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Abstract

Intensive condition monitoring of wind generation plant through analysis of rou-

tinely collected SCADA data is seen as a viable means of forestalling costly plant

failure and optimising maintenance through identification of failure at the earli-

est possible stage. The challenge to operators is in identifying the signatures of

failure within data streams and disambiguating these from other operational fac-

tors. The well understood power curve representation of turbine performance

offers an intuitive and quantitative means of identifying abnormal operation,

but only if noise and artefacts of operating regime change can be excluded. In

this paper, a methodology for wind turbine performance monitoring based on

the use of high-frequency SCADA data is employed featuring state-of-the-art

multivariate non-parametric methods for power curve modelling. The model

selection considerations for these are examined together with their sensitivity

to several factors, including site specific conditions, seasonality effects, input

relevance and data sampling rate. The results, based on operational data from

four wind farms, are discussed in a practical context with the use of high fre-

quency data demonstrated to be beneficial for performance monitoring purposes

whereas further attention is required in the area of expressing model uncertainty.
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List of abbreviations

ANN Artificial Neural Network

CM Condition Monitoring

k-NN k -Nearest Neighbours

MAE Mean Absolute Error5

MOB Method of bins

O&M Operation and Maintenance

OOB out-of-bag

PC Power Curve

RF Random Forest10

RMSE Root Mean Square Error

SCADA Supervisory Control And Data Acquisition

SVR Support Vector Regression

WF Wind Farm

WT Wind Turbine15

1. Introduction

Wind energy is expected to become the largest source of renewable electricity

by 2020 [1]. However, the sector faces challenges relating to the Operation and

Maintenance (O&M) of existing installations. The lack of certainty on revenue

stability has put pressure on reducing O&M costs, that can actually reach up to20
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30% in offshore environments [2]. There is therefore an ever-increasing interest

in optimising the O&M strategies in both the industry and the academia.

Condition Monitoring (CM) systems are increasingly installed with the goal

of providing Wind Turbine (WT) component specific information to Wind Farm

(WF) operators to be used for optimal maintenance planning. Their economic25

benefit to O&M costs has been investigated in [3, 4], and proven to be sub-

stantial although it largely depends on the fault detection rate [5]. While many

commercial solutions, techniques and methods are available [6, 7], their related

cost and complexity deter operators from a widespread deployment [8]. The use

of data from the Supervisory Control And Data Acquisition (SCADA) system30

appears therefore as a potential solution for WT CM due to its availability at

no additional cost.

The SCADA system usually samples data at relatively high frequency (typ-

ically 1 Hz) with standard practice to store 10-minute averaged values of the

parameters characterising the operating and environmental conditions. The35

number of channels available varies considerably between manufacturers and

SCADA services providers, although the minimum set typically includes wind

speed and direction, active and reactive power, rotational speed, pitch and yaw

angles and ambient temperature. SCADA-based monitoring may focus on in-

dividual WT components or on the whole turbine or farm. The latter may be40

approached through monitoring WT performance, as it is the dominant char-

acteristic of WT operation. In general, performance monitoring is synonymous

with WT Power Curve (PC) monitoring. Similar to normal behaviour models

[9], operational data are used to develop a reference PC during normal operating

conditions, together with related confidence intervals that allow the discrimina-45

tion between normal and abnormal operation over time [10].

The analysis, modelling and monitoring of the PC has received considerable

research interest over the last decade. Due to its great variability depending

on site conditions [11], it is essential to accurately predict WT power output

for numerous applications, such as WF energy yield prediction, wind power50

forecasting or monitoring and troubleshooting, as stressed in [12]. All require a
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deep understanding of WT performance under real operating conditions.

The most widespread method for modelling a WT PC is the Method of bins

(MOB) [13]. Although conceived for power performance testing, its use has been

extended and it is the current industry practice for performance monitoring and55

PC analysis. Nevertheless, this method relies on a linear averaging procedure

leading to problems in the case of turbulent wind conditions [14]. Much effort

has therefore been dedicated to develop alternative methods for WT PC mod-

elling, mainly data-driven techniques. A comprehensive review can be found in

[12]. In general, PC models can be classified into parametric or non-parametric60

techniques. While parametric methods fit a functional form to the data by fit-

ting one or more parameters, non-parametric models infer a functional form and

do not need to make any prior assumption about the data. Some examples of

parametric techniques are logistic expressions [10, 15], polynomial regressions

[16, 17], the Linear Hinge Model [18], or a modified hyperbolic tangent [19].65

An interesting parametric method is the dynamical power curve, based on the

application of the Langevin equation [14], that allows to take into account the

effect of turbulent conditions. Non-parametric techniques have been signifi-

cantly more investigated. The most important examples found in the literature

are the k -Nearest Neighbours (k -NN) algorithm [10, 20, 21], Artificial Neural70

Network (ANN) [20, 22, 23] and the Random Forest (RF) algorithm [24, 25, 26].

Kernel methods were also explored in [27, 28, 29]. In general, non-parametric

models seem to provide higher PC modelling accuracy due to their flexibility

and capability to capture features inherent in the data. Recent multivariate

approaches [26], including model inputs other than the wind speed, show sig-75

nificant accuracy improvements over univariate modelling. Nevertheless, the

majority of these methods are purely deterministic, leading to a difficult assess-

ment of their related uncertainty and therefore their related confidence intervals

for normal performance characterisation. The current state-of-the-art consists

on the use of statistical control charts [10, 30], that are usually built based upon80

the modelling error metrics. Other methods applied recently, like the Gaussian

Process [24, 31, 32], can provide a joint prediction of the WT power output
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and its related uncertainty. Finally, copula modelling has also been explored for

probabilistic monitoring of WT performance [33, 34].

With regards to the data used for PC modelling, most contributions rely85

on 10-minute averaged SCADA data. This low temporal resolution, together

with the averaging effect, negatively affects the detection capabilities of some

SCADA-based monitoring approaches [7]. This is of special importance for

WT performance monitoring due to the rapid wind speed and power output

fluctuations. Indeed, the dynamic behaviour of WT performance is not yet re-90

flected in PC modelling techniques [35] and, as a result, intermittent or transient

anomalies cannot be detected. Using high-frequency SCADA data instead of

averaged signals should allow dynamic turbine behaviour to be identified with

higher fidelity and thus improve detection capabilities [20, 36, 37]. Although

some attempts have been made to investigate WT performance monitoring us-95

ing SCADA data of high resolution [14, 37, 38], the subject is still at an early

stage. This paper investigates in detail the potential of such high-frequency

data for WT PC modelling and monitoring. The research presented here ex-

amines state-of-the-art multivariate non-parametric models and their sensitivity

to a range of factors, including SCADA data time resolution, for effective WT100

performance monitoring.

This paper is organised as follows. Section 2 details the suggested approach

for WT performance monitoring, with four alternatives for PC modelling, and

describes the factors to be considered in the sensitivity analysis. In Section 3,

the proposed methodology is applied to four different sites and detailed results105

of the sensitivity study are presented. Section 4 discusses the obtained results

in the context of the usefulness of the developed approach for effective WT

performance monitoring. Section 5 concludes the paper by highlighting the

research contribution, the limitations of the presented work and discusses future

research needs.110
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2. Methodology

The methodology for WT performance monitoring is presented in Figure 1,

and can be summarised in four different phases. Both operational data and

alarm logs are first gathered from the SCADA system and the latter are trans-

lated into component-related information during a pre-processing phase (1).115

Operational data and the translated logs are then integrated and synchronised

in time, to facilitate the data filtering process (2). Once the operational data

have been filtered to only include normal performance representation, they are

used to build a normal performance model consisting of the PC model and its

related uncertainty (3). Finally, the difference between modelled and actual WT120

power production, the power residual, can be monitored over time (4), together

with related thresholds characterising normal performance, so as to detect ab-

normal behaviour. These different phases of the methodology are described in

greater detail below.

2.1. Alarms pre-processing125

Both operational data and alarm logs from the SCADA system are utilised

in the developed framework. The alarm logs usually list fault events, warnings

or other relevant information. Based on a previous work published by the au-

thors [39], a modernised WT taxonomy and original technical documentation

provided by the manufacturers are used to classify the alarm logs as component-130

related information. This step transforms this vast volume of data into valuable

information relevant to WT condition during the periods when the alarms were

recorded.

2.2. Data filtering

Historical operational SCADA data used to build the normal performance135

modelling is filtered to ensure the representation of WTs operating under fault-

less conditions.
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Component-related
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data
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SCADA
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4) Monitoring & Detection
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Figure 1: General framework for WT performance monitoring.

Alarm-logs-based filtering. The previously categorised alarms are integrated and

synchronised in time with the operational data. In this way the operational

SCADA data can be flagged for periods when the WT was experiencing an140

issue, and thus discarded from the training data to be used in the modelling

phase. An example using high-frequency SCADA data is illustrated in Figure

2. All figures presented here are normalised for confidentiality reasons.
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(a) (b)

Figure 2: Example of WT normal (a) and abnormal performance (b) as indicated by the

component-related SCADA alarm logs.

Multivariate filtering. Some problems might not be covered and therefore recorded

by the SCADA system, as can be seen in Figure 2(a). As a result, there is a145

need for further abnormal performance filtering. Since the presented work relies

only on the use of SCADA data, scatter PCs are built using power output and

nacelle wind speed measurements. It is widely known that nacelle wind speed

measurements are susceptible to high uncertainties since they are exposed to

numerous sources of disturbance [40]. As a result, underperformance cannot be150

filtered by only considering nacelle wind speed data. To ensure a more robust

filtering process, pitch angle and rotor speed measurements are also used. As

one can see in Figure 3, the different operating regimes can be clearly iden-

tified and so can WT normal operation. A similar approach was followed in

[11], showing that incorporating the pitch angle allows flagging of data that155

could lie reasonably within the expected PC. An example of final data filtering

is shown in Figure 4. It is important to mention that this filtering approach

is only suitable for pitch-regulated machines, and prior knowledge about the

control characteristics, such as the ranges of rotational speed, is key to ensuring

a robust data filtering process.160

2.3. Normal performance modelling

Recent research has highlighted the accuracy of multivariate non-parametric

methods for PC modelling [26]. In line with this, three different multivariate
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(a) (b)

Figure 3: Example of scatter PC performance varying depending on blade pitch angle (a) and

rotor speed (b).

non-parametric models, as well as the current industry practice, are applied here

for modelling a reference performance or PC. Although important research has165

been conducted on the use of the ANN, this approach was discarded here due to

its often observed overfitting problems. In this multivariate approach, nacelle

wind speed, ambient temperature, pitch angle and rotor speed, were selected

as input variables to predict the WT power production. All the methods are

described below.170

Method of bins (MOB). The MOB is the current industry practice for WT

performance testing [13, 41]. It relies on the reduction of the data into mean

values for individual wind speed intervals. For each of these, wind speed and

power output data are reduced to the calculated mean, creating a univariate

model that can be used for predicting the power output given a new wind speed175

observation. In this paper, data normalisation to take into account changes in

air density is applied as detailed in [13].

k-Nearest Neighbours (kNN). The k -NN approach predicts a new sample using

the k closest samples from the training dataset [42]. The selected metric for

the distance between samples is here the Euclidean distance. The value of k180

is selected here according to the minimum Root Mean Square Error (RMSE)

obtained from a 10-fold cross validation with the training dataset. Further

details are provided in section 3.
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Random Forests (RF). RF are considered as an ensemble method since they

operate by randomly constructing multiple regression trees, avoiding the over-185

fitting problems often related to the use of a single regression tree [43]. In each

single regression tree, the training output values are split according to conditions

of the input values. New predictions are made by averaging the individual pre-

dicted values from the multiple regression trees, according to conditional inputs.

RF are typically tuned by selecting the number of randomly selected predictors.190

Notwithstanding the low number of predictors used here, the training dataset

is used to tune the model following a 10-fold cross validation.

Support Vector Regression (SVR). SVR is the only kernel method considered

here. Kernels can be understood as similarity functions [42] and in this case, a

Radial Basis kernel was selected, suitable when no prior knowledge of the data195

is available. Similarly, the Radial Basis kernel parameters are selected here

based on the minimum RMSE identified from a 10-fold cross validation with

the training dataset.

2.3.1. Sensitivity study

The key contribution of this paper lies in the use of high-frequency measure-200

ments gathered from the SCADA system, rather than 10-minute averaged data.

To investigate the potential of such high-frequency data, a sensitivity study is

undertaken to investigate the PC modelling accuracy of the selected methods

for different data time resolutions. Furthermore, as stressed in [27] having a

better understanding of the seasonality and location effects may contribute to205

more effective WT performance monitoring. To this end, the effect of seasonal-

ity and wind farm terrain complexity are also included as factors affecting PC

modelling and WT monitoring capabilities. Finally, since the proposed machine

learning algorithms for PC modelling are multivariate, the importance of input

parameters is also assessed.210
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2.3.2. Uncertainty assessment

Since WT performance depends to a significant extent on environmental con-

ditions, normal performance thresholds are usually defined to take account for

this variability and therefore to ensure effective abnormal behaviour detection.

To do so, the uncertainty related to the power predicted from the normal per-215

formance model needs to be properly addressed. In this study, two approaches

are considered for assessing the uncertainty related to PC modelling.

Training error distribution metrics. As no functional form has been fitted to the

data when using non-parametric models, the assessment of their related uncer-

tainty is not straightforward. State-of-the-art methods rely on the assumption

of a normal distribution of the modelling error [10, 30]. As a result, statistical

control charts can be created based on the statistical metrics of the training

error distribution, i.e. the mean modelling residual (µtrain), the standard devi-

ation (σtrain) and the number of observations (Ntrain). The lower control limit

(LCL) and the upper control limit (UCL) can be defined as follows, where η

can be selected in order to adjust the proportion of the training residuals that

are retained within the normal performance thresholds:

LCL = µtrain − η
σtrain√
Ntrain

(1)

UCL = µtrain + η
σtrain√
Ntrain

(2)

Bootstrapping. The state-of-the-art approach based on the definition of control

charts uses statistical metrics from a sample dataset, that is the modelling

training error. Since non-parametric regression algorithms are applied here for220

PC modelling, Monte Carlo technique cannot be used to produce confidence

intervals for the regression errors. The bootstrapping technique is a derivation of

Monte Carlo, suitable for estimates that cannot be expressed in an equation [44].

To the best of the author’s knowledge, this technique has not been employed

for producing the mentioned normal performance control charts, apart from few225

examples [24]. The produced control limits can be defined with Equation 1 and
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Equation 2 as well, where µ and σ are obtained by bootstrapping instead of

derived from sample statistics.

2.4. WT performance monitoring

As illustrated in Figure 1, the last phase consists in the identification of230

abnormal WT performance. The difference between the actual and the modelled

power production, so-called the power residual, is monitored and compared

to the normal performance thresholds. If the power residual is found to be

beyond these thresholds abnormal performance is detected, covering both over

and underperformance situations.235

3. Results

3.1. Data description

High-frequency SCADA data from four operating WFs were used to eval-

uate the PC modelling accuracy of the described methods. Their sensitivity

to site conditions, seasonality effects, input parameter variation and data time240

resolution was also assessed, and discussed in the context of WT performance

monitoring.

Only one full year of data was available for the selected sites. As extracted

from the failure documented information provided by the WF operator, only

healthy WTs were retained for this study. All the WTs included in this anal-245

ysis are of the same model, 3-bladed turbines, gear-drive, pitch-regulated and

equipped with doubly fed induction generators (DFIG).

For the sake of simplicity, the results presented in this section are illustrated

through the results for a representative WT in each WF, although these were

consistent and of the same order of magnitude for all the WTs within each WF.250

3.1.1. Wind farm terrain complexity assessment

Detailed information about the different wind farms is presented in Table

1. The effect of site conditions was addressed through the concept of terrain
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complexity. Wind flow is normally distorted due to site conditions, such as to-

pographical variations, other turbines or obstacles [41]. Since a more disturbed255

flow may increase the loads exerted upon the WT as well as the uncertainty in

measurements and the variability of WT performance, the different WFs were

classified according to the averaged terrain complexity class obtained initially

per WT location. The digital height data used for this purpose was derived from

the Shuttle Radar Topographic Mission (SRTM) [45], and terrain complexity260

was assessed following the classification defined in [41]. As one can see in Table

1, the selected sites are representative of a large range of terrain complexities

from very simple to very complex.

Table 1: Wind farm information and averaged terrain complexity class.

WF WTs RIX class Slope class Overall class Terrain Complexity

1 25 1.00 2.00 3.00 Simple

2 10 1.40 2.00 3.50 Rather complex

3 30 2.57 2.00 4.30 Complex

4 36 3.94 2.00 5.00 Very Complex

3.1.2. High resolution SCADA data

Data of wind speed, ambient temperature, power production, pitch angle265

and rotor speed were utilised at 0.25Hz (4 second resolution) for this study.

Nacelle wind speed, ambient temperature, pitch angle and rotor speed were

selected here as model inputs.

Missing data can limit the usefulness of operational SCADA data, particu-

larly when using models with multiple input variables; in order to overcome this270

problem, re-sampling was applied to incomplete records to fill in the most plau-

sible values of absent variables. A linear approach to re-sampling was applied to

obtain pitch angle and rotor speed data, whereas a cubic spline re-sampling was

applied to obtain ambient temperature, only available at the typical 10-minute

resolution though.275
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3.2. Data filtering

Since only one full year of measurements was available, the first month (Jan-

uary) was selected for model training purposes. After the pre-processing of the

alarm logs registered by the SCADA system for the selected WTs, this one

month of high-frequency data and 10-minute operational data were filtered ac-280

cording to the process described in Section 2.2. Statistics resulting from this

process are presented in Table 2. A slightly higher percentage of final observa-

tions was retained when using high-frequency data, apart from the case of the

very complex site, where the difference is much more significant. The difference

of the filtering results between the high-frequency and 10-minute data is also285

illustrated in Figure 4.

Table 2: Data filtering statistics for high-frequency and 10-minute data at each wind farm.

Data

resolution
WF Raw obs.

Alarms

flagged [%]

Underperf.

flagged [%]

Final

obs. [%]

4-second 1 180818 0.0741 0.2063 99.7196

2 91328 0.3153 0.5168 99.1678

3 182428 0.9829 0.472 98.5452

4 74250 6.0943 15.4855 78.4202

10-minute 1 4240 0.0708 1.0142 98.9151

2 4356 0.2984 0.5969 99.1047

3 4348 0.851 3.1509 95.9982

4 3549 4.5647 29.304 66.1313

3.3. Model Performance

The January subset of the data was split into training (80%) and testing

(20%) sets. The training (or in-sample) dataset was first used to tune the three

regression models following a typical 10-fold cross validation approach, in order

to avoid overfitting. This translates into a random division of the training set

into 10 groups or folds of approximately equal size, where each one at a time
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(a) (b)

Figure 4: Example of scatter PC filtering when using high-frequency (a) and 10-minute

SCADA data (b).

was treated as the validation set. The testing (or out-of-sample) dataset was

used to evaluate modelling performance based on typical error metrics as the

Mean Absolute Error (MAE) and the RMSE:

MAE =
1

Ntest

Ntest∑
i=1

|ŷi − yi| (3)

RMSE =

√√√√ 1

Ntest

Ntest∑
i=1

(ŷi − yi)2 (4)

Model performance for each WF are presented in Table 3, expressed as a

percentage of the WT rated power.

Table 3: Model accuracy results for four different WFs.

MAE (%) RMSE (%)

WF 1 2 3 4 1 2 3 4

MOB 3.0568 3.0500 2.5391 5.2371 4.8975 5.5288 4.6956 8.1562

kNN 1.8267 1.9603 1.7390 4.0900 3.2596 4.0183 3.6156 7.0132

RF 1.8373 1.9287 1.7543 4.0642 3.4773 4.0430 3.7100 6.9807

SVR 2.1037 2.3542 2.1941 4.3574 3.5034 4.1841 3.8236 7.0432

Table 3 shows that all the multivariate non-parametric models are better290

at predicting WT power than the MOB. Both the k -NN and RF algorithms

provide very good results, and of the same order of magnitude. This higher
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accuracy is observed through both error metrics leading to not only a lower

average error (related to a lower MAE), but also to a lower variance associated

with the frequency distribution of error magnitudes for the multivariate non-295

parametric models (related to a lower RMSE). This means that they are more

capable of expressing WT performance making them better predictors. This is

also illustrated in Figure 5, were modelled PCs are presented for WF2.

(a) (b)

(c) (d)

Figure 5: WT PC modelled by the MOB (a), k -NN (b), RF (c) and SVR (d).

3.4. Results from the sensitivity study

3.4.1. Wind farm terrain complexity300

Results in Table 3 demonstrated that model accuracy is dependent on site.

While no significant variation is observed for simple or slightly complex sites,

there is an important decrease of the modelling accuracy for the very complex

site, independently from the model selected. This results confirm the important

dependence of modelling accuracy on site conditions.305
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3.4.2. Seasonality

To assess the seasonality effects, the four trained models using the high-

frequency data were used to predict the rest of the year. In order not to bias

results with the potential presence of abnormal performance events in other

months, the same filtering procedure was applied before the WT power pre-310

diction. In this way, only WT normal performance was predicted each month.

Results for the four WFs and different modelling techniques are illustrated in

Figure 6 and Figure 7.

(a) (b)

(c) (d)

Figure 6: Seasonal variation of the MAE for the different modelling techniques at WF1 (a),

WF2 (b), WF3 (c) and WF4 (d).

As can be seen, the accuracy of the MOB including the air density correction

does not show any significant variation over the year, suggesting that the latter315

takes into account the seasonal variations of the ambient temperature and hence

the air density. SVR perform significantly worse throughout the year for all the

WFs considered. Even though this method includes the ambient temperature

as an input and seemed to capture WT performance variability, its accuracy is

hugely affected by the seasonality effects. This might be due to the choice of the320
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(a) (b)

(c) (d)

Figure 7: Seasonal variation of the RMSE for the different modelling techniques at WF1 (a),

WF2 (b), WF3 (c) and WF4 (d).

kernel, which is one the greatest limitations of SVR [46]. This also applies, but

less so, to the k -NN method, the variability of which also depends on the WF

considered. In contrast, the RF method does not seem to be affected by any

seasonality effects and preserves a very high accuracy irrespective of the month

of the year.325

3.4.3. Relevance of Input Variables

The use of tree-based methods, such as the RF algorithm, allows straight-

forward assessment of input parameter importance for multivariate modelling

[26]. In this case, the relevance of the input variables was assessed through the

out-of-bag (OOB) permutation importance, that measures how influential the330

model predictor variables are at predicting the response. The influence of a pre-

dictor increases with the value of this measure. The OOB error, evaluated here

through the Mean Square Error (MSE), is the mean prediction error on each

training set sample ti using only trees that did not have ti in their bootstrap

sample. For each variable, the OOB error is estimated before and after random335
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permutation of the observations of the concerned variable. Then, the differ-

ences between these are averaged over all trees, and normalised by the standard

deviation of the differences. If a variable highly influences predictions, then per-

muting its values should affect the model error. Otherwise, permutation should

have little to no effect on the error. As a result, the variable importance is here340

quantified by the percentage rate for the increase of the MSE for each variable.

Results for all the WFs considered in this study are shown in Figure 8.

While the importance of wind speed is consistent across the different sites,

the importance of ambient temperature depends strongly on the WF. It also

exhibits a high impact, significantly larger than wind speed. It is true that the345

higher the increase in MSE, the more important the variable. However, this does

not imply that ambient temperature drives the greatest changes in WT power

production, as this is obviously mainly driven by wind speed. It actually means

that the RF model will perform significantly worse if ambient temperature is

not included in the model. These results concur with the independence of RF350

prediction accuracy from seasonality effects, mainly due to changes in ambient

temperature and air density.

Figure 8: Site specific model input relevance.

3.4.4. Data sampling rate

One of the most important aspects of the data used in this study is its

high time resolution. Indeed, this paper deals with real measurements from the355
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SCADA system rather than aggregated values over a 10-minute period, as is

the current industry practice. To investigate the potential of using this high-

frequency SCADA data two analyses were conducted. First, the autocorrelation

of each parameter considered in the PC modelling was analysed individually.

Then, different training datasets with corresponding different time resolutions360

were used to predict WT power as registered in the 10-minute aggregated data.

Data autocorrelation. When using high-frequency SCADA data one can evi-

dently think that these data will be more affected by noise, usually smoothed

by the 10-minute averaging process conventionally applied. However, this will

also result in a loss of information. The averaging effect actually removes all365

the dynamic behaviour of WT operation. There is therefore a clear need to

understand the rate of variation of the different signals considered. To this

end, the autocorrelation of the nacelle wind speed, the pitch angle, the rotor

speed and the power output has been calculated. The ambient temperature was

omitted due to its low rate of change. The computed autocorrelations together370

with fitted exponential trends are shown in Figure 9. For the sake of simplicity,

only results for WF2 are illustrated although consistent conclusions apply to the

different sites. The trends are illustrated together in Figure 10 for comparison

purposes.

WT power output shows the fastest decrease in autocorrelation, tending to375

zero at time lags close to the data resolution used in this study (4-second). This

translates into a significantly low similarity between consecutive observations at

low time resolutions, and therefore into a large loss of information regarding WT

performance when aggregating power data over 10-minute periods. Wind speed

and pitch angle signals show very low autocorrelation from lags of 30 seconds,380

although it still remains below 0.5 between lags of 4 and 30 seconds. Similarly,

aggregating wind speed and pitch angle signals over 10-minute periods leads to a

loss of information, but to a lesser extent than in the case of power output data.

The rotor speed shows the greater autocorrelation, although it is also below

0.5 from lags of 30 seconds. This appears reasonable due to the inertia of the385
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(a) (b)

(c) (d)

Figure 9: Autocorrelation and fitted trends for the nacelle wind speed (a), active power (b),

pitch angle (c) and rotor speed (d) signals. Dotted lines indicate lags of 30 and 60 seconds

respectively.

Figure 10: Autocorrelation trends for the nacelle wind speed, active power, pitch angle and

rotor speed signals. Dotted lines indicate lags of 30 and 60 seconds respectively.

rotor. As a result, when considering the four signals at the same time, a time

resolution of 30 seconds seems to provide a reasonable balance between time

resolution and capturing WT dynamic response. If the rotor speed is omitted,
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this time resolution can be further lowered.

WT power prediction from different data sampling rates. To evaluate the PC390

model accuracy when using high-frequency SCADA data, different training

datasets with corresponding different time resolutions were used to train the

selected methods and to predict the power output as observed in the 10-minute

aggregated data. In this case, six different training datasets were used to pre-

dict the same 10-minute testing dataset; the first was the raw high-frequency395

SCADA data, while the following were built based on data aggregated over pe-

riods of 30, 60, 120, 300 and 600 seconds. In a similar way to Section 3.4.2, the

power data to be predicted was filtered to solely evaluate the accuracy during

normal operating conditions. Results are illustrated in Figure 11 and Figure 12.

As can be seen, the MAE shows the lowest values for the 10-minute training400

due to the averaging effect. However, a common trend can also be observed in

all the sites, towards lower accuracy with larger aggregated periods, with the

RF being the most significant. For all the WFs, the RMSE increases with the

aggregation period of the data, although some exceptions can be observed for

the 10-minute training (Figure 12 (d)). This means that, even when the purpose405

is predicting at a 10-minute resolution, the highest accuracy is achieved with

highest sampling rate of the training dataset. The lower the time resolution,

the higher the variance of the error. The use of high-frequency data benefits

the understanding of WT performance variability.

3.5. Uncertainty assessment410

Following the approach described in Section 2.3.2, the training error distri-

bution was analysed for each of the methods used for the purpose of assessing

their related uncertainty and hence building normal performance thresholds.

The combined training error distribution as well as the varying distribution

across different wind speed regimes are presented in Figure 13 for the four dif-415

ferent models. For the sake of simplicity, these results are only given for one of

the WFs although similar results are observed for the other sites. The calculated
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(a) (b)

(c) (d)

Figure 11: Prediction accuracy (MAE) for training datasets with different data time resolu-

tions for WF1 (a), WF2 (b), WF3 (c) and WF4 (d).

(a) (b)

(c) (d)

Figure 12: Prediction accuracy (RMSE) for training datasets with different data time resolu-

tions for WF1 (a), WF2 (b), WF3 (c) and WF4 (d).

control limits from both approaches, the training error metrics and bootstrap-

ping, were found to be very similar, although the bootstrapping derived limits

were found to be slightly narrower for the same level of confidence.420

Although a similar normal behaviour is observed in Figure 13 for the com-

bined distribution, in line with the assumption made in the state-of-the-art
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: Training error combined distribution (left side) and varying distribution across

different wind speeds (right side) for the MOB ((a),(b)), the k -NN model ((c),(d)), the RF

model ((e),(f)) and the SVR model ((g),(h)). The control limits obtained from bootstrapping

are illustrated with red dotted lines.

approach, an uneven envelope of the residuals across wind speed values is ob-

served revealing a high level of heteroskedasticity in the error, as already identi-

fied [37, 38]. As the Breusch-Pagan test [47] is only suitable for linear regression425

models, the White test of heteroskedasticity [48] was used instead. This selected
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test was run for all the modelling errors, and for the four WFs, giving a null

p-value in all cases; the hypothesis of a constant variance of the error was there-

fore rejected in all cases under any confidence level, confirming the graphical

detection of the heteroskedasticity. This reveals that the assumption of a normal430

distribution of the error [10, 29] is invalid independently from the method se-

lected. No matter the PC modelling accuracy, this will lead to a loss of detection

capabilities during the monitoring phase. To achieve an effective monitoring of

WT performance, variable performance thresholds should be produced instead.

4. Discussion435

This section discusses the results previously presented in the context of their

usefulness for effectively monitoring WT performance.

Data filtering processes have received limited attention to date, but it is

crucial to ensure normal performance representation. 20 to 40 times fewer ob-

servations are present with the low resolution 10-minute SCADA data. This440

means that less data is available for training the normal performance mod-

els considering the same training period, but also that a higher percentage of

data can be retained as the use of 10-minute data usually leads to over-filtered

statistics. Moreover, the suggested filtering method shows robustness due to

the two steps involved, and to the multivariate approach. The use of high-445

frequency data would intuitively be expected to produce lower PC modelling

accuracy, given the more complex dynamic behaviour evident at smaller time-

scales and smoothed at larger granularities; however, these have been shown to

be captured, learned and reproduced by multivariate non-parametric regression

models, especially the RF, which produces the lowest RMSE. Better detection450

capabilities should result, since control charts built based on lower variances

should be more sensitive to deviations. Although multivariate non-parametric

models, especially the k -NN and the RF, perform well and can capture WT

performance variability, this ability decreases in the case of very complex flow

exhibited in complex sites.455
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The MOB with air density correction and the RF model are not affected

by seasonality, unlike k -NN and SVR. SVR has greater variability, while k -

NN performance depends on the site meaning both the models are unsuited to

monitoring WT performance over time. The RF algorithm relied only on a short

training period and accuracy remained independent from seasonality effects,460

making it the most suitable of the models studied here. Ambient temperature

appears to play an important role in seasonal dependent modelling accuracy,

as the variable importance study showed. It is therefore crucial to include it

as an input variable for PC modelling to ensure accurate WT power prediction

and effective performance monitoring. Seasonality effects observed for k -NN465

and SVR models could be avoided by taking longer training periods covering

different seasons, but this will restrict the monitoring opportunities over the

period selected for training and consequently delay operational application.

WT power output shows a very low autocorrelation that translates into a

large loss of information when the data is aggregated over a period of 10-minutes,470

leading to loss of capability for detecting WT power deviations. Evidence has

also been provided in this paper for higher accuracy, in terms of error vari-

ability (RMSE), for higher sampling rates of the training dataset in PC mod-

elling. Since some WF operators might be deterred from storing high-frequency

SCADA data due to larger amounts of storage space needed, it has been shown475

that data aggregations of 30 periods may provide a good representation of WT

operation. Nonetheless, high-frequency measurements are evidently optimal for

effective WT performance monitoring.

Lastly, the model uncertainty assessment has revealed high heteroskedastic-

ity of training error in all cases meaning that PC modelling accuracy actually480

depends on the operating regime. Assumptions of a normally distributed model

error have proven to be invalid and will lead to a loss of detection capabilities.

Regardless of the method selected for normal performance modelling, control

charts or anomalous behaviour thresholds should vary across the different wind

speed regimes.485
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5. Conclusions

In this paper, the use of high-frequency SCADA data for WT performance

monitoring has been thoroughly investigated. A novel framework has been pro-

posed, based on the use of multivariate non-parametric models. A detailed

sensitivity study has also been conducted with real data from four different op-490

erating wind farms, to evaluate the implications and limitations derived from

the use of high-frequency data. The results, discussed in a practical context,

demonstrate that using high-frequency data is beneficial for performance moni-

toring purposes whereas the assessment of the model related uncertainty remains

the strongest drawback.495

It has been shown that the dynamic WT behaviour, usually smoothed in

the 10-minute aggregated data, is understood, learned and reproduced by mul-

tivariate non-parametric regression models, especially the RF algorithm. While

other models were found to be sensitive to seasonality effects, the RF method

provides good accuracy on a short training period. The combination of this500

method with the use of high-frequency data produces the lowest model error

variation. This leads to better detection capabilities, since control charts built

based on lower variances will be more sensitive to deviations. Although the

model accuracy depends on the site specific conditions, assessed through ter-

rain complexity classes, the methodology is shown to be appropriate for any site505

and location.

Nevertheless, the current state-of-the-art for the assessment of the related

uncertainty for non-parametric models used in PC modelling shows the greatest

drawback towards achieving an effective monitoring of WT performance. This

high heteroskedasticity of the training error makes the use of statistical control510

charts unsuitable for characterising WT normal performance. The move from

purely deterministic models, as the RF algorithm, towards probabilistic methods

should allow to effectively monitor WT performance regardless the mode of

operation. Evidence on this issue has already been provided by the authors in

[38], with an empirical probabilistic assessment of WT performance.515
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Future work should therefore focus on the use of probabilistic methods for

PC modelling in order to develop improved techniques for WT performance

monitoring. Testing and evaluation of the methodology for healthy and faulty

turbines are also needed to confirm its detection capabilities. Several component

failures should be considered, in order to evaluate the relation between WT520

abnormal performance and faulty component behaviour.
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[14] T. A. Mücke, M. Wächter, P. Milan, J. Peinke, Langevin power curve

analysis for numerical wind energy converter models with new insights on

high frequency power performance, Wind Energy 18 (11) (2015) 1953–1971.

doi:10.1002/we.1799.575

[15] M. Lydia, A. I. Selvakumar, S. S. Kumar, G. E. P. Kumar, Advanced

Algorithms for Wind Turbine Power Curve Modeling, IEEE Transactions

on Sustainable Energy 4 (3) (2013) 827–835. doi:10.1109/TSTE.2013.

2247641.

[16] O. Uluyol, G. Parthasarathy, W. Foslien, K. Kim, Power Curve Analytic580

for Wind Turbine Performance Monitoring and Prognostics, in: Annual

Conference of the Prognostics and Health Management Society, 2011.

[17] S. Shokrzadeh, M. Jafari Jozani, E. Bibeau, Wind Turbine Power Curve

Modeling Using Advanced Parametric and Nonparametric Methods, IEEE

Transactions on Sustainable Energy 5 (4) (2014) 1262–1269. doi:10.1109/585

TSTE.2014.2345059.

[18] R. J. de Anadrade Vieira, M. A. Sanz-bobi, Power Curve Modelling of a

Wind Turbine for monitoring its behaviour, in: 4th International Confer-

ence on Renewable Energy Research and Applications, 2015.

[19] E. Taslimi-Renani, M. Modiri-Delshad, M. F. M. Elias, N. A. Rahim, De-590

velopment of an enhanced parametric model for wind turbine power curve,

Applied Energy 177 (2016) 544–552. doi:10.1016/j.apenergy.2016.05.

124.

[20] M. Schlechtingen, I. F. Santos, S. Achiche, Using Data-Mining Approaches

for Wind Turbine Power Curve Monitoring: A Comparative Study, IEEE595

30

http://dx.doi.org/10.1002/we.1799
http://dx.doi.org/10.1109/TSTE.2013.2247641
http://dx.doi.org/10.1109/TSTE.2013.2247641
http://dx.doi.org/10.1109/TSTE.2013.2247641
http://dx.doi.org/10.1109/TSTE.2014.2345059
http://dx.doi.org/10.1109/TSTE.2014.2345059
http://dx.doi.org/10.1109/TSTE.2014.2345059
http://dx.doi.org/10.1016/j.apenergy.2016.05.124
http://dx.doi.org/10.1016/j.apenergy.2016.05.124
http://dx.doi.org/10.1016/j.apenergy.2016.05.124


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Transactions on Sustainable Energy 4 (3) (2013) 671–679. doi:10.1109/

TSTE.2013.2241797.

[21] G. A. Skrimpas, K. Kleani, N. Mijatovic, C. W. Sweeney, B. B. Jensen,

J. Holboell, Detection of icing on wind turbine blades by means of vibration

and power curve analysis, Wind Energy 19 (10) (2016) 1819–1832. doi:600

10.1002/we.1952.

[22] A. Marvuglia, A. Messineo, Monitoring of wind farms’ power curves using

machine learning techniques, Applied Energy 98 (2012) 574–583. doi:

10.1016/j.apenergy.2012.04.037.

[23] F. Pelletier, C. Masson, A. Tahan, Wind turbine power curve modelling605

using artificial neural network, Renewable Energy 89 (2016) 207–214. doi:

10.1016/j.renene.2015.11.065.

[24] V. Bulaevskaya, S. Wharton, a. Clifton, G. Qualley, W. O. Miller, Wind

power curve modeling in complex terrain using statistical models, Journal

of Renewable and Sustainable Energy 7 (1) (2015) 013103. doi:10.1063/610

1.4904430.

[25] A. Clifton, L. Kilcher, J. K. Lundquist, P. Fleming, Using machine learning

to predict wind turbine power output, Environmental Research Letters

8 (2) (2013) 024009. doi:10.1088/1748-9326/8/2/024009.

[26] O. Janssens, N. Noppe, C. Devriendt, R. V. de Walle, S. V. Hoecke, Data-615

driven multivariate power curve modeling of offshore wind turbines, En-

gineering Applications of Artificial Intelligence 55 (2016) 331–338. doi:

10.1016/j.engappai.2016.08.003.

[27] G. A. Skrimpas, C. W. Sweeney, K. S. Marhadi, B. B. Jensen, N. Mija-

tovic, J. Holboll, Employment of Kernel Methods on Wind Turbine Power620

Performance Assessment, IEEE Transactions on Sustainable Energy 6 (3)

(2015) 698–706. doi:10.1109/TSTE.2015.2405971.

31

http://dx.doi.org/10.1109/TSTE.2013.2241797
http://dx.doi.org/10.1109/TSTE.2013.2241797
http://dx.doi.org/10.1109/TSTE.2013.2241797
http://dx.doi.org/10.1002/we.1952
http://dx.doi.org/10.1002/we.1952
http://dx.doi.org/10.1002/we.1952
http://dx.doi.org/10.1016/j.apenergy.2012.04.037
http://dx.doi.org/10.1016/j.apenergy.2012.04.037
http://dx.doi.org/10.1016/j.apenergy.2012.04.037
http://dx.doi.org/10.1016/j.renene.2015.11.065
http://dx.doi.org/10.1016/j.renene.2015.11.065
http://dx.doi.org/10.1016/j.renene.2015.11.065
http://dx.doi.org/10.1063/1.4904430
http://dx.doi.org/10.1063/1.4904430
http://dx.doi.org/10.1063/1.4904430
http://dx.doi.org/10.1088/1748-9326/8/2/024009
http://dx.doi.org/10.1016/j.engappai.2016.08.003
http://dx.doi.org/10.1016/j.engappai.2016.08.003
http://dx.doi.org/10.1016/j.engappai.2016.08.003
http://dx.doi.org/10.1109/TSTE.2015.2405971


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[28] N. Yampikulsakul, E. Byon, S. Huang, S. Sheng, M. You, Condition

Monitoring of Wind Power System With Nonparametric Regression Anal-

ysis, IEEE Transactions on Energy Conversion 29 (2) (2014) 288–299.625

doi:10.1109/TEC.2013.2295301.

[29] T. Ouyang, A. Kusiak, Y. He, Modeling wind-turbine power curve: A

data partitioning and mining approach, Renewable Energy 102 (2017) 1–8.

doi:10.1016/j.renene.2016.10.032.

[30] P. Cambron, R. Lepvrier, C. Masson, a. Tahan, F. Pelletier, Power curve630

monitoring using weighted moving average control charts, Renewable En-

ergy 94 (2016) 126–135. doi:10.1016/j.renene.2016.03.031.

[31] E. Papatheou, N. Dervilis, A. E. Maguire, C. Campos, I. Antoniadou,

K. Worden, Performance monitoring of a wind turbine using extreme func-

tion theory, Renewable Energy 113 (2017) 1490–1502. doi:10.1016/j.635

renene.2017.07.013.

[32] Jin Zhou, Peng Guo, Xue-Ru Wang, Modeling of wind turbine power curve

based on Gaussian process, in: 2014 International Conference on Machine

Learning and Cybernetics, IEEE, 2014, pp. 71–76. doi:10.1109/ICMLC.

2014.7009094.640

[33] B. Stephen, S. J. Galloway, D. McMillan, D. C. Hill, D. G. Infield, A

Copula Model of Wind Turbine Performance, IEEE Transactions on Power

Systems 26 (2) (2011) 965–966. doi:10.1109/TPWRS.2010.2073550.

[34] Y. Wang, D. G. Infield, B. Stephen, S. J. Galloway, Copula-based model

for wind turbine power curve outlier rejection, Wind Energy 17 (11) (2014)645

1677–1688. doi:10.1002/we.1661.

[35] G. A. M. van Kuik, J. Peinke, R. Nijssen, D. Lekou, J. Mann, J. N.

Sørensen, C. Ferreira, J. W. van Wingerden, D. Schlipf, P. Gebraad,

H. Polinder, A. Abrahamsen, G. J. W. van Bussel, J. D. Sørensen,

P. Tavner, C. L. Bottasso, M. Muskulus, D. Matha, H. J. Lindeboom,650

32

http://dx.doi.org/10.1109/TEC.2013.2295301
http://dx.doi.org/10.1016/j.renene.2016.10.032
http://dx.doi.org/10.1016/j.renene.2016.03.031
http://dx.doi.org/10.1016/j.renene.2017.07.013
http://dx.doi.org/10.1016/j.renene.2017.07.013
http://dx.doi.org/10.1016/j.renene.2017.07.013
http://dx.doi.org/10.1109/ICMLC.2014.7009094
http://dx.doi.org/10.1109/ICMLC.2014.7009094
http://dx.doi.org/10.1109/ICMLC.2014.7009094
http://dx.doi.org/10.1109/TPWRS.2010.2073550
http://dx.doi.org/10.1002/we.1661


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

S. Degraer, O. Kramer, S. Lehnhoff, M. Sonnenschein, P. E. Sørensen,

R. W. Künneke, P. E. Morthorst, K. Skytte, Long-term research challenges

in wind energy a research agenda by the European Academy of Wind En-

ergy, Wind Energy Science 1 (1) (2016) 1–39. doi:10.5194/wes-1-1-2016.

[36] D. Coronado, K. Fischer, Condition Monitoring of Wind Turbines : State655

of the Art , User Experience and Recommendations, Tech. rep., Fraunhofer

Institute for Wind Energy and Energy System Technology (January 2015).

[37] E. Gonzalez, J. J. Melero, Wind turbine fault detection by monitoring

its performance using high frequency SCADA data, in: 30th International

Congress & Exhibition on Condition Monitoring and Diagnostic Engineer-660

ing, COMADEM, 2017.

[38] E. Gonzalez, B. Stephen, D. Infield, J. J. Melero, On the use of high-

frequency SCADA data for improved wind turbine performance monitoring,

Journal of Physics: Conference Series 926 (2017) 012009. doi:10.1088/

1742-6596/926/1/012009.665

[39] E. Gonzalez, M. Reder, J. J. Melero, SCADA alarms processing for wind

turbine component failure detection, Journal of Physics: Conference Series

753 (7) (2016) 72019. doi:10.1088/1742-6596/753/7/072019.

[40] S. Frandsen, J. N. Sørensen, R. Mikkelsen, T. F. Pedersen, I. Antoniou,

K. Hansen, The generics of wind turbine nacelle anemometry, in: European670

Wind Energy Conference and Exhibition 2009, 2009.

[41] IEC 61400-12-2:2013, Wind energy generation systems - Part 12-2:

Power performance of electricity-producing wind turbines based on nacelle

anemometry, Standard, International Eletrotechnical Comission (2013).

[42] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools675

and Techniques, 2nd Edition, Morgan Kaufmann Publishers, San Francisco,

CA, 2005.

33

http://dx.doi.org/10.5194/wes-1-1-2016
http://dx.doi.org/10.1088/1742-6596/926/1/012009
http://dx.doi.org/10.1088/1742-6596/926/1/012009
http://dx.doi.org/10.1088/1742-6596/926/1/012009
http://dx.doi.org/10.1088/1742-6596/753/7/072019


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[43] L. Breiman, Random Forests, Machine Learning 45 (1) (2001) 5–32. doi:

10.1023/A:1010933404324.

[44] A. C. Davison, D. V. Hinkley, Bootstrap methods and their appli-680

cation, Cambridge University Press, Cambridge, 1997. doi:10.1017/

CBO9780511802843.

[45] A. Koch, C. Heipke, Quality assessment of digital surface models derived

from the Shuttle Radar Topography Mission (SRTM), in: Geoscience and

Remote Sensing Symposium, 2001. IGARSS ’01. IEEE 2001 International,685

Vol. 6, IEEE, 2001, pp. 2863–2865. doi:10.1109/IGARSS.2001.978187.

[46] C. J. C. Burges, A Tutorial on Support Vector Machines for Pattern

Recognition, Data mining and knowledge discovery 2 (2) (1998) 121–167.

doi:10.1023/A:1009715923555.

[47] T. S. Breusch, A. R. Pagan, A Simple Test for Heteroscedasticity and690

Random Coefficient Variation, Econometrica 47 (5) (1979) 1287–1294. doi:

10.2307/1911963.

[48] H. White, A Heteroskedasticity-Consistent Covariance Matrix Estimator

and a Direct Test for Heteroskedasticity, Econometrica 48 (4) (1980) 817–

838. doi:10.2307/1912934.695

34

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1017/CBO9780511802843
http://dx.doi.org/10.1017/CBO9780511802843
http://dx.doi.org/10.1017/CBO9780511802843
http://dx.doi.org/10.1109/IGARSS.2001.978187
http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.2307/1911963
http://dx.doi.org/10.2307/1911963
http://dx.doi.org/10.2307/1911963
http://dx.doi.org/10.2307/1912934


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
• The detection capabilities of SCADA-based wind turbine condition monitoring solutions are 

negatively influenced by the low time resolution of the standard 10-minute aggregated data. 
• A novel framework for wind turbine performance monitoring is presented, based on the use 

of high-frequency SCADA data featuring state-of-the-art multivariate non-parametric 
methods for power curve modelling. 

• The potential of such high-frequency data is thoroughly investigated, as well as the sensitivity 
of the considered models to several factors, including site specific conditions, seasonality 
effects, input relevance and data sampling rate. 

• The results, discussed in a practical context, demonstrate that using high-frequency data is 
beneficial for performance monitoring purposes. 
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