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Social networks are the prime channel for the spreading of computer viruses. Yet the study of their propa-
gation neglects the temporal nature of social interactions and the heterogeneity of users’ susceptibility. Here,
we introduce a theoretical framework that captures both properties. We study two realistic types of viruses
propagating on temporal networks featuring Q categories of susceptibility and derive analytically the invasion
threshold. We found that the temporal coupling of categories might increase the fragility of the system to cyber
threats. Our results show that networks’ dynamics and their interplay with users features are crucial for the
spreading of computer viruses.

Alongside clear societal and economic benefits, modern
technology exposes us to serious challenges. In particular, the
spreading of malicious content online, often based on inge-
nious deception strategies, is one of the most pressing because
it poses serious threats to our privacy, finances, and safety [1].
Victims of a typical social engineering attack [2] may receive
a message containing a malicious link or file, appearing to
originate from a friend or other trusted entity. If opened, it
may compromise the computer, access personal information,
and spread the virus further unbeknownst to the victim. Re-
cent research has shown how the susceptibility of individuals
to such attacks is not homogenous and depends on several fea-
tures such as age, prior training, computer proficiency, famil-
iarity with social network platforms, among others [3–5]. Fur-
thermore, the properties of real networks are known to facili-
tate the propagation of such processes [6–15]. In particular,
the heterogeneity in contact patterns makes socio-technical
systems quite fragile to biological and digital threats.

The study of these phenomena has largely neglected the
complex temporal nature of online contact patterns in favor
of static and time-aggregated approaches [16, 17]. These ap-
proximations might be fitting. Indeed, in the past, computer
viruses would spread mainly via email networks, targeting the
address books of victims, which contain contacts lists [18].
However, not many people create such lists any more and ac-
cess to them is restricted [7]. In the context of social or bio-
logical contagions, neglecting the temporal nature of the net-
works where the processes unfold has been shown to induce
misrepresentations of their spreading potential. In fact, the
order and concurrency of connections is key [19–43]. To the
best of our knowledge, beside some early work on the spread-
ing of viruses via Bluetooth among mobile phones [44], the
study of the propagation of cyber threats considering the tem-
poral nature of social interactions is still missing. Further-
more, with few exceptions [45], the literature devoted to the
study of computer viruses unfolding on networks typically ne-
glects that the susceptibility of online users is not homoge-
nous. Conversely, the literature that studies the susceptibility
of users to cyber threats traditionally focuses on single users
neglecting their connections.

To tackle these limitations, here we introduce a theoretical

framework to study the spreading of computer viruses, based
on social engineering deception strategies, on time-varying
networks. We model users’ interactions using a time-varying
network model and consider two types of viruses. The first
mimics threats that can propagate only via connections acti-
vated at each time step. The second, on the contrary, considers
viruses able to access also information about past connections.
We investigate the impact of different classes of susceptibility
considering that they might also influence the link formation
process. In all cases, we analytically derive the conditions reg-
ulating the spreading of the virus. Interestingly, these are de-
fined by the interplay between the features of the cyber threats,
the categories of susceptibility and their time-varying connec-
tivity. Furthermore, in some scenarios, the coupling between
categories creates a complex phenomenology that favors the
spreading of the virus. These results have the potential to ini-
tiate future efforts aimed at describing more realistically the
spreading of computer viruses on online social networks.

We consider a population of N online users which ex-
change messages in a time-varying network. Nodes are as-
signed to one ofQ categories describing their susceptibility to
cyber threats measured in terms of their gullibility and time
needed to recover from successful attacks. Since suscepti-
bility is linked to demographic features, we consider that the
membership to a category might influence the link creation
process. In fact, homophily is a strong social mechanism
known to affect the structure and organization of ties [46].
We model the contact patterns between users with a general-
ization of the activity-driven framework [21, 47–49]. Here,
nodes feature an activity a describing their propensity to initi-
ate communications. Activities are extracted from a distribu-
tion F (a) which, as observations in real systems have shown,
is typically heterogenous [21, 22, 48, 50]. We select power-
law distributions F (a) ∼ a−α with a ∈ [ε, 1] to avoid diver-
gences. At each time step nodes are active with probability
a∆t. Active nodes select m others and create directed (out-
going) links which mimic messages.

In the simplest version of activity-driven networks the se-
lection is random and memoryless [21]. Here, we propose
a variation: with probability p each target is selected, at ran-
dom, among the group of nodes in the same category, and with
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probability 1 − p among the nodes in any other category. In
other words, p tunes the homophily level in the network with
respect to susceptibility to cyber threats. At time t + ∆t all
edges are deleted and the process starts from the beginning.
Unless specified otherwise, links have a duration ∆t. With-
out loss of generality we set ∆t = 1. The model is clearly
a simplification of real interactions. However, it offers sim-
ple, yet non trivial, settings to study the effects of temporal
connectivity patterns on contagion processes unfolding at a
comparable time-scale with respect to the evolution of con-
nections [20, 21, 47, 51].

We describe the propagation of a computer virus adopting
the prototypical SIS model [13, 52]. At each time step t the
virus, unbeknownst to the victims, sends a message, with ma-
licious content, to all the nodes genuinely contacted at t (virus
type 1) or within t − τ time-step (virus type 2). The focus is
not defining the optimal set of nodes to maximize/minimize
the damage. Thus, we select randomly a small percentage
(0.5%) of nodes as initial seeds. In these settings, suscepti-
ble nodes of class x ∈ [1, . . . , Q], that receive a malicious
message, become infectious with probability λx which de-
fines their gullibility. They recover and become susceptible
again with rate µx. Assuming that nodes with the same value
of activity and in the same category are statistically equiva-
lent, we group nodes according to the two features. At each
time step, we call Sxa and Ixa the number of nodes suscepti-
ble and infected in activity class a and category x. Clearly∫
daSxa = Sx,

∫
daIxa = Ix,

∑
x S

x = S, and
∑
x I

x = I .
Furthermore, Nx

a describes the number of nodes of activity
a in category x, thus

∫
daNx

a = Nx and
∑
xN

x = N . In
these settings, we can represent the variation of the number of
infected nodes of activity a in category x as:

dtI
x
a = −µIxa + λxmS

x
a ×p ∫ da′a′

Ixa′

Nx
+ (1− p)

∑
y 6=x

∫
da′a′

Iya′

N −Ny

 . (1)

The first term on the right hand side accounts for the recov-
ery process. The second and third terms capture susceptible
nodes that receive messages from active and infected vertices
in the same (second) or different (third) category, and get in-
fected as a result. With respect to the typical biological con-
tagion process, here transmission is asymmetric. Only nodes
receiving a message from an infected person might be exposed
to the virus. Thus, not only the order of connections, but
also their direction is a crucial ingredient for the spreading.
Since the links are created randomly, each node is selected
with a probability pm/Nx by nodes in the same category or
(1 − p)m/(N − Ny) by nodes in other categories. The total
number of nodes is constant thus Sxa = Nx

a − Ixa and at the
early stages of the spreading we can assume that the number
of infected nodes is very small: Sxa ∼ Nx

a . By integrating

across all activities Eq. 3 we get:

dtI
x = −µxIx+λxm

pθx + (1− p)Nx
∑
y 6=x

θy/(N −Ny)

 ,
where we define θx =

∫
daaIxa . By multiplying both sides of

Eq. 3 for a and integrating across all the activities we obtain

dtθ
x = −µxθx +

mλx〈a〉x

pθx + (1− p)Nx
∑
y 6=x

θy/(N −Ny)

 .
The virus is able to spread, if and only if the largest eigenvalue
of the Jacobian matrix of the system of differential equations
in Ix and θx is larger than zero [21]. As shown in details in
the Supplementary Material (SM) this implies:

R0 =
p
∑
x βx + Ξ∑
x µx

> 1, (2)

where R0 is the basic reproductive number defined as the av-
erage number of infected nodes generated, in a fully suscepti-
ble population, by an infected individual [52], βx = mλx〈a〉x
and Ξ is a function of the interplay between the average acti-
vation, infection and recovery rate of each category as well as
of the mixing between categories.

To understand the dynamics, let us consider a particular
case in which the system is characterized by only two cat-
egories. Furthermore, let us consider, as first scenario, that
all nodes have the same recovery rate. In these settings we
have Ξ2 = p2(β1 + β2)2 + 4β1β2(1 − 2p). The condition
for the spreading, even with only two classes, is a non linear
function of the average activity of each category, the infec-
tion probabilities per contact and the homophily. In the limit
p = 0, nodes in a category connects only with vertices in
the other and the expression reduces to R0 =

√
β1β2

µ . In the
limit p = 1 instead, interactions are only between nodes in
the same category. The system is effectively split in two dis-
connected networks and there are two independent conditions
Rx0 = βx/µ. For a general p, these two values confine R0:
minxR

x
0 ≤ R0(p) ≤ maxxR

x
0 . In fact, any value of p < 1

will reduce the spreading power of the category characterized
with the largest Rx0 as some connections will be established
with nodes where the virus finds it harder to spread (see SM
for the proof).

In Fig. 1-A-C, we compare analytical predictions with nu-
merical simulations. We set λ2 = 0.2 and use Eq. 2 to esti-
mate the critical value of λ1 for which R0 ≡ 1. On the y-axis
we plot the lifetime of the process defined as the time that the
virus needs either to die out or to reach a fraction Y of the pop-
ulation [53]. The lifetime acts as the susceptibility of a second
order phase transition and allows a precise numerical estima-
tion of the threshold of SIS processes [53]. In panels A-B we
consider a scenario in which nodes are assigned randomly to
one of the two categories. Thus the average activity in the two
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FIG. 1. Lifetime of the SIS process (A-C) and contour plot of R0

(D-F). In A-B-D-E nodes are randomly assigned to two categories,
in C-F instead in decreasing order of activity. We set p = 0.9 (A-D),
p = 0.4 (B-C-E-F). In A-C we fix N = 2×105, m = 4, α = −2.1,
µ1 = µ2 = 10−2, λ2 = 0.2, Y = 0.3, and 0.5% of random
initial seeds. We plot the median and 50% confidence intervals in
102 simulations per point. The solid lines come from Eq. 2, and the
dashed lines are the analytical threshold in case of a single category.
In the contour plot we set µ1 = µ2 = 10−1.

is the same and set p = 0.9 and p = 0.4 respectively. The
analytical value of the threshold (vertical solid line) perfectly
matches the numerical estimation. For p = 0.9 the threshold
is smaller than for p = 0.4 and closer to the threshold of a
system with a single category (dashed lines). For smaller val-
ues of homophily, instead, the critical conditions are driven by
the interplay between the activation rates and gullibility of the
two categories. Panels D-E show the analytical value of R0

as a function of λ1 and λ2 for the two values of p. The grey
regions are sub-critical, i.e., the virus is not able to spread.
Since the average activity in the two categories is the same,
the two plots are symmetric. Interestingly, the active region
(where the virus is able to spread) is larger for large values of
p. This is due to the fact that in these settings the virus will
spread if above the threshold in at least one category inde-
pendently of the other. In the opposite limit, on the contrary,
the two categories get intertwined and a small value of the in-
fection probability in one category should be associated to a
progressively large value in the other.

In panels C-F we consider that the first category contains
a fraction g of nodes selected in decreasing order of activ-
ity. Thus, this category contains the gN most active nodes,
while the other the (1 − g)N least active (see SM). To com-
pare with panel B, we set g = 0.5 and p = 0.4. First, the an-
alytical threshold nicely matches the numerical simulations.
Second, although the other parameters are the same used in
panel B, the critical value of the gullibility of the first class is
smaller. Thus, correlations between activity and gullibility fa-
cilitate the spreading. This is confirmed in panel F where the
active phase space features a region in which the spreading is
completely dominated by the category of most active nodes.
Overall, all the plots show the importance of distinguishing
nodes according to their gullibility. Indeed, neglecting the
presence of different classes of users might induce a strong
misrepresentation of the virus propagation (dashed lines).

Let us next consider a second scenario where categories dif-
ferentiate also for the time needed to recover from a successful

attack. For two categories, we can write Ξ2 = (µ1 − µ2)2 +
p2(β1 + β2)2 + 2p(µ2 − µ1)(β1 − β2) + 4β1β2(1 − 2p).
Interestingly, we have the same terms that appeared in the
first scenario, plus two that feature the difference between
the recovery rates and βs of the two categories. Thus R0 is
a function of the interplay between the activities, gullibili-
ties and recovery rates. In the limit p = 0, each category
only connects with nodes in the other, the two groups are cou-

pled and the threshold reads R0 =

√
(µ1−µ2)2+4β1β2

µ1+µ2
. In the

limit p = 1 instead, the two categories are completely de-
coupled and the threshold becomes, as before, R0 = βx/µx.
As shown in Fig. 2-D-H, for a general value of p the repro-
ductive number is not bounded, as before, by the values of Rx0
computed in the two classes separately (see SM). In Fig. 2-
D, we assign nodes randomly to each category, fix βx and
µx and compute R0 as a function of p. In the shaded area
minxR

x
0 ≤ R0(p) ≤ maxxR

x
0 . Interestingly, after a p∗ (ver-

tical dashed line), which as shown in the SM can be computed
analytically, we enter in a regime where R0(p) > maxxR

x
0 .

Thus, only specific values of the coupling between categories
might induce the virus to spread faster in the combined sys-
tem than in each single category in isolation. However, this
non linear effect is found only in a small fraction of the phase
space see Fig. 2-H. The necessary, but not sufficient condi-
tion, is that two categories differentiate both for gullibility and
recovery rates in such a way that one is more gullible and re-
covers faster than the other. In this regime, the right mixing
between the two might create a feedback loop that makes the
system more fragile.

Fig. 2-A-C shows a good match between the analytical
(solid vertical lines) and numerical thresholds in case of nodes
are assigned at random (A-B) or in decreasing order of activ-
ity (C) to the two categories. We fix two different recovery
rates, λ2, and use λ1 as order parameter. Panels A-B dif-
fer in the value of the homophily p. We set p = 0.9 in A,
while p = 0.4 in B-C. The presence of a category of nodes
characterized by a smaller value of recovery rate pushes the
threshold to smaller values with respect to the first scenarios
(Fig. 1). As before, the value of the threshold estimated con-
sidering only a single category, characterized by the average
recovery rate of the two, (dashed lines) leads to a misrepre-
sentation of the spreading power of the virus, especially for
smaller values of homophily (see panel B).

The effect of p on the critical value of λ1 is similar to the
first scenario. In fact, even when categories differentiate by
the recovery rates, high values of homophily push the critical
point to smaller values. However, here the difference between
the two is less significant than in Fig. 1. In Fig. 2-E-F, we
show the analytical value of R0 as function of µ1 and µ2. In-
terestingly, the sub-critical region, for p = 0.4, is smaller than
for p = 0.9. This is in contrast to what was observed in the
corresponding plots for the first scenario and highlights once
again the complex phenomenology introduced by the inter-
play of different recovery rates. In Fig. 2-C-G we investigate
the effect of correlations. In case that the most active nodes
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FIG. 2. Lifetime of the process (A-C), R0(µ1, µ2) (E-G), R0(p)
(D), and p∗(µ1, µ2) (H). In A-B-E-F nodes are randomly assigned
to two categories, in C-G instead in decreasing order of activity. We
set p = 0.9 (A-E), p = 0.4 (B-C-F-G). In panels A-C we set N =
2× 105, m = 4, α = −2.1, µ1 = 10−2, µ2 = 5× 10−3, λ2 = 0.2,
Y = 0.3, and 0.5% randomly selected seeds. We plot the median
and 50% confidence intervals in 102 simulations per point. The solid
lines come from Eq. 2. The dashed lines are the analytical threshold
in case of a single category of recovery rate characterized by the
average value of the recovery rates. In the contour plot we set λ1 =
0.485 and λ2 = 0.2. In D the shaded area describe the region where
minx βx/µx ≤ R0 ≤ maxx βx/µx. The dashed vertical line the
the analytical value of p above which R0 > maxx βx/µx. In H we
plot p∗ as function of µ1 and µ2. In D-H we set λ1 = 0.9 and use
the same parameters of the other plots.

are able to recover quickly from the attack, the virus is able
to spread only if the gullibility of such users is higher than in
the corresponding case without correlations (panel B). This is
confirmed in panel G, where we see that correlations between
recovery rates significantly change the active region.

Finally, we turn our attention to a second type of virus
able to access also past contacts of infected users within a
time window τ . As before, the virus propagates via active
infected nodes, but at each time t active users might infect
their contacts in a time-window (t− τ, t]. Within a mean-field
approximation, we can adopt the same equations described
above and change the probability that a node in each activ-
ity class receives a message by active and infected nodes. In
this case, the out-degree of each active node is not m, but a
function of τ : kout(a) = m

[
a+ (τ − 1)a2

]
(see SM). To

grasp the derivation, consider the simplest scenario in which
τ = 2. In this case, active nodes might have either m
or 2m contacts in two time steps. The first class describes
nodes that are active at time t but were not active at time
t − 1; whereas the second, nodes that were active in both
time steps. Thus the out-degree of these nodes, on average, is
kout(a) = ma(1− a) + 2ma2. As shown in the SM, the con-
dition for the spreading has the same structure of Eq. 2 where,
however, the value of βs are changed with the following trans-
formation m → m

[
〈a〉+ (τ − 1)〈a2〉

]
. Thus, the larger the

visibility of past connections, from the virus point of view, the
larger R0. Intuitively this is due to the fact that the virus, for
large values of τ , is able to access more contacts, which results
in a larger spreading potential. This observation nicely shows
how neglecting the temporal nature of connectivity patterns in
favor of static (or time integrated) approximations might lead
to a poor description of the propagation of viruses that do not

λC
1 λC

1 λC
1

A) B)  C)

FIG. 3. Lifetime of the SIS process for τ = 2, 3, 10 (A,B,C) for two
categories to which nodes are assigned randomly. Simulations are
done setting N = 2× 105, m = 4, α = −2.1, Y = 0.3, µ = 10−2,
λ2 = 0.3, p = 0.5, and 0.5% random initial seeds. We plot the
median and 50% confidence intervals in 102 simulations per point.

have access to contacts lists or past connections. In Fig. 3 we
show the comparison between analytical (solid lines) and nu-
merical values of the threshold for different values of τ . To
isolate the effect of τ we considered two categories, a single
recovery rate, and set p = 0.5. The analytical value is a good
approximation only for small values of τ . The mean-field ap-
proximation becomes less accurate as more connections from
past time-steps are kept in memory. Thus, the analytical esti-
mation provides only a lower bound, which together with the
solution for τ = 1 (dashed lines) −that constitutes an upper
bound−, marks the region where spreading is possible (red re-
gions). In other words, for a general value of τ , the threshold
will be lower than the analytical value computed for τ = 1,
and larger than the corresponding value computed at τ .

Overall our results highlight how the spreading of computer
viruses based on social engineering is critically affected by
the temporal nature of our interactions and different suscep-
tibilities to cyber threats. Our findings show that networks’
dynamics and their interplay with the characteristics of users
have to be considered in order to avoid misrepresentation of
the spreading power of computer viruses in social networks.
We have also quantified the extent to which the previous mis-
match is important for three plausible scenarios. We, how-
ever, note that we have studied a simple network model that
neglects a range of properties of real social networks such as
the presence of weak and strong ties, high order correlations,
and community structures. The study of the impact of these
features on the unfolding of computer viruses calls for addi-
tional research.
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SUPPLEMENTARY MATERIAL

Here, we provide supplemental information about the math-
ematical derivation and present the sensitivity analysis of the
results to the variation of the main parameters.

ANALYTICAL DERIVATIONS

We consider two types of viruses. The first does not have
access to the list of contacts of each victim, thus spread only
via the connections activated at each time step t. The sec-
ond instead, is able to access the list of contacts in the last τ
time-steps. As we will see in details later, at the mean-field
level, the structure of the equations regulating the variation of
the number of infected individuals at early times is the same.
However, for simplicity, let us consider first the first type of
virus.
Each node is assigned to one of Q categories x ∈ [1, . . . , Q]
that distinguish nodes according the their gullibility λx, which
describes the probability that they will not recognize the threat

http://dx.doi.org/http://dx.doi.org/10.1063/1.4876436
http://dx.doi.org/http://dx.doi.org/10.1063/1.4876436
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for example clicking on the added piece of malicious content,
and the time they need to recover for a successful attack, µ−1

x

(µx is the recovery rate). Nodes are also characterized by their
activity a which describes their propensity to engage in social
interactions in the unit time. To account for observations in
real systems, we extract activity from a heterogenous distribu-
tion in particular a power-law F (a) = Ba−α with a ∈ [ε, 1] to
avoid divergences. Each active node creates m random con-
nections. The target of each communication act is selected
with probability p within nodes in the same category and with

probability 1− p with nodes in other categories. In both cases
the actual target is selected at random. The virus will be able
to spread only via the connections created by active and in-
fected users. In particular, suppose that node i has been com-
promised. At time t the node activates and sends m legitimate
messages to m users. During the same time-step, the virus,
unbeknownst to i, will send a message with malicious content
to all m users. In these settings, the variation of number of
infected nodes in each activity class a and category x can be
written as:

dtI
x
a = −µxIxa + λxmS

x
a

p ∫ da′a′
Ixa′

Nx
+ (1− p)

∑
y 6=x

∫
da′a′

Iya′

N −Ny

 . (3)

The first term on the right hand side, describes the recovery
process. The second term instead describes susceptible nodes
that are connected by active nodes in the same category that
are infected. These nodes get infected with probability λx and
selected with probability p m

Nx (where Nx is the total num-
ber of nodes in the category x). The third term, accounts for
the same process but in which the susceptible node in activ-
ity class a receives a message from active and infected nodes
in other categories. Each node is selected with probability
(1− p) m

N−Ny by active vertices in class y. At early stages of
the spreading we can assume that the number of infected to be
very small respect to the susceptible thus we can approximate

Sxa ∼ Nx
a . This is equivalent to neglect terms of the order of

(Ixa )2. We can also define
∫
da′a′Ixa′ = Θx, thus summing

over all activity classes we get:

dtI
x = −µxIx + λxm

pΘx + (1− p)
∑
y 6=x

Nx

N −Ny
Θy

 .
(4)

In order to characterize the behavior of the number of infected
at such early times, we can write, starting from Eq. 3 the equa-
tion for each auxiliary function Θx. In particular, we can mul-
tiply both sides of Eq. 3 for a and integrate over all classes of
activity. Doing so, we obtain:

dtΘ
x = −µxΘx + λxm

pΘx

∫
da
aNx

a

Nx
+ (1− p)

∑
y 6=x

Nx

N −Ny
Θy

∫
da
aNx

a

Nx

 . (5)

where we have multiply and divided the third term forNx. We
can now define Fx(a) =

Nxa
Nx as the distribution of activities

in the category x, and thus
∫
da

aNxa
Nx =

∫
daaFx(a) = 〈a〉x

is the average activity in the category. Finally, we let’s define
cx,y = Nx

N−Ny which is acts as the mixing probability between
categorie. In these settings we get:

dtΘ
x = −µxΘx + λxm〈a〉x

pΘx + (1− p)
∑
y 6=x

cx,yΘy

 .
(6)

Thus we have a system of differential equations made of 2Q
equations. In particular, we have two equations for each x in

the form:

dtI
x = −µxIx + λxm

pΘx + (1− p)
∑
y 6=x

cx,yΘy


= gx.

dtΘ
x = −µxΘx + λxm〈a〉x

pΘx + (1− p)
∑
y 6=x

cx,yΘy


= hx. (7)

The conditions for the spreading can be identified by studying
the eigenvalues of the Jacobian matrix of such system. The
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Jacobian can be written as follows:

J =



∂g1

∂I1
∂g1

∂I2 . . . ∂g1

∂IQ
∂g1

∂Θ1
∂g1

∂Θ2 . . . ∂g1

∂ΘQ
∂g2

∂I1
∂g2

∂I2 . . . ∂g2

∂IQ
∂g2

∂Θ1
∂g2

∂Θ2 . . . ∂g2

∂ΘQ

...
...

. . .
...

...
...

. . .
...

∂gQ

∂I1
∂gQ

∂I2 . . . ∂gQ

∂IQ
∂gQ

∂Θ1
∂gQ

∂Θ2 . . . ∂gQ

∂ΘQ
∂h1

∂I1
∂h1

∂I2 . . . ∂h1

∂IQ
∂h1

∂Θ1
∂h1

∂Θ2 . . . ∂h1

∂ΘQ
∂h2

∂I1
∂h2

∂I2 . . . ∂h2

∂IQ
∂h2

∂Θ1
∂h2

∂Θ2 . . . ∂h2

∂ΘQ

...
...

. . .
...

...
...

. . .
...

∂hQ

∂I1
∂hQ

∂I2 . . . ∂hQ

∂IQ
∂hQ

∂Θ1
∂hQ

∂Θ2 . . . ∂hQ

∂ΘQ


(8)

Substituting the general terms with the actual partial deriva-
tives we get:

J =



−µ1 0 . . . 0 pλ1m (1− p)λ1mc1,2 . . . (1− p)λ1mc1,Q
0 −µ2 . . . 0 (1− p)λ2mc2,1 pλ2m . . . (1− p)λ2mc2,Q
...

...
. . .

...
...

...
. . .

...
0 0 . . . −µQ (1− p)λ2mcQ,1 (1− p)λ2mcQ,2 . . . pλQm
0 0 . . . 0 −µ1 + pβ1 (1− p)β1c1,2 . . . (1− p)β1c1,Q
0 0 . . . 0 (1− p)β2c2,1 −µ2 + pβ2 . . . (1− p)β2c2,Q
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 (1− p)βQcQ,1 (1− p)β2cQ,2 . . . −µQ + pβQ


(9)

where we defined βx = m〈a〉xλx. It is important to notice
the peculiarities of the Jacobian. The first Q×Q block made
of the partial derivatives of the gx functions in the various Ix

is a diagonal block that features the recovery rates of each
category. The second block on the bottom left side is a Q×Q
block of all zeros. Indeed the variables Ix do not appear in the
hx equations. The adjacent block on the right, features in the
diagonal the same function −µx + pβx. Due these properties,
Q eigenvalues are negative and equal to the negative of each
recovery rate. The largest eigenvalue instead can be written as

Λmax = −
∑
x

µx + p
∑
x

βx + Ξ (10)

where Ξ is an algebraic term function of all the βx, µx and
cx,y . We focus on Λmax because the virus will be able to
spread if and only if the largest eigenvalue is larger than zero.
From this observation we obtain the conditions spreading:

R0 =
p
∑
x βx + Ξ∑
x µx

> 1 (11)

whereR0 is the reproductive number defined as the number of
infected nodes generated by an initial seed in a fully suscepti-
ble population. It is important to mention that for any number
of categories Ξ has an analytical expression. However, since
it derives from the characteristic equation of the Jacobian ma-
trix, Ξ gets more and more complicated as the dimensionality

of the matrix increases. Generally speaking for Q categories
Ξ is a polynomial of order Q in all variables.

Q=1

In case of single category the expression of R0 becomes:

R0 =
β

µ
(12)

In fact, in this limit p = 1 and the Jacobian matrix reduces to

J =

[
−µ 0
0 −µ+ β

]
(13)

The two eigenvalues are −µ and −µ + β. Thus the disease
will be able to spread only if β > µ.

Q=2

In the case of two categories,Q = 2, the Jacobian becomes:

J =


−µ1 0 pλ1m (1− p)λ1mc1,2

0 −µ2 (1− p)λ2mc2,1 pλ2m
0 0 −µ1 + pβ1 (1− p)β1c1,2
0 0 (1− p)β2c2,1 −µ2 + pβ2

 (14)

In these settings we have:
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Ξ2 = (µ1 − µ2)2 + p2(β1 − β2)2 + 2p(µ2 − µ1)(β1 − β2) + 4β1β2c1,2c2,1(p− 1)2 (15)

It is important to notice how with two categories, indepen- dently of their sizes c1,2 = c2,1 = 1. In fact, the two sizes are
constrained by N = N1 +N2. Thus we have:

c1,2 =
N1

N −N2
=

N1

N −N +N1
= c2,1 =

N2

N −N1
=

N2

N −N +N2
= 1 (16)

The expression of Ξ reduces to:

Ξ2 = (µ1 − µ2)2 + p2(β1 + β2)2 + 2p(µ2 − µ1)(β1 − β2) + 4β1β2(1− 2p) (17)

Q > 2

As mentioned above, in the most general case of Q cate-
gories, the expression of Ξ, becomes quite complex. How-
ever, its expression is set unequivocally by the characteristic
equation of the Jacobian matrix and can be easily obtained
with any programming language that allows symbolic com-
putations such as Mathematica. The problem can be signifi-
cantly simplified in case some of the variables describing the
system are set. For example in the case of Q = 3 one might
wonder what is the critical value of λ1 in a system in which
βy (with y = [2, 3]) and µy with (y = [1, 2, 3]) are set. In
these settings, as shown later on, it is extremely easy to com-
pute the largest eigenvalue of the Jacobian for the particular
system under consideration as function of λ1.

τ > 1

We now turn the attention to the second type of virus that
is able to access not only the connections establish at time t
but also those in previous τ time steps. In order to charac-
terize the conditions for the spreading in this case, let us first
understand how many people del virus will be able to reach
from each node of activity a. This number is equal to the
out-degree of those nodes. In the case considered in the pre-
vious sections τ = 1, thus the virus was able to reach only the
nodes contacted by each active and infected node within the
time-step t. By construction, the out-degree of such nodes is
kout(a) = ma, since their are active with probability a and
when active they create m random connections. What about
for τ = 2?Active nodes at time t might either have m con-
nections or 2m. The first group describes nodes that were not
active at time t − 1 but they were active at time t. The sec-
ond group instead describe nodes that were active in both time

steps. Thus:

kout(a) = (1− a)am+ 2ma2 = m(a+ a2). (18)

In fact, nodes of activity a are not active with probability 1−a
and are active two times in a row with probability a2 (since
the events are independent). The same reasoning applies for
τ = 3. Here we could have three groups having either degree
m, 2m, and 3m. As before, the first group describes nodes
that were not active at time t − 2 and t − 1 but they were
active at time t. The second group instead accounts for all the
nodes that were active two times. Finally the third those that
were active three times. Thus we get:

kout(a) = ma(1−a)2 +4ma2(1−a)+3ma3 = m(a+2a2)
(19)

In the case τ = 4 instead we have:

kout(a) = ma(1− a)3 + 6ma2(1− a)2 + (20)
+ 9ma3(1− a) + 4ma4

= m(a+ 3a2)

It is clear that the structure of the out-degree for a general τ
can be written as:

kout(a) = m
[
a+ (τ − 1)a2

]
. (21)

Within a mean-field approximation, we can approximate the
process assuming that the virus will try to infected kout(a)
other nodes as for the case τ = 1. This is an approximation
because each active node, at time t, as a quenched list of con-
tacts, those established in the time-steps before. The node will
not re-draw them ex novo as in the case τ = 1. Thus, we can
expect the approximation to be closer to the actual process for
small values of τ . Within such approach, the structure of the
equation is the same as those above, the only different is in the
βs since we will have m〈a〉x → m

[
〈a〉x + (τ − 1)〈a〉2x

]
.
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FEATURES OF THE PHASE SPACE FOR Q = 2

Let’s first consider the case in which µ1 = µ2 = µ. The
expression of R0 reduces to:

R0 =
p(β1 + β2) +

√
p2(β1 + β2)2 + 4β1β2(1− 2p)

2µ
(22)

In the limit p = 0, nodes in each category will connect just
with nodes in the other. The expression of R0 becomes:
R0 =

√
β1β2/µ. In the opposite limit, p = 1, nodes in the

two categories are separated. Thus we have two independent
conditions that have the same mathematical form we encoun-
tered forQ = 1. In fact, we haveR1

0 = β1/µ andR2
0 = β2/µ.

The virus will be able to spread in the system in case either of
the Rx0 are larger than one. Of course, in case both are larger
than one each group will experience the virus. What happens
in case 0 < p < 1? It is interesting to notice how the value of
R0 for a general p is bounded by the Rx0 of the two categories
taken in isolation: minxR

x
0 ≤ R0(p) ≤ maxxR

x
0 . Before the

mathematical proof, let us try to develop the intuition behind.
Suppose that β1 > β2. Any value of p < 1, will reduce the
spreading power of nodes in the first category. In fact, nodes
in category one will be connected to some nodes in category

two that are less gullible, or less active, or create a smaller
number of connection (remember that βx = m〈a〉xλx). Con-
versely, nodes in category two, will get in contact with nodes
that increase the spreading potential of the virus. In order to
prove this, let us consider the case β1 > β2. We have to show
how R1

0 > R0(p) and R2
0 < R0(p). Let us consider the first

condition:

β1

µ
>
p(β1 + β2) +

√
p2(β1 + β2)2 + 4β1β2(1− 2p)

2µ
,

(23)
which is equivalent to:

β1(2− p)− pβ2 >
√
p2(β1 + β2)2 + 4β1β2(1− 2p) (24)

This condition is respected in case β1(2 − p) − pβ2 > 0,
p2(β1 +β2)2 +4β1β2(1−2p) > 0 and (β1(2−p)−pβ2)2 >
p2(β1 + β2)2 + 4β1β2(1 − 2p). The first condition implies
β1 >

pβ2

2−p , which is always true since β1 > β2 was the ini-
tial assumption. Furthermore, it is easy to show that equation
p2(β1 + β2)2 + 4β1β2(1 − 2p) = 0 as no solution in p, thus
the condition is always respected. Finally, the third condition
implies

4β2
1 + p2β2

1 − 4β2
1p+ p2β2

2 − 2p(2− p)β1β2 > p2β2
1 + p2β2 + 2p2β1β2 + 4β1β2 − 8pβ1β2 (25)

that reduces to β1 > β2. The three conditions prove Eq. 23
for all p. We have now to prove

β2

µ
<
p(β1 + β2) +

√
p2(β1 + β2)2 + 4β1β2(1− 2p)

2µ
,

(26)
which is equivalent to:

β2(2− p)− pβ1 <
√
p2(β1 + β2)2 + 4β1β2(1− 2p) (27)

This condition is respected in region in which β2(2 − p) −
pβ1 ≥ 0, (β2(2−p)−pβ1)2 < p2(β1 +β2)2 +4β1β2(1−2p)
and p2(β1 +β2)2 +4β1β2(1−2p) ≥ 0, β2(2−p)−pβ1 < 0.
The first two conditions are respected when in the region
pβ1

2−p ≤ β2 < β1. The other two instead in the region

β2 <
pβ1

2−p . Overall, Eq. 26 is valid in the union of these two
that implies β2 < β1 which is exactly the initial assumption.

Let’s consider now the general case in which also the two
recovery rates are different. In the limit p = 0, we have

R0 =

√
(µ1−µ2)2−4β1β2

µ1+µ2
. In the opposite limit instead, p = 1,

the two categories are independent thus we have two condi-
tions as before: R1

0 = β1/µ1 and R2
0 = β2/µ2. It is inter-

esting to notice how in case the two recovery rates are not the
same, the phase space of the process becomes significantly
more complex. In fact, differences in the rate at which nodes
recovers might create interesting non-linear behaviors. In par-
ticular, consider a scenario in which the first category features
a larger β1 and µ1 respect to the second. Thus, such nodes are
more prone to infection but recover faster. In case p < 1, the
coupling between the two categories might boost the spread-
ing of the virus, since the node in category one are able to
infect those in two which, although less prone to the disease
stay infected for longer. For a given configuration of param-
eters (i.e. setting βs and µs) we can analytically determine
the value of p above which this phenomenon is observed. In
particular, let’s assume that β1/µ1 < β2/µ2. Next, we need
to compute the value of p (if any), for which β2/µ2 < R0(p).
This implies:

β2

µ2
<
p(β1 + β2) + Ξ

µ1 + µ2
(28)

that can be written as:

β2(µ1 + µ2)− µ2p(β1 + β2) < µ2

√
(µ1 − µ2)2 + p2(β1 + β2)2 + 2p(µ2 + µ1)(β1 − β2) + 4β1β2(1− 2p) (29)
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It is important to notice how this inequality is at the first order
in p. Indeed, all second order terms cancel out. The value of p
that verifies the above inequality lays in the union of two sys-
tems of inequalities: i)β2(µ1 + µ2)− µ2p(β1 + β2) < 0 and
the quantity inside the square root is larger equal than zero,
ii) β2(µ1 + µ2) − µ2p(β1 + β2) > 0, and (β2(µ1 + µ2) −
µ2p(β1 + β2))2 < µ2

2Ξ2. Extensive numerical computations

show that the values inside the square roots are always posi-
tive. Furthermore, the first condition in the first system result
in values of p always larger than one. Thus, the first system
does not provide any physical (p < 1) condition. Conversely,
the first condition in the second system implies p < 1 while
the second:

p > p∗ =
β2

2(µ2 + µ1)2 − µ2
2(µ1 − µ2)2 − 4β1β2µ

2
2

2µ2β2(µ2 + µ1)(β1 + β2) + 2µ2
2(µ2 − µ1)(β1 − β2)− 8β1β2µ2

2

. (30)

Thus, this is the only physical condition necessary to observe
a reproductive number larger than in each category in isola-

tion. Clearly, in the case β2/µ2 < β1/µ1 the condition above
becomes:

p > p∗ =
β2

1(µ2 + µ1)2 − µ2
1(µ1 − µ2)2 − 4β1β2µ

2
1

2µ1β1(µ2 + µ1)(β1 + β2) + 2µ2
1(µ2 − µ1)(β1 − β2)− 8β1β2µ2

1

. (31)
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FIG. 4. R0 as function of p. The shaded area describe the region
in which minx βx/µx ≤ R0 ≤ maxx βx/µx. The vertical line
describe the value of p∗ from conditions Eq. 30 and Eq. 31. In panels
A-B we set µ1 = 10−2, µ2 = 5×10−3,m = 4, λ1 = 0.9,λ2 = 0.5
(A) and λ2 = 0.2 (B). In panels C-D we set µ1 = 5 × 10−3, µ2 =
3× 10−3, m = 4, λ1 = 0.9,λ2 = 0.6 (C) and λ2 = 0.4 (D).

In Figure 4 we verify the above condition. In particular, we set
the values of βx and µx and plot R0 from Eq. 11 as function
of p. In particular, we consider that nodes are assigned to
the categories randomly. The shaded area is the region where
minx βx/µx ≤ R0 ≤ maxx βx/µx. The vertical line show
the value of p∗ determined from the condition derived above.
It is clear how for a given setting, there might be a value of p
above which the reproductive number gets indeed larger than
the the Rx0 of each category in isolation.

It is important to stress how the region of the phase space
in which we observe this phenomenon is generally speaking
quite limited. In fact, it might happen only in case the category
with the larger recovery rates has also the larger gullibility. In
Figure 5 we show as contour plots the region of parameters
where the reproductive number of the system is larger than
that correspondent value in the two categories in isolation. In
particular, we set λ1 = 0.9, λ2 = 0.8 (A), λ2 = 0.6 (B),
λ2 = 0.4 (C), λ2 = 0.2 (D) and show as function of µ1 and
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FIG. 5. We show as function of µ1 and µ2 the region of parameters
in which the reproductive number of system is larger than the corre-
spondent values computed in each category in isolation. The colors
refer to the value of p (calculated from Eq. 30 and Eq. 31) above
which this phenomenon is observed. We set λ1 = 0.9, λ2 = 0.8
(A), λ2 = 0.6 (B), λ2 = 0.4 (C), λ2 = 0.2 (D)

µ2 the value of p∗. It is clear this region increases as the dif-
ference between the two gullibilities increases. It is important
to notice how the expression for p∗ is perfectly in line with the
case in which µ1 = µ2. Indeed, in this limit we get p∗ > 1
which implies, as expected, that the necessary condition to
have a reproductive number larger than in each category in
isolation is to have different recovery rates.

NUMERICAL SIMULATIONS

In this section we will present the sensitivity analysis to
the model’s parameters. We will first consider two categories
(Q = 2). As shown in the main text, we adopted two main ap-
proaches to assign node to categories. The first is at random,
the second is instead in decreasing order to activity. In partic-
ular, we order activity in decreasing order and then assign the
first gN nodes to the first category and the remaining to the
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FIG. 6. Lifetime of the SIS process (A-C) and contour plot of R0

(D-F). In A-B-D-E nodes are randomly assigned to two categories,
in C-F instead in decreasing order of activity. We set p = 0.9 (A-D),
p = 0.4 (B-C-E-F). In A-C we fix N = 2×105, m = 4, α = −2.1,
µ1 = µ2 = 10−2, λ2 = 0.3, Y = 0.3, and 0.5% of random
initial seeds. We plot the median and 50% confidence intervals in
102 simulations per point. The solid lines come from Eq. 11, and the
dashed lines are the analytical threshold in case of a single category.
In the contour plot we set µ1 = µ2 = 10−1.

second. Thus 〈a〉1 =
∫ 1

ac
daaF (a) and 〈a〉2 =

∫ ac
ε
daaF (a)

and ac is determined in such a way that the fraction of nodes
in the first class is g. This can be easily done imposing:∫ 1

ac

F (a)da = g. (32)

Since F (a) = 1−α
1−ε1−α a

−α we get:

ac =
[
1− g(1− ε1−α)

] 1
1−α (33)

It is important to notice that in Eq. 11 the expression of 〈a〉x
in the two assignment scenarios is slightly different. In par-
ticular we defined 〈a〉x =

∫
daFx(a)a =

∫
da

Nxa
Nx a. In case

nodes are assigned randomly to the two categories we have
that Fx(a) ∼ F (a) sinceNx

a = Na/g andNx = N/g (where
g is the fraction of node in the general category x in this case).
Thus, 〈a〉x = 〈a〉 for the two categories. In case instead nodes
are assigned in decreasing order of activity 〈a〉x = 〈a〉/g. In
fact, in this limit Nx

a = Na (since nodes are assigned to cate-
gories as function of their activity) but Nx = gN .
In Figure 6, we consider the case of µ1 = µ2 in case of ran-
domly selected nodes for p = 0.9 (A-D) and p = 0.4 (B-E).
We also consider the case of correlation between category and
activity for p = 0.4 (C-F). Respect to Figure 1 of the main
text, we used a different value of λ2 = 0.3. Across the board
the analytical solution match perfectly the numerical estima-
tion of the threshold.
In Figure 7 we consider the general case of different recovery

rates. In particular we consider a different set of values respect
to those in the main text. In particular, we set µ1 = 10−2,
µ2 = 10−1, λ2 = 0.3 and m = 4. In panels A-B-D-E we
consider random assignment of nodes to categories. In C-F
we consider the correlation between activity and category. We
assign to category one to most active nodes. Also, in panels
B-C-E-F we considered p = 0.6 while in panel A-D we set
p = 0.9. Overall, the figure confirms the validity of the the-
oretical approach and highlights one more time the effects of
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FIG. 7. Lifetime of the SIS process (A-C) and contour plot of R0

(D-F). In A-B-D-E nodes are randomly assigned to two categories,
in C-F instead in decreasing order of activity. We set p = 0.9 (A-D),
p = 0.6 (B-C-E-F). In A-C we fix N = 2×105, m = 4, α = −2.1,
µ1 = 10−2, µ2 = 10−1, λ2 = 0.3, Y = 0.3, and 0.5% of random
initial seeds. We plot the median and 50% confidence intervals in
102 simulations per point. The solid lines come from Eq. 11, and the
dashed lines are the analytical threshold in case of a single category.
In the contour plot we set λ1 = 0.51 and λ2 = 0.3.
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FIG. 8. Lifetime of the SIS process (A-C) and contour plot of R0

(D-F). In A-B-D-E nodes are randomly assigned to two categories,
in C-F instead in decreasing order of activity. We set p = 0.9 (A-D),
p = 0.6 (B-C-E-F). In A-C we fix N = 2×105, m = 6, α = −2.1,
µ1 = 10−2, µ2 = 10−1, λ2 = 0.3, Y = 0.3, and 0.5% of random
initial seeds. We plot the median and 50% confidence intervals in
102 simulations per point. The solid lines come from Eq. 11, and the
dashed lines are the analytical threshold in case of a single category.
In the contour plot we set λ1 = 0.34 and λ2 = 0.3.

correlations between category assignment and activity that re-
duce the non-active phase space (see panel F). Furthermore,
it is important to notice how the critical value in case of a
single category with a recovery rate average of the two here
would be λc1 = 2.5 (not shown in the figure) which implies
that the virus would not be able to spread since all the gulli-
bilities should be smaller or equal to 1. This confirms the im-
portance of accounting for the presence of different categories
of users in order to correctly capture the spreading power of
the virus.
In Figure 8 we test the sensitivity to the parameter m. In the

main text as well as in many of the other plots we set m = 4.
Here, we fix instead m = 6 keeping all the other parame-
ters the same as in the Figure 7. The analytical solutions one
more time match the numerical simulations and the contour
plots confirm the picture discussed in the main text and all
the other similar plots. In Figure 9 we test the sensitivity to
the exponent of the activity distribution. In all the other plots
we set α = −2.1, here instead we consider α = −2.5. We
considered a scenario in which the recovery rates of the two
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FIG. 9. Lifetime of the SIS process (A-C) and contour plot of R0

(D-F). In A-B-D-E nodes are randomly assigned to two categories,
in C-F instead in decreasing order of activity. We set p = 0.9 (A-D),
p = 0.6 (B-C-E-F). In A-C we fix N = 2×105, m = 6, α = −2.5,
µ1 = 10−2, µ2 = 10−2, λ2 = 0.4, Y = 0.3, and 0.5% of random
initial seeds. We plot the median and 50% confidence intervals in
102 simulations per point. The solid lines come from Eq. 11, and the
dashed lines are the analytical threshold in case of a single category.
In the contour plot we set λ1 = 0.625 and λ2 = 0.5.

categories is the same, set λ2 = 0.4, m = 6 and consider

two different values of p. As clear from the figure, also in this
case the analytical estimation matches the numerical simula-
tions. Furthermore, it is interesting to notice how, in case of
faster decay of the activity distribution (i.e. smaller value of
the exponent α), the threshold of the correlated case (panel C-
F) is closer to the scenario of a single category (dashed line).
Indeed, the average activity of the more active category gets
closer to the average activity of the whole network.

Q = 3

Here we consider the case of three categories. For sim-
plicity let’s consider nodes are assigned to the categories at
random and that categories have the same size Nx = N/3.
Also, let’s us set the values of βx with x = [2, 3], µx with
x = [1, 2, 3], m = 4, and assume that links are created ran-
domly between categories thus p = 1/3. In particular, if we
set β2 = β3 = 0.3, µ1 = µ2 = µ3 = 0.01, we can use Eq. 9
to obtain the critical value of λ1. In particular, the general
expression of the Jacobian is:

J =


−µ1 0 0 pλ1m (1− p)λ1mc1,2 (1− p)λ1mc1,3

0 −µ2 0 (1− p)λ2mc2,1 pλ2m (1− p)λ2mc2,3
0 0 −µ3 (1− p)λ3mc3,1 (1− p)λ3mc3,2 pλ3m
0 0 0 −µ1 + pβ1 (1− p)β1c1,2 (1− p)β1c1,3
0 0 0 (1− p)β2c2,1 −µ2 + pβ2 (1− p)β2c3,1
0 0 0 (1− p)β3c3,1 (1− p)β2c3,2 −µ3 + pβ3

 (34)

Since the categories have the same size:

cx,y =
Nx

N −Ny
=
N

3

1

N − N
3

=
1

2
(35)

Plugging all the values and solving for λ1 we obtain:

λc1 =
42

55
(36)

In Figure 10 we show the comparison between the analyti-
cal prediction and the numerical simulations which perfectly
matches.
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FIG. 10. We show the lifetime of the SIS process in case of Q = 3
as function of λ1. The vertical line describes the analytical estima-
tion of its critical value. In the simulation we set β2 = β3 = 0.3,
µ1 = µ2 = µ3 = 0.01, N = 3×105, m = 4, α = −2.1, ε = 10−3

and run 102 simulations for each data point. We show the 50% con-
fidence intervals in the shaded area and the median with the dots.
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