reasonable framework for
the problem. We review this strand of literature looking for tests that would
allow us to test for the constancy, through time, of the weights matrix. The
aim is to demonstrate the usefulness of these procedures in applied research,
either using a Spatial Error Model, SEM, or a Spatial Lag Model, SLM.
The second section discusses brie�y the role of the W matrix in a typ-

ical spatial model. In Section 3 we review the recent literature devoted to
the problem of comparing covariance matrices estimated using di¤erent sam-
ples. We select a set of equality tests, apparently with good properties, that
address the problem. Section 4 presents the results of a Monte Carlo ex-
periment comparing these tests. Section 5 illustrates our proposal with two
case studies in which the assumption of constancy inW plays a crucial role.
Section 6 concludes.
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2 The W issue: some stylized facts

Corrado and Fingleton (2012) pose three questions in relation to W. For
what is it used? How is it built? Finally, do we need it?
The answer to the �rst question is simple: spatial lags of some variables

are necessary because their spatial spillovers are unobservable events in real
life but we have to account for their e¤ects in our models. So, we need to
speculate about their appropriate form by using proxy variables.
A matrix of weights constitutes a reasonable procedure, though it is not

the only solution. Oud and Folmer (2008), for example, introduce the la-
tent variables approach to account for spatial dependence using a structural
equations model; spatially lagged variables are represented by latent vari-
ables which are measured through a set of proxies. Paci and Usai (2009)
extend the use of proxy variables to the problem of measuring unobserved
spatial (knowledge) �ows produced over space, where geography constitutes
an additional source for proxy variables. The HAC method of Kelejian and
Prucha (2007) can be seen as another way of dealing with unobserved e¤ects
related to the spatial structure.
However, these cases are the exception; in fact, there are not many alter-

natives to the use ofW, which must therefore be de�ned. Roughly speaking,
we may distinguish two approaches to the building ofW (Harris et al., 2011):
(i) specifyingW exogenously; (ii) estimatingW from data. The exogenous
approach is by far the most common and includes, for example, use of a
binary contiguity criterion, k-nearest neighbours, kernel functions based on
distance, etc.
The second approach uses the topology of the space and the nature of

the data, and takes many forms. Most are ad-hoc procedures in which an
objective is selected in advance which guides the search. Kooijman (1976)
was one of the �rst to tackle explicitly the question of estimating aW matrix.
His suggestion, to build the weights so as to maximize the value of Moran�s
I, is intuitive, but is di¢ cult to implement because of the high number of
unknowns. Kooijman�s suggestion is related with other more recent proposals
such as Gri¢ th (1996), who tries to �nd aW able to absorb the spatial e¤ects
from the data. Fernández et al. (2009) propose a speci�cation of W based
on a measure of entropy, the GME approach, while Mur and Paelinck (2010)
focus on the maximization of the Complete Correlation Coe¢ cient, the CCC
approach. The LSM (local statistical model) of Getis and Aldstadt (2004) is
very popular, as is the AMOEBA algorithm of Aldstadt and Getis (2006).
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Also included is the most recent work in which W is directly estimated
from the data. For example, Benjanuvatra and Burridge (2015) present a
QML algorithm to estimate the weights in W using a single cross-section,
under the assumption that these weights are a function of the distance be-
tween the locations, known up to a parameter that may be estimated.
More �exible approaches toW are possible if repeated information about

the interactions is available. The initial suggestion of Meen (1996) is to set
the problem in a multivariate framework: (i) a SURmodel is estimated where
each equation corresponds to a region (assuming necessary homogeneity and
aggregation restrictions), then (ii) spatial error dependence, if it exists, will
be captured by the covariance matrix of the SUR residuals. As indicated
by Meen (1996, p 360), "the advantage is that there is no need to specify in
advance the form of the spatial error dependence through a weights matrix".
He goes a step further suggesting a LS regression of the SUR residuals in
each region on the residuals of the other regions:

ûrt =
nP
j=1
j 6=r

!rjûjt + "rt; t = 1; :::; T: (1)

Then the t-ratios can be used to assess if the sequence of weights, !rj;
is statistically signi�cant in each equation. Unfortunately, there are strong
endogeneity problems in (1).
Battacharjee and Jensen-Butler (2013) consider a panel data model with

SEM errors:

yt = xt� + ut (2)

ut = RnWnut + "t; t = 1; 2; :::; T

Ef"tg = 0; V arf"tg = �n=diagf�21; �22; :::; �2ng
Ef"t"

0

sg = 0; t 6= s:

Here, yt is an (n�1) vector of observations of the endogenous variable and
xt an (n� k) matrix of exogenous regressors. Rn is an (n� n) diagonal ma-
trix of spatial dependence coe¢ cients f�i; i = 1; :::; ng andWn the unknown
weight matrix with zeroes in its main diagonal; the nonsingularity condition,
jI�RnWnj 6=0 applies. Moreover, n is �xed and T is allowed to increase.
Like Meen (1996), they suggest using a consistent estimator of the covariance
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matrix of the error terms obtained from the LS residuals, �̂ =T�1
TP
t=1

ûtû
0
t;

in order to produce unique consistent estimates of matrices Rn, �n andWn,
via the relation, �̂n = Ân�̂nÂ

0
n; where Ân= (In � R̂nŴn)

�1. There are
identi�cation problems in (2) solved by assuming that (i) the spatial autore-
gressive parameter is the same for all regions, so that RnWn=�Wn and (ii)
the spatial weights matrix is symmetric.
These two conditions are also essential in the proposal of Beenstock and

Felsenstein (2012) for estimatingWn in a pure panel data SLM model with
unobserved random e¤ects:

yt = �n+RnWnyt + "t (3)

�n being an (n�1) vector of unobserved random e¤ects assumed orthog-
onal to the idiosyncratic error terms, "t.

3 The Covariance and the Weighting matrix

As is so often the case, tests for the constancy of e¤ects go hand-in-hand
with the development of estimation methods. Bhattacharjee and Jensen-
Butler (2013) extend the identity test of Ledoit and Wolf (2002), LW, to
the case of testing for a given driver of spatial di¤usion; speci�cally, their
hypothesis is that:

H0 :W =W0 vs HA :W 6=W0: (4)

For the case of model (2) the test is constructed by comparing two esti-
mated covariance matrices. The �rst is a restricted estimator, e¢ cient only
under the null hypothesis while it is biased under the alternative:

�̂W0 = (I� R̂n;rW0)
0�1�̂n;r(I� R̂n;rW0)

�1: (5)

R̂n;r and �̂n;r are the corresponding restricted estimates. The second,
unrestricted estimator is consistent under both null and alternative, but in-
e¢ cient under the null.

�̂ = (I� R̂n;uŴn)
0�1�̂n;u(I� R̂n;uŴn)

�1: (6)

R̂n;u, �̂n;u and Ŵn are the unrestricted estimates of R, � andW.
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The LW test is consistent (under T ! 1) and has good behaviour for
samples of small to moderate size, even for the more di¢ cult case of high-
dimensionality (n>T ); see Ledoit and Wolf (2002) for the details. Unfortu-
nately, the LW test is not adequate to test for breaks in the weighting matrix
becauseW0 should be speci�ed in advance.
In line with most previous studies, our suggestion is to test for the exis-

tence of a breakpoint inW by using consistent estimates of the corresponding
covariance matrix, �. Let us assume, for the moment, that we know the data
generating process, i.e. a static spatial model

Sy(�y;Wy)yt = �+Sx(�x;Wx)xt� + Su(�u;Wu)ut; t = 1; 2; 3; :::T (7)

where yt and ut are (n� 1) vectors and xt a (n� k) matrix of k covari-
ates, xt = (x1t; x2t; :::; xkt); � is a vector of k parameters and � a (n � 1)
vector of unobserved individual e¤ects (� � i:i:d: (�0;��)). The terms
in vector ut, are spatially and serially uncorrelated, centered on zero and
have a diagonal covariance matrix, �, that is constant through time. Each
of the k covariates, xi; i = 1; 2; ::; k, conform to a stationary process with
mean vector �xi and covariance matrix �xi. Moreover, Sg(�g;Wg), Sg in
short, refers to the spatial structure related to g, where �g is a spatial de-
pendence parameter and Wg an (n � n) matrix. This structure can be a
spatial moving average, an autoregressive process or another spatial mecha-
nism that depends on a spatial driver. The weighting matrices may coincide
(Wg = W;8 g), as usual in applied work, or they may be di¤erent. Let
us assume that the covariates, unobserved e¤ects and error terms are all in-
dependent, Cov(�t;xit) = Cov(�t;ut) = Cov(ut;xit) = 0; i = 1; 2; ::; k;8t.
Under these circunstances, the covariance matrix of vector y is

V (yt) = � = S
�1
y

"
�� + Sx

 
kX
i=1

�2i�xi

!
S
0

x + Su�S
0

u

#
S
0�1
y ;8t (8)

Our focus is on the weights matrix. It is clear that, assuming stability in
the other elements, we should observe changes in � ifW itself also changes.
The contrary does not apply given that the covariance matrix depends on
many other terms (variances, slope coe¢ cients, etc.). This is a limitation of
the procedure.
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Assume that a sequence of ft = 1; 2; :::; Tg time series observations is
available for vector yt. The null hypothesis states that the covariance matrix,
�, is the same for the whole period, whereas the alternative introduces a
breakpoint in period Tb, 1 < Tb < T . In that case, the sample should
be divided into two di¤erent samples ft = 1; :::; Tbg and ft = Tb + 1; :::; Tg,
because di¤erent weights matrices apply in each period,W1 andW2, which
in turn produce di¤erent covariance matrices, �1 and �2. We want to test if
there is a break in T1.

H0 : �1= �2 = � vs HA : �1 6= �2: (9)

The likelihood ratio test (Anderson, 2003), LR, is one of the most popular
tests in this �eld, for which we need (i) the assumption of a correct, known
speci�cation1, (ii) the assumption of normality and (iii) knowledge about the
breakpoints. The LR for the null hypothesis of (9) does not depend on the
�rst order moments:

LR = �2 ln

���b�����T=2���b�1����T1=2 ���b�2����T2=2 ! �2(
n(n+ 1)

2
) (10)

as T !1 for n �xed.

b� and b�i ; i = 1; 2 are the sample covariance matrices under the null
and alternative hypotheses. The statistic of (10) is easily extended to the
case of d known breakpoints. The LR is severely a¤ected by the high-
dimensionality problem which means that: (i)- the LR test degenerates when
n > Ti ; i = 1; 2, because the sample covariance matrices are singular; (ii)-
if both dimensions, T and n, are large (T; n!1, but n < Ti) the percent-
age of false rejections increases dramatically. Ledoit and Wolf (2002) refer
to the ratio n

Ti
as the concentration ci index, which should be considerably

lower than 1 (according to their simulation results, less than 0.05). Bai et
al. (2009) later on show that the LR statistic drifts to in�nity almost surely,
given that n!1, independently of the concentration ci.

1Actually this assumption is not strictly necessary. The LR test, as well as the following
tests, is obtained from a covariance matrix which can be the residual covariance matrix
or the covariance matrix of y. According to our experience, knowledge about the process
improves power/size of the tests.
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This observation is important because spatial data usually involve a large
n and a �nite T. As a remedy to the degeneracy problem, Schott (2007)
introduces a Wald test, which only requires the covariance matrix to be non-
singular under the null (that is T > n).
Bai et al. (2009) obtain the corrections needed for the LR statistics,

in mean and variance, to behave properly for the case where (T; n ! 1)
with concentration ci indices lower than 1 in both subsamples. They show
that if variables are i.i.d., under the null hypothesis the LR ratio of (10),
corrected by a quantity proportional to the dimension of the matrices, as-
ymptotically converges to a Normal distribution with �nite �rst and second
order moments; that is:

TN =
(LR� nFT1;T2)�m(f)

v(f)1=2
! N(0; 1) (11)

where nF�1;�2 is the Marchenko-Pastur law of indices �1 and �2; m(f) and
v(f) are the mean and variance, respectively, of the normal random variable
(LR � nFT1;T2); see Theorem 4.1 and expressions (4.2)-(4.7) in Bai et al
(2009). Note that the result of (11) applies for general i.i.d. distributions,
having a fourth order moment; the TN test can be considered as a generalized
pseudo-likelihood ratio test for non-Gaussian data.
In another strand of literature, Schott (2007), Srivastava (2007), Srivas-

tava and Yanagihara (2010), Li and Chen (2012) and Srivastava et al. (2014)
use the squared Frobenius norm to measure the distance between the null
and the alternative hypotheses. The resulting statistics rely on estimates of
the distance between the two covariance matrices:

tr (�1 � �2)2 = tr�21 + tr�22 � 2tr�1�2 (12)

Again, high dimensionality is a serious problem because the sample spec-
tral moments, trb�ji ; i = 1; 2, are poor estimates of the corresponding mo-
ments tr�ji ; i = 1; 2.
Schott (2007) obtains the so called tTn statistic which is an unbiased

measure of the distance in (12). Assuming the data to be i.i.d. normal,
the sample covariance matrix conforms to a Wishart distribution, T �̂i �
Wn (�i;T ), and the tTn statistic (de�ned in expression 1, p. 6536, of Schott,
2007) converges, under the null, to a normal distribution with mean 0 and a
well-de�ned �nite variance (�2 detailed in expression 4, p. 6538). Asymptotic
normality of tTn holds if Ti and n approach in�nity at a regular rate (that is,
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limh!1
n
Tih
= bi where bi 2 [0;1) and bi > 0 for at least one i). Again the

test can be extended to the case of comparing d breakpoints. The Schott test
has been re�ned recently by Srivastava et al. (2014) into the T3 test, which
is based on more e¢ cient sampling estimates of spectral moments; also, it is
robust to departure from normality.
Srivastava (2007) uses a lower bound of the Frobenius norm: tr (�1 � �2)2 >�p
tr�21 �

p
tr�22

�2
> 0, testing that tr�21 � tr�22 = 0. Like Schott (2007),

he considers consistent estimates of the traces of both matrices and a con-
sistent estimate of the variance of the di¤erence of the traces (more de-
tails in Srivastava, 2007). The statistic obtained, called T2, is asymptoti-
cally distributed N(0,1) under the same conditions as in Schott�s tTn, that is
(T ;n) ! 1, and i:i:d: normality. In Srivastava and Yanagihara (2010) the
T2 statistic is transformed into a standardized version, called Q2, de�ned as
tr�21= (tr�1)

2 � tr�22= (tr�2)
2. Both test statistics, Q2 and T2, can also be

extended to the d breakpoints case.
Li and Chen (2012) address the �large n, small T�question using a di¤er-

ent, more direct approach. They propose to streamline terms in the traces,
trb�ji ; i = 1; 2, so as to make unbiased estimators by using U statistics.
In fact, the statistic that they propose is an estimate of the trace of (12),
LT1;T2 = AT1 + AT2 � 2CT1;T2 where ATi and CT1;T2 are unbiased estimates
of the respective traces (details in Li and Chen, 2012, p. 910-911). Under
the null, LT1;T2 is centred on zero, has a well-de�ned �nite variance, �

2
T1;T2

,

and supports a CLT so that LT1;T2 =
TT1;T2
�T1;T2

D

! N(0; 1). Note that the LT1;T2
of Li and Chen (2012) does not require the assumption of normality but is
restricted to the case of a single breakpoint.
Finally, the approach of García (2012) is based on the eigenvectors of the

two covariance matrices. The idea is that, under the null, the eigenvectors
obtained for either of the two sample covariance matrices will explain a sim-
ilar amount of variation in either of the two samples. Denote by E1 and E2
the orthonormal matrices of eigenvectors corresponding to �̂1 and �̂2, which
may be combined with the matrices of data observed in both subsamples, yj
(or the residuals, ûj, if a SEM model has been previously estimated) to form
the four matrices:

Pjk = [p1jk;p2jk; :::;pnjk] = yjEk; j; k = 1; 2 (13)

The eigenvalues of �̂1 and �̂2 are calculated as the sums of squares of
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elements of pjj; (j = 1; 2). Now de�ne the sums of squares of the elements of
the columns of Pjk to be fvijk; i = 1; 2; :::; ng and a new measure of distance
between the two covariance matrices:

S1 = 2
nP
i=1

[(vi11 � vi21)2 + (vi12 � vi22)2] (14)

No distribution has been provided for S1. Garcia (2012) proposes the follow-
ing resampling permutation approach:
(i) Obtain the statistic S1 for the observed data.
(ii) Resample with replacement, under the null of (9); take 50% of the

resampled observations from the �rst sub-sample, the other 50% from the
second sub-sample, and reassign them randomly to the �rst or to the second
sub-sample.
(iii) Calculate the sequence of resampled statistics fSg1 ; g = 1; 2; :::; Gg,

G being the number of resampled samples.
(iv) Compute the empirical p-value of the resampling experiment as:

pval(S1) =
1

G

GP
g=1

I(Sg1 > S1) (15)

where I(A) is the indicator function of event, A:
(v) Reject the null hypothesis of equal covariance matrices, (9), if: pval(S1) <

� for some chosen nominal signi�cance level, �:
In case of rejecting the null, we may use the statistics S2 and S3 (de�ned

in Garcia, 2012) to assess the characteristics of the break. S3 evaluates the
proportion of the break due to heteroskedasticity whereas S2 measures the
proportion attributable to changes in the covariances among the individuals.

4 Monte Carlo evidence

Our experimental DGP is a spatial panel data model, whose weights matrix
remains stable under the null; it may be either a spatial error model, SEM,
or a spatial lag model, SLM. In the �rst case:

yt = �t+xt� + (I� �uW)�1ut; t = 1; 2; 3; :::T (16)

The model of the alternative hypothesis incorporates two SEM equations
with di¤erent weighting matrices (similarly for the SLM case):
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yt = �t+xt� + (I� �uW1)
�1ut; t = 1; 2; :::Tb

yt = �t+xt� + (I� �uW2)
�1ut; t = Tb + 1; :::T (17)

W1 6=W2

The list of cases from which we extract issues for discussion comprises
small to medium sample sizes in n and medium to large sample sizes in T ,
allowing for cases of high dimensionality. The tests are expected to work
better with increasing T . Bai et al. (2009) report results with very large
values of T , up to 12; 800 observations, which con�rm the consistency of
their TN test; however this will seldom be realistic in applied work. Schott
(2007), on the contrary, simulates very short time spans, T = 4, with serious
dimensionality contraints (n = 128). The parameters for our Monte Carlo
are the following:

� Time-dimension: sample sizes T = f10; 30; 60; 150; 250; 500g :

� Space-dimension: sample sizes n = f16; 36; 64; 144; 225; 400g :

� Regional shape: regular square lattice with side n1=2.

� Weighting matrices. The weights matrix for the �rst period follows a
rook contiguity pattern,WR. We distinguish two cases for the second
period under the alternative: a queen contiguity pattern, WQ, and a
pattern based on the inverse of the distances between the centroids of
the cells,WD. The three matrices are row-standardized. The rook pat-
tern is more akin to the queen case (this is a soft change in the weights
in terms of Lee and Yu, 2012) than to the inverse of the distance; i.e.,
the Frobenius norm of the matrixWR �WQ, n = 16, is 1:50 but 1:75
in the case ofWR �WD.

� Known or unknown breakpoints. The breakpoints, Tb, are located in
the middle of the time sequence. Then we simulate two cases. In
the �rst, it is supposed that we know where the breakpoint is located
whereas this point is unknown in the second. In that case, the tests
are obtained following a rolling process centred on Tb; the sequence
includes 20% of the central observations according to the examples in
Table 1 (Ta and Tc are the starting and ending points for the rolling
sequence):
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Table 1: Sample size, location of breakpoint,and testing intervals
T Ta Tb Tc
60 24 30 36
150 61 75 90
500 201 250 300

� Nature of the break, instantaneous or gradual. In the �rst case, the
break takes place as in (17). For the second case, we de�ne a �breaking
period�as the time span along which change is happening; this period is
equal to 10% of the sample, T bp = 0:1� T . The weighting matrix that
intervenes in the DGP for this transitional interval changes gradually
in each period according to Wbp(t) = Tb�t

T bp
�WR + (1 � Tb�t

T bp
) �Wi

with i 2 fQ;Dg. That is, the transition from one matrix to the other
begins in period

�
Tb � T bp

�
and it is not fully completed until Tb.

� Knowledge about the DGP. Generally, the DGP remains unkown to
the user so the tests have been obtained for the covariance matrix of
y. Assuming that the spatial structure appears only in the errors of
the equation (that is, is a SEM model) and that this is known, the user
can bene�t from a previous consistent estimation of the mean equation
of the model, from which the corresponding (consistent) residuals can
be obtained. In this framework, the tests should be applied to the
covariance matrix of the residuals. Results are brie�y discussed in
Appendix A.

� Spatial parameter values � 2 f0:1; 0:3; 0:5; 0:7; 0:9g

� Unobserved individual and idiosyncratic disturbances are drawn from
standard normal distributions: �i � i:i:d:N(0; �2�), uit � i:i:d:N(0; �2u),
�2� = 1, �

2
u = 1

� Exogenous regressor dimension, k = 3; xti1 = 1; xti2 and xti3 drawn
from N(0; I2) for t = 1; 2; :::; T ; i = 1; 2; :::; n.

� Regression parameter values �0 = (1; 1; �3). The value of �3 has been
de�ned in order to assure a given signal-to-noise ratio in the pooled
regression (with no spatial e¤ects) according to the following Table:
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Table 2: Expected R2 and value of �3
R2 ' 0:5 R2 ' 0:6 R2 ' 0:8

�3 =

r
�22(1�R2)�2x2+R

2(�2u+�2�)
(1�R2)�2x3

1:7 2 3

� For estimating size and power, we use 1,000 replications, which produce
approximate standard errors for the 10%, 5% and 1% signi�cance level
of 0:00948, 0:00690 and 0:00314 respectively.

� Two of the tests, the LR of (10) and the TN of (11) are based on the
likelihood ratio approach, �ve other tests (Schott�s tTn, the T3 re�ned
version of Srivastava et al., Srivastava�s T2, Srivastava and Yanagihara�s
Q2 and Li and Chen�s LT1;T2) are based on the squared Frobenius norm
and, �nally, there is Garcia�s S1 bootstrap test. For the likelihood ratio
tests we need a concentration index smaller than 1; (ci = n

Ti
< 1) so

there are cases where the LR based tests cannot be obtained (the same
applies for Garcia�s S1); this is not the case for the Frobenius norm
based tests.

4.1 Results of the Monte Carlo

Tables 3 and 4 and Figures 1 to 3 summarize the main results of the Monte
Carlo2. The Tables correspond to the case of a breakpoint with known lo-
cation whereas the Figures describe the case of a breakpoint with unknown
location. The data that appear in the Tables are the percentage of rejections
of the null hypothesis of (9), using the corresponding test. Figures represent
the evolution of the test values over the testing interval in the two cases of
instantaneous and progressive break in the weights matrix.
Tables 3a,b report estimated size, whereas Tables 4a,b,c,d show estimated

power. The impact of the signal-to-noise-ratio is really small, both in size
and power. Results tend to be slightly better for the case of a high signal-
to-noise ratio but the di¤erence is always below 0.05 points, so we focus on
the case of a high signal-to-noise ratio.

2For the sake of brevity, we omit the details for the cases not shown in the Tables. The

main tendencies, both in size as well in power, are maintained. Full details are available
from the authors, upon request
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Table 3a: Estimated size (significance level=0.05). Known breakpoint. SEM process 

High signal-to-noise ratio. Matrix in the DGP: WR.
=0.3

T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

LR - - - 0.84 - - 0.62 0.75 - 0.34 0.41 - 

TN - - - 0.14 - - 0.07 0.20 - 0.06 0.10 - 

tTn 0.03 0.03 0.04 0.05 0.03 0.02 0.06 0.04 0.06 0.06 0.04 0.04 

LT1,T2 0.27 0.45 0.61 0.19 0.29 0.35 0.16 0.25 0.30 0.14 0.22 0.26 

T2 0.00 0.00 0.03 0.01 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 

T3 0.01 0.02 0.09 0.05 0.00 0.00 0.06 0.00 0.00 0.06 0.02 0.01 

Q2 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S1 - - - 0.62 - - 0.46 0.61 - 0.41 0.55 - 

=0.5
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

LR - - - 0.86 - - 0.59 0.71 - 0.31 0.38 - 

TN - - - 0.13 - - 0.07 0.21 - 0.05 0.10 - 

tTn 0.04 0.03 0.03 0.05 0.05 0.04 0.07 0.04 0.04 0.06 0.06 0.04 

LT1,T2 0.22 0.41 0.59 0.21 0.25 0.38 0.17 0.27 0.27 0.11 0.19 0.24 

T2 0.01 0.00 0.03 0.01 0.00 0.00 0.02 0.01 0.00 0.04 0.00 0.01 

T3 0.02 0.01 0.08 0.04 0.00 0.00 0.05 0.00 0.00 0.06 0.01 0.01 

Q2 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S1 - - - 0.56 - - 0.49 0.58 - 0.44 0.51 - 

=0.7
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

LR - - - 0.81 - - 0.42 0.55 - 0.18 0.22 - 

TN - - - 0.10 - - 0.07 0.22 - 0.06 0.09 - 

tTn 0.04 0.04 0.02 0.04 0.04 0.04 0.06 0.05 0.05 0.07 0.05 0.05 

LT1,T2 0.20 0.42 0.52 0.20 0.20 0.32 0.15 0.22 0.20 0.13 0.18 0.23 

T2 0.01 0.01 0.01 0.02 0.00 0.00 0.02 0.00 0.00 0.04 0.01 0.00 

T3 0.01 0.00 0.08 0.04 0.00 0.00 0.06 0.00 0.00 0.07 0.02 0.01 

Q2 0.00 0.01 0.01 0.02 0.01 0.00 0.01 0.00 0.01 0.02 0.00 0.00 

S1 - - - 0.44 - - 0.42 0.55 - 0.39 0.53 - 

*: For the cases of the LR, TN and S1 tests, the percentages shown in this panel correspond to n=64. 

 

 



 

 
 

 
Table 3b: Estimated size (significance level=0.05). Known breakpoint. SLM process 

High signal-to-noise ratio. Matrix in the DGP: WR.
=0.3

T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

LR - - - 0.88 - - 0.66 0.76 - 0.41 0.48 - 

TN - - - 0.11 - - 0.08 0.21 - 0.05 0.07 - 

tTn 0.05 0.02 0.03 0.06 0.04 0.03 0.07 0.05 0.05 0.06 0.05 0.05 

LT1,T2 0.35 0.52 0.73 0.29 0.32 0.38 0.24 0.29 0.32 0.19 0.20 0.28 

T2 0.01 0.00 0.02 0.02 0.00 0.00 0.03 0.04 0.03 0.05 0.04 0.03 

T3 0.03 0.00 0.10 0.05 0.00 0.00 0.06 0.01 0.00 0.05 0.02 0.01 

Q2 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 

S1 - - - 0.66 - - 0.48 0.65 - 0.43 0.54 - 

=0.5
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

LR - - - 0.82 - - 0.65 0.71 - 0.51 0.60 - 

TN - - - 0.12 - - 0.06 0.23 - 0.05 0.09 - 

tTn 0.05 0.03 0.04 0.06 0.04 0.04 0.07 0.05 0.05 0.07 0.05 0.05 

LT1,T2 0.35 0.39 0.51 0.28 0.32 0.35 0.31 0.35 0.39 0.19 0.28 0.36 

T2 0.02 0.00 0.00 0.02 0.00 0.00 0.05 0.00 0.00 0.05 0.01 0.01 

T3 0.04 0.00 0.13 0.05 0.00 0.00 0.07 0.02 0.00 0.07 0.02 0.02 

Q2 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 

S1 - - - 0.59 - - 0.39 0.47 - 0.40 0.48 - 

=0.7
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

LR - - - 0.79 - - 0.36 0.46 - 0.27 0.31 - 

TN - - - 0.13 - - 0.07 0.24 - 0.05 0.08 - 

tTn 0.06 0.04 0.03 0.07 0.04 0.04 0.08 0.05 0.04 0.08 0.05 0.05 

LT1,T2 0.28 0.31 0.48 0.29 0.37 0.39 0.24 0.29 0.33 0.19 0.23 0.27 

T2 0.02 0.01 0.00 0.03 0.01 0.00 0.05 0.01 0.01 0.03 0.03 0.02 

T3 0.08 0.00 0.00 0.07 0.01 0.00 0.09 0.03 0.01 0.09 0.04 0.03 

Q2 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.02 0.01 0.02 0.01 0.02 

S1 - - - 0.46 - - 0.27 0.31 - 0.20 0.24 - 

*: For the cases of the LR, TN and S1 tests, the percentages shown in this panel correspond to n=64. 

 



 
 

Table 4a: Estimated power (significance level=0.05). Known breakpoint. SEM process 
High signal-to-noise ratio. Matrices in the DGP: WR vs WD

=0.3
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.16 - - 0.37 0.51 - 0.51 0.72 - 

tTn 0.13 0.23 0.34 0.14 0.44 0.54 0.47 0.61 0.68 0.59 0.70 0.75 

T2 0.08 0.09 0.21 0.10 0.15 0.26 0.18 0.27 0.30 0.25 0.31 0.41 

=0.5
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.35 - - 0.46 0.63 - 0.60 0.78 - 

tTn 0.15 0.31 0.52 0.25 0.49 0.60 0.51 0.58 0.71 0.67 0.75 0.86 

T2 0.10 0.10 0.27 0.12 0.19 0.40 0.25 0.31 0.51 0.34 0.53 0.62 

=0.7
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.48 - - 0.62 0.73 - 0.79 0.88 - 

tTn 0.18 0.43 0.63 0.27 0.54 0.65 0.47 0.66 0.75 0.43 0.76 0.92 

T2 0.10 0.16 0.33 0.15 0.22 0.45 0.19 0.44 0.62 0.37 0.71 0.81 

*: For the case of the TN test, the percentages shown in this panel correspond to n=64. 

 

Table 4b: Estimated power (significance level=0.05). Known breakpoint. SLM process 
High signal-to-noise ratio. Matrices in the DGP: WR vs WD.

=0.3
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.17 - - 0.26 0.46 - 0.54 0.85 - 

tTn 0.07 0.16 0.26 0.11 0.27 0.44 0.31 0.56 0.58 0.62 0.92 0.92 

T2 0.04 0.14 0.31 0.10 0.27 0.48 0.31 0.96 0.98 0.50 1.00 1.00 

=0.5
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.35 - - 0.83 0.87 - 0.99 1.00 - 

tTn 0.17 0.33 0.53 0.32 0.83 0.87 0.83 1.00 1.00 0.99 1.00 1.00 

T2 0.11 0.46 0.58 0.26 1.00 1.00 0.53 1.00 1.00 0.74 1.00 1.00 

=0.7
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.75 - - 1.00 1.00 - 1.00 1.00 - 

tTn 0.19 0.93 0.98 0.34 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 

T2 0.10 0.86 0.95 0.15 1.00 1.00 0.27 1.00 1.00 0.35 1.00 1.00 

*: For the case of the TN test, the percentages shown in this panel correspond to n=64. 

 



 
 

Table 4c: Estimated power (significance level=0.05). Known breakpoint. SEM process 
High signal-to-noise ratio. Matrices in the DGP: WR vs WQ

=0.3
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.16 - - 0.37 0.51 - 0.51 0.72 - 

tTn 0.08 0.14 0.27 0.17 0.25 0.31 0.24 0.32 0.39 0.27 0.42 0.58 

T2 0.09 0.10 0.16 0.12 0.16 0.24 0.15 0.21 0.25 0.19 0.25 0.33 

=0.5
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.35 - - 0.46 0.63 - 0.60 0.78 - 

tTn 0.15 0.22 0.28 0.20 0.34 0.40 0.29 0.41 0.51 0.41 0.61 0.66 

T2 0.10 0.10 0.17 0.11 0.14 0.34 0.16 0.23 0.37 0.28 0.35 0.49 

=0.7
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.48 - - 0.62 0.73 - 0.79 0.88 - 

tTn 0.18 0.34 0.43 0.24 0.44 0.55 0.32 0.53 0.64 0.49 0.70 0.86 

T2 0.10 0.12 0.30 0.19 0.23 0.46 0.19 0.39 0.56 0.33 0.61 0.74 

*: For the case of the TN test, the percentages shown in this panel correspond to n=64. 

 

Table 4d: Estimated power (significance level=0.05). Known breakpoint. SLM process 
High signal-to-noise ratio. Matrices in the DGP: WR vs WQ

=0.3
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.17 - - 0.38 0.53 - 0.47 0.68 - 

tTn 0.07 0.16 0.35 0.21 0.28 0.41 0.27 0.47 0.54 0.34 0.52 0.82 

T2 0.08 0.24 0.31 0.10 0.37 0.48 0.32 0.57 0.67 0.49 0.67 0.83 

=0.5
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.24 - - 0.46 0.48 - 0.78 0.74 - 

tTn 0.11 0.14 0.22 0.26 0.34 0.51 0.33 0.62 0.80 0.39 0.69 0.89 

T2 0.12 0.26 0.35 0.29 0.40 0.55 0.46 0.65 0.84 0.43 0.82 0.90 

=0.7
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.34 - - 0.74 0.86 - 0.98 0.99 - 

tTn 0.12 0.27 0.31 0.31 0.41 0.55 0.42 0.67 0.85 0.47 0.85 0.91 

T2 0.14 0.26 0.53 0.15 0.49 0.61 0.49 0.70 0.87 0.65 0.94 0.96 

*: For the case of the TN test, the percentages shown in this panel correspond to n=64. 

 



Size is a real problem for three cases: LR, LT1;T2 of Li and Chen and S1
of Garcia. These tests are strongly oversized, independently of (time, spatial)
sample size or the degree of spatial interaction. Data on Bai et al�s TN test
corroborate the warning of Ledoit and Wolf (2002) with respect to LR type
tests: these tests have a size problem when the concentration index is high.
According to our results, for the TN test to have reasonable empirical size
the ratio of time observations to spatial units should be at least 10 to 1, so
that ci � 0:10. The other candidates work pretty well, especially Schott�s
tTn test whose estimated size is always around the theoretical 5% signi�cance
level. The tests using a lower bound to the Frobenius norm, T2 and Q2, are
consistently under-sized, with size almost zero in most cases. However this is
not, necessarily, a bad thing if accompanied by good power. Unfortunately,
the estimated power function of the second is unacceptable (not shown in
the tables) and we decided to exclude the Q2 test from the analysis.
Another surprise comes from the T3 test of Srivastava et al. (2014), a

re�nement of Schott�s tTn test. The revision does not work in our framework
where the T3 test tends to be undersized (although for small spatial sam-
ples, its estimated size is moderately above the nominal signi�cance level).
However, like the Q2 test, its estimated power function is unacceptable for
almost all the cases (not shown in the paper), no matter sample size, spatial
dependence or type of break. Consequently we have decided to exclude also
the T3 test from the analysis.
Some preliminary conclusions can be drawn from this part of the Monte

Carlo:

� The LR, the Li and Chen LT1;T2 and Garcia�s S1 tests are not appro-
priate tests for changes in the weights matrix of a spatial model. They
are strongly a¤ected by the high dimensionality problem which results
in unacceptable size in�ation.

� Neither can we recommend Srivastava et al.�s T3 or Srivastava and
Yanagihara�s Q2 test. These tests are consistently undersized and their
estimated power function is unacceptable for the case we are studying.
This lack of power is not corrected by increasing (time, spatial) sample
size nor after introducing higher spatial dependence.

� Bai et al�s TN test is a¤ected by the high dimensionality problem, re-
quiring a concentration index no greater than 0:1. Under these condi-
tions, the empirical size of the test appears to be approximately correct
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(in spite of slight oversizing) and its power function increases monoton-
ically with T, time span, and the value of the spatial autocorrelation
coe¢ cient.

� This monotonicity is maintained in the cases of the tTn of Schott and
T2 of Srivastava. The two tests attain good power especially in cases of
high time spans. Also, their power increases quickly for cases of �xed T
and large n especially if there is a medium to large coe¢ cient of spatial
dependence in the DGP.

� As expected, the three tests under consideration (TN , tTn and T2) work
considerably better for SLM processes, which induce global patterns
with stronger symptoms of dependence. Srivastava�s T2 appears slightly
superior in the case of SLM processes whereas Schott�s tTN seems prefer-
able for dectecting breaks in local processes, like the SEM. Greater dif-
ferences in the weight matrices imply higher power to detect the change
as is clear by comparing results in Tables 4a,b with those of Table 4c,d.

Figures 1 to 4 show the behaviour of the three selected tests when the
location of the breakpoint is not known. Each graph reproduces the average
value of the corresponding statistic (vertical axis) for the hypothesis that
there is a break in period t, in the horizontal axis. The breakpoint is located
in period 75, but the user does not know that. The tests are evaluated
sequentially in a rolling process initiated in period 60 and �nished in period
90 (65 and 85 in Bai et al.�s TN test).
Figure 1 describes the case of a change from a rook type pattern to a

system of weights based on the inverse of distance, in a SLM model (top
panel) and in SEM model (bottom panel). Figure 2 corresponds to a softer
change, from a rook pattern to a queen pattern.
Overall, the TN test works pretty well rejecting the null of equal covariance

matrices in the whole interval inspected. The value of the test increases
with the coe¢ cient of spatial dependence but diminishes with the number
of cross-sectional units (a re�ection of the dimensionality problem). A U-
pattern emerges in cases of a high concentration index (n = 64 and ci =
0:85) combined with weak symptoms of spatial dependence. The maximum
value of the sequence of TN tests roughly coincides with the location of the
breakpoint, in period 75. As expected, the procedure works signi�cantly
worse in the case of SEM processes and small changes in the weights matrix.
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Figure 1: Unknown, instantaneous breakpoint. High signal-to-noise ratio.  Matrices in the DPG: WR vs WD.  T=150 

 Bai test  Schott test  Srivastava test 

=
0.

3 
 S

E
M

 

     

=
0.

7 
 S

E
M

 

     

=
0.

3 
 S

L
M

 

     

=
0.

7 
 S

L
M

 

     



 

 

Figure 2: Unknown, instantaneous breakpoint. High signal-to-noise ratio.  Matrices in the DPG: WR vs WQ.  T=150 
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Figure 3: Unknown, gradual breakpoint. High signal-to-noise ratio.  Matrices in the DPG: WR vs WD.  T=150 

 Bai test  Schott test  Srivastava test 

=
0.

3 
 S

E
M

 

     

=
0.

7 
 S

E
M

 

     

=
0.

3 
 S

L
M

 

     

=
0.

7 
 S

L
M

 

     



The other two tests, the tTn of Schott and the T2 of Srivastava, maintain a
similar pro�le. Both work better with changes in the weights matrix of a SLM
process and where the di¤erences between the two matrices are substantial.
The identi�cation of the location of the breakpoint is e¤ective in the SLM
case and more uncertain under SEM processes. Smaller (spatial) sample
sizes, lower values in the spatial autocorrelation coe¢ cient, local processes
of dependence or soft changes in the weights matrix are factors that worsen
the functioning of these tests.
The discussion is completed by reviewing Figure 3 which illustrates the

case of a gradual change in the weights matrix. Now the change from one
matrix to the other is not instantaneous but gradual. The transition begins
in period t = 67 and it is not fully completed until t = 82. As before, the
tests are obtained in a rolling process from observations 60 to 90 (65 to 85
for the Bai et al. test). The TN test works pretty well, in general, rejecting
the null of equal covariance matrices in the whole testing period. The impact
of the high-dimensionality problem a¤ects the power curves of the test for
the case of n=64, which now is very �at. The two other tests tend to work
similarly well. The Schott test appears to be more sensitive to the gradual
change of the weights matrix than the Srivastava test. As before, the change
is more di¢ cult to detect in the case of SEM processes and for low values of
the spatial correlation coe¢ cient. Finally, let us note the smoother curves
obtained for the three tests. In all the cases, the estimated power functions
are a bit more di¤use around a local peak than if the change is instantaneous;
moreover, this local peak is next to the point where the transition process
has completed half the total change (T = 75 once again).

5 Case studies

5.1 Case study I: Unemployment in Spanish regions

A distinctive feature of the Spanish economy is the high unemployment,
whose spatial dimension is characterized by the persistent and remarkable
di¤erences between regions (e.g., Lopez-Bazo et al, 2005).
We can provide di¤erent explanations for such disparities. Some rely

on the assumption of equilibrium, others on the notion of disequilibrium.
According to Marston (1985), unemployment is a steady-state function of
factor endowment. As long as they are stable through time but di¤erent
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between regions, we cannot expect rapid changes in the short run. From
this perspective, unemployment is basically a local question that re�ects
imbalances in each regional labour market. The neoclassical paradigm posits
the existence of a competitive equilibrium among the regions, where the
unemployment rate will level o¤ (Blanchard and Katz, 1992). In the short
run, regional disparities result from market rigidities or mobility restrictions
that should disappear in the long-run. The adjustment process will be faster
or slower depending on regional circumstances, that may persist for a long
time. Partridge and Rickman (1997) merge both approaches by combining
disequilibrium factors (e.g., economic growth, technology) and equilibrium
mechanisms, (e.g., industrial composition, wages) with demographic trends,
locational amenities and institutions.
Furthermore, there is an extensive literature (e.g., Zeilstra and Elhorst,

2014) showing that unemployment rates are not only driven by intra-regional
factors; extra-regional factors have also a role. Beyer and Smets (2015),
from a slightly di¤erent perspective, highlight the importance of common
factors in the European case (related, for example, to country e¤ects) which
strengthens the interdependence of regional unemployment �gures.
The interest of the Spanish case is reinforced by the institutional frame-

work. Franco�s dictatorship ended in the 70s (Franco died in 1975). Then,
the country embarked on a transition from a highly centralized system to a
quasi-federal structure with 17 regions, Autonomous Communities (CCAA
from now on). The set up of the so-called �Autonomic State�was �nished
in 1983. The decentralisation process included own-source revenues for sub-
central governments and tax sharing agreements between the regions and the
central government.
Actually, CCAA have substantial control over tax rates and on di¤er-

ent legislative areas such as education (transferred between 1995 and 1999),
public health (transferred in 2002), labour markets, consumers and com-
mercial activities, etc. Key dates for the new system are the agreements of
1986, 1992, 1996, 2001 and 2009, clearly visible in Figure 4 which depicts
the percentage of public expenditure under control of the regions. Currently,
regional governments are responsible for 45%, approximately, of total public
expenditure and almost 60% of government employment.
Spanish regional unemployment combines two important features for us:

it is expected to exhibit a strong cross-sectional dependence and, probably,
this structure has su¤ered changes because of the decentralization process.
We are going to study this case for the period 1980:1 to 2013:4, using quar-
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terly data.

Figure 4. Percentage of public expenditure
under control of the CCAA

source: Gil-Serrate et al. (2011)

We follow the mixed approach to labour markets of Partridge and Rick-
man (1997) but the selection of variables has been highly constrained by
data availability. A key element is unemployment by CCAA, taken from
the �Encuesta de Población Activa�, Working Population Survey (Instituto
Nacional de Estadística, INE, several years). Wages and economic activity
in the region are the main factors driving unemployment. Quarterly Labour
Cost Survey (INE, several years) is the source of the former and Spanish
Regional Accounts (INE, several years) that of the second. INE produces
only annual estimates of regional GDP that have been disaggregated into
quarterly data according to DiFonzo (1990), using regional employment and
regional industrial production indices as high-frequency indicators.
The three panel series are I(1), as indicated in Table 6, where lp stands

for the log of the regional gross domestic product, lu is the log of regional
unemployment and lw the log of regional wages. PMSB is the panel modi�ed
Sargan-Barghava test of Bai and Ng (2010) for testing non-stationarity in
the idyosincratic component of the panel series, MQc is the Bai and Ng
(2004) test to determine the number of common stochastic trends in the
common factors of the panel series (whose �nal number is indicated as r in
the table); CIPS� is the Pesaran (2007) test for panel unit roots; ta, and tb
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are Moon and Perron (2004) tests for panel unit roots and n:c:f . indicates
the number of common factors in the Moon-Perron tests as determined by
the Akaike Information Criteria. All the test include individual e¤ects and
time trend. PMSB, CIPS�, ta, and tb are asymptotically distributed as
standard normals (p-value in brackets) whereas the critical values for the
MQc statistic appear in Table 1 of Bai and Ng (2004). The Moon-Perron
tests cast some doubt on the nonstationarity of lu and lw which, however,
are overwhelmingly o¤set by the other two tests (the Choi tests, not in the
table, corroborate this conclusion).

Table 6. Panel unit root tests
H0 : I(1) vs HA : I(0)

lp lu lw
PMSB �0:4683 (0:3200) �0:4831 (0:3147) �0:9794 (0:1638)
MQc �27:5893 r = 4 �30:8682 r = 3 �3:0300 r = 1
CIPS� �2:4220 (0:6750) �2:4931 (0:2750) �2:1339 (0:8150)
ta 0:5300 (0:7019) �1:7276 (0:0420) �1:6730 (0:0472)
tb 0:4895 (0:6878) �1:7380 (0:0411) �0:6189 (0:2680)
n:c:f: 4 3 4

H0 : I(2) vs HA : I(1)
lp lu lw

PMSB �2:3647 (0:0092) -2:4552 (0:0063) �3:2125 (0:0007)
MQc �77:7600 r = 0 �82:4687 r = 0 �134:6321 r = 0
CIPS� �4:0609 (0:0100) �6:4003 (0:0100) �5:1347 (0:0100)
ta �371:0119 (0:0000) �326:4307 (0:0000) �344:9117 (0:0000)
tb �35:6467 (0:0000) �53:0366 (0:0000) �61:6577 (0:0000)
n:c:f: 4 3 4

Moreover, the three variables appear to be cointegrated according to
Westerlund and Pedroni tests shown inTable 7. The panel statistics of Pe-
droni (1999) are based on pooling di¤erent estimates, from the estimated
residuals, across members while the group statistics simply average these es-
timates. � and t statistics can be seen as variations of the analogous � and
t tests of Phillips and Perron; the �rst is a non-parametric variance ratio
statistic. The four tests are asymptotically distributed as standard normal.
The variance ratio test is right-sided, while the other tests are left-sided.
Similarly, the P statistics of Westerlund (2007) pool information over all the
cross-sectional units whereas the G statistics are obtained as weighted aver-
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ages of individual estimates. They are asymptotically normally distributed;
Z-value denotes the standardized value of the statistic. The pvalue is robust
to cross-sectional dependence and has been obtained after 400 bootstraps.
All the tests include individual e¤ects and time trend. Maximum truncation
lags are set to 4 and determined using data dependent criteria.

Table 7. Panel cointegration tests
PEDRONI tests
Panel statistics Group statistics

Variance ratio 1:938�

� statistic �8:884� �8:406�
t statistic �8:315� 8:137�

ADF statistic �0:305 0:015
WESTERLUND tests

Z-value pvalue
Gt test �3:241� 0:008
Ga test 0:869 0:605
Pt test �3:711� 0:006
Pa test �1:815 0:097

*: denotes rejection of the null of no cointegration at a 5% signi�cance level.

Eight of the eleven cointegration tests reject the null of no cointegration
whereas the two ADF tests in the case of Pedroni and the two tests based
on the long run variance estimators of Westerlund detect problems. Overall,
it seems the evidence supporting the assumption of cointegration is stronger.
This period has been crucial for the evolution of the contemporary Span-

ish economy and includes many important events such as inclusion in the
European Common Market in 1986, the crisis of 1993, the full decentral-
ization of the Public Administration or the economic crash in the second
semester of 2007 and subsequent downturn. We look for structural breaks
using the Banerjee and Carrión-i-Silvestre test (2015), which reveals a sig-
ni�cant breakpoint in the second quarter of 2000 (weaker symptoms of a
second break were detected also at the beginning of the 1990s and/or in
2008, depending on the region)3. Let us note that the procedure detects the
presence of, at least, 4 non-stationary common factors, which would mean

3We do not report the results of their t�e cointegration test because there is strong
evidence of cross-sectional dependence in the idiosyncratic errors, distorting its asymptotic
distribution.
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that the observed variables do not cointegrate by themselves alone (common
factors are needed to obtain a signi�cant long-run relationship). We will not
go deeper into this question, which may be connected with the problems of
cointegration raised in Table 7. The model we are using, for reasons of lack
of information, is an oversimpli�ed version of the functioning of a labour
market and, probably, it is somewhat misspeci�ed. Our impression is that
those nonstationary common factors are related to elements of the national
or international cycle not included in the model.
Literature on labour markets agrees on the negative impact of economic

activity on unemployment. The relation is more controversial in relation to
wages: a positive impact is predicted from a neoclassical perspective although
there are doubts from a social-democratic view. Using previous results, we
approach this discussion through an Autoregressive Distributed Lag Model,
ARDL(p; q1; q2); see Pesaran et al, 2001. The lengths p, q1 and q2 of the
ARDL have been �xed paying attention to the assumption of serially un-
correlated disturbances and to the Akaike Information Criterion. Results
indicate that the most adequate lag lengths, to eliminate residual serial cor-
relation, are p = 4, q1 = 2 and q2 = 2. The ARDL has been parameterized
into an error correction equation such as the following:

�luit = 
i (luit�1 � �1ilpit � �2ilwit � �3idit � lwit) + �i + �idit
4P
j=1

�1j;i�luit�j +
2P
j=1

�2j;i�lpit�j +
2P
j=1

�3j;i�lwit�j + uit;

i = 1; :::; 17; t = 1980 : 1; :::; 2013 : 4; dit = 1 if t > 2000 : 2

9>>=>>; (18)

Another problem to consider is the homogeneity of the parameters of
the cointegration equation among the di¤erent CCAA. A way of solving this
question is by comparing the MG and PMG estimates. The �rst (Pesaran
and Smith, 1995) relies on estimating n time-series regressions, one for each
CCAA, and averaging the coe¢ cients, whereas the PMG estimator (Pesaran
et al., 1999) is a mixture of pooling and averaging of coe¢ cients. The com-
parison can be made through a simple Hausman test where the MG estimates
are consistent under the null (homogeneous parameters) and the alternative
(heterogeneous parameters) hypothesis, whereas the PMG estimates are e¢ -
cient under the null but biased under the alternative. In this case, the Haus-
man statistic takes a value of 2:44 (3 d.o.f.) and a p-value of 0:4861 which
points in favor of the mixed PMG estimates. Table 8 reports the results
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corresponding to the common panel cointegration equation (top panel) and
the average of the short-run parameters (including a measure of dispersion
of these estimates). Misspeci�cation tests for temporal and cross-sectional
dependence complete the information. The details of the short-run estimates
of the ARDL(4; 2; 2) corresponding to each Autonomous Community appear
in Table B1 in Appendix B.
A striking result in this Table is the increased impact of regional wages

after the structural break in 2000:2. The relation with unemployment was
inelastic before this date (5% con�dence interval is 0:53� 1:04) but becomes
highly elastic afterwards (the con�dence interval is 2:78� 3:66). This result
highlights the increasing importance of purely regional factors in the deter-
mination of unemployment, as a consequence of the decentralization process.
Economic activity, as expected, appears as an important factor reducing re-
gional imbalances, with a more than proportional, stable impact.
The speed of adjustment (
i) is signi�cant and negative in the 17 CCAA

with a minimum value in the case of Navarre, �0:021, and a maximum in La
Rioja, �0:233. The cross-equation restriction of homogeneity in this parame-
ter is strongly rejected with a likelihood ratio test of 50:40 (pvalue of 0:0000).
The short-run impact of regional economic activity on unemployment (sum
of parameters �21 and �22) is negative and more than proportional; in fact,
the null hypothesis of a zero short-run impact, against the alternative of a
negative impact, is rejected in 14 out of the 17 regions. The situation is
not so clear in the case of wages where this hypothesis cannot be rejected in
almost half of the CCAA.
The CD test indicates the existence of strong spatial interaction in the

residual of theARDL(4; 2; 2) for the Spanish unemployment series. A natural
reaction would be to �x the misspeci�cation by including a SEM structure.
Obvious questions are:

� what weighting matrix?

� is it in fact the same for the three decades?
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Table 8. Estimation of the ARDL(4,2,2)
for the unemployment case (18)

Long run coe¢ cients
Estimate p-value

�1 (gdp) 1:6324 0:0000
�2 (wages) 0:7896 0:0000

�3 (wages�time dummy) 2:4287 0:0000
Short run coe¢ cients

Mean estimate stand. dev.

i �0:0891 0:0334
�i 1:5823 0:0226
�i �0:5105 0:0386
�11 0:1656 0:1901
�12 �0:2963 0:1842
�13 0:3348 0:1419
�14 �0:0669 0:3400
�21 �1:9912 0:0774
�22 0:1592 0:4133
�31 �0:1144 0:3057
�32 �0:0331 0:3640

Serial correlation Estimate p-value
r1 �0:1114 0:1738
r2 0:0206 0:3878
r3 0:0166 0:3916
r4 �0:0400 0:3584
r5 0:0011 0:3989

Cross-sect correl. Estimate p-value
CD test 37:2447 0:0000

Note: rj denotes the mean correlation coe¢ cient between the cross-sections residuals
separated by j periods. Given that T is larger than N, it is compared with a N(0,1).
CD: denotes Pesaran�s test of cross-sectional dependence in panel data.
See Arellano and Bond (1991) and Pesaran (2004), respectively.

Di¤erent hypotheses can be formulated in relation to the �rst question,
none of them de�nitive. The nonparametric procedure of Bhattacharjee and
Jensen-Butler (2013) produces the weighting matrix listed in Table B2 in
Appendix B. The answer to the second question is negative: this matrix can-
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not be taken as constant for the three decades. Figure 5 shows the rolling
estimates of the TN test of Bai et al (2009) and of the tTn test of Schott
(2007). The search span contains 60% of the observations (that is, 80 quar-
ters) and it is centered in the middle of the sample (1998:1). Both tests peak
in the second semester of 2000, where the Banerjee and Carrión-i-Silvestre
procedure identi�es a similar break in the cointegration equation. Notice
that this date roughly coincides with the completion of the transference of
the second large set of competencies to the regions. We do not have a clear
cut explanation for the sharp fall produced in both tests after the peak.

Figure 5. Results of the Schott (2007)
and Bai et al. (2009) tests

Under the alternative hypothesis there are, at least, two weighting matri-
ces working in the sample, as they appear in Tables B3 and B4 in Appendix
B. Once more, the matrices have been estimated using the nonparametric
algorithm of Bhattacharjee and Jensen-Butler (2013).
Some comments are in order here. First, theW matrix obtained for the

�rst period is sparser than that for the second. This is consistent with the
decentralization hypothesis: as the regions gain control over their own deci-
sions, the interrelation between them increases. Following this change, there
has been a realignment among the regions in terms of �good�and �bad�neigh-
bours. During the �rst period, the ranking of regions with a positive impact
on the others is headed by geographically central regions, such as Castille-
Leon, Castille-La Mancha or Madrid; in the second period, the group of
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regions with positive in�uence has moved towards the Mediterranean axis
(both Castilles, Catalonia, Valencian Community are there). On the con-
trary, peripheral regions appear at the top of the ranking of regions with
negative impulses in the �rst period (Balearic Islands, Cantabria, Murcia),
which is made by Northern and peripheral regions in the second (Asturias,
Cantabria, Canary Islands, Extremadura). This picture is also consistent
with the gradual but �rm displacement of the centre of gravity of the Spanish
economy from the North-West to the South-East of the peninsula. Another
interesting result is the �lack of geography�in these matrices whose relation
with the concept of contiguity is very feeble, if not entirely absent. This
also accords with the distinction between micro and macro data in the sense
that aggregating spatial data leads to the weakening of purely geographical
relations, favouring other types of comovements such as national common
factors.

5.2 Case Study II: Housing prices in Spanish munici-
palities

The second example refers to housing prices in Spanish municipalities. Na-
tional housing prices rose strongly in the expansion cycle that preceded the
global downturn of 2007; this increment was one of the largest in Europe.
However the crisis led to severe corrections in the sector, stronger than the
European mean. The boom period started, approximately, in 1995 and the
housing stock increased by 50 percent from 1995 to 2007, with an average
of more than half a million houses built per year. Meanwhile the population
increased by 6:5 million people (18%) and the GDP per capita by more than
4% on average. The market collapsed after the �nancial crash of 2007 with
cuts in prices by more than 30% on average (see Figure 6), GDP per capita
decreased around 2:3% per year in the period 2008 to 2014 and there was an
out-migration of almost half a million people.
Some factors are speci�c to the Spanish case, such as the massive af-

�uence of baby-boomers in the early 2000s increasing the group of young
working adults, prone to demand housing services. The loosening of �nan-
cial conditions in the years before the crisis facilitated the access to credit,
which spurred the demand for housing in a market with a strong preference
for ownership. Moreover, �scal policy favoured ownership, with subsidies,
deductions in personal income taxes and several incentives to reinvestment
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that were partially removed from the Spanish tax system in 2012.

Figure 6. House price indices, 2005:1-2015:4.
Spain vs euro area (base 2010=100, Eurostat)

There is a rich literature devoted to real estate markets. A common
starting point is the notion of real housing user cost of capital (Cameron et
al., 2006, or Holly et al., 2010), which confronts the consumer with a util-
ity maximization problem in an inter-temporal model of consumption, with
two di¤erent goods: a composite consumption good and housing services.
Real housing user cost of capital results from the �rst order conditions of
the optimization problem in which interest rate, housing stock, income and
demographic factors are key variables driving the formation of prices. In
addition, real estate markets tend to be segmented into several sub-markets
(owner-occupied houses, second residences, tourist activities, investors�prop-
erty developments, etc.), each one of themwith a strong spatial dynamic (e.g.,
Can, 1990 and 1992; Brady, 2011; Martinez and Maza, 2003, for the Spanish
case).
Our case study refers to housing prices for the 284 Spanish municipali-

ties with more than 25; 000 residents (Figure 7 shows their location). The
data emanate from the Spanish Department of Housing (Dirección General
de Arquitectura, Vivienda y Suelo, Ministerio de Fomento), and comprise
quarterly data from 2005:1 to 2015:4. However, we are not going into the
direction of modelling because there is an acute problem of data unavailabil-
ity at a municipal level in Spain. We merely test for structural breaks in the
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cross-sectional connections among the municipalities.
The cross-sectional dimension of this dataset, 284 municipalities, is 6

times greater than its time dimension, 44 quarters in the sample. There is
a strong dimensionality problem that prevents the use of LR based tests.
Moreover, given the short time dimension, it is not possible to estimate
the underlying weighting matrix. As previously remarked, at most we can
speculate about its stability.

Figure 7. Location of the municipalities
included in the sample

Figure 8 shows the rolling estimates of the tTn test of Schott and of
the T2 test of Srivastava. As before, the search span contains 60% of the
observations (that is, 26 quarters) and it is centered in the middle of the
sample (2010:2). The two tests o¤er a very similar view of this case: there
is a wide time interval where they detect a break in the covariance matrix:
from the beginning of 2008 to the second semester of 2011, with a peak in the
�rst quarter of 2010. This period coincides with the outbreak of the crash
and the bursting of the Spanish housing bubble.
Of course, this break may be due to other causes di¤erent from the hy-

pothesized change in the weighting matrix (for example, changes of agents�
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expectations, in the perception of risk, etc.), but the instability in the cross-
sectional structure of the markets is a potential disturbing factor that cannot
be neglected. This is consistent with the realignment of the Spanish real es-
tate sector after the crash of 2007. Actually, the sector is working at a
very moderate level of activity and it is highly dependent on the demand for
residential housing, in very speci�c and well chosen locations. Real estate
markets evolve at a lower scale than before and the activity is a bit more
di¤use on the territory; rehabilitation and restoration of properties occupy
a more prominent role to the detriment of purely touristic sub-markets. In
sum, the sector appears to have acquired a more balanced spatial distribution
which may have caused a break in the connections captured by the weights
matrix connecting local markets.

Figure 8. Schott and Srivastava tests.

6 Conclusion

In recent years there has been a growing interest in di¤erent questions re-
lated toW. There appears to be a general consensus in the sense that it is
not enough to build the weights matrix exogenously according to some un-
speci�ed prior knowledge. On the contrary, the author should make explicit
his/her knowledge in order that the results of the estimated models may be
interpreted. Usually, one has several candidate matrices, which amounts to a
decision problem that should be solved using some of the di¤erent algorithms
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that exist in the literature. In other cases, assuming that we have panel data,
theW matrix can be estimated from the data.
Our contribution focuses on the (implicit) assumption of time constancy

of W in a panel data framework. If the time span is large or there have
been external shocks, it seems reasonable to expect changes also in the cross-
sectional connections. The approach in this paper consists in testing the
existence of possible breaks inW through the corresponding covariance ma-
trix. The literature devoted to the topic of comparing covariance matrices
is large and heterogeneous, from which we have chosen a set of potentially
useful tests.
The Monte Carlo experiment reported in the paper leads us to a clear

conclusion: the TN test of Bai et al (2009), the tTn test of Schott (2007)
and the T2 test of Srivastava (2007) are candidates that adapt well to our
case. The �rst test tends to be slightly oversized, especially for small time
sample sizes. The T2 test is consistently undersized whereas the tTn test of
Schott is more balanced in relation to size. The estimated power function
of the three tests improves very quickly, both with the time span and the
spatial coe¢ cient. The tests work quite well in the case where the location
of the breakpoint is unknown and also when the change in the weight matrix
is gradual. On the negative side, because the TN test is a corrected version
of a standard Likelihood Ratio, it needs a concentration ci index in each
subsample lower than 1. This limitation does not apply for the other two
tests, built around the notion of the Frobenius norm. Their behavior is worse
for processes of local dependence, such as the SEM, where the symptoms of
spatial dependence are weaker. Moreover, the distance between the weight
matrices involved in the change is a crucial factor to guarantee a proper
functioning of the tests.
As said in the Introduction, this paper is part of ongoing research whose

objective is to endogenize fully the building of the weighting matrix in a
spatial model. Tests for its stability are a small step forward, and need to be
combined with more �exible estimation algorithms. The potential usefulness
of these techniques, combined with other tools recently developed in relation
to the weights matrix has been illustrated by means of two case studies
coming from the contemporary Spanish economy. Overall, the results of our
approach corroborate the dominant position with respect to this economy.

36



7 Appendix A: The SEM case in the errors
of a linear model

This Appendix describes the results obtained for an extension of the Monte
Carlo discussed in Section 4. Here we treat the case where the user knows
that the spatial structure appears only in the error terms of the equation.
The DGP simulated corresponds to expressions (16), null hypothesis, and
(17), alternative hypothesis. This (partial) knowledge of the DGP allows the
user to (i) estimate the equation of the mean using a consistent estimator (LS
in our Monte Carlo), (ii) obtain the corresponding residuals and (iii) solve
the test for breaks using the covariance matrix of the residuals from step
(ii). We expect that this additional knowledge in the experiment improves
the behaviour of the tests. Main results, for the TN test of Bai et al (2009),
the tTn test of Schott (2007) and the T2 test of Srivastava (2007) appear in
Tables A1 and A2 below, for the case of a known breakpoint, and in Figure
A1, for the case of an unknown instantaneous breakpoint (results for the case
of a gradual change in the weight matrix are much in line with those shown
below; details are available from the authors upon request).
This partial knowledge is highly bene�cial for the three tests, both in

power and in size. The TN test appears to be, still, slightly oversized espe-
cially for high values of ci, the concentration index. The T2 of Srivastava
continues to be undersized although the intensity of the spatial dependency
tends to correct this de�cit. The size of the tTn test of Schott is right for
all the cases in the experiment. The impact on the estimated power of the
three tests is clear. Overall, data on power have increased around 30%-40%
in relation to the situation described in Tables 4a-4d. The power of the tests
improves with the sample size (in the cross-section and/or in the time di-
mension), with the strength of the spatial dependence and with the distance
between the matrices in the break. Figure A1 con�rms this amelioration for
the case of an unkown instantaneous break. The U-shaped pattern is still
present in the estimated power function of the TN test for low values of the
spatial dependence coe¢ cient. The behaviour of the other two tests is more
e¢ cient now in the sense that the peak of the sequence of values is better
de�ned in the proximity of the (unknown) breakpoint.
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Table A1: Estimated size (significance level=0.05). Known breakpoint. SEM in the errors of a linear 

model. High signal-to-noise ratio. Matrix in the DGP: WR.
=0.3

T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.09 - - 0.06 0.11 - 0.05 0.12 - 

tTn 0.04 0.04 0.05 0.04 0.04 0.06 0.05 0.05 0.04 0.06 0.06 0.07 

T2 0.02 0.02 0.03 0.01 0.01 0.01 0.03 0.01 0.01 0.02 0.01 0.02 

=0.7
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.14 - - 0.16 0.15 - 0.10 0.06 - 

tTn 0.04 0.04 0.05 0.05 0.06 0.05 0.05 0.03 0.05- 0.06 0.06 0.05 

T2 0.04 0.03 0.03 0.04 0.04 0.04 0.06 0.05 0.05 0.07 0.05 0.05 

*: For the TN tests the percentages shown in this panel correspond to n=64. 

 

 
Table A2: Estimated power (significance level=0.05). Known breakpoint. SEM in the error of a 

linear model. High signal-to-noise ratio.
=0.3 Matrices in the DGP: WR vs WD

T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.46 - - 0.51 0.72 - 0.64 0.88 - 

tTn 0.32 0.39 0.43 0.41 0.64 0.72 0.55 0.80 0.89 0.73 0.82 0.93 

T2 0.28 0.29 0.44 0.45 0.49 0.76 0.58 0.67 0.80 0.63 0.75 0.86 

=0.7 Matrices in the DGP: WR vs WD
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.78 - - 0.83 0.82 - 0.91 0.89 - 

tTn 0.38 0.45 0.64 0.47 0.74 0.85 0.69 0.87 0.95 0.87 1.00 1.00 

T2 0.40 0.46 0.53 0.52 0.68 0.78 0.66 0.78 0.89 0.79 1.00 1.00 

=0.3 Matrices in the DGP: WR vs WQ
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.28 - - 0.41 0.52 - 0.54 0.58 - 

tTn 0.19 0.26 0.38 0.32 0.47 0.61 0.41 0.60 0.66 0.63 0.82 0.93 

T2 0.17 0.22 0.42 0.35 0.39 0.63 0.45 0.57 0.70 0.58 0.65 0.79 

=0.7 Matrices in the DGP: WR vs WQ
T 30 60 150 250 

n 16 144 225 16 144 225 16 144* 225 16 144* 225 

TN - - - 0.42 - - 0.53 0.59 - 0.82 0.71 - 

tTn 0.31 0.35 0.51 0.37 0.61 0.75 0.51 0.66 0.78 0.73 0.81 1.00 

T2 0.37 0.42 0.55 0.42 0.51 0.68 0.56 0.69 0.80 0.75 0.98 1.00 

*: For the TN tests the percentages shown in this panel correspond to n=64. 

 



 

 

 

Figure A1: Unknown, instantaneous breakpoint. High signal-to-noise ratio. SEM in the errors of a linear model. 
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APPENDIX B: Additional results for the case of Spanish Regional Unemployment. 

 

Table B1: Detailed results for the ARDL(4,2,2) short-run estimates 

 

ANDA ARAG ASTU BALE CANA CANT CLEO CMAN CATA 
Estima. pvalue Estima. pvalue Estima. pvalue Estima. pvalue Estima. pvalue Estima. pvalue Estima. pvalue Estima. pvalue Estima. pvalue 

 -0.054 0.001 -0.095 0.002 -0.197 0.000 -0.142 0.001 -0.087 0.001 -0.096 0.002 -0.091 0.000 -0.114 0.000 -0.056 0.005 

 1.184 0.002 1.597 0.004 3.238 0.000 2.299 0.002 1.573 0.002 1.413 0.006 1.707 0.000 1.987 0.000 1.228 0.009 

 -0.305 0.001 -0.564 0.003 -1.256 0.000 -0.742 0.001 -0.443 0.001 -0.567 0.002 -0.550 0.000 -0.599 0.000 -0.348 0.006 

 0.316 0.023 0.316 0.060 0.097 0.323 -0.008 0.399 0.143 0.249 0.026 0.394 0.336 0.020 0.420 0.002 0.426 0.001 

 -0.404 0.116 -0.729 0.019 -0.175 0.331 -0.425 0.171 -0.246 0.271 -0.352 0.206 -0.749 0.006 -0.764 0.004 -0.478 0.054 

 0.477 0.051 0.756 0.003 -0.020 0.398 0.679 0.011 0.219 0.264 0.469 0.071 0.798 0.001 0.597 0.009 0.345 0.118 

 -0.173 0.040 -0.225 0.006 0.051 0.321 -0.225 0.005 -0.042 0.347 -0.164 0.048 -0.247 0.002 -0.144 0.052 -0.114 0.128 

 -1.418 0.018 -2.906 0.007 -1.334 0.163 -4.870 0.000 -2.165 0.008 -2.066 0.048 -1.061 0.139 -1.372 0.013 -2.864 0.001 

 -0.448 0.247 0.718 0.249 1.020 0.099 1.846 0.075 -0.073 0.396 0.445 0.333 -0.144 0.379 -0.462 0.171 0.242 0.367 

 0.136 0.109 -0.245 0.069 -0.748 0.000 0.121 0.365 -0.104 0.292 -0.151 0.165 -0.090 0.197 -0.081 0.350 -0.026 0.380 

 -0.075 0.115 0.026 0.374 0.174 0.113 -0.207 0.154 -0.017 0.389 -0.012 0.393 -0.055 0.194 0.017 0.390 -0.127 0.017 

 

 

CVAL EXTR GALI MADR MURC NAVA PAVA RIOJ 

 

Estima. pvalue Estima. pvalue Estima. pvalue Estima. pvalue Estima. pvalue Estima. pvalue Estima. pvalue Estima. pvalue 

 -0.105 0.000 -0.160 0.000 -0.084 0.000 -0.089 0.001 -0.083 0.001 -0.021 0.337 -0.040 0.012 -0.233 0.000 

 2.132 0.001 2.607 0.000 1.588 0.001 1.873 0.002 1.391 0.002 0.318 0.333 0.765 0.016 3.015 0.000 

 -0.572 0.000 -0.891 0.000 -0.479 0.000 -0.543 0.002 -0.433 0.001 -0.100 0.364 -0.286 0.010 -1.336 0.000 

 0.193 0.137 -0.088 0.348 0.217 0.133 0.075 0.359 0.104 0.306 -0.275 0.180 0.167 0.154 -0.096 0.350 

 -0.454 0.094 0.121 0.370 -0.535 0.071 -0.260 0.271 -0.077 0.383 -0.067 0.392 0.168 0.303 0.068 0.390 

 0.328 0.152 -0.047 0.392 0.554 0.029 0.220 0.273 0.109 0.356 0.213 0.303 -0.393 0.068 -0.066 0.387 

 -0.054 0.312 0.012 0.394 -0.160 0.053 -0.064 0.290 -0.055 0.299 -0.114 0.167 0.184 0.014 0.008 0.397 

 -3.167 0.000 1.181 0.141 -0.839 0.141 -3.117 0.009 -2.581 0.000 -2.303 0.010 -2.967 0.000 -5.633 0.000 

 0.744 0.148 -0.531 0.254 0.563 0.133 0.709 0.278 -0.885 0.165 -0.183 0.387 -0.861 0.185 3.309 0.004 

 -0.064 0.303 -0.378 0.005 -0.261 0.003 -0.017 0.398 0.211 0.042 -0.269 0.150 0.022 0.365 -0.798 0.000 

 -0.051 0.242 0.061 0.287 0.011 0.391 -0.129 0.237 -0.162 0.009 -0.035 0.378 -0.074 0.033 0.193 0.091 
NOTE: ANDA: Andalucia; ARA: Aragon; ASTU: Asturias; BALE: Balearic Islands; CANA: Canary Islands; CANT: Cantabria; CLEO: Castille-Leon; CMAN: 
Castille-La Mancha; CATA: Catalonia; CVAL: Valencian Community; EXTR: Extremadura; GALI: Galicia; MADR: Community of Madrid; NAVA: Navarre; 
PAVA: Basque Country; RIOJ: La Rioja 

 



 

Table B2 . Estimated weighting matrix for the Spanish UNEMPLOYMENT case, under the NULL hypothesis (no structural break) 

 AND ARA AST BAL CAN CAB CLE CMA CAT CVA EXT GAL MAD MUR NAV PAV RIO |SUM| “+” “-“ 

AND 0.00 - -0.07 0.10 - 0.09 0.09 0.08 0.07 0.10 0.08 - - 0.07 -0.06 - - 0.75 0.57 -0.18 

ARA  0.00 0.12 -0.06 0.07 0.07 0.09 0.15 - 0.04 -0.05 - 0.04 - - - 0.06 0.85 0.61 -0.24 

AST   0.00 - 0.02 0.10 0.13 0.07 -0.09 0.11 0.15 0.09 - -0.07 - 0.05 0.06 1.18 0.70 -0.47 

BAL    0.00 -0.08 -0.10 - - 0.06 - 0.07 0.10 0.08 - 0.08 - - 0.83 0.25 -0.58 

CAN     0.00 - 0.09 - 0.08 0.08 - -0.11 0.09 0.09 0.07 - 0.04 0.89 0.49 -0.40 

CAB      0.00 0.07 0.11 0.08 -0.05 - 0.09 0.08 -0.07 - 0.08 - 1.06 0.63 -0.43 

CLE       0.00 0.09 0.12 0.09 0.08 0.04 0.06 0.10 0.07 - - 1.16 1.12 -0.03 

CMA        0.00 - 0.14 0.07 - - - 0.08 - - 0.89 0.79 -0.11 

CAT         0.00 0.04 0.04 0.19 -0.05 0.04 -0.04 0.11 - 0.86 0.65 -0.21 

CVA          0.00 -0.06 0.05 0.06 0.06 - 0.06 - 0.97 0.69 -0.28 

EXT           0.00 0.05 0.13 0.04 - 0.04 0.05 0.95 0.68 -0.28 

GAL            0.00 - 0.08 0.09 - 0.06 1.08 0.75 -0.33 

MAD             0.00 0.06 - - 0.09 0.84 0.64 -0.20 

MUR              0.00 - - - 0.63 0.45 -0.18 

NAV               0.00 0.06 0.09 0.74 0.41 -0.33 

PAV                0.00 - 0.62 0.53 -0.08 

RIO                  0.00 0.64 0.53 -0.11 

 Number of Contacts different from zero (1% significance level) 178  

 Percentage of non zero cells 65.44%  
NOTE: The weighting matrix has been estimated using the procedure described in Bhattacharjee and Jensen-Butler (2013), that assumes symmetry. The ARDL(4,2,2) of Table 8 and 9 have 
has been bootstrapped under the null of stability of the weighting matrix in order to estimate the standard deviation of the estimated weights of the weighting matrix. 
Weights not significant at a 1% significance level are denoted with a dash,-, in the table above. 
|SUM|: denotes the sum of the absolute weights in corresponding row; “+” (“-“): denotes de sum of the positive (negative) weights in the corresponding row.  

 



 

 

Table B3. Estimated weighting matrix for the Spanish UNEMPLOYMENT case, under the ALTERNATIVE hypothesis (structural break in 2000:3) PERIOD 1980:1-2000:2 

 AND ARA AST BAL CAN CAB CLE CMA CAT CVA EXT GAL MAD MUR NAV PAV RIO |SUM| “+” “-“ 

AND 0.00 - - 0.15 - 0.11 0.15 0.05 - - 0.06 -0.08 - 0.10 -0.12 - - 1.08 0.68 0.40 

ARA  0.00 0.10 -0.11 - 0.09 0.11 0.18 - - -0.09 - - - 0.11 - 0.07 1.01 0.59 0.42 

AST   0.00 - - - 0.14 0.07 - 0.07 0.15 - 0.17 - - 0.12 - 1.05 0.86 0.18 

BAL    0.00 -0.11 - - - - - - 0.13 - - 0.11 - 0.04 1.04 0.27 0.77 

CAN     0.00 - 0.11 - - 0.09 - - 0.09 0.08 0.06 0.08 - 0.88 0.57 0.31 

CAB      0.00 - - - - 0.08 0.10 0.10 -0.13 -0.09 0.09 0.08 1.14 0.58 0.57 

CLE       0.00 - - 0.06 - - - 0.08 0.08 - 0.08 1.09 1.05 0.04 

CMA        0.00 - 0.19 0.13 - - - - - - 0.89 0.70 0.19 

CAT         0.00 0.07 - 0.09 - - - 0.11 - 0.65 0.51 0.14 

CVA          0.00 - 0.08 - 0.12 - - - 0.96 0.77 0.19 

EXT           0.00 - 0.15 - - - 0.12 1.00 0.64 0.36 

GAL            0.00 - 0.08 0.10 - 0.07 0.93 0.61 0.32 

MAD             0.00 0.06 - - - 0.93 0.79 0.13 

MUR              0.00 - - - 0.77 0.38 0.39 

NAV               0.00 0.09 - 0.86 0.36 0.50 

PAV                0.00 - 0.82 0.61 0.21 

RIO                 0.00 0.70 0.52 0.18 

 Number of Contacts different from zero (1% significance level) 114  

 Percentage of non zero cells 41.91%  
NOTE: The weighting matrix has been estimated using the procedure described in Bhattacharjee and Jensen-Butler (2013), that assumes symmetry. The ARDL(4,2,2) of Table 8 and 9 have 
has been bootstrapped under the null of stability of the weighting matrix in order to estimate the standard deviation of the estimated weights of the weighting matrix. 
Weights not significant at a 1% significance level are denoted with a dash,-, in the table above. 
|SUM|: denotes the sum of the absolute weights in corresponding row; “+” (“-“): denotes de sum of the positive (negative) weights in the corresponding row.  

 



 

 

Table B4. Estimated weighting matrix for the Spanish UNEMPLOYMENT case, under the ALTERNATIVE hypothesis (structural break in 2000:3) PERIOD 2000:3-2013:4 

 AND ARA AST BAL CAN CAB CLE CMA CAT CVA EXT GAL MAD MUR NAV PAV RIO |SUM| “+” “-“ 

AND 0.00 - -0.16 - -0.04 0.06 - 0.10 - 0.22 0.08 0.09 -0.11 0.07 - - - 0.80 0.44 0.37 

ARA  0.00 0.15 - 0.12 0.11 - 0.17 - 0.06 - - - - -0.09 - 0.07 0.92 0.72 0.19 

AST   0.00 - 0.04 0.16 0.15 0.06 -0.20 0.17 0.20 0.19 -0.13 -0.16 - - 0.15 2.01 0.57 1.44 

BAL    0.00 -0.04 -0.10 - - -0.01 - 0.16 0.08 - - - - 0.07 0.70 0.28 0.43 

CAN     0.00 - 0.05 - 0.17 0.05 -0.05 -0.17 0.09 0.10 0.15 - - 1.18 0.40 0.78 

CAB      0.00 0.09 0.09 0.15 -0.10 -0.11 0.05 0.09 - 0.12 0.09 -0.05 1.41 0.64 0.77 

CLE       0.00 0.15 0.19 0.15 0.10 - 0.09 0.12 0.08 - -0.11 1.35 1.14 0.22 

CMA        0.00 - 0.06 - - - - 0.16 -0.05 - 1.07 0.80 0.27 

CAT         0.00 0.08 0.15 0.28 -0.13 0.07 -0.13 0.09 - 1.37 0.82 0.55 

CVA          0.00 -0.12 - 0.13 - -0.07 0.04 - 1.35 0.73 0.62 

EXT           0.00 0.08 0.13 0.09 - - -0.05 1.43 0.73 0.70 

GAL            0.00 - 0.08 - 0.10 0.06 1.30 0.93 0.37 

MAD             0.00 0.06 - - 0.13 1.01 0.51 0.50 

MUR              0.00 - - 0.10 0.67 0.50 0.17 

NAV               0.00 0.05 0.21 1.32 0.65 0.67 

PAV                0.00 - 0.57 0.41 0.16 

RIO                 0.00 1.11 0.59 0.52 

 Number of Contacts different from zero (1% significance level) 88  

 Percentage of non zero cells 61.76%  
NOTE: The weighting matrix has been estimated using the procedure described in Bhattacharjee and Jensen-Butler (2013), that assumes symmetry. The ARDL(4,2,2) of Table 8 and 9 have 
has been bootstrapped under the null of stability of the weighting matrix in order to estimate the standard deviation of the estimated weights of the weighting matrix. 
Weights not significant at a 1% significance level are denoted with a dash,-, in the table above. 
|SUM|: denotes the sum of the absolute weights in corresponding row; “+” (“-“): denotes de sum of the positive (negative) weights in the corresponding row.  
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