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Abstract 

This paper reports a new methodology for the coloring of glazed ceramic tiles consisting of 

the near infrared pulsed laser processing of copper containing oxide coatings prepared by 

magnetron sputtering. As a second approach, the employ for the same purpose of a novel 

laser furnace technique is also described. Changing the laser parameters and using the laser 

furnace to treat the tiles at high temperature during irradiation has resulted in a wide color 

palette. The optical characterization of the modified tiles by UV-Vis spectroscopy has been 

complemented with their microstructural and compositional analysis by Scanning Electron 

Microscopy (SEM), Transmission Electron Microscopy (TEM) and Time of Flight Secondary 

Ion Mass Spectrometry. The chemical composition of the surface was obtained by X-ray 

photoemission (XPS) and its structure determined by XRD. The chemical resistance was 

characterized by several tests following the norm ISO 10545-13. Color changes have been 

attributed to surface microstructural and chemical transformations that have been accounted 

for by simple models involving different ablation, melting, diffusion and 

segregation/agglomeration phenomena depending on the laser treatments employed.   

 

Introduction 

The fabrication of colored tiles is a key process for the production of decorative products of 

high commercial demand of the ceramic industry. 1-3 Typical coloration methods in metal-

decorated ceramic tiles are based on surface plasmon resonance effects, which entail the 

promotion of solid state reactions producing the reshaping of metal nanoparticles or chemical 

changes in the metal phase. 4-7 Successful examples of this approach using thermal annealing 

procedures have been reported in the literature and applied in the industry. Improvements on 

this methodology have pursuit decreasing the temperature to obtain the pigments,8 to use 

other strategies based on the ink-jet printing technology or the employ of nano or sub-micron 

pigments and “ceramic inks”. 9 Laser processing at room temperature (i.e. avoiding costly 
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thermal processes) have been also proposed as a suitable methodology to modify the surface 

aspect of ceramic materials. 10, 11 A typical procedure consists of the lithographic ablation of 

metal films according to specific designs. 12, 13 Laser induced solid-state reactions between a 

coating layer and a ceramic substrate has been also proposed as a way of inducing tile 

coloration. For example, we have recently reported a hybrid methodology that combines the 

physical vapor evaporation of copper films and their treatment with a near infrared laser 

(NIL) to induce a specific coloring of tiles. 14  

A common shortcoming by the NIL treatment of metal films is the reflection of laser beams 

by mirror-like surfaces. This problem was avoided in our previous work utilizing as 

dispersive centers nanoparticulated films prepared by electron beam evaporation at oblique 

angles.15 In the present work we explore a new coloring methodology that entails the NIL 

treatment of ceramic tiles covered by SiO2-copper oxide coatings deposited by magnetron 

sputtering (MS). MS is an effective thin film deposition technique widely used in the industry 

to cover large areas (e.g., in flat glass manufacturing) and that, therefore, can be quite 

straightforward for ceramic tiles.16 Unlike the small amount of metal utilized in our previous 

work to avoid laser reflection effects, the present procedure relying on non-reflective coatings 

is not limited by the thickness of the deposited copper oxide. To enhance the stability of the 

coating and to decrease the costs associated to this relatively expensive metal, copper has 

been diluted within a matrix of SiO2, an oxide easily miscible with other ceramic 

components, particularly in tile substrates with a ZrSiO4 composition as in the present study. 

This affinity also ensures similar thermal expansion coefficients and eludes the necessity of 

an additional interface or buffer layer. MS deposition of transition metal oxides diluted in 

SiO2 matrix thin films has been previously used for the fabrication of colored ophthalmic 

coatings.17 Herein, to tailor the final color aspect of the tiles, we firstly essay NIL treatment at 

room temperature of these Cu-Si mixed oxide layers deposited on the ceramic tiles. In a 

second approach we used a continuous CO2 laser incorporated in a laser furnace set-up.18, 19 

In comparison with conventional thermal procedures for processing ceramic, bricks and 

similar materials, this laser-furnace method is advantageous because processing temperatures 

can be relatively lower and can provide alternative finishing effects.20 Overall, the wide range 

of colors obtained in this work proves the feasibility of using laser induced solid-sate 

reactions between oxide layers and tile substrates for endowing new aesthetic effects to 

ceramic materials. 
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Experimental             

Copper dissolved in silica glass were prepared by reactive MS co-deposition. The 

experimental set-up (see Figure 1) consisted of a vacuum chamber equipped with two 

magnetron sputtering sources, for silicon (p-type, Kurt Lesker 99.99%) and for copper (Kurt 

Lesker 99.95%), with diameters of 3 and 2 inches respectively, a rotatable sample holder (4 

inches of diameter), a quartz crystal monitor to control the deposition rates and a couple of 

mass flow controllers to adjust the O2/Ar mixture of the plasma discharge. 

 

Si and Cu magnetron sources were operated with two pulsed DC power supplies (AE 

Pinnacle Plus+) applying a power of 300 W and 50 W, respectively (frequency 120 KHz, 

reverse time 2.5 µs). The base pressure of the system was 2.0 10-7 mbar. The process gas 

consisted of a mixture of Ar (15 sccm) and O2 (15 sccm) at a pressure of 5.0 10-3 mbar. To 

ensure thickness and composition homogeneity over the whole substrate area, the two MS 

sources were directed towards the center of a rotating holder (tilted geometry, 60º vs. 

normal). The rotation speed of the sample holder was fixed at 30 rpm, and the distance 

between the substrates and the MS sources was 15 cm. The samples were prepared at room 

temperature although, during film growth, substrates can reach up to 50 ºC due to 

ion/electron impingement. Thickness of deposited copper dissolved in silica films was 

controlled during deposition by a quartz crystal monitor situated at normal geometry with 

respect to the targets. The measured deposition rate was 4.5 nm/min, and the film thickness 

500 nm. The thin films were flat and homogeneous and consisted of a homogeneous 

distribution of copper oxide within a SiO2 matrix. These layers did not present a mirror like 

behavior and were therefore well suited for treatment with NIL beams. 

 

Reference samples were prepared on quartz and silicon flat substrates. Pieces of quartz plates 

were used for the transmission UV-vis characterization of the mixed oxide coatings, while Si 

(100) wafers were used for the observation of the “as deposited” thin films by scanning 

electron microscopy (SEM). Similar mixed oxide thin films were simultaneously deposited 

on commercial tile substrates with a glaze composition based on ZrSiO4 (confirmed by the 

measurements of XRD shown in the Supporting information S1)  provided by TORRECID 

Group, S. L. with size 40 x 40 mm2.  
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The coated samples were treated with either a diode pumped solid-state nanosecond 

Nd:YVO4 laser (Powerline E20, Rofin) or a diode pumped fiber Yb:YAG laser (Easy Mark 

20, Jeanologia), both emitting at a wavelength of 1064 nm.14 The two lasers were provided 

with a galvanometer beam steering system and a flat-field lens of 160 mm focal distance 

giving a spot size of ca. 26 microns, respectively. Lasers were operated in the pulsed mode at 

repetition rates varying from 0 to 150 kHz, output power values from 1.10 to 20 W and pulse 

widths from 50 to 220 ns. Irradiation experiments were carried out in air and under vacuum 

conditions. Although various parameters were changed in a thorough parametric analysis of 

laser operation (e.g., power, pulse duty cycle, air and vacuum conditions, among others), the 

irradiance varying from 0.001 to 15 MW/cm-2 was taken as the relevant magnitude to account 

for the observed coloration effects. Samples were moved during the treatment at a rate of 

0.10 mm/s, while the laser beam was scanned perpendicular to the movement direction at a 

rate of 500 mm/s. Table 1 summarizes the different conditions utilized for the preparation of 

tile samples M0 to M3 taken as representative of the color changes induced by NIL treatment. 

 

In another set of experiments, laser surface irradiation was carried out in a Laser-Furnace 

system consisting of a continuous ceramic roller furnace, where a continuous wave (cw) CO2 

laser (Rofin DC025 SLAB CO2), emitting at 10.6 μm wavelength with a maximum nominal 

output power of 2 kW,  reached the sample through an upper slot 18. In the laser-furnace 

system, samples moved at constant rate into the continuous roller furnace in an orthogonal 

direction to the laser line focus. The temperature in the roller furnace was adjusted to 893 K, 

a value that was deemed sufficient to avoid crack formation. Sample M4 was prepared by 

moving the coated tiles through the continuous roller furnace at a displacement rate of 7000 

mm h-1 in the absence of any laser irradiation. Sample M5 was prepared under laser 

irradiation by focusing the beam onto the sample surface through an optical galvanometer 

head that transformed the circular cross-section beam into a line of approx. 0.8 mm in 

thickness (laser spot diameter) and a width of 620 mm. The beam scanning rate was 27 mm s-

1and the laser emission power 500 W (c.f., Table 1). A table including all NIL and CO2 laser 

parameters is presented as Supporting Information S2. 

 

UV-Vis-NIR (near infrared) Spectroscopy (Pelkin-Elmer Lambda 750 S) in transmission 

mode was used for the characterization of quartz plates, while the reflection mode was used 

to assess the optical behavior of ceramic tile samples before and after laser irradiation. For 
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these measurements, samples were placed in the front window of the integration sphere of the 

spectrometer. Color coordinates (i.e., Hunter´s parameters) were deduced from these spectra 

using the usual transformation procedure. 21 

Microstructural characterization was carried out by means of a Talos FEI transmission 

electron microscope equipment working at 200 KV both for TEM images and the STEM 

measurements and composition mappings. Scanning electron microscopy (SEM) analysis of 

the samples was carried out in a Hitachi S4800 field emission microscope. 

Depth profiles of the differently treated tile samples were obtained in a Time of Flight 

Secondary Ions Mass Spectrometer (TOF-SIMS) using an instrument from Ion-ToF GmbH, 

Germany. The samples were bombarded with a pulsed bismuth ion beam. The generated 

secondary ions were extracted by applying a 10 kV voltage and their time of flight from 

sample to detector was measured using a reflection mass spectrometer. Typical analysis 

conditions entailed a 25 keV pulsed Bi+ ion beam rastered over a 500x500 mm2 area and 

impinging at 45º incidence. An electron flood gun for charge compensation was used during 

the measurements. Peak intensities were normalized to the total ion intensity. 

X-ray photoelectron spectra were recorded in the pass energy mode in a PHOIBOS 100DLD 

(SPECS) using the Mg Kα line as excitation source. The energy scale of the spectra was 

referred to the C1s line at 284.5 eV for the adventitious carbon contaminating the surface of 

the samples. Cu/Si atomic ratios were determined from the areas of the Cu2p and Si2p 

photoemission lines normalized by their corresponding sensitivity factors. 

X-ray diffraction (XRD) analysis was carried out in a Siemens D5000 diffractometer working 

in grazing configuration at 5º. Data supported the amorphous character of the deposited upper 

layers before and after laser treatment. The tile substrate was examined with the same 

apparatus working in a Bragg-Brentano configuration to probe not only its surface layers but 

the whole thickness of the glaze.  

Determination of the chemical resistance was done using immersion tests on acids and basis 

with different concentrations and times of treatment according to the norm ISO 10545-13.  

 

Results and Discussion  

Copper dissolved in silica glass and precursor ceramic samples 

The reference copper dissolved in silica glass layers, deposited on quartz, depicted a well-

defined greenish color that can be accounted for by the formation of a solid solution of 

copper cations within a SiO2 network 17. The UV-vis spectrum of this layer reported in Figure 

2 presents a low and broad absorption band centered around 650 nm which is superimposed 
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on the typical interference oscillatory shape of a transparent thin film of several hundred nm. 

This band can be attributed to the absorption of copper cations in copper oxide enriched 

clusters dispersed within the SiO2 matrix.22 Its position suggests that the majority of copper is 

in the form of Cu2+ species,4 an assignment that coincides with X-ray absorption results 

reported in a previous work 17. The SEM analysis of this reference sample confirmed the 

formation of a homogenous and dense thin film as shown in the left side on the inset in 

Figure 2. The cross-section micrograph in this inset was obtained by TEM and shows that the 

thickness of this film was approximately 500 nm. Moreover, the higher magnification 

micrograph shown in the inset of Figure 2 shows that clusters enriched in copper oxide, 

characterized in the image by a higher intensity of brightness, have a size of around 5-10 nm. 

 

The as prepared coated tile samples (i.e., sample M0 in Table 1) depicted an intense and 

broad absorption band with a minimum between 650-700 nm (Figure 3a)) that, in agreement 

with the previous assignment in the reference quartz sample, can be associated to a broad 

dispersion of copper oxide clusters distributed within a SiO2 matrix.22 As a result, sample M0 

presented a dark green color similar to that of the coating deposited on quartz (see Hunter´s 

parameters in Table 1). SEM characterization of this sample (Figure 3b)-left) revealed a 

similar topography where copper enriched clusters with a size of ca. 30 nm can be 

identified.17 A first evaluation of the TOF-SIMS depth profiles of sample M0 (Figure 3c)-top) 

confirms that a homogeneous in depth Cu-Si oxide layer was covering the tile substrate. This 

depth profile provided a first calibration of the sputtering etching rate of the coating and 

substrate systems that was taken as a time-scale reference for the analysis of the laser treated 

samples (i.e., the 500 nm thickness of the Cu-SiO2 layers corresponds to approximately 900 

seconds of sputter etching, time at which the Cu+ TOF-SIMS signal drops abruptly and the 

Zr+ signal rises). The complete coverage of the tile substrate by the copper-silicon oxide 

coating was confirmed by XPS: Cu and Si signals with no observable Zr peak characterized 

the spectrum of this sample where a Si/Cu atomic ratio of 27 was obtained from the area of 

the Cu2p and Si2p peaks (c.f., Table 1). Analysis of the spectral zones of copper in Figure 4 

also revealed that copper is in the form of Cu2+ 14 as proven by the shape of the Cu2p and 

CuLMM bands and a value of the measured Auger parameter of 1850.6 eV (for a more 

detailed discussion of Auger parameter concept and its calculation, see ref 23 and the 

supporting information S3).  
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Laser irradiation of coated tiles 

 

Laser irradiation of coated tile samples rendered different colors and Hunter´s parameters as 

summarized in Table 1, where the laser irradiance values used to obtain the most intense and 

homogeneous coloration are also included (see Table S2 in supporting information for a 

complete account of the laser parameters used). The processing methods herewith presented 

are scalable and highly reliable, as they are based on commercial galvanometer scanning 

mirror technology, widely available and industrially mature. These scanning devices enable 

full control of laser energy coupling onto surfaces, as well as scanning of large areas. XPS, 

UV-vis, SEM and SIMS analysis of the M1-M5 samples was used to determine the surface 

changes experienced by the laser treated samples. These changes will be discussed in terms 

of different phenomena such as ablation, melting or surface segregation of copper clusters or 

copper partial coverage by melted and segregated material from the tile substrate. Most 

important for potential applications of these laser treatments is their high chemical stability as 

proved with standardized tests with acids (see supporting information S4).  

 

Irradiation at room temperature with pulsed NILs was carried out varying different 

parameters. The obtained effects will be illustrated here with results corresponding to three 

different values of irradiance at a temperature of 298 K (i.e., corresponding to samples M1, 

M2 and M3 in Table 1). The interaction of this type of pulsed laser beams with oxide 

materials are known to induce heating, melting and diffusion of species, as well as ablation 

and redeposition processes that lead to changes in the composition and microstructure of the 

outer layers. As a result of this series of phenomena the modified layers form a continuum 

with the glaze substrate, avoiding any adhesion or delamination problem.  The existence of 

ablation processes during the laser treatments at the high irradiance values utilized for 

samples M1 and M2 was supported by the observation of plasma plumes 24 that were 

particularly intense when performing the experiments in vacuum. The UV-vis-NIR spectrum 

in Figure 3 corresponding to sample M1, prepared at the highest irradiance conditions, is 

characterized by a high reflectance in the NIR region, a continuous decreasing reflectance in 

the visible region and a narrow absorption band at 595 nm. The relatively small reflectance at 

low wavelengths must be at the origin of the grey color of this sample and of the metallic 

lustre that could be observed when looking to it at grazing angles.  The narrow feature in the 

spectrum can be attributed to surface plasmon resonance (SPR) absorption by Cu0 

nanoparticles 25 likely covered by an oxide outer layer.4 A similar coloration effect induced 
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by laser treatment was found in previous work using a metal nanoparticulate film as precursor 

layer.14 The aspect changes experienced by sample M1 were accompanied by important 

modifications in its surface microstructure.26 The SEM micrograph in Figure 3b)-right reveals 

a rather rough surface where a dendritic enrichment in higher atomic mass atoms (bright 

SEM areas) can be observed. Meanwhile, the TOF-SIMS analysis of this sample (Figure 3c)-

bottom) shows that the laser treatment had blurred the layer structure characteristic of sample 

M0 and transformed it into a rather homogeneous in-depth distribution of Zr (from the 

substrate) and Si species. In addition, this profile shows that copper nanoparticles are 

confined at the topmost surface layers of samples. All these changes support a considerable 

ablation removal of copper (and likely silicon) from the Cu-SiO2 film, a process that would 

be accompanied by the redistribution of the remaining copper clusters within a mixed ZrO2 

(from the substrate) and SiO2 (from substrate and/or coating) matrix. Under these conditions 

the observed chemical reduction of copper must be attributed to the high local temperatures 

and the ablation loss of oxygen induced during irradiation. It is noteworthy that similar 

results were obtained when performing the experiment either in air or in vacuum, which 

supported the fact that air does not prevent the reduction of the copper remaining in the upper 

surface layers of the tiles. 

 

The Si/Cu ratio of 5.3 determined by XPS for this sample (Figure 4 and Table 1) is smaller 

than that found in sample M0 (i.e. Si/Cu ratio of 27), in agreement with the evidence 

provided by TOF-SIMS of a copper enriched outer layer. Furthermore, the shape of the Cu2p 

and CuLMM spectra and the Auger parameter values determined for sample M1 (see 

supporting information S3) confirm that copper at the surface is in the form of Cu0 (1851.2 

eV), Cu+ (1847.2 eV) and Cu2+ (1850.8 eV) species, whereby the observed enrichment in Cu+ 

must result from metallic copper particles exposed to the air and/or partially covered or in 

contact with SiO2/ZrO2. 
23  

 

Sample M2 obtained at intermediate laser irradiances presented a grey color and a highly 

reflective surface, particularly in the NIR region. The SEM micrograph of this sample in 

Figure 5b)-left reveals an inhomogeneous surface where agglomerates with two size 

distributions of 100 nm and 30-50 nm can be identified. Meanwhile, the TOF-SIMS in-depth 

analysis in Figure 5c)-top shows that copper, distributed through a depth of approximately 

150 nm, is enriched at the surface, its concentration decreasing smoothly in depth. In parallel, 

the Zr signal increases to a maximum when copper presents its minimum (around 130 nm in 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

depth). Meanwhile, silicon appears rather homogenously distributed in depth. This surface 

profile supports the partial ablation removal of the Cu-SiO2 thin film and a partial reduction 

of copper similar to that observed in sample M1. However, unlike sample M1, copper does 

not appear confined at the most external surface layers but distributed through a depth of ca. 

130 nm. This depth profile renders a Si/Cu XPS surface ratio of 8.6, while the Cu2p and Cu 

LMM spectra in Figure 4 support that copper at the surface is in the form of Cu+ (1847.6 eV) 

and Cu2+ (1850.2 eV) species with a greater contribution of Cu2+ than in sample M1. These 

XPS results strongly suggest that clusters observed in the SEM image of sample M2 are 

surface oxidized. 

 

Sample M3 was prepared at low laser irradiance. Its UV-vis-NIR spectrum (c.f., Figure 5a)) 

depicts a continuous yet decreasing reflection extending through the visible and NIR spectral 

regions and an absorption edge at around 750 nm responsible for the yellow-orange color of 

this sample. This absorption edge can be associated to the convolution of absorptions due to 

Cu2O (band gap of 2,17 eV) and CuO (band gap of 1,2 eV) 4. The SEM micrograph of this 

sample in Figure 5b)-right reveals a melted surface with holes of approximately 100 nm. This 

microstructure suggests that, at the low irradiance values utilized in this experiment, ablation 

was less important than in samples M1 and M2 and that laser irradiation induced other effects 

such as surface heating, melting and enhanced diffusion of species.  

 

Differences between samples M1/M2 on the one side, and M3 on the other, can be 

rationalized in the following terms. Intense surface interaction above a certain laser irradiance 

threshold, induces vigorous evaporation of SiO2 via suboxide formation.27 

SiO2 � SiO + ½ O2 

In addition, other silicate components within the ceramic glaze may also decompose in a 

similar fashion.27 Such thermodynamically favored vigorous decomposition of silica and 

silicate components may not only contribute to the formation of observable intense plasma 

plumes, but must also result in our case in the observed copper enrichment in the remaining 

substrate surface layers. In addition, the mechanical shock waves associated to plasma 

formation must also affect the final surface morphology due to their interaction with the melt 

below.12, 26, 28 Very likely, this was a critical factor leading to the rough surface morphology, 

typical of ns regime ablation, which is a characteristic of samples M1 and M2. On the other 

hand, the lower irradiance level used in sample M3 should entail a decrease in the ablation 

contribution and an enhancement of melting due to the contribution of other laser irradiation 
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components. The irradiance level is known to cause a direct instant melting at and around the 

laser focal spot, while the pulse repetition rate, in the case of pulsed irradiation, is known to 

produce melting via energy incubation26, 28 (i.e., as the pulse repetition rate  increases, so does 

the melt volume). These phenomena may explain the differences encountered between 

samples M2 and M3, where the increase in pulse repetition rate (from 100 to 150 kHz, see 

Table S2) produces a decrease in energy per pulse (lower irradiance) and an increase in 

energy incubation, both favoring melting over ablation and contributing in sample M3 to 

increase the thermal diffusion and the mixing of species at the interface 28. This view was 

confirmed by the observation in this sample of a smooth melted surface and a rather 

homogeneous in-depth distribution of species as determined by TOF-SIMS. In fact, Figure 

5c)-bottom shows that copper is depleted at the upmost zone of the sample where Si replaces 

it. Then, enrichment of both copper and silicon (this latter smoothly decreasing) occurs up to 

a depth of approximately 400-500 nm, where zirconium starts to replace these two elements. 

This depth profile supports that ablation of the initial copper-silicon oxide layer was 

negligible and that laser irradiation induced the diffusion and partial mixing of the layer and 

substrate elements. Meanwhile, the Cu 2p and Cu LMM XPS spectra in Figure 3 reveals a 

mixture of Cu+ and Cu2+ (1847.2 eV and 1850.6 eV of Auger parameter) species at the 

surface of the sample, in agreement with the previous assignments based on UV-vis 

measurements.  

 

ii.- Laser irradiation within a laser furnace 

 

Sample M4, prepared by annealing the precursor sample in a continuous roller furnace at 893 

K, presents a UV-vis spectrum (Figure 6a)) characterized by an absorption band similar to 

that of sample M0. This renders a light greenish color that suggests the existence of large size 

copper oxide clusters.14 The SEM analysis of this sample confirms that clusters with sizes 

ranging between 50-100 nm are randomly distributed onto a rather flat surface (Figure 6b)-

left). The TOF-SIMS (Figure 6c)) depth profile of this sample reveals a regular and enriched 

distribution of Cu through an approximate depth equivalent to 800 s of sputtering, followed 

by another zone of about 100 s which, characterized by a decreasing Cu profile, indicates a 

certain diffusion of copper within the ZrSiO4 substrate. Also, TOF-SIMS reveals an 

enrichment in silicon at the topmost surface layers. This elemental distribution suggests that 

both thermally induced melting and redistribution of elements occurred during the furnace 

treatment. We assume that furnace heating, followed by slow cooling, induces a surface 
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melting and mixing of components that is accompanied by copper oxide agglomeration in 

clusters larger than those existing in sample M0. The diffusion of silicon (or the in-depth 

diffusion of copper) and the formation of an outer SiO2 enriched thin layer was confirmed by 

a Si/Cu XPS ratio of 71.2 (Table 1). Meanwhile, the spectra in Figure 4 and the determined 

Auger parameters (1848.1 eV and 1851.0 eV, respectively, see supporting information S3) 

confirm that a majority of copper at the surface is in the form of Cu1+ and Cu0, with a small 

Cu2+ contribution as deduced from the shape of the Cu2p peak.  

 

Sample M5 was prepared by annealing the precursor sample in the furnace at 893 K while it 

was simultaneously irradiated with the CO2 laser, as described in ref. 18. This laser works in 

continuous mode and can be used to induce melting and atomic mixing with no significant 

incidence of ablation processes. The absence of ablation could be anticipated here by the very 

low irradiance values provided by this laser beam (see Table 1 and additional parameters in 

the supporting information Table S2).  Sample M5 was highly reflective in the NIR (Figure 

6a)), while its absorption bands in the visible at λ< 650 nm can be associated to absorption 

features of CuO (band gap of 1,2 eV) 4. As a result of these spectral features, this sample 

presented a magenta color. The microstructure and cluster sizes between 50 and 100 nm 

observed by SEM (Figure 6b)-right) are similar to those found in sample M4, although 

particles at the surface adopted geometrical shapes with well-defined facets. The TOF-SIMS 

profile (Figure 6c)) of sample M5 is characterized by a rather homogenous but decreasing 

distribution of copper and zirconium up to a depth larger than 800 nm. This thick zone 

containing copper supports the occurrence of efficient melting and diffusion phenomena 

along the interface between the substrate and the Cu-SiO2 coating layer. Such efficient 

diffusion can be accounted for by the existence of large temperature gradients through the 

depth of the induced melt where a Maragoni type convection and a vigorous liquid agitation 

before solidification through a vertical linear front are to be expected 29-31. 

 

The XPS analysis of this sample reveals a little surface enrichment of Cu with a Si/Cu ratio 

of 18.2 and the absence of Zr at the surface. According to this analysis, copper is in the form 

of Cu2+ species (c.f. Figure 4) as revealed by an Auger parameter of 1850.9 eV.  

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Summary and conclusions 

In this work we have developed a new method of coloring commercial ceramic tiles. 

It involves the MS coating of the tiles with Cu-Si mixed oxides, and the subsequent 

irradiation with NI (1064 nm) and CO2 laser beams under different operating conditions, 

including a recently patented laser furnace apparatus. Appropriate adjustment of the laser 

irradiance and the processing temperature may induce different diffusion, 

melting/solidification, reduction, mixing, redeposition and ablation processes of the copper 

oxide and tile substrate materials. This gives rise to the appearance of grey, orange, magenta 

and dark green colors which are attributed to the prevalence of some of the following 

phenomena: (i) coating ablation accompanied by agglomeration of Cu nanoparticles, (ii) 

melting and mixing between the coating and the ceramic tile substrate, and (iii) efficient 

oxidation to copper oxide in continuous laser furnace experiments.  All the described 

treatment rendered surface terminations of the ceramic tile with good adhesion and chemical 

resistance to acids as demonstrated by standardized tests. The reported panoply of treatments 

illustrates the possibilities of applying laser irradiation to MS deposition of oxide coatings for 

coloring ceramic tile components. The present work reports about the use of copper as 

transition metal cation, but the described procedure is compatible with other metals, which 

would open the way to the generation of a much wider set of colors. 
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Figure 1 MS experimental set-up: (1) silicon MS source, (2) copper MS source, (3) quartz 

crystal microbalance, (4) sample holder, (5) mass flow controllers, (6) pressure gauge, and 

(7) pumping system. 

 

Figure 2 a) UV-vis-NIR transmittance spectra of the reference quartz sample as deposited. 

The inset presents normal SEM (left) and TEM cross section (right) SEM images of this 

precursor layer. Inset in the right side presents a high magnification TEM image of the 

interface between the precursor layer and the ceramic tile. 

 

Figure 3 a) UV-vis-NIR total reflectance spectra of samples M0 and M1 and real 

photographs as insets. The insets show the color images of the tile samples. b) SEM images 

of the M0 (left) and M1 (right) samples. c) TOF-SIMS analysis of the time-evolution of the 

normalized Si+, Cu+ and Zr+ signals in M0 and M1 samples. 

 

Figure 4 Cu2p photoelectron (a) and Cu LMM Auger (b) peaks of the different samples 

analyzed by XPS. The red dot-slash lines are included to signal the characteristic features of 

the marked chemical species (see text). As reference, spectra of a cleaned Cu foil are also 

included. 

 

Figure 5 a) UV-vis-NIR total reflectance spectra of samples M2 and M3 and real 

photographs as inset. The insets show the color images of the treated tiles. b) SEM images of 

the laser treated samples M2 (left) and M3 (right). c) TOF-SIMS analysis of the time-

evolution of the normalized Si+, Cu+ and Zr+ signals in samples M2 and M3. 

 

Figure 6 a) UV-vis-NIR total reflectance spectra of samples M4 and M5 and real 

photographs as insets. The insets show the color images of the treated tiles. b) SEM images of 

the laser treated samples in vacuum M4 (left) and M5 (right). c) TOF-SIMS analysis of the 

time-evolution of the normalized Si+, Cu+ and Zr+ signals in samples M4 and M5. 
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Table I. Summary of laser irradiation and processing conditions, colors obtained, with their 
corresponding Hunter’s parameters, and measured XPS Si/Cu ratios for the studied samples. 
*Power density. 

Sample Temperature 
Irradiance 
(MW/cm-2) 

Color 
Hunter’s parameters 

(L* a* b*) 

Si/Cu 
XPS ratio 

M0 As deposited --- Dark 
Green 

89.3 -6.35 10.5 27.0 

M1 298 K 12.7 Gray  85.3 1.87 3.90 5.3 

M2 298 K 7.02 Gray   89.6 -0.51 6.92 8.6 

M3 298 K 4.72 Orange  80.6 -2.44 27.4 22.1 

M4 
Laser Furnace 
893 K 

--- Greenish 
89.8 -3.66 5.51 

71.2 

M5 
Laser-Furnace 
893 K 

2.31x10-6* Magenta  
55.8 11.1 3.49 

18.2 
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