000079702 001__ 79702 000079702 005__ 20250128150424.0 000079702 0247_ $$2doi$$a10.1016/j.cam.2018.08.003 000079702 0248_ $$2sideral$$a108579 000079702 037__ $$aART-2019-108579 000079702 041__ $$aeng 000079702 100__ $$0(orcid)0000-0003-4847-0493$$aNavascués, M.A.$$uUniversidad de Zaragoza 000079702 245__ $$aGeneralized trigonometric interpolation 000079702 260__ $$c2019 000079702 5060_ $$aAccess copy available to the general public$$fUnrestricted 000079702 5203_ $$aThis article proposes a generalization of the Fourier interpolation formula, where a wider range of the basic trigonometric functions is considered. The extension of the procedure is done in two ways: adding an exponent to the maps involved, and considering a family of fractal functions that contains the standard case. The studied interpolation converges for every continuous function, for a large range of the nodal mappings chosen. The error of interpolation is bounded in two ways: one theorem studies the convergence for Hölder continuous functions and other develops the case of merely continuous maps. The stability of the approximation procedure is proved as well. 000079702 536__ $$9info:eu-repo/grantAgreement/ES/UZ/CUD2015-05$$9info:eu-repo/grantAgreement/ES/UZ/CUD2017-03 000079702 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000079702 590__ $$a2.037$$b2019 000079702 591__ $$aMATHEMATICS, APPLIED$$b43 / 260 = 0.165$$c2019$$dQ1$$eT1 000079702 592__ $$a0.87$$b2019 000079702 593__ $$aComputational Mathematics$$c2019$$dQ2 000079702 593__ $$aApplied Mathematics$$c2019$$dQ2 000079702 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000079702 700__ $$aJha, S. 000079702 700__ $$aChand, A.K.B. 000079702 700__ $$0(orcid)0000-0002-0477-835X$$aSebastián, M.V. 000079702 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada 000079702 773__ $$g354 (2019), 152-162$$pJ. comput. appl. math.$$tJournal of Computational and Applied Mathematics$$x0377-0427 000079702 8564_ $$s358521$$uhttps://zaguan.unizar.es/record/79702/files/texto_completo.pdf$$yPostprint 000079702 8564_ $$s1185132$$uhttps://zaguan.unizar.es/record/79702/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000079702 909CO $$ooai:zaguan.unizar.es:79702$$particulos$$pdriver 000079702 951__ $$a2025-01-28-15:02:21 000079702 980__ $$aARTICLE