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Real-time 3D Segmentation and Object Detection based

on a Kinect Sensor

Resumen

La actual aparicion de sensores de bajo coste que combinan informacion de color y profundidad
de la escena como es el sensor Kinect, ha generado grandes oportunidades para el desarrollo de
aplicaciones relacionadas con la vision por computador. Este hecho abre las puertas al avance de su
estudio en el ambito de la robdtica de servicio.

Este proyecto ha sido desarrollado en la Hochschule fiir Tecknik, Wirtschaft und Gestaltung
Konstanz y se centra en la creacion y andlisis de diversos métodos de clasificacion de objetos
cotidianos para su integracion en un robot movil en los que la informacion del entorno es recogida
utilizando el sensor Kinect. Para ello ha sido necesario un estudio de la literatura del estado del arte
en lo que a vision por computador aplicada a robdtica se refiere, asi como de los métodos de
clasificacidon utilizados. Dichos métodos, que son Support Vector Machines y Adaptive Boosting,
utilizan la informacién de color y profundidad proporcionada por el sensor para realizar la
clasificacion.

La idea principal del proyecto es clasificar objetos cotidianos con métodos supervisados que
utilicen la informacién de una base de datos propia creada con el sensor Kinect para crear sus
clasificadores, asi como la creacion o utilizacion de técnicas de tratamiento de informaciéon 2D y 3D
para poder realizar la clasificacion de los objetos observados por el sensor. Ademads, se realiza el
estudio de los resultados temporales y de clasificacidn obtenidos mediante diversas técnicas de
analisis de resultados.

Debido al deseo de integracion en un robot mévil, los métodos y técnicas utilizadas para la
realizacion de los clasificadores han sido cuidadosamente elegidas, con el fin de llevar a cabo dicha
clasificacidon en el periodo mas corto posible para asi permitir al robot tener tiempo suficiente para
realizar otras tareas como la planificacion de movimientos o la adquisicion de informacion a través
de otros sensores.

Los resultados desprendidos de este proyecto permiten diferenciar los clasificadores para poder
elegir el mas adecuado a la hora de realizar su integracion como sistema de vision del robot movil,
teniendo en cuenta el ambito de la clasificacion de objetos cotidianos.
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Introduccidén

1 Introduccion

La robdtica tiene como objetivo la mejora del modo y la calidad de vida de las personas. Las
aplicaciones de la robdtica son amplias, tales como el desarrollo cientifico, trabajo industrial o
seguridad. En particular, la robdtica de servicio se encarga del desarrollo de robots capaces de
asistir a las personas en su dia a dia, por ejemplo, en tareas domésticas o asistenciales. La deteccion
de objetos cotidianos por un robot es un paso esencial para el desarrollo de este tipo de sistemas
dado que requieren la manipulaciéon de objetos. Esta deteccion de objetos es el primer paso para
poder agarrar el objeto, moverlo, evitar un obstaculo o realizar tareas mas complejas en las que se
requiera una mayor precision.

Este proyecto ha sido desarrollado en el departamento de robotica de la Hochschule fiir Tecknik,
Wirtschaft und Gestaltung Konstanz (HTWG Konstanz) y se centra en el desarrollo de tres
clasificadores de objetos usando el sensor Kinect de Xbox. Se han utilizado dos métodos para
realizar la clasificacion de dichos objetos, Adaptive Boosting (AdaBoost) y Support Vector
Machines (SVM). La idea principal es crear un sistema de vision que pueda ser capaz de detectar y
clasificar ciertos objetos cotidianos para su integracion en un robot movil, por lo que este proyecto
se enmarca en el campo de la vision por computador aplicada a la robdtica.

1.1 Motivacion

El reconocimiento de patrones bebe de diferentes areas como la inteligencia artificial o la visién
por computador e incluye diversos campos tales como el reconocimiento corporal [1],
reconocimiento facial [2], reconocimiento de digitos manuscritos [3], reconocimiento de objetos y
texturas [4] o incluso sismologia [5]. La aparicién de sensores RGB-D de bajo coste, como el
sensor Kinect de Microsoft, han favorecido el desarrollo de aplicaciones relacionadas con el
tratamiento de imagenes. Kinect ofrece la posibilidad de obtener imagenes de profundidad y color
de la escena de forma sincronizada lo que facilita enormemente la investigacion en el campo de la
robotica, y en especial el de vision por computador aplicada a robdtica.

Actualmente, la HTWG Konstanz est4 investigando con esta tecnologia para su implantacién en
robots méviles. Esta participa ademas anualmente en la competicion Eurobot, en la cual, en su
edicion en 2011, la HTWG Konstanz utilizd un sistema de vision basado en la informacion
proporcionada por el sensor Kinect pero todavia en una fase experimental.

Este proyecto fue ideado para realizar un estudio mas exhaustivo de las propiedades de Kinect y
para crear un nuevo sistema de vision mas complejo que el ya existente. De esta manera se
consideraria su integracion en el robot mévil participante en el concurso para mejorar la fiabilidad y
precision de su sistema de visidn. Este aspecto es muy importante, ya que en esta competicion se
combinan entre otras cosas la vision con la manipulacion de objetos.

1.2 Objetivos

El objetivo del proyecto es la creacion y comparacion de tres reconocedores de objetos cotidianos
sencillos utilizando diferentes métodos de clasificacion multiclase (SVM, AdaBoost con la
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estrategia One-Against-One y AdaBoost con la estrategia One-Against-All) para su integracion en
un robot movil que interactue de forma auténoma con el entorno utilizando el sensor Kinect de
Microsoft para adquirir la informacion. Los tipos de objetos a reconocer son manzanas, platanos,
tazas de café, boles, vasos de plastico y paquetes de tabaco que se sitiian encima de una mesa para
su clasificacion. Objetos transparentes o semitransparentes como una botella de plastico o una de
cristal fueron desechados ya que el sensor no es capaz de adquirir la informacién de profundidad de
todo el objeto, lo que hubiera supuesto trabajar sincronizando la segmentacion de la imagen en 3D y
2D con lo que la complejidad y tiempo de calculo hubiese sido mayor para completar la deteccion
en tiempo real. Para completar el objetivo principal se identifican varios sub-objetivos que son:

e La creacion de una base de datos que contenga imagenes de los tipos de objetos que se
quieren analizar. Esta base de datos servira para el entrenamiento y prueba de los sistemas.
Existen varias bases de datos disponibles en internet de forma gratuita como Caltech 101
[6], Labelme [7] o Imagenet [8] o incluso realizadas utilizando el sensor Kinect [9], para su
utilizacion en sistemas de reconocimiento de objetos en 3D, pero existen dos principales
razones por las que se decantd por la creacion de una nueva base de datos con la que poder
trabajar. La primera razéon es que no se necesitan un numero muy grande de clases de
objetos en el ambito del clasificador ya que la idea es tener una base de datos con un nimero
de ellos similar al que se podria encontrar en la competicion Eurobot. Ademas, al tratarse de
clasificadores en tiempo real, se preferia tener los objetos fisicos pertenecientes a la base de
datos para poder realizar pruebas o ajustes con ellos. La segunda razon es que se queria
crear un método para la creacidn de una base de datos utilizando la informacion que
proporciona el sensor Kinect. De esta forma el procedimiento se podria repetir para ampliar
la base de datos o crear una nueva con nuevos tipos de objetos de otro ambito que no fuese
el cotidiano.

e El pre-procesamiento de las imagenes para extraer la informacion 1til y eliminar aquella que
no corresponda al objeto, en particular la informacién alejada del sensor y la del plano de la
mesa sobre la que se situan los objetos utilizando el algoritmo RANSAC.

e La utilizacion y/o creacion de los métodos de clasificacion. Ademads, para realizar la
clasificacion, se calculan previamente diferentes caracteristicas de los objetos, siendo faciles
o complicadas de calcular dependiendo del método, que seran geométricas para los métodos
de AdaBoost y una mezcla de forma y color para SVM denominadas VOSCH (Voxelized
Shape and Color Histograms). Debido a esta diferencia las caracteristicas se generan de
manera distinta dependiendo del método de clasificacion a utilizar.

e La creacion de los mdédulos de entrenamiento y de test del sistema. El primero sirve para
ensefar a los clasificadores los tipos de objetos a detectar por el sistema y el segundo para
realizar el andlisis y comparacion de los clasificadores. Cada uno de estos modulos sirve
para el entrenamiento y andlisis de los clasificadores de forma independiente.

e Labusqueda de un esquema de clasificacion en seudo-tiempo real que permita, utilizando el
modulo de entrenamiento, la clasificacion de nuevos patrones en el menor tiempo posible.
Se denominan clasificadores en seudo-tiempo real ya que, aunque se trabaja con varias
imagenes por segundo, estas clasificaciones no cumplen ningun requisito temporal
especifico. Se tiene en cuenta, ademas, la posibilidad de detectar y clasificar mas de un
objeto al mismo tiempo en vez de sélo uno. Esto se debe a que normalmente los robots
moviles no interactiian con un solo objeto sino con varios a la vez para que, dependiendo de
cada objeto, realice una tarea u otra.

e La evaluacién de los resultados obtenidos en el modulo de test y la eleccion de la mejor
opcidn para su integracion en el robot. Se realizara teniendo en cuenta la correccion de los
resultados utilizando el método Reciever Operating Characteristic (ROC) y las tasas de
acierto y la rapidez de coémputo en los clasificadores en seudo-tiempo real.
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1.3 Estructura

El proyecto se divide en tres partes principales. La primera explica la tecnologia que se utiliza
para la creacion de los diferentes mddulos y clasificadores, los fundamentos de los métodos
empleados asi como la utilizacion de dichos métodos. La segunda presenta como se prueban los
clasificadores y los resultados que se generan. En la ultima parte se comentan las conclusiones
obtenidas a partir de los resultados y las posibles mejoras. El anexo A contiene la explicacion de la
arquitectura del sistema y el anexo B la evolucion temporal del proyecto. Este documento también
contiene el Anexo C, en el cual se presenta la memoria completa en inglés desarrollada en la
HTWG Konstanz y en la que se explican en profundidad algunos de los aspectos que aqui se
introducen a lo largo de la memoria se haré referencia en el anexo.
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2 Desarrollo

Del mismo modo que en la programacion, existen varios paradigmas en el ambito del
reconocimiento de patrones, estos son, el sintactico [10] y el estadistico [11]. El primero se basa en
la teoria de los lenguajes formales mientras que el segundo trabaja teniendo en cuenta una cierta
incertidumbre en los datos que utiliza. Debido a esto, al usar como métodos de clasificacion SVM y
AdaBoost se estd utilizando el paradigma estadistico, ya que expresan los resultados de un
reconocimiento de una forma probabilistica. Los dos métodos utilizados son métodos supervisados,
es decir, se utiliza un conjunto entrenamiento que contiene instancias de los objetos a analizar para
poder crear el clasificador y reconocer posteriormente nuevos patrones de las clases de dicho
conjunto. Se puede definir como patrdén, una nocidn abstracta representada por un conjunto de
descripciones y que en el caso de la inteligencia artificial se describe normalmente como un vector
en el que sus componentes son las caracteristicas del objeto [12] .

Ahora, se va a proceder a comentar las etapas de las que consta el campo del reconocimiento de
patrones en métodos supervisados en la inteligencia artificial que son dos, la fase de entrenamiento
y la fase de test. La fase de entrenamiento consta de:

e Recopilacion de informaciéon: es el primer paso en el cual, se seleccionan las clases de
patrones que se quieren reconocer y se crea o elige una base de datos ya existente con dichas
clases. Este proyecto se centra en imdgenes de objetos aunque los patrones pueden ser
digitos, caras o sonidos. Una vez que se dispone de la base de datos, se procede a dividirla
en dos subconjuntos complementarios entre si: el conjunto de datos de entrenamiento y el
conjunto de datos de test. El primero se utiliza para ensefiar al clasificador las diferentes
clases con las que se quiere trabajar y el segundo para poder realizar pruebas de
reconocimiento de esas clases. Existen diversos métodos para realizar esta particién siendo
el mas importante el denominado validacion cruzada. Este método repite durante k
iteraciones el analisis de las predicciones utilizando diferentes subconjuntos y calcula la
media aritmética de los resultados de cada iteracion para generar el resultado final. En este
proyecto se utiliza el método de validacion cruzada més elemental, el llamado método de
retencion, en el que la base de datos se divide en dos subconjuntos complementarios y el
resultado final se obtiene en una sola iteracion.

e Eleccion del método: en esta etapa se deben elegir las caracteristicas que se desean tener en
cuenta para la descripcion de los patrones y el método de clasificacion que se desea utilizar.
Las caracteristicas elegidas tienen que ser acordes con los patrones que se quieren analizar.
Si se quiere distinguir entre limones y naranjas el color podria ser una buena caracteristica,
pero no asi en una clasificacion entre manzanas grandes y pequefias, en donde el tamafio o
volumen serian mas adecuados. El método de clasificacion se refiere al algoritmo o conjunto
de algoritmos que describen dicho método que se van a utilizar para crear el clasificador.

e Entrenamiento del clasificador: una vez elegido el método, se utiliza el subconjunto de datos
de entrenamiento como datos de entrada en el algoritmo elegido que seran los que definiran

los parametros del clasificador.

La fase de test puede dividirse en tres etapas que son:
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e Seleccion de datos: esta etapa es dependiente de la etapa de recopilacion de datos de la fase
de entrenamiento. Los datos utilizados para validar el clasificador dependen del método de
divisién de la base de datos. Es conveniente recordar que los subconjuntos siempre son
complementarios, es decir, un dato utilizado para entrenar al clasificador en una determinada
iteracion nunca intervendrd en la fase de test de esa misma iteracion.

e C(lasificacion: establecido el subconjunto de datos de test, éstos se utilizan como entrada del
método de clasificacion elegido. Las caracteristicas de los datos son extraidas previamente a
la utilizacion del algoritmo correspondiente que generara una salida por cada uno de los
datos.

e Validacion de los resultados: una vez que la clasificacion se ha realizado y se han obtenido
los resultados, se procede al andlisis de los mismos. Este analisis puede realizarse utilizando
diversos métodos entre los que destacan las matrices de confusion, tasas de acierto o el
método ROC.

Ademas de las dos fases anteriores, se puede afiadir una mas, que describe el comportamiento de
un reconocedor de patrones en tiempo real. Su estructura es ligeramente distinta a las anteriores. En
el reconocimiento en tiempo real, se recibe la informacion del entorno ininterrumpidamente que va
a ser procesada para obtener el resultado de la clasificacion. Se pueden encontrar cuatro etapas que
son:

e Lectura de la informacion: la recepcion de informacion proveniente del entorno se realiza
mediante un sensor que puede ser diferente dependiendo de la informacién que se quiera
recibir, por ejemplo, imagen en 2D, 3D o imagen térmica. Para la utilizacion de estos
sensores se necesitan algoritmos que interpreten la informacion que reciben.

e Pre-procesamiento: es posible que no toda la informacion recibida del sensor sea ttil para la
aplicacion por lo que es necesario tratar los datos. Un ejemplo sencillo para describir esta
etapa sucede en el reconocimiento de objetos en imagenes en 2D. El pre-procesamiento se
encarga de descartar el fondo de una imagen (informacidn no qtil para el reconocedor) para
tener sélo en cuenta los objetos (informacion util). Después se realiza la extraccidon de las
caracteristicas de los datos para realizar el reconocimiento de patrones evitando usar la
informacidén completa del objeto. Esta extraccion de atributos se suele incluir en la etapa de
pre-procesamiento aunque hay veces en las que la diferencia con la aplicacién del método
no es muy marcada (por ejemplo en redes neuronales) [13].

e C(lasificacion: una vez que se dispone de los patrones de la informacién a reconocer se
procede a la utilizacion del método seleccionado para realizar la clasificacion. La forma de
expresar el resultado de dicha clasificacion serd diferente dependiendo del método e incluso
de la implementacion del algoritmo que lo describe.

e Post-procesamiento: después de reconocer a que clase pertenece el patron reconocido, puede
suceder que se requiera mas informacion de dicho patron. Por ejemplo en el reconocimiento
de objetos, podria ser interesante la distancia a la que se encuentra un objeto, su posicion
en una imagen o el espacio o saber si estd en movimiento o no.

Las diferentes fases han servido para establecer las bases del desarrollo del proyecto. En el
Diagrama 2.1 y en el Diagrama 2.2 se describe la estructura de las fases de entrenamiento y
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reconocimiento en tiempo real respectivamente.

> SVM | Clasificador SVM
Base de Datos
Caracteristicas Clasificador
e AdaBoost AdaBoost cad AdaBoost

Diagrama 2.1 Estructura del proceso de entrenamiento de los métodos de clasificacion.

Caracteristicas itz

> VOSCH SVM »
Kinect > Rango RANSAC Segm ion
E > Caracteristicas AdaBoost > Resultado
Pre-procesamiento AdaBoost

Clasificacion

Diagrama 2.2 Esquema de los clasificadores en tiempo real.

A continuacion se van a presentar los sistemas, bibliotecas y algoritmos utilizados para el
desarrollo de los modulos y clasificadores de este proyecto. Luego se comentaran los métodos
utilizados en la creacion del clasificador y por ultimo se explicaran las partes que conforman el
entrenamiento y el reconocimiento en tiempo real.

2.1 Tecnologia

El proyecto ha sido desarrollado en la HTWG Konstanz, en el departamento de Robdtica. Se ha
construido sobre el sistema operativo Ubuntu versiéon 10.04 LTS sobre un AMD Athlon 64 X2 Dual
Core Processor 4800+. Para posibilitar la interaccion con el sensor Kinect de Xbox, cuyas
especificaciones se muestran en la Seccion 2.1 del Anexo C, se han utilizado las bibliotecas MRPT
(Mobile Robot Programming Toolkit) [14], que permiten leer y modificar la informaciéon que el
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sensor recibe de su entorno. Estas bibliotecas han sido integradas en el sistema ROS (Robotic
Operative System) [15], sobre el cual fue creado el reconocedor SVM. Los equipos del
departamento de robotica de la universidad de Konstanz tienen a dia de hoy el sistema ROS
instalado, para facilitar el tratamiento de datos en el ambito de la robotica y la inteligencia artificial.
Para el reconocimiento de objetos mediante SVM, se utilizé la clase cvSVM de Open Source
Computer Vision (OpenCV) [16] integrada en ROS, asi como la biblioteca VOSCH (Voxalized
Shape and Color Histograms) de ROS para la creacién de las caracteristicas para SVM. Se han
utilizado diversos algoritmos y estructuras de la biblioteca OpenCV asi como de Point Cloud
Library (PCL) [17] ya que representan la punta de lanza del desarrollo de aplicaciones en visidon por
computador [18]. La programacién tanto del método de AdaBoost como el de SVM ha sido
facilitada gracias al IDE Eclipse.

2.2 Métodos seleccionados

Ya que una de las partes fijadas en este proyecto es la utilizacion de métodos de célculo de
caracteristicas que sean complicados o simples dependiendo de la forma de clasificacion utilizada,
se va a proceder a explicar qué métodos han sido elegidos para la generacion del clasificador. La
eleccion de las caracteristicas que describen un patron es muy importante ya que es lo que permite
trabajar siempre con una cantidad limitada y fija de datos. Este proceso en el que los datos de
entrada se reducen para la utilizacion posterior de los mismos se denomina reduccion de la
dimensionalidad. Existen dos procedimientos para reducir esta cantidad de informacion, la
seleccion de atributos, en la que simplemente se selecciona las caracteristicas interesantes
desechando el resto y la transformacion de caracteristicas, en la que se crea un nuevo espacio de
caracteristicas a partir de las variables originales. Debido a esto, éste ultimo procedimiento se
denomina extraccion de caracteristicas [19]. El uso de un conjunto de caracteristicas limitado
simplifica tanto la representacion de los patrones como la complejidad del clasificador, lo que hara
que éste ultimo sea mas rapido y utilice menos memoria [12]. Aunque se puede pensar que es mejor
tener un gran nimero de caracteristicas para poder hacer una mejor diferenciacion, esto es falso. Si
bien es cierto que incrementando el nimero de atributos, la precision con la que las variables de
entrada pueden ser especificadas aumenta, esto conlleva un crecimiento exponencial de la cantidad
de datos de entrenamiento que se necesitan para especificar el mapeo de datos. Este fendmeno se
denomina maldicion de la dimensionalidad [20].

En el problema de clasificacion de este proyecto, la cantidad de datos de entrada es
640x480x6=1843200, siendo 640x480 el tamafio de la imagen y 6 (3+3), la profundidad (x, y, z) y
el color (r, g, b) que describen un punto de dicha imagen. La etapa en la que los datos de entrada de
los patrones pasan a tener todos la misma dimensionalidad se llama normalizacion de los datos.

El departamento de robdtica de la HTWG Konstanz queria trabajar con las caracteristicas
VOSCH debido a que se trata de un método nuevo para el calculo de atributos de nubes de puntos
desarrollado en la Universidad de Munich y utilizar AdaBoost con otro tipo de caracteristicas ya
que el departamento habia trabajado previamente con este método en problemas de clasificacion
binaria [21]. Se decidid trabajar con las caracteristicas VOSCH usando el método de SVM, ya que
OpenCV proporciona una implementacién multiclase usando la estrategia One-Against-One y
porque la compatibilidad entre la forma de descripcion de los atributos y su utilizacién en la
clasificacion es buena. Como los atributos VOSCH son complejos, para AdaBoost se decidid
calcular otros mas sencillos, siendo éstos propiedades sencillas, principalmente geométricas, de los
objetos en 3D reconocidos.
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A partir de ahora se van a explicar uno por uno los métodos de clasificacion y de calculo de
atributos utilizados.

2.2.1 Support Vector Machines (SVM)

Support Vector Machines (SVM) es un concepto desarrollado a partir de la teoria de aprendizaje
estadistico [11]. Es un sistema que usa un espacio de hipotesis de funciones lineales en un espacio
de caracteristicas de gran dimensionalidad inducido por un kernel, entrenado con un algoritmo de
aprendizaje que implementa una desviacion derivada de la teoria de aprendizaje estadistica [22]. La
idea del método es crear un hiperplano o conjunto de hiperplanos que permitan crear regiones que
sirvan para diferenciar distintas clases para poder utilizarlos en tareas de clasificacion o regresion.
En el Aprendizaje Automatico, el objetivo de SVM es poder clasificar correctamente un nuevo
patron dentro la region designada para la clase a la que pertenece. Este patron siempre es distinto a
cualquiera que se haya utilizado previamente para el entrenamiento del sistema. Estos patrones o
puntos del espacio se expresan normalmente como vectores de dimension p y las diferentes clases
estan separadas por un hiperplano de dimension (p-1). Para realizar la division entre regiones
pueden existir infinitos hiperplanos que describan dicha division (Figura 2.1), por lo que es
necesario elegir cudl de ellos es el dptimo.

Figura 2.1 Se muestran tres posibles hiperplanos que separan las muestras de dos clases. El hiperplano marcado en rojo
define el mejor hiperplano posible al encontrarse a la distancia maxima posible de las instancias mas cercanas de ambas
clases [23].

Este es el que representa la maxima separacion o margen entre las regiones. SVM resuelve el
problema de maximizacidn de la distancia del hiperplano a los puntos mas cercanos de cada region
para el calculo del hiperplano 6ptimo. El hiperplano obtenido se denomina hiperplano de margen
maximo (Figura 2.2) y el clasificador que describe, clasificador de margen maximo. SVMs son los
puntos que se encuentran mds proximos al hiperplano. Una introduccion a los fundamentos
matematicos de SVM para la clasificacion binaria se encuentra en la Seccion 2.3.1 del Anexo C.
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Figura 2.2 La figura muestra el hiperplano de margen maximo con la ecuacion que lo describe ((w - x) — b = 0). Asi como los
hiperplanos que contienen los SVMs.

2.2.2 Adaptive Boosting (AdaBoost)

AdaBoost es un meta-algortimo utilizado en el aprendizaje de maquinas supervisado. Combina
reglas sencillas de clasificacion, también llamadas hipdtesis, que destacan por su sencillez y poca
precision, para crear un clasificador final mucho mas preciso y robusto. Un ejemplo sencillo que
explica este principio se encuentra en [24]. Explica como, un corredor de apuesta de carreras de
caballos, esperando maximizar sus ganancias decide crear un método para predecir el caballo
ganador. Sin tener informacion alguna es muy dificil crear alglin tipo de criterio de prediccion, pero
recogiendo informacion de carreras previas puede crear reglas sencillas que le permitan elegir al
ganador, tales como el caballo favorito en las apuestas o el caballo que mas veces ha ganado
recientemente. Estas reglas son inexactas si se usan individualmente, pero combindndolas de
manera adecuada se puede crear un procedimiento que acerque al apostante a la mejor prediccion.

El algoritmo fue introducido en 1995 por Freund y Shapire [24] y calcula un clasificador final
utilizando las hipdtesis a las cuales se asigna un peso diferente dependiendo de su capacidad de
diferenciacion. Los datos de entrada del entrenamiento estdn formados por los atributos de una
muestra X := (X, X5, ..., X,) y por la salida deseada y que toma valor 1 si la muestra es positiva o
-1 si es negativa. Cada clasificador débil comprueba una coordenada de la muestra x y dependiendo
de un umbral dado, clasifica la muestra como positiva o negativa. Para ello AdaBoost llama en cada
iteracion a un clasificador débil que mantiene una distribucién o conjunto de pesos sobre el
conjunto entrenamiento. Al principio del algoritmo todos los pesos tienen el mismo valor pero en
cada ronda, el valor de los pesos de las muestras clasificadas incorrectamente se incrementan y el de
las correctamente clasificadas disminuye para que el nuevo clasificador débil se centre en las
muestras no clasificadas correctamente. Una vez que la hipdtesis es seleccionada de acuerdo con el
conjunto de pesos, el algoritmo elige un pardmetro a, que mide la importancia que tiene esa
hipdtesis sobre el clasificador final. Asi pues, el clasificador se compone de la suma de las hipotesis
con un peso a dado. Una explicacion mas profunda de AdaBoost, asi como el seudo-algoritmo que
describe el método puede encontrarse en Listing 2.1 de la Seccion 2.3.2 del Anexo C.

2.2.3 Voxelized Shape and Color Histograms (VOSCH)

Voxelized Shape and Color Histograms (VOSCH) [25] es un método de extraccion de atributos
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de nubes de puntos que describen objetos en 3D en forma de histogramas. El método combina
propiedades de la forma del objeto con propiedades de color. La utilizacidon de estos atributos encaja
perfectamente con la informacién en 3D (forma) y en 2D (color) que se puede obtener
sincronizadamente mediante el sensor Kinect.

El método se basa en Circular Color Cubic Higher-order Local Auto Correlation (C3- HLAC)
[26] con una diferencia que reduce el nimero de atributos y hace el descriptor invariante respecto a
la rotacion y en Global Radius-based Surface Descriptor (GRSD) [27]. El descriptor C3- HLAC es
un vector de gran dimensionalidad que calcula la suma de los valores RGB de los voxels vecinos
siguiendo varios criterios en una cuadricula 3x3x3 a lo largo de una cuadricula de tamafio arbitrario.
De esta forma, el histograma contiene informacion del color de la nube de puntos dependiente de la
forma del objeto. GRSD es un histograma que cuenta el nimero de transiciones entre diferentes
tipos de voxels. Las clases de voxels se dividen en espacio, plano, cilindro, esfera, borde y ruido. La
variacion de C3- HLAC crea 117 atributos mientras que GRSD 20, por lo que la dimensionalidad
del descriptor VOSCH es de 137.

Estos descriptores guardan su informacion en ficheros de extension pcd (véase Seccion 4.1 del
Anexo C), que contienen informacidén que detalla nubes de puntos o histogramas. El uso de este tipo
de archivos esta extensamente extendido en el &mbito de la programacion con OpenCV.

2.2.4 Caracteristicas en AdaBoost

Como se ha comentado en el Apartado 1.2, el objetivo con AdaBoost es trabajar con atributos
sencillos. Para la generacion de estos atributos, se calcula la altura, anchura, profundidad y numero
de puntos que posee la muestra obtenida por el sensor. Hay que remarcar que estos valores, al igual
que los que se calcularan posteriormente, no son los que realmente contiene el objeto, si no los que
describen la nube de puntos de ese objeto. En este caso el color se ha desechado ya que calcular un
atributo sencillo dependiente del color, como el color medio de una observacién, no aportaria
informacidn relevante o discriminatoria teniendo en cuenta que muchas de las clases pueden tener
una gama de colores muy amplia.

Para la creacidn del clasificador final de AdaBoost, se utilizaron cuatro clasificadores débiles, de
puntos, de proporcidn, de altura y de volumen. En un primer momento, se penso en utilizar un valor
umbral discriminante para cada clasificador, es decir, un valor que dijese si un objeto pertenece a
una clase dada si se encuentra dentro de ese umbral, pero siendo una clasificacion multiclase la idea
no se ajusta bien a los clasificadores One-One, ya que para cada clase existiria un umbral y podria
suceder que el rango que describiese dicho umbral estuviese contenido totalmente en el rango de la
otra clase. Para los clasificadores One-All, poniendo como ejemplo la clase taza y el clasificador
débil altura, se estableceria como umbral la altura maxima de una posible taza llevando esto a
clasificar como tazas todas las instancias que no lo son. En ambos casos, el error seria tal, que
AdaBoost perderia el sentido para su utilizacion. La solucion adoptada es el uso de un rango de
valores para cada objeto, en los que para cada clase y clasificador se tendrd un valor minimo y un
valor maximo. Estos valores se obtienen mediante las mediciones del sensor y no con los valores
reales del objeto, porque hay que recordar que las mediciones de un sensor no siempre son exactas y
que siempre existen partes ocultas para el sensor, es decir, partes del objeto que no puede detectar.
Los cuatro clasificadores débiles son:

e Clasificador de puntos: este clasificador discrimina los objetos en funcion de los puntos que

contiene. Intuitivamente, se puede pensar que permite discernir entre objetos grandes, con
mas puntos, y pequefios, con menos puntos, pero ademas, dos objetos de aproximadamente
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las mismas dimensiones pueden diferenciarse en las formas geométricas que componen su
relieve. Un objeto con formas céncavas y convexas contendra mas puntos que uno con
formas rectas. Asi pues, también se puede considerar como un clasificador simple de
superficie de un objeto, aunque so6lo sea de la parte que ve el sensor.

e C(lasificador de proporcion: para calcular el clasificador proporcion se utilizan tres
caracteristicas principales del objeto, altura, anchura, profundidad; se suman los valores
obtenidos del calculo de la anchura y de la profundidad de la nube de puntos y se divide por
la altura, con esto obtenemos el valor de nuestra proporcion. Debido a esto los objetos mas o
menos simétricos tienen un rango de valores para la proporcion pequefio, mientras que un
rango de valores grande indicara gran diversidad en las instancias de una clase. En un primer
momento se penso en calcular la proporcion entre la anchura y la altura del objeto o entre la
profundidad y la altura, pero los valores obtenidos podian ser muy diferentes debido a la
perspectiva que puede tener la muestra.

o C(lasificador de altura: el clasificador diferencia simplemente mediante la caracteristica de
la altura.

e C(lasificador de volumen: El clasificador se utiliza para diferenciar los volimenes de los
objetos, teniendo en cuenta que el volumen calculado se realiza usando los datos de la nube
de puntos que el sensor distingue y no las dimensiones reales. El volumen se calcula de la
siguiente forma; altura x anchura x profundidad, por lo que se puede interpretar como el
volumen del hexaedro que contiene una nube de puntos dada. Puede existir una diferencia
grande entre los limites del rango cuando, dependiendo de la perspectiva de la instancia,
existan partes ocultas que afiadan un volumen considerable. Esto es, por ejemplo, el asa de
una taza, que puede estar oculta en una vista, o parcialmente o totalmente representada en
otra.

Estos clasificadores débiles son los utilizados como hipotesis para la creacion del clasificador
final.

2.3 Entrenamiento

El entrenamiento es la fase en la que se utilizan instancias de las clases que se quieren reconocer
posteriormente para ensefiar al clasificador. Como muestra el Diagrama 2.1, se va a describir
ordenadamente los diferentes médulos del sistema de entrenamiento. Primero se explicara qué es y
cudl es la estructura de la base de datos, que es la fuente de las instancias, y después como se realiza
el entrenamiento de los métodos de clasificacion.

2.3.1 Data-set

El Data-set es una base de datos desarrollada especificamente en este proyecto. Consta de
diferentes tipos imagenes y archivos de diferentes objetos, con las cuales se ensefia y prueba
nuestro sistema. Las imagenes fueron tomadas mediante el sensor Kinect, el cual estaba situado a
una altura de 38cm sobre la mesa con un angulo de inclinacion de -15°. Se eligieron estos valores
porque encajan perfectamente con la posicion que tendria el sensor si se acoplase a un robot
manipulador moévil mediano. Los objetos fueron colocados a una distancia entre 65 y 87 cm en el
caso de profundidad y a una distancia maxima de 10 cm a izquierda y derecha respecto del centro
del sensor. La explicacion de las posiciones de los objetos sobre la mesa se pueden encontrar en la
Seccion 3.1.1.1 del Anexo C. El Data-Set creado contiene cuatro carpetas diferentes que son depth,
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images, pointclouds y features. La carpeta depth contiene imagenes de tamafio 640x480 que
muestra la informacion de profundidad en escala de grises con extension JPG. En la carpeta images
se encuentran las imagenes en color de tamafio 640x480 que recoge el sensor con extension JPG.
Pointclouds contiene los archivos pcd que describen la nube de puntos de un objeto sin informacion
del entorno y features, los archivos pcd que describen las caracteristicas calculadas de VOSCH
para SVM. El Data-Set contiene seis clases diferentes. La clase apple, banana, bowl, mug, cup y
tobacco. Las dos primeras corresponden a frutas, las tres siguientes a recipientes y la ultima a un
paquete de tabaco. Cada una de las carpetas del set contiene una carpeta por cada clase, cuyo
nombre es la clase que representan. Dentro de cada clase existen diferentes instancias. El nimero de
instancias es distinto para cada clase. Cada instancia esta descrita por ocho tomas, en las que para
cada una de ellas se extrae la informacion de profundidad, de color, de nube de puntos y
caracteristicas VOSCH correspondientes. Los nombres de las imagenes de profundidad vienen
dados por una d, de depth, seguido por el nombre de la clase a la que pertenecen, y seguido a su vez
de un nimero. El nombre de las imdgenes en color se crean uniendo el nombre de la clase con el
numero correspondiente. Para los archivos de nube de puntos y caracteristicas afiadiremos,
respectivamente, una p, de point cloud, y una f, de features, antes del nombre de la clase. La
designacion de la numeracidén de las instancias de cada clase empieza en el 1, y para cada instancia
le corresponde un rango de 8 nimeros consecutivos, uno para cada toma del objeto. El rango de la
numeracion de una instancia de una clase serd la misma para las cuatro carpetas existentes, y cada
numero corresponde a una toma determinada. A modo de ejemplo, apple6.jpg, muestra la sexta
imagen en color de la primera instancia de la clase apple, mientras que fapple9.pcd, contiene las
caracteristicas VOSCH de la primera imagen de la segunda instancia de la clase apple. Para ayudar
a la visualizacidn de las nubes de puntos de las capturas se utilizé el programa PCD Viewer (véase
Seccion 4.5 del Anexo C).

Para la utilizacidén de la base de datos en las etapas de entrenamiento y test, se utilizara el método
de retencidon, por lo que se elige un subconjunto que contiene instancias de cada clase como
conjunto de entrenamiento, y su complementario, que contiene también instancias de todas las
clases como conjunto de test. Hay que remarcar que cuando se habla de instancia de una clase se
refiere a un objeto concreto y ya que, cada objeto contiene informacién de ocho tomas, cuando se
entrene al clasificador con, por ejemplo, dos instancias de una clase, en realidad se estan utilizando
16 imagenes para su entrenamiento, ocho por cada instancia. Las imdgenes reales de todas las
instancias de las clases, asi como el esquema de la estructura de la base de datos se encuentran en
Figure 3.2 y Diagram 3.3 de la Seccion 3.1.1.1 en el Anexo C respectivamente.

2.3.2 Creacion de los clasificadores

Una vez construido el data-set y elegidos los dos subconjuntos para cada método, se procedi6 al
entrenamiento del sistema, que dependiendo del método que se utilice en el mddulo se realiza de
una forma u otra. Una caracteristica comiin a todos los métodos es que adquieren la informacioén de
entrenamiento siempre de la base de datos. A continuacion se comentaran las diferencias entre el
entrenamiento realizado para SVM y para las dos estrategias de AdaBoost.

SVM

Para la creacion del clasificador SVM, la primera tarea a realizar es la eleccion del kernel que se
quiere utilizar. Esta eleccion se debe realizar pensando, segun el problema de clasificacion
planteado, con cudl de ellos se puede obtener mejores resultados. Segin las conclusiones
desprendidas de [28], la decision es utilizar clasificadores lineales en el método multi-clase de
SVM, ya que el nimero de instancias de entrenamiento es menor al nimero de caracteristicas que
se utilizan. El conjunto entrenamiento estd compuesto por instancias de todas las clases, las cuales
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se diferencian mediante la utilizacion de etiquetas diferentes para cada clase.
AdaBoost

A partir de la descripcidon para clasificacion binaria del algoritmo AdaBoost, éste se extendio
para ser capaz de realizar una clasificacion multiclase de dos formas diferentes, One-Against-One y
One-Agains-All.

En la primera forma, se generan una serie de clasificadores que son creados por todas las parejas
posibles de clases de objetos. Siendo # el nimero de clases y k el tamafio de los conjuntos que se
quieren crear, en este caso dos al ser One-One, (2) describe el numero de clasificadores totales que

se crean. El célculo de los pesos de los clasificadores débiles se realiza utilizando como casos
positivos las instancias de una de las clases y como negativos las instancias de la otra clase.

En la segunda forma, se crea un vector de clasificadores binarios con tamafio el nimero de
clases. El conjunto entrenamiento de cada clasificador-clase estad formado por, para los casos
positivos las instancias de esa clase del conjunto entrenamiento y como casos negativos las
instancias del resto de clases.

2.4 Reconocimiento en tiempo real

Cada clasificador en tiempo real tiene dos partes principales. En la primera se establece la
conexidn con el sensor Kinect y se crean y entrenan los clasificadores. El entrenamiento se realiza
siempre al principio de los clasificadores, antes de iniciarse la conexion con el sensor. Para el caso
de SVM se leen instancias de la base de datos y se crea un archivo .xml que contiene el clasificador,
que mas tarde se leerd para realizar la clasificacion. Para AdaBoost se calculan los valores alpha de
cada clasificador para las dos variantes usando las instancias del conjunto entrenamiento.

En la segunda, se realiza de forma iterativa el reconocimiento de los objetos. En cada iteracion se
detectan y clasifican los objetos existentes en una imagen recogida por el sensor. Dentro de cada
iteracion, se pueden distinguir tres partes. Estas son las presentadas en el Diagrama 2.2: Pre-
procesamiento, Clasificacion y post-procesamiento.

2.4.1 Pre-procesamiento

El pre-procesamiento es la etapa en la que se tratan los datos antes de proceder a su clasificacion.
Podemos distinguir tres partes principales. La primera parte es la eliminacidén del rango de vision
del sensor, la segunda, el calculo de los puntos del plano de la mesa y su eliminacion y la tercera, la
segmentacion de la imagen para la deteccion de los posibles objetos.

Eliminacion del rango

El sensor Kinect tiene un rango de vision de alrededor 3,5 metros. En los clasificadores se ha
decidido restringir ese rango de 0,5 metros a 1 metro. Existen dos motivos principales por los que se
realizd este paso. El primero es, que no es necesario un rango de vision tan amplio, ya que nuestro
interés se centra en objetos situados a una distancia media del sensor. El segundo es, que para una
aplicacion en tiempo real, el tiempo de calculo del clasificador en el tratamiento de los datos sera
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menor cuanto menor sea el nimero de datos.
Random Sample Consensus algorithm (RANSAC)

Random Sample Consensus algorithm (RANSAC) [29] es un algoritmo desarrollado que estima,
dado un conjunto de datos, un modelo matemdtico deseado. En este proyecto, el modelo
matematico buscado es el plano de la mesa, y el conjunto de datos, la nube de puntos de los objetos
detectada por el sensor. El principio sobre el que se basa el algoritmo en este proyecto es sencillo.
Es un algoritmo iterativo, en el que en cada iteracion se elige aleatoriamente un subconjunto de
datos del conjunto total que formaran parte del hipotético modelo final. Después se comprueban los
puntos restantes, para saber si encajan en ese modelo. La estimacion de las iteraciones restantes
cambia en cada iteracion y significa el nuimero de intentos necesarios para conseguir un conjunto en
el que todos los datos pertenezcan al modelo con probabilidad p.

Eliminacion del plano

En este paso los puntos calculados por el algoritmo RANSAC se eliminan de la nube de puntos
final que contiene los objetos a clasificar. Respecto a las nubes de puntos, se puede decir que en el
proceso de célculo del plano con el algoritmo RANSAC, algunos de los puntos de la parte baja de
los objetos pueden ser tomados como parte del plano. Esto hace que en objetos relativamente planos
como pueden ser los platanos, muchos puntos del objeto pueden ser eliminados y como
consecuencia no se pueda alcanzar el tamafio minimo necesario para poder ser detectado.

Segmentacion

La segmentacion es el proceso en el que una imagen se divide en grupos de pixeles, que
equivalen a diferentes objetos, para diferenciarlos del fondo de la imagen. Cada uno de estos grupos
tiene una etiqueta en comin, normalmente un nimero, que se ocupa de diferenciar entre los grupos
de pixeles.

Para realizar la segmentacion de la imagen se utiliza un segmentador de imagenes desarrollado
en la HTWG Konstanz [30]. Se utiliza tanto la informacion 2D como la informaciéon 3D
proveniente del sensor. La segmentacion se realiza calculando la distancia euclidea entre los puntos
en el espacio que corresponden a dos pixeles vecinos de la imagen en 2D, para saber si pertenecen a
un mismo objeto. Dependiendo si un pixel pertenece a un objeto u a otro, se le asigna una etiqueta
distinta.

2.4.2 Clasificacion

En esta etapa del reconocimiento, dependiendo del método de clasificacion utilizado, se extraen
las caracteristicas VOSCH para SVM o las caracteristicas presentadas en la Seccion 2.2.4 para
AdaBoost. Después se realiza la clasificacion del objeto u objetos que se encuentran en la imagen
que se estd analizando para obtener el resultado final teniendo en cuenta el tamafio de la nube de
puntos que se analiza, para evitar analizar objetos pequefios o ruido u objetos muy grandes.

Un aspecto comun de los tres reconocedores es que, si éstos se encuentran con un objeto que
pertenece a una clase desconocida, es decir, que no ha sido ensefiada antes al sistema, el resultado
de la clasificacion que se devuelve es una de las clases usadas en el proceso de entrenamiento. Esto
se debe a que el resultado obtenido se entiende como la probabilidad mas alta de que una nueva
muestra pertenezca a una de las clases ensefiadas aunque esta probabilidad sea muy pequeiia.
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2.4.3 Post-procesamiento

En esta etapa, se trata la informacion del resultado para presentarla de una manera clara. La
informacidn se presenta en una ventana que contiene las imdgenes de color y de profundidad en
escala de grises a la izquierda. En la imagen de profundidad el negro significa los puntos no
detectados al estar fuera de rango, pudiendo deberse a puntos que se encuentran demasiado cerca o
demasiado lejos del sensor o una medicion errdnea. La parte central se reserva para pintar los
puntos de los objetos. Pulsando la tecla i, podemos cambiar la imagen de profundidad por la imagen
en infrarrojos del sensor y viceversa. Existe también la posibilidad de cambiar el angulo de
inclinacion del sensor, mediante la tecla 'wW', si queremos que el sensor gire hacia arriba, o 's', si
queremos que el sensor gire hacia abajo, teniendo en cuenta que en sensor no puede sobrepasar los
31° ni los -31° respectivamente. En la parte superior derecha, se escriben, en orden de deteccion y
uno debajo del otro los nombres de las clases que son reconocidas. En la parte inferior, se indica el
grado de inclinacion del sensor asi como las teclas que se deben pulsar para realizar las acciones
anteriormente nombradas. Las ventanas de clasificacion se centran en escribir los nombres de las
clases reconocidas, dibujar las nubes de puntos de dichos objetos y dibujar un circulo alrededor de
ellos en la imagen en color.

9 © ® Kinect 3D view

Figura 2.3 Ejemplo de deteccion de una taza, la cual ha sido rodeada por un circulo rojo en la imagen de color. Encima de
ésta se encuentra la imagen en escala de grises que describe la informacion de profundidad. En el centro la nube de puntos de
la taza ha sido dibujada en negro y el nombre de la clase ha sido escrito en verde en la parte superior derecha.
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Test y resultados

3 Testy resultados

En este capitulo se explica como se han desarrollado los programas de test para probar los
clasificadores y los resultados obtenidos con dichos programas. Para comentar los resultados se
utilizara el método Receiver Operating Characteristic (ROC) y tablas con las tasas de acierto de los
programas, ademas de presentar los tiempos de las diferentes fases de reconocimiento obtenidos de
los programas en tiempo real.

3.1 Programas de test

Para analizar como de buenos son los programas reconocedores se han creado tres programas de
test, uno por cada método utilizado. La idea es simple y es la misma para todos los métodos, utilizar
el conjunto de entrenamiento para entrenar los clasificadores y el conjunto de test para probarlos.
Previamente, se ha realizado una seleccion de los conjuntos de entrenamiento para cada método
entre diferentes conjuntos de entrenamiento (conjuntos con diferente nimero de instancias para
cada clase) como el realizado en [31]. Los conjuntos seleccionados son diferentes para cada
método, teniendo siempre instancias de todas las clases e intentando siempre que sea posible
disponer de 16 imagenes de cada clase como minimo para su test. Su seleccion se realiza
comprobando cual de ellos genera el mejor resultado (Seccion 5.1 del Anexo C). La Tabla 3.1
muestra el nimero de instancias de cada clase para el entrenamiento de SVM, la Tabla 3.2 para
AdaBoost One-Against-One (OaO) y la Tabla 3.3 para AdaBoost One-Against-All (OaA).

Training-set Apple Banana Bowl Mug Plastic cup Tobacco

SVM 8 16 24 32 8 16
Tabla 3.1 Numero de imagenes de cada clase con las que se entrena al clasificador SVM

Training-set Apple Banana Bowl Mug Plastic cup Tobacco
0a0 8 16 16 16 8 16
Tabla 3.2 Numero de imagenes de cada clase con las que se entrena al clasificador AdaBoost One-Against-One

Training-set Apple Banana Bowl Mug Plastic cup Tobacco
OaA 16 40 16 16 16 16

Tabla 3.3 Numero de imagenes de cada clase con las que se entrena al clasificador AdaBoost One-Against-All

Una vez seleccionado el conjunto de entrenamiento, y por consiguiente el de test, que serd su
complementario respecto de la base de datos, se procede al entrenamiento de los clasificadores.
Después se utiliza el conjunto de test, leyendo la ruta de las instancias, para generar los resultados
de la clasificacion. Los conjuntos de entrenamiento aqui seleccionados son los utilizados para el
reconocimiento en tiempo real.

3.2 Herramientas de analisis de resultados

Antes de comentar los resultados se van a presentar las ideas en las que se basa el método ROC.
Primero se comentaran las matrices de confusion y la informacidn mas importante que se desprende
de ellas y que sirve para el uso del método ROC. Después se explicard como se utiliza dicho
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método.

3.2.1 Matriz de confusion

Una matriz de confusion [32] es un método de representacion utilizado en el aprendizaje
supervisado que muestra la relacion entre las clases reales y las clases predichas por un sistema de
clasificacion. En la Figura 3.1 se muestra la plantilla de una matriz de confusion para una
clasificacidn binaria.

Valor de la prediccion

Positivo Negativo
Valor real Positiyo VP FN
Negativo FP VN

Figura 3.1 Esquema de representacion de una matriz de confusion. Los valores reales se representan en las filas y los valores
resultado calculados por el clasificador en las columnas.

Las filas representan la clase real de un objeto mientras que las filas representan la clase predicha
por el clasificador en donde:

e Verdadero positivo (VP) es la prediccidn correcta de una muestra positiva también
denominado éxito.

e Falso negativo (FN) es la prediccion incorrecta de una muestra positiva, también
denominado error de tipo II.

e Falso positivo (FP) es la prediccion incorrecta de una muestra negativa, también
denominado falsa alarma o error de tipo 1.

e Verdadero negativo (VN) es la prediccion correcta de una muestra negativa, también
denominado rechazo correcto.

Las entradas de la matriz contienen el numero de VPs, FNs, FPs y VNs de un sistema de
clasificacion. Con estos valores se pueden calcular otros mas complejos que se utilizan en el método
ROC que son, siendo P el nimero total de muestras positivas y N el nimero total de muestras
negativas:

e Tasa de Verdaderos Positivos (TVP) o sensibilidad describe la proporcion de las muestras
positivas que han sido correctamente clasificadas, calculada usando la ecuacion:

— VP VP (3.1)
~ P (VP +FN)

e Tasa de Falsos Positivos (TFP) es la proporcion de las muestras negativas que han sido
incorrectamente clasificadas, calculada usando la ecuacion:

rp - FP FP (32)
~ N (FP+VN)

Otros valores que se pueden calcular a partir de la matriz de confusién se presentan en el
Apartado 2.4.1 del Anexo C.
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3.2.2 Receiver Operating Characteristic (ROC)

El método Receiver Operating Characteristic (ROC) es una representacion grafica entre la tasa
de verdaderos positivos (TVP) en funcién de la tasa de falsos positivos (TFP) en el espacio ROC. El
espacio ROC, representado en la Figura 3.2 esta definido por dos ejes en el que TFP define el eje x
y TVP el eje y. Cada punto dibujado en el espacio ROC representa los resultados de prediccion de
una clase, es decir, una instancia de la matriz de confusidon para una clase determinada.

1.0

18— #

i — o

04 — s

Tasa de Verdaderos Positivos

1] 0.2 0.4 0.6 0.8 1.0
Tasa de Falsos Positivos

Figura 3.2 Espacio ROC. El eje X se representa por TFP y el eje Y por TVP. La linea de puntos representa el clasificador
aleatorio [33]

Puede suceder que un método de clasificacion esté definido por un pardmetro, por lo que
cambiando su valor pueden obtenerse diferentes clasificadores para un mismo método. En este caso,
se podran dibujar diferentes puntos en el espacio ROC, que uniéndolos dardn lugar a una curva,
denominada curva ROC. Siuno de estos clasificadores predice con un pardmetro determinado todas
las muestras como positivas, se obtiene el punto (1, 1) en el espacio ROC, y si predice todas como
negativas se obtiene el punto (0, 0). El punto que describe la clasificacidon perfecta es el (0, 1), en el
que no existen ni falsos positivos ni falsos negativos. Esto quiere decir que un clasificador serd
mejor cuanto mas cerca esté de este punto.

El espacio ROC esté dividido en dos partes por la diagonal ((0, 0)(1, 1)). Un clasificador en la
diagonal representa un clasificador aleatorio, si se encuentra por debajo de la diagonal significa que
genera peores resultados que el clasificador aleatorio y si estd por encima genera mejores
resultados. En la Figura 3.3 se muestran ejemplos de diferentes clasificadores:
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Figura 3.3 Ejemplo de clasificadores, nombrados de A a E en el espacio ROC. D representa el clasificador perfecto, C, el
aleatorio y E un mal clasificador [33]

El punto D corresponde con el clasificador perfecto, el punto C con un clasificador aleatorio y el
punto E con un clasificador peor que el aleatorio. Se puede afiadir que para evitar un clasificador
que genera malos resultados como E, se puede crear un clasificador simétrico respecto de la
diagonal, E’, en el que los resultados positivos o negativos generados por E sean negativos o
positivos respectivamente segun E".

En la Figura 3.4 se muestra un ejemplo de un método de clasificacion con un parametro variable.
La aplicacion de este tipo de curvas es frecuente en psicologia, medicina o radiologia, siendo cada
vez mas usado en el aprendizaje automatico y la mineria de datos.
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Figura 3.4 Ejemplo de curva ROC para un método paramétrico [34]
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3.3 Resultados de la clasificacion

Los resultados de la clasificacion se obtienen utilizando el conjunto de test de la base de datos de
imagenes. Esto quiere decir que las imagenes de test siempre son detectadas y situaciones como la
presentada en la Seccion 2.4.1, en la que un platano no es detectado debido a su escaso nimero de
puntos, no son tenidas en cuenta.

Para comenzar con el analisis, se presentan los diagramas ROC de los métodos de clasificacion,
en los que cada punto representa la clasificacion para una clase. El Diagrama 3.1 muestra la
informacion para SVM, el Diagrama 3.2 para AdaBoost One-Against-One y el Diagrama 3.3 para
AdaBoost One-Against-All.

SVM

1,0
0,9
0,8
0,7

@ APPLE
0,6

[l BANANA

TPR 0,5

A BOWL
0,4

XMUG
0,3

X PLASTIC CUP
0,2

=TOBACCO
0,1
0,0 T T T T 1

0 0,2 0,4 0,6 0,8 1
FPR

Diagrama 3.1 Representacion ROC segun clases para el método SVM
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Diagrama 3.2 Representacion ROC segun clases para el método AdaBoost One-Against-One
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Diagrama 3.3 Representacion ROC segun clases para el método AdaBoost One-Against-All

El método ROC para SVM muestra como los clasificadores de Bowl y Banana son los que
peores resultados generan, siendo los clasificadores Apple y Plastic Cup clasificadores perfectos.
Para AdaBoost One-Against-One, los clasificadores Apple y sobre todo Plastic Cup son los peores,
siendo el clasificador Tobacco el que mejores resultados proporciona con una clasificacion perfecta.

22



Test y resultados

En el caso de AdaBoost One-Against-All, los clasificadores Banana y Plastic Cup generan los
mejores resultados siendo clasificadores perfectos, mientras que con los clasificadores Apple y
Bowl se obtienen los peores resultados para este método. Los clasificadores de AdaBoost One-
Against-One aunque generan resultados relativamente buenos, son peores que los obtenidos para los
otros dos métodos al encontrarse mas cerca de la diagonal.

Observando las matrices de confusion desprendidas de la clasificacion se pueden comentar las
equivocaciones mas comunes entre clases. En SVM, algunos platanos son reconocidos como
paquetes de tabaco debido a que dependiendo de la orientacion del paquete, la nube de puntos
generada se asemeja a una nube de puntos que podria crear un platano. A esto se le afiade el hecho
de que el método VOSCH es invariante respecto a la rotacion (Seccion 2.2.3) por lo que en la
clasificacion no se distingue si el paquete esta en posicion vertical. Otra confusion que se produce
es entre taza y boles debido a la forma parecida que describen los recipientes. Para AdaBoost One-
Against-One se producen varios errores de clasificacion. Debido a las dimensiones de los objetos,
las clases Mug, Bowl y Plastic Cup se confunden entre si. Dependiendo de la orientacién de la
muestra ocurre el mismo problema entre las clases Apple, Mug y Tobacco. Por ultimo existe una
confusion entre la clase Bowl y Banana debido a la similitud de las nubes de puntos presentadas en
Figure 4.7 y Figure 5.8. En cuanto a AdaBoost One-Against-All, los errores de clasificacion son
practicamente los mismos que en la estrategia One-Against-One, como se podria esperar al trabajar
con los mismos criterios de clasificacion. La unica diferencia es la clasificacion erronea de algunas
manzanas como tazas en vez de como vasos de plastico.

Aunque se puede distinguir que los clasificadores en SVM y AdaBoost One-Against-All son
mejores que los que describen el clasificador de AdaBoost One-Against-One, se van a concretar los
resultados presentando las tasas de acierto de los clasificadores. La Tabla 3.4 muestra las tasas de
acierto segin el método utilizado y la clase analizada. La primera columna describe el método
utilizado, siendo OaO la estrategia One-Against-One y OaA One-Against-All. La tltima columna
describe la tasa de acierto del método en general y el resto de columnas las tasas de acierto para
cada clasificador en concreto:

Method Apple Banana Bowl Mug Plastic Cup | Tobacco Overall
SVM 1,0 0,875 0,875 0,958 1,0 1,0 0,951
AdaBoost 0aO 0,792 0,917 0,875 0,95 0,625 1,0 0,859
AdaBoost OaA 0,875 1,0 0,875 0,975 1,0 0,938 0,944

Tabla 3.4 La informacion de las clasificaciones de cada método (filas) se muestran en funcion de la clase (columnas) en forma
de porcentaje. La ultima columna describe el resultado final teniendo en cuenta todas las clases.

En la Tabla 3.4 se puede comprobar que los resultados de SVM y AdaBoost One-Against-All son
similares, siendo mejores que los obtenidos con AdaBoost One-Against-One. Los mejores
resultados se obtienen con el método de SVM. La existencia de clasificadores perfectos (tasa de
acierto igual a uno) se debe entender, teniendo en cuenta que son los resultados obtenidos fruto de
la utilizacién de la base de datos y no son generalizables. En principio, SVM es el método que
deberia elegirse debido a dichos resultados pero existe otro factor importante como es el tiempo en
el reconocimiento en tiempo real que se debe tener en cuenta. En la Seccion 3.4 se estudian los
resultados de tiempo de los reconocedores en tiempo real.

3.4 Tiempo de la clasificacion

En primer lugar se van a presentar los tiempos totales de entrenamiento de los programas, ya que
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conforma la primera parte de los métodos supervisados. En la Tabla 3.5 se muestran los tiempos de
todos los métodos:

SVM AdaBoost 0aO | AdaBoostOaA
31,090 ms 2145,699 ms 3985,678 ms

Tabla 3.5 Tiempos totales de entrenamiento dependiendo del método de clasificacion.

Ya que como se ha explicado en la Seccion 3.1, el nimero de instancias con las que se entrenan
los clasificadores es diferente para cada método, la Tabla 3.6 muestra el tiempo empleado para
entrenar al sistema con una instancia genérica. El calculo se realiza dividiendo el tiempo total entre
el nimero de instancias:

SVM AdaBoost 0a0O | AdaBoostOaA
0,299ms 26,821ms 33,214ms

Tabla 3.6 Tiempos de entrenamiento de una instancia genérica dependiendo del método de clasificacion.

En este proyecto, el entrenamiento de los clasificadores en tiempo real se realiza una vez han
sido lanzados. Para poder ahorrar ese tiempo se podrian entrenar previamente los sistemas y
almacenarlos en un fichero para que, al lanzar los programas, cargar simplemente los valores que
describen a los clasificadores. Suponiendo esta mejora, los tiempos de entrenamiento de los
clasificadores no se van a tener en cuenta a la hora del computo total del tiempo.

En el reconocimiento en tiempo real debe existir un compromiso entre la correccion de las
clasificaciones y el tiempo empleado para calcularlas. La Tabla 3.7 muestra los tiempos empleados
para el método SVM, la Tabla 3.8 para One-Against-One y la Tabla 3.9 para One-Against-All para
poder hacer un analisis conjunto de estos dos factores. Cada columna de las tablas representa una
etapa del proceso de reconocimiento. La columna Rango contiene el tiempo que se necesita para
eliminar los puntos que no se encuentran el rango valido elegido y las columnas de RANSAC y
Plano describen el tiempo empleado para calcular el plano mediante el algoritmo RANSAC y el
tiempo que se tarda en eliminar dichos puntos respectivamente. Segmentador contiene el tiempo
que se tarda en etiquetar los puntos validos de la imagen. Caracteristicas y SVM indican
respectivamente, el tiempo necesario para calcular las caracteristicas VOSCH y realizar su
clasificacion. La columna Pintado muestra el tiempo utilizado para dibujar las nubes de puntos en la
ventana de la pantalla. Aunque no es necesario este paso para la clasificacion, éste se muestra para
presentar la informacion de tiempo del bucle de reconocimiento de la forma mas completa posible.
Por ultimo AdaBoost contiene el tiempo para calcular las caracteristicas sencillas de AdaBoost y su
clasificacion. Las filas representan las clases. Cada celda de la tabla contiene el tiempo medio que
se tarda en calcular el paso descrito por la columna para la clase expuesta en la fila. La columna
Total realiza la suma de los tiempos de cada etapa para la clase designada en la primera celda de la
fila. La ultima fila corresponde con la media de tiempos de todas las clases en la etapa descrita en la
columna.
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Rango RANSAC Plano | Segmentador | Caracteristicas| SVM Pintado Total
Apple 11,316 1,971 8,956 45,770 465,577 3,583 0,138 537,311
Banana 10,424 1,413 14,290 43,606 164,496 3,780 0,073 238,083
Bowl 13,116 2,315 10,897 53,220 638,098 4,575 0,317 722,538
Mug 10,007 1,440 7,664 41,126 334,392 2,704 0,135 397,467
Plastic cup | 10,118 1,125 7,624 45,208 230,162 3,285 0,102 297,624
Tobacco 11,157 1,179 7,849 41,610 211,523 2,685 0,091 276,093

11,023 1,574 9,547 45,090 340,708 3,435 0,143 411,519

Tabla 3.7 Tiempos de reconocimiento con SVM para cada objeto dependiendo del paso en el proceso de reconocimiento en
milisegundos. La media de tiempos en milisegundos para cada clase y para cada paso se describe en la dltima columna y

ultima fila respectivamente.

Rango RANSAC Plano Segmentador | AdaBoost Pintado Total
Apple 34,279 3,829 14,567 62,287 16,243 0,180 131,384
Banana 31,332 3,635 13,750 62,002 12,698 0,107 123,525
Bowl 34,052 5,793 14,020 74,938 21,115 0,436 150,354
Mug 29,018 4,506 12,716 59,601 15,056 0,382 121,278
Plastic cup 31,041 5,006 12,418 55,041 14,751 0,195 118,452
Tobacco 29,600 3,500 11,902 55,285 11,020 0,174 111,481

31,554 4,378 13,229 61,526 15,147 0,246 126,079

Tabla 3.8 Tiempos de reconocimiento con AdaBoost One-Against-One para cada objeto dependiendo del paso en el proceso de
reconocimiento en milisegundos. La media de tiempos en milisegundos para cada clase y para cada paso se describe en la
ultima columna y ultima fila respectivamente.

Rango RANSAC Plano Segmentador | AdaBoost Pintado Total
Apple 30,097 3,883 13,620 54,825 12,655 0,201 115,281
Banana 30,335 3,955 14,834 59,864 12,274 0,136 121,397
Bowl 31,284 5,905 12,377 56,709 16,405 0,476 123,155
Mug 31,306 5,313 12,925 60,974 15,383 0,463 126,363
Plastic cup 31,481 3,660 15,335 67,658 14,736 0,193 133,062
Tobacco 29,380 3,654 13,332 56,853 12,127 0,177 115,522

30,647 4,395 13,737 59,480 13,930 0,274 122,463

Tabla 3.9 Tiempos de reconocimiento con AdaBoost One-Against-All para cada objeto dependiendo del paso en el proceso de
reconocimiento en milisegundos. La media de tiempos en milisegundos para cada clase y para cada paso se describe en la
ultima columna y dltima fila respectivamente.

La Tabla 3.7 muestra una diferencia considerable en la extraccion de caracteristicas dependiendo
del objeto, que va desde 164ms a 638ms, Esto se debe a que el célculo realizado por el método
VOSCH depende de la forma del objeto y de la transicion entre los diferentes tipos de puntos [25],
es decir, cuantos mas puntos y formas tenga un objeto, mas tiempo se necesitara para su célculo.

En el caso de que se detecten mas de un objeto, al tiempo total de una de los reconocimientos
habria que afiadir el tiempo de célculo de caracteristicas y de aplicacion del método de clasificacion
del otro objeto. A modo de ejemplo, suponiendo que con SVM se detectan dos boles, habria que

25




Test y resultados

afiadir al tiempo empleado para el reconocimiento de uno de ellos, que es 722ms, el tiempo de la
extraccion de caracteristicas VOSCH vy el de la clasificacion del otro que son 638ms y 4,5ms
respectivamente. Por lo tanto el tiempo final seria de 722ms + 638ms + 4,5ms= 1,3s.

Comparando los tiempos de los métodos de AdaBoost en la Tabla 3.8 y la Tabla 3.9, se encuentra
una pequefia diferencia. La razon radica en el mimero diferente de clasificadores que utilizan.
Mientras la estrategia One-Against-One utiliza seis, uno por cada clase, la estrategia One-Against-

utiliza 15, eccion 2.3.2). Aunque algunos clasificadores de la estrategia One-Against-One
All'l'lSSS'232A 1 lasificad del ia One-Against-O

son triviales (Seccion 2.3.2) y su célculo rapido, el nimero de clasificadores es 2,5 veces mayor.

La Figura 3.5 muestra una representacion grafica de las diferencias entre métodos para cada
etapa. Para SVM, el calculo de VOSCH vy la clasificacion se describen en Método. El eje x indica el
paso en la clasificacion y el eje y el tiempo en ms.
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Figura 3.5 Cada parte del proceso de reconocimiento se describe en el eje X. Método indica la suma del calculo de las
caracteristicas y de la aplicacion del método y total muestra la suma de los tiempos de los pasos anteriores para cada método
de clasificacion.

Teniendo en cuenta la informacién de la Figura 3.5, SVM puede procesar de 1-3 imagenes por
segundo y los métodos de AdaBoost de 6-8. Considerando que un robot movil debe realizar otras
tareas simultdneamente como planificacion o adquisicion de informacidn de otros sensores, la
opcion preferida seria la que menos tiempo necesitase, ya que, permitiria al robot utilizar mas
tiempo en otras tareas.

De acuerdo con los resultados, el método seleccionado deberia ser AdaBoost para poder
clasificar los objetos lo antes posible.
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4 Conclusiones

El objetivo principal del proyecto ha sido la implementacion de un sistema de clasificacion con
informacion 3D que trabaje con tres métodos diferentes y permita su comparacién para poder
realizar la eleccion de la técnica mas adecuada para su integracion en un robot movil. Este objetivo
se ha cumplido satisfactoriamente identificando adecuadamente los sub-objetivos requeridos. Se ha
creado una base de datos que ha permitido el suministro de informacion para el entrenamiento y test
del sistema y se ha descrito la estructura y las caracteristicas de la nueva base de datos. Se han
identificado los médulos de entrenamiento y de test, que realizan el entrenamiento y test del sistema
respectivamente, asi como las partes de tratamiento de imagenes que se encargan del pre-
procesamiento de la informacion adquirida por el sensor. Se ha alcanzado un esquema de seudo-
tiempo real que libera de célculos no criticos al sistema y que permite su implementacién en un
robot mévil. Por altimo, se han utilizado los métodos de andlisis de resultados propuestos para
realizar la eleccion del método de clasificacion mas adecuado.

Respecto a los resultados obtenidos, como se ha visto en la Seccion 3.3 y en la Seccion 3.4, la
eleccion del método serd SVM o AdaBoost dependiendo del criterio que se prefiera. Para encontrar
la mejor solucion se deben tener en cuenta ambos criterios. Para empezar se descarta AdaBoost
One-Against-One, ya que su tasa de aciertos es alrededor del 85% mientras que la de los otros dos
métodos es del 95% (Tabla 3.4).

Sobre los resultados de tiempos, existe una gran diferencia entre SVM y AdaBoost. El principal
problema de SVM radica en las caracteristicas que utiliza, ya que el tiempo que se necesita para
calcularlas es muy grande. La solucion mas sencilla que se podria adoptar, seria la utilizacion de un
procesador mas rapido para poder realizar los calculos mas rapido. Una segunda solucidén seria
cambiar el tipo de caracteristicas a calcular ya que el tiempo que necesita para procesar una nube de
puntos es muy elevado. En un reconocimiento de varios objetos a la vez, el tiempo necesitado seria
demasiado alto para una aplicacidon en tiempo real. Sin embargo, VOSCH es una buena solucion
para problemas en los que no se requiere computacion en tiempo real como puede ser el andlisis de
videos o para problemas en los que el tiempo no es un factor critico. Respecto a la diferencia de
tiempos de los clasificadores AdaBoost, se debe al nimero de clasificadores como se ha comentado
en la Seccion 3.4.

Los resultados de la deteccion obtenidos con SVM y AdaBoost One-Against-All son similares,
mientras que el tiempo empleado es mucho menor para AdaBoost One-Against-All. Por estas
razones y por la bisqueda de compromiso entre correccidon y tiempo, la opcion seleccionada para
ser implantada en un robot movil es AdaBoost con la estrategia One-Against-All. Este es el método
que mejor se ajusta al problema, aunque la opcidn de SVM debe ser tenida en cuenta si se produce
un cambio en la forma de generar los patrones a clasificar para reducir su tiempo.

Ahora se van a comentar varias ideas que servirian para mejorar o completar el sistema creado:

e Ampliacion de la base de datos de objetos. En comparaciéon con otras bases de datos
existentes, la creada aqui es pequefia, pero cumple su funcion de entrenamiento y test del
sistema. De todas formas, se pueden realizar varias mejoras. Una buena idea es ampliar la
base de datos afladiendo mas instancias para cada clase o afiadiendo mas capturas de cada
objeto (tomando por ejemplo 16 imagenes en vez de ocho con rotacidon cada 22,75°). Otra
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idea es crear una nueva base de datos siguiendo el método aqui expuesto en el que el ambito
de las clases esté acotado, como podria ser frutas, recipientes o elementos del concurso
Eurobot.

e Aumento del nimero de clasificadores AdaBoost. El nimero de los clasificadores débiles de
AdaBoost no es muy alto, por lo que se podria considerar la posibilidad de afiadir nuevos,
para que el clasificador final sea mas complejo y se puedan analizar los nuevos resultados
que dicho clasificador produzca. Hay que considerar que los resultados, aunque mas
costosos en cuanto a tiempo debido al mayor nmimero de operaciones, podrian ser
presumiblemente mejores.

e Reconocimiento de la clase desconocida. El clasificador siempre devuelve un resultado si
detecta un objeto, por lo que se genera una clasificacion erronea cuando el clasificador
recibe informacion de un objeto perteneciente a una clase no ensefiada previamente. Por
esto, se podria implementar el sistema de tal forma que fuese capaz de identificar objetos
que no pertenezcan a ninguna de las clases conocidas.
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Anexo A
Arquitectura del sistema

En esta seccion se presentan las diferentes partes o modulos que describen el sistema y la
relacion que existe entre ellos. Primero se parte de una descripcidon general del sistema y después se
comentan los médulos principales que pertenecen a dicho sistema. Por ultimo se presentan las
clases utilizadas mas importantes.

El Diagrama A.1 muestra la relacion general entre los médulos y las partes del sistema en tiempo
real. Para poder utilizar la informacién que el sensor recoge del exterior se utiliza Mobile Robot
Programming Toolkit (MRPT) [14]. MRPT proporciona un conjunto de librerias para el desarrollo
de la robotica movil. En este proyecto, la utilizacion de MRPT se centra en su relacién con la
libreria /ibfreenect de openKinect [35] que permite a MRPT acceder a la informacion del sensor y
en la utilizacion de las estructuras de datos y algoritmos referentes a la vision por computador que
representan la informacion (Seccion 4.2 del Anexo C).

Sensor Clasificador ——! Resultado

Diagrama A.1 Esquema general del clasificador en tiempo real. Los diferentes médulos son los que proporcionan la
informacion al clasificador para generar un resultado.

La funcidn del test es comprobar el rendimiento del sistema a partir de la informacion de la base
de datos tal y como se muestra en el Diagrama A.2. El modulo de entrenamiento se utiliza como
entrada de los clasificadores para permitir generar los resultados del test.

Clasificador | Resultado

Diagrama A.2 Esquema que describe el test del sistema. Se muestra como para el analisis del clasificador se utiliza la
informacion de la base de datos y el médulo de entrenamiento.
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Para especificar qué partes han sido implementadas y en cudles se han utilizado bibliotecas ya
existentes, los diagramas muestran las partes implementadas en color verde, las partes que utilizan
bibliotecas ya existentes en gris y los modulos en color azul.

El médulo de tratamiento de la imagen recibe como entrada la informacion proveniente del
sensor y se encarga de tratar dicha informacion para hacer que el clasificador sea capaz de
interpretarla para realizar su clasificacion. El mdédulo de entrenamiento se encarga de proporcionar
la informacién que permita al clasificador reconocer las diferentes clases de objetos. Con la
informacion que el clasificador recibe de ambos mddulos es capaz de proporcionar un resultado.

Moédulo de tratamiento de imagenes

El modulo de tratamiento de imagenes se encarga de transformar la informacidon del sensor
Kinect para que pueda ser interpretada por un clasificador. El Diagrama A.3 muestra el esquema de
este modulo, en el que primero se elimina de la informacion proveniente del sensor, los datos segun
un criterio de rango en la imagen utilizando las estructuras de datos de MRPT. A continuacion se
identifica y elimina el plano de la mesa, para lo cual se utiliza la clase HTWGRansac. La
segmentacion de la imagen que proporciona los objetos detectados se realiza gracias al método
programado en [30]. La ultima parte del método es la extraccidon de caracteristicas. Las
caracteristicas VOSCH se obtienen gracias a la biblioteca vosch que se encuentra integrada en
Robot Operating System (ROS) [15] creando un fichero externo de extension pcd que describe
dichas caracteristicas. ROS es un sistema que proporciona librerias y herramientas para el desarrollo
de aplicaciones de robodtica y en este caso de tratamiento de imagenes e informacion en 3D.

VOSCH

Extraccién de caracteristicas

;:R‘?n‘:i:jdead l segm i '

Médulo de tratamiento de imagenes

Diagrama A.3 Esquema de moédulo de tratamiento de imagenes. Se muestran los cuatro pasos que hacen que la informaciéon
del sensor sea legible por los clasificadores eliminando los datos no ttiles para la clasificacion

Este modulo se encarga del procesamiento de informacion proveniente del sensor Kinect para
pueda ser tratada directamente por un sistema de clasificacion. Para el tratamiento de informacion
descrito mediante nubes de puntos se utiliza Point Cloud Library (PCL) [17], que es una libreria que
facilita su tratamiento y que estéd integrada en MRPT y ROS.

Moédulo de entrenamiento

El modulo de entrenamiento es el encargado de crear la informacion necesaria para permitir a un
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clasificador establecer los criterios de diferenciacion entre clases. La base de datos proporciona la
informacion a cada uno de los métodos para establecer dichos criterios. Para AdaBoost, el método
de clasificacion estd descrito por la clase AdaBoost, mientras que para SVM se utiliza la clase
cvSVM de Open Source Computer Vision (OpenCV) [16]. OpenCV es una libreria que contiene el
estado del arte de los algoritmos y estructuras aplicadas a la vision por computador en tiempo real.
En el Diagrama A.4 se muestra el esquema del modulo de entrenamiento. La informacion que
describe los criterios de clasificacion de SVM se describe utilizando un archivo xml.

.| Clasificador xml
SVM )

Médulo de entrenamiento

Diagrama A.4 Esquema del médulo de entrenamiento. Se muestra como la base de datos suministra la informacion a los
métodos de clasificacion para crear los clasificadores

Este modulo puede utilizarse de forma independiente para la creacion de clasificadores o bien,
como se muestra en el Diagrama A.2 puede utilizarse como entrada de un sistema de test.

Aspectos especiales de la implementacion

En esta seccion se comentan aspectos singulares de la compilacion del sistema, de la
documentacion de las librerias utilizadas y por ultimo las clases programadas que son consideradas
especiales en este proyecto.

En lo que concierne a la compilacion del proyecto, el sistema ROS fue introducido durante el
desarrollo del proyecto, por lo que las bibliotecas MRPT tuvieron que ser incluidas en el sistema
para poder usarlas en cualquier proyecto en ROS. El problema era que, en principio, MRPT
utilizaba VOSCH y SVM como programas externos y esto hacia que las llamadas a los programas
afladiesen alrededor de 100ms cada una al tiempo total de reconocimiento. Al tratarse de un
clasificador en tiempo real se quiso eliminar este problema. Para ello se realizé un profundo estudio
de CMake, ya que es el sistema de archivos que utiliza ROS para compilar sus bibliotecas.
Existieron muchas duplicidades en las bibliotecas de PCL que estaban definidas de la misma forma
en ROS y MRPT pero con distinto nombre. El problema se resolvié renombrando bibliotecas y
cambiando las dependencias entre ROS y PCL. Una vez realizado, se exportd el proyecto ROS a
Eclipse.

Por ultimo, ya que el desarrollo de aplicaciones con el sensor Kinect es una tecnologia reciente,
la informacion y documentacion que se encuentra en Internet no es en muchos casos completa. Los
comentarios en algoritmos o ejemplos no se encuentran ampliamente extendidos por lo que se debe
realizar un estudio profundo de algoritmos, tipos de datos, estructuras, bibliotecas y dependencias
que no estan directamente relacionadas con el problema de reconocimiento de patrones.
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Ahora se comentan las clases mas especiales que se han considerado en el diagrama de clases
para los métodos de AdaBoost (Diagram 4.1 en la Seccion 4.3.1 del Anexo C) que son tres, la clase
RansacHTWG, la clase Organizador y la clase AdaBoostObject.

La clase RansacHTWG

La clase RansacHTWG fue creada para la utilizacion del algoritmo RANSAC de MRPT. Esta
basada en el método mrpt::math::RANSAC::execute, que es el que calcula el modelo final. En un
primer momento, se programo un algoritmo que calculaba el plano respecto de la matriz de la
imagen, pero los tiempos obtenidos eran muy elevados. Por lo que se decidid utilizar otra estructura
distinta, CColouredPointsMap. Esta estructura contiene una nube de puntos sin ordenacién. Un
aspecto importante en la utilizacion de la estructura es que se necesita informacion sobre la imagen
en 2D ni de cualquier tipo de ordenacidn de los puntos para calcular el plano, por lo que podemos
prescindir de ella. Ademas, la razon mas importante es el tiempo de ejecucion. En el caso de la
matriz de la imagen se tienen que tratar un conjunto de 640x480 datos, mientras que con
CColouredPointsMap, s6lo se tratan los puntos contenidos en el rango. Esto es muy importante, ya
que se eliminan para el calculo entre 200.000 y 290.000 puntos que no tienen inter¢s.

Los métodos mas importantes de la clase son:

o ransacHTWG3Dplane_fit: crea el modelo del plano a partir de tres puntos aleatorios de la
nube de puntos.

o ransacHTWG3Dplane distance: comprueba los puntos de la nube para saber si
pertenecen al plano o no, teniendo en cuenta un margen maximo, el atributo
distanceThreshold, que es la distancia de un punto con el plano-modelo.

o run_ransacHTWGD: ejecuta el método RANSAC para calcular el modelo final del plano.

e isNotFloor: compara un punto con el plano resultado obtenido. El plano resultado se
describe usando los coeficientes del plano.

Hay que afiadir, que se puede ejecutar el algoritmo completo un numero de iteraciones
determinada para conseguir un resultado mas exacto, aunque esto repercute en el tiempo final de
calculo del plano. En el ambito del tiempo real hay que lograr un compromiso entre tiempo de
ejecucion y fidelidad del resultado. Ademads existen varios parametros que pueden ser modificados
para reducir el tiempo de ejecucion, como son por ejemplo el nimero maximo de iteraciones a
realizar por el algoritmo, el nimero minimo de puntos pertenecientes al posible plano a calcular o la
distancia minima que indica si un punto pertenece al plano candidato. Con esto se evita que el
tiempo de ejecucion del algoritmo sea excesivo y que el resultado obtenido sea razonablemente
bueno para nuestra aplicacion. La eleccion de dichos parametros se explican en la Seccion 4.4.2 del
Anexo C.

La clase Organizador

La clase Organizador fue creada para el posterior tratamiento de las nubes de puntos que
conforman cada objeto y para posibilitar el reconocimiento en tiempo real de varios objetos en
todos los clasificadores. Esta clase es principalmente un vector de vectores en el que cada entrada
del vector se guarda los puntos de un objeto y el color detectado por el sensor para cada uno de esos
puntos . De esta forma cada grupo de puntos identificados por el segmentador (con una etiqueta
dada) pertenecientes a un mismo objeto son introducidos en la misma coordenada del vector. Para
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AdaBoost, ademas de los valores de los puntos en el espacio, se almacenan los valores R, G, B del
color y en el caso de SVM, un valor real correspondiente al color de los puntos. El calculo de este
valor real se muestra en Listing 4.1 de la Seccion 4.1 del Anexo C, y su computacidon es necesaria
ya que es la forma en la que los archivos pcd guardan la informacién de color de los puntos.

La clase contiene diferentes métodos, entre los mas importantes se encuentran:
e Size: indica el nimero de objetos que contiene la instancia de Organizador.
e [sInOrganizador: comprueba si alguna entrada del vector corresponde con una etiqueta
dada.
e  AddOrganizador: afade una nueva entrada al vector debido a una nueva etiqueta.
e AddPoint: afiade un punto de un objeto a la entrada correspondiente del vector.
e (lear: vacia el vector.

A cada entrada del vector, es decir a cada objeto, se le asigna ademas un color aleatorio (el
mismo para todos los puntos) que se utiliza para diferenciar los objetos mdas tarde durante la
visualizacion en pantalla.

Clase AdaBoostObject

La clase AdaBoostObject se utiliza en los métodos de clasificacion de AdaBoost. Se construyo
para facilitar el calculo de las propiedades de las nubes de puntos de los objetos, para su posterior
utilizacion en los distintos clasificadores.

Los atributos mas importantes de la clase son la nube de puntos, de tipo CColouredPointsMap,
que guarda cada uno de los puntos que conforman la nube, y la altura, la anchura, la profundidad,
que se utilizan para el calculo de las propiedades para los clasificadores débiles.

Los métodos mas importantes que componen la clase son los siguientes:

e AddPointCloud: afiade una nube de puntos de tipo CColouredPointsMap a la instancia.
Se utiliza en el esquema de tiempo real, siendo la instancia de la clase Organizador la que
proporciona dicha nube.

e ReadObject: lee la nube de puntos de un fichero pcd que se encuentra en una ruta
determinada. Se utilizada en el mdodulo de entrenamiento y de test para trabajar con los
objetos de la base de datos deseada.

e CalculateValues: calcula los valores de altura, anchura y profundidad de la nube de
puntos que contiene la instancia.

e PrintPoints: imprime la nube de puntos que contiene la instancia de la clase.
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Anexo B
Evolucion temporal del proyecto

Este anexo muestra la informacion temporal de las diferentes partes del proyecto. Dichas partes
estan indicadas en la zona derecha de la Figura B.1, que representa el diagrama de Gantt, mientras
que en la parte derecha se muestra la duracion de las diferentes partes. Se puede destacar el tiempo
invertido en el estudio de la documentacién tanto de la transmision y representacion de la
informacidn proveniente del sensor Kinect como de los métodos de clasificacion y extraccion de
caracteristicas utilizados. Afadir que se necesité un mes para la puesta a punto del sistema ROS y
de su interaccion con la biblioteca MRPT, ademas del consiguiente estudio de su documentacion y
forma de compilacion.

B,

e project

’:;:.’ 2011 2012

1 I 1 1 I T 1 i |
Ranbne mayo Jjunio julio agosto septiembre octubre noviembre diciembre  enero febrero  marzo abril mayo junio

Documentacion de Kinect ]

Tratamiento de 1a imagen | =t |

Creacion de la base de datos [=———=i]

Memoria:Base de datos =1}

Entrenamiento del sistema =

Memoria: entrenamiento y tratamiento de imagenes ===

Estudio de métodos de clasificacion ——

Esquema en tiempo real 7]

Modulo de test ),

Test del sistema (=]

Memoria: tiempo real ==

Medicion en tiempo real 1|

WMemoria: test ==z
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Memoria final e —— |

Figura B.1 Diagrama de Gantt que muestra la evolucién del proyecto
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Anexo C

Real-time 3D segmentation and Object Detection

based on a Kinect Sensor
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1 Introduction

The goal of robotics is to improve our way of living, helping us in science, discoveries, factory
work, security or everyday tasks. Object detection is, for a robot, an essential step for the
development of this kind of systems, in view of the fact that they require object handling to be able
to carry out different complex tasks when it is interacting with its environment.

1.1 Motivation

Human beings have the important skill of recognizing objects, people or colors in a short period of
time. This skill helps us to survive, learn new things, create tools or interact with other human
beings and machines. The aim of the service robotics is the development of robots which are able to
assist people, for example, in housework. For mobile service robots, the detection of everyday
objects is an important challenge because it is the first step to develop advanced tasks, such us grab
or move an object. The appearance of low-cost RGB-D sensors, like the Kinect sensor of Microsoft
(Figure 1.1), has made possible obtaining synchronized depth and color information from the scene.
This is helping researchers to improve detection systems in robotics due to various qualities that it
possesses such as its small size.

Figure 1.1 Kinect sensor. It consists of a 3D depth sensor, a RGB camera and an
array of microphones

1.2 Main Objective

The objective of this thesis is the development or use of object detection and classification methods
in real-time programs as well as the study and comparison of the results between them. The objects
are situated on a table to be analyzed and after that, classified. The different classes that can be
recognized are described in a data-set which consists of different everyday objects. All the
information coming from the objects is collected thanks to Kinect sensor. The used classification
methods are supervised learning ones, these are: support vector machines (SVM) and adaptive
boosting (AdaBoost). The aim of these methods is the use of complex or easy features. For SVM,



Voxelized Shape and Color Histograms (VOSCH) features are used. These features consist of a
mixture of complex shape and colour characteristics. For AdaBoost, simple geometrical features are
used. Because the program can classify different objects, the methods are used to make a multiclass
classification. The results of this thesis consist of the first approach of integrating a vision system in
a real mobile robot, making it able to grab, move or avoid an object.

1.3 Sub-Objectives

Apart from the study of the created programs, there are also two secondary objectives in this thesis.
The first one is the development of a small data-set of everyday objects to be used as a source in
this thesis. This data-set is fully explained in Section 3.1.1.1. The second one is the possibility of
classifying more than one object in real-time at once. This function in the program has been
developed because objects are not usually found alone on a table and if the program is executed by
a mobile robot, this will interact with more than one object at once.

1.4 State of the art

In this part, some state of the art solutions in 3D pattern recognition connected with Kinect are
going to be presented.

With the appearance of Kinect sensor, new data-sets have been created using this technology [1].
This data-sets use the color and depth information at the same time to create a sample of the object.
They contain a huge amount of classes and instances in order to be able to use them to check how
good a new classifier algorithm is. The state of the art of recognition algorithms can be mainly
found in the Open Source Computer Vision library (OpenCV) [2]. This open source library contains
a comprehensive set of both classic and state of the art computer vision and machine learning
algorithms. These algorithms are widely used as in [3].

Pattern recognition research is been developed is very different fields, such as body recognition [4],
face recognition [5], handwritten digit recognition [6], object and texture classification [7] or
seismology [8]. This thesis is focused on object recognition and classification using OpenCV
algorithms as a reference.

1.5 Structure

The structure of this document is mainly divided in five parts. In Chapter 2, the components and
specifications of the Kinect sensor and the theoretical principles from machine learning are
explained. In particular, theoretical basis of the classification and evaluation methods which are
used in this thesis are presented. In Chapter 3, how the theoretical foundations of machine learning
are used in each part of the recognizer is commented, in order to show a well-reasoned view of the
structure of the classifier. It is also explored the structure of the data-set and how the data-set was
created. The way of implementing these classification methods is explained in Chapter 4. It is
shown the development of the different parts of the classifiers as well as the parts of each phase, the
phases being: the learning phase and real-time classification phase. It is also discussed what kind of
software (algorithms, libraries, compilers and programs) is used in order to program the classifiers
because the algorithms are either implemented or used from different open source libraries. In
Chapter 5, the test phase and the obtained results are studied in order to be able to get a conclusion
from all the work developed.



2 Theoretical principles

The machine-learning principles that have been used or implemented in this project are going to be
introduced in this chapter as well as the specifications of the sensor used in this thesis; the Kinect
sensor. In this project two different methods are used, these are Support Vector Machines (SVM)
and Adaptive Boosting (Adaboost). Both methods are supervised machine-learning methods, this
means that a training set, in this case pictures of different objects, is used to train the algorithm in
order to make a pattern recognition. A pattern is an abstract notion represented by a set of
descriptions and it is usually described as a vector in which, its components are the attributes [9].

In machine learning there are mainly two parts in the development of a recognition program, the
training phase and the test phase, which are presented in Section 2.2.1 and in Section 2.2.2.

2.1 Kinect Technical specifications

These are the Kinect technical specifications. It is shown the sensors that Kinect contains, the
limitations of these sensors and the data that they receive:

e Sensor:

o Color VGA video camera: This video camera aids in facial recognition and other
features by detecting three color components: red, green and blue. Microsoft calls
this an "RGB camera" referring to the color components it detects.

o Depth sensor: An infrared projector and a monochrome CMOS (complimentary
metal-oxide semiconductor) sensor work together to "see" the room in 3-D
regardless of the lighting conditions.

o Multi-array microphone: This is an array of four microphones that can isolate the
voices of people from the background noise in a room.
e Field of view

o Horizontal field of view: 57 degrees.
o Vertical field of view: 43 degrees.
o Physical tilt range £27 degrees.

e Data streams

o 320x240 16-bit depth @ 30 frames/sec.
o 640x480 32-bit colour @ 30 frames/sec
o 16-bit audio @16 kHz.

In Figure 2.1, a data transmission diagram of the Kinect sensor is shown:
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Figure 2.1 Data transmission in Kinect. It represents how the sensor receives the depth information
(IR light and Depth Image CMOS), the color information (Color Image CMOS) and the sound (two
microphones and our external digital audio sources) and how the sensor transmits information to
other devices (USB 2.0), in this thesis, to a computer.

All the information that the sensor can obtain, allows it to distinguish different colours and
distances, which make it possible to create different classifiers and recognizers depending on the
task that it is wanted to be developed. Despite the fact that the precision of distance measurements
is not always perfect (sometimes there can be found errors up to 1 cm in depth and 4 mm in height
and width measurements), these differences are small enough to allow a robot to interact with its
environment without significant problems using the data provided by the Kinect sensor as its vision
system. The 3D information can be used by algorithms to enable a robot to recognize a face in order
to situate it, respectively an object so it can grab it, or make a specific movement depending on the
position of the recognized pattern. Because of all the advantages that the Kinect sensor provides, it
is becoming one of the most popular sensors to be used in pattern recognition.

2.2 Machine learning working method

In this section, the two phases of the development and test of a machine learning application is
presented. Each phase is divided in several parts. As it is a real-time program, the different parts of
real-time applications is also commented.

2.2.1 Training phase

In this phase, the program is trained with the different instances of the objects to be able to
recognize a different instance of a class afterwards. Training phase has mainly three parts: data
collection, method choice and classifier training.

e Data collection: It has to be considered which is the field of classification, that is, what kind
of classes it wants to be recognized and classified. The data-set will be different if a
classification of objects, people or words is needed to be done. Datasets have a tree
structure organization where each branch of the dataset is an easy to recognize class and the
leaves of these branches are its different instances. There are several data-sets which can be
found on the Internet depending on the field of application to evaluate the classifier. Some
examples are Caltech 101 [10], LabelMe [11] or Imagenet [12]. Instead of using an already
built dataset, an new dataset can be built to be able to work with a desired group of classes



or instances, maintaining always the tree structure. In the training phase not all the instances
are used to train the classifier. A common method used to select what samples are going to
be employed in the training phase are, for example, the holdout method, where a fixed
subset of the dataset is used in the training phase and the rest of the samples are used in the
test phase. Another method is crossing validation, where different subsets of the dataset are
chosen to train the classifier, their complementary subsets to test it in different iterations.
After this, the mean of all the results obtained from the iterations is computed.

Method choice: this step consists of two parts- feature choice and principle choice. For the
part it has to be considered what kind of features can represent a class properly and if both
easy or complicated are required to be used. For example, if the classification between a
glass and a bottle is needed to be done, a useful feature would be the height or between a
green and red apple, colour would be a correct decision. After feature choice, the principle
has to be chosen, this means, to choose the algorithm that is going to be used in the future
classification.

Classifier training: once previous steps are done, the method is applied using a training set
from the dataset and the algorithm chosen in the previous step using the corresponding
features. Information calculated by the corresponding algorithm or algorithms is saved to be
able to distinguish among different classes and make a future classification.

2.2.2 Test phase

After training phase, the classifier has to be evaluated. This phase consists of three parts which are:

Data selection: this part of the test phase depends on what instances have been chosen in
data collection as well as the method of selection of the training and test sets. All the
instances of the test set are used in this phase.

Classification: once the test set is selected, the procedure is to extract the features of the
instances and after this, use the algorithm that the selected method uses to classify them.

Evaluation: after the classification of all the instances of the test set, the evaluation of the
classifier is done. It can be evaluated, for example, using hit rates, confusion matrices or
ROC curves. This way, the classifier can be compared with other ones or the precision of a
classification of an instance is validated.

2.2.3 Real-time structure

When a recognition program is running, the structure is different to the training and test phases. The
program is receiving information from the environment without a break and this data has to be
processed in order to extract the features and make the classification. This structure, as shown in
Diagram 2.1 can be summed up in:

Data reading: to be able to receive information from the environment the program has to be
connected to a sensor, for example thermographic, 2D or 3D cameras, which send the
information to the recognizer. To use this data, algorithms are needed that can read the
information and send it to the program. These algorithms are usually integrated libraries
which make possible the information transmission between sensor and program. Sometimes
different libraries or algorithms can be found to get the same information from a single
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e Pre-processing: once the complete sensor data can be transferred to the program, this
information has to be selected owing to the fact that not all the data from the sensor will be
used; just the important information from the sensor library to the recognizer has to be
processed. After selecting the information from the sensor a new data processing may be
needed because raw data can contain irrelevant parts for the program in the following steps.
For example, in object recognition field, working with a sensor where just 2D images
coming from the sensor are selected, a segmentation of the image would be done to get only
the objects in the image and discard the background. After that, the attribute extraction of
the objects can be done in order to make the pattern recognition just with feature
information, avoiding using the whole information from the object. Although the feature
extraction is considered a part of the pre-processing, sometimes it is not clear the difference
between this stage and the application of the method (for example, neural networks) [13].

e C(lassification: with the relevant information from the sensor, the classification algorithms
from the selected method can now be used to classify the data.

e Post-processing: after classification is done, not only the label of the recognized class can be
required but also the name and further information of the class, such as the distance to the
object, the specific position on a picture or in the space or if the recognized data is moving
or not.

Sensor data

h 4

Pre-processing

h 4

Classification
method

4

Post-processing

v

Result

Diagram 2.1 The diagram shows the outline of a real-time recognition. The
raw data coming from the sensor is processed so that the classifier can
recognize the sample. The post-precessing can be done in order to clarify the
information before the final result is given.

2.3 Classification methods

In this section, two classification methods are going to be introduced, Support Vector Machines and
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Adaptive Boosting. Although Support Vector Machines can solve regression problems, just
classification problems are going to be presented.

2.3.1 Support Vector Machines (SVM)

Support Vector Machines (SVM) is a concept developed from the Statistical Learning Theory
(Vapnik & Chervonenkis) [14]. SVM are learning systems that use a hypothesis space of linear
functions in a high dimensional feature space, trained with a learning algorithm from optimization
theory that implements a learning bias derived from the Statistical Learning Theory [15]. This
method creates a hyperplane or set of hyperplanes which separates regions with different class
memberships in order to be used in different tasks such as classification or regression. In machine
learning the goal of SVM is to be able to classify a new given point in the correct region. Points are
viewed as p-dimensional vectors and, if the different classes can be separated with a (p — 1)-
dimensional hyperplane, a linear classifier will be found. In Figure 2.2, a binary linear classification
example is shown, a line separates orange and blue objects:

Figure 2.2 A hyperplane divides the region in two parts. New
samples under the hyperplanes will be classified as ”blue” and the
rest of them will be classified as “orange” [16].

But a classifier can use more than one hyperplane to distinguish classes between two regions. In
Figure 2.3 three of these possible hyperplanes are shown. Since the best classifier is aimed to be
found, the hyperplane has to represent the largest separation, or margin, between the two regions.
That is why, to find the best classifier, a maximization of the distance from the hyperplane to the
nearest points on each side has to be done. This hyperplane is called maximum-margin hyperplane
and the classifier it describes, maximum-margin classifier.

Figure 2.3 Three possible hyperplanes for the classification
problem are shown in the figure. The hyperplane in red represents
the perfect one due to the fact that the separation between the
closest sample of both classes is the largest [16].



2.3.1.1 Mathematical principles
The mathematical principles to calculate a binary linear classifier are going to be presented.

Given a training set:

D= {(x,y)|xi € RP, y; € (-1, 1}} 11, (2.1)

Where x; is a p-dimensional real vector which describes a point of the training set and y; is the
desired output value, which is 1 or -1, used to describe which class the point belongs to. A
hyperplane can be described as:

w-x)—b=0 (22)

where x is data from a object and w is the normal vector to the hyperplane. b describes the offset of
the hyperplane from the origin along the normal vector w. Figure 2.4 also describes the optimal
hyperplane ~ which  maximizes  margin p, that is the  distance  between
2
liwll
of maximization of the margin can be presented now as a minimization problem of w.
Geometrically, Support Vectors are the training patterns that are closest to the decision boundary.

(w-x)—b=1 and (W-x)— b = —1 . This margin can be calculated as, p = .The problem

4
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Figure 2.4 Example of hyperplane which divides the region in two parts with the
largest margin ((w-x) — b = 0) and the two hyperplanes which contain the
support vector machines ((W-x) —b =1) and (w-x)— b = —1)). The blue
samples are labeled as -1 and the orange ones as 1 [16].

To make a correct classification between the classes, these constraints have to be added,

w-x;)—-b=> 1 if y;= 1 (2.3)
w-x;)-b< -1 if y;=-1

Or in a compact form,

yillw-x;)—b) > 1 (24)



The support vector machines are the x; values which satisfy the equation,
y(S) ((W-x(s)) — b) =1 (2.5)
And given a new instance X, the classifier is
f(x) =sign (w-x)—b) (2.6)

In this optimization problem of ||w||, the expression % |l[w]|? can be used instead for mathematical

convenience without changing the solution. To solve this problem the Lagrangian multipliers are
used. In this problem w and b need to be minimized and a@ maximized. The corresponding
Lagrangian function to the quadratic optimization problem is:

2
Lw,b,a) = @ — Y alyiw-x; = b) — 1] (2.7)

where a; are the Lagrangian multipliers, %”W”Z is the objective function, and y;(w-x; —b) > 1

the constraint. This is called primal formulation of linear SVMs. It is a convex quadratic
optimization problem with » variables, where n is the number of features. The solution can be
expressed by terms of linear combination of the training vectors.

— n
W= 2i=1%YiX; (2.8)

Substituting equation ( 2.8 ) in function ( 2.7 ) the dual formulation of linear SVMs is obtained:

— VN 1gN
Lla) = Yiz1 a; = Xpj=1 €iqYiyjXi%; (29)

where the function tries to be maximized with respect to a, subject to the constraints a; = 0 and
YN a;y; = 0. Solving this problem scales with the number of samples, N. w can be computed
thanks to the a terms. The final solution has the form:

f) = il ayxix+b (2.10)
The classification depends on the sign of f(x) for the input data x.

2.3.1.2 Kernel method

One common pre-processing strategy in machine learning involves changing the representation of
the data [15]. When the problem is not linearly separable, the kernel method can be used. The idea
of this method is to transform the input space of the non-linearly separable data into a feature space
so that data can be linearly classified using a nonlinear function ®.

®: R*"-> R™
x » d(x)

(2.11)

This step is equivalent to mapping the input space X into a new space, F = {®(x)|x € X}. Now the
training set is



D = {(P(x), y)} =1 (1)

And the hyperplane,
wo(x;))+b=0 (2.13)
Thus the hyperplane equation is,
fOx) = X, apyik(x;,x) + b (2.14)

where k(x;,x) = ®(x;)®P(x). A visual example of this transformation is shown Figure 2.5, using
the kernel,

x5

2.15

d(x) = \/7951952 (212
2
)

where, after the kernel transformation, the problem is linearly separable.

x = @(x)

Rl
R
p

'\/EX]IZ

Figure 2.5 Visual example of kernel transformation. The non-linearly separable
problem on the left is transformed in a linearly separable one using the kernel

T
Pd(x) = (x%,\/fxlxz,xg) . This way, a hyperplane can be found in order to
divide the space in two regions.

These are the most common used kernels:

e Polynomial, k(x;,x) = (xx; + 1)?, where p is a specified parameter.

L =112
e Radial basis function, k(x;, x) = e 2021l , where o2is a specified parameter.
e Hyperbolic tangent, k(x;, x) = tanh(B,xx; + 8;), where 8, and B, are parameters.

2.3.2 Adaptive Boosting (AdaBoost)

Boosting is a meta-algorithm used in supervised machine learning. It combines many rough rules of
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thumb, which are called weak learners, to build a robust prediction rule. The typical example for
boosting is presented in [17], where a horse-racing gambler, hoping to maximize his winnings, tries
to create a method to predict the winner of a horse race. It is difficult for him to create and explain a
successful betting strategy, but having the data from some races, the gambler can come up with a
“rule of thumb” for that data, such as, bet on the horse that has recently won most of the races or bet
on the horse with the most favored odds. These rules are inaccurate when used separately. The idea
of boosting is to create a method by combining rough and moderate rules of the thumb that the
gambler knows in order to make the best prediction.

AdaBoost, introduced in 1995 by Freund and Shapire [17], is one of the most used boosting
algorithms owing to its good results. The pseudocode for AdaBoost is presented in Listing 2.1. The
input training set is (x1,y1), ..., (X, ¥n) Where x; belongs to the instance space X, and y; is the
value of the desired output belonging to Y = {—1,+1}. A weak classifier f, checks the value of a
coordinate of a sample x := (x1,X5,...,X,) € M depending on a threshold value [ to classify the
sample as positive, +1, or negative, -1, M being the feature space, as shown in Equation ( 2.16 ).

+1 lf Xj = l
— — 2.16
f(x) f(xl, xz, ...,xn) {_1 I,f xj S l ( )

AdaBoost calls a given weak learning algorithm repeatedly in a series of rounds t = 1, ... ,T . One
of the main ideas of the algorithm is to maintain a distribution or set of weights over the training set.
The weight of this distribution of the training example i on round t is denoted D,(i). At the
beginning of the algorithm, all weights have the same value, but at each round, the weights of
incorrectly classified examples are increased and the ones for correctly classified examples are
decreased so that the new weak classifier is forced to focus on the hard examples in the training set.
Each round, once the weak hypothesis or rules of the thumb h; are selected according with the

distribution D;, the algorithm chooses a parameter a;, which measures the importance assigned to
h;.

Given: (x1,¥1), .., (X, Vi) Where x; € X,y; €Y = {—1,+1}
Initialize D, (i) = # where m is the number of samples.
Fort=1,..,T

Train weak learner using distribution D,
Get weak hypothesis h;: X — {—1, +1} with error

€ = Prip [h(x)) # yi]

_ 1 1—€¢
Choose a; = . ln( o )
Update:

Dt(l) {e_at lf ht(xi) = Yi
D i) =

=77 e ity () %,
. Dt(i)exp(_atytht(xi))
= Z.

Listing 2.1 Pseudocode of the AdaBoost algorithm for binary classification

Where Z, is a normalization factor (chosen so that D;,; will be a distribution).
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Output the final hypothesis:

H(x) = sign(CT_; a;h(x))

(2.17)

Thus, the aim of the algorithm is to build the classifier H(x) using the weak hypothesis h;.

2.4 Evaluation methods

In this point, some of the most common evaluation methods in machine learning are going to be
presented. First confusion matrices are going to be explained and after that, different rates that can
be calculated in pattern recognition using confusion matrices are going to be shown. Finally the

ideas of Receiver Operating Characteristic (ROC) curves will be presented.

2.4.1 Confusion matrices

A confusion matrix [18] contains information about actual and predicted classifications done by a
classification system. Performance of such systems is commonly evaluated using the data in the
matrix. A binary classification can be described as in the Figure 2.6 Confusion matrix structure:

Prediction outcome

Positive Negative
Actual Positive TP FN
value Negative FP TN

Where:

Figure 2.6 Confusion matrix structure

e True positive (TP) is the correct prediction of a positive sample, also known as hit.
e False negative (FN) is the incorrect prediction of a positive sample, also known as Type II

€rror.

e False positive (FP) is the incorrect prediction of a negative sample, also known as false

alarm or Type I error.

e True negative (TN) is the correct prediction of a negative sample, also known as correct

rejection.

The entries of the matrix contain the number of TPs, FPs, FNs and TNs and with these values
further information from the confusion matrix can be calculated. The most important terms for this

matrix are:

e The true positive rate (TPR), sensitivity or recall is the proportion of positive cases that

were correctly identified, calculated using the equation:

TP

TPR = —

B TP
P (TP +FN)

12
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o The false positive rate (FPR) or fall-out is the proportion of negative cases that were
incorrectly classified as positive, calculated using the equation:

L FP (2.19)
~ N (FP+TN)

e The true negative rate (TNR) or specificity is defined as the proportion of negative cases that
were classified correctly, calculated using the equation:

TN (2.20)

TN
TNR = — =1—-FPR

N ~ (FP+TN)

o The false negative rate (FNR) is the proportion of positive cases that were incorrectly
classified as negative, calculated using the equation:

L FN (2.21)
~ P (TP+FN)

e The accuracy (AC) is the proportion of the total number of predictions that were correct. It
is determinated using:

(TP +TN) (2.22)
AC = ——=
(T + N)

e The positive predictive value (PPV) or precision is the proportion of the predicted positive
cases that were correct, calculated using the equation:

. TP (223)
~ (TP + FP)
Other terms for this matrix are:
e Negative predictive value (NPV):
o TN (2.24)
~ (TN +FN)
e False discovery rate (FDR):
FP (2.25)
FDR = —/———
(FP+TP)

2.4.2 Receiver Operating Characteristic (ROC)
A Receiver Operating Characteristic (ROC) is the graphical plot of the true positive rate (TPR) in

function of the false positive rate (FPR) in the ROC space. ROC space, Figure 2.7 is defined by two
axes, FPR as x-axis and TPR as y-axis. Each point which is drawn in this space represents a
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prediction result of a class, that is, an instance of a confusion matrix which contains the information
of sensitivity and specificity.

1.0

0.8 — ’

4
|
~

True positive rate
=
Y
~

0.2 — ,

0 0.2 0.4 0.6 0.8 1.0
False positive rate

Figure 2.7 ROC space. The X-axis is represented by the FPR and the y-axis
by the TPR. The dotted line represents the random classification [19].

When different thresholds are used to distinguish if a sample belongs to a class or not, different
values of sensitivity and specificity can be calculated for a sample set to create the corresponding
points in ROC space which will create a ROC curve. If a classifier with a threshold which classifies
all the samples as positive is chosen, the point (1, 1) in ROC space will be obtained, and in case all
the samples are classified as negative the point (0, 0) will be calculated. The perfect classification
point is (0, 1) where sensitivity and specificity are 1 (no false negatives or false positives). The
closest a classifier point is to the perfect classification point, the better the classifier. ROC space is
divided by the diagonal ((0, 0), (1, 1)). A point on the diagonal means a random classification of the
samples, points below the diagonal represent worse classifications than the random classification
and points above the diagonal represent better classification results. In Figure 2.8, different
classifiers in ROC space are presented:
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Figure 2.8 Example of classifers, named form A to E in ROC space. D classifiers
represents the perfect classifier, C, the random classifier and E a bad classifier
[19].

Point D corresponds to a perfect classifier, and point C, as it is situated on the diagonal corresponds
to a random classifier. Point E is a classifier worse than random guessing, but building a symmetric
classifier E’ from the diagonal, the method can show the predictive power the classifier has, that is,
where the method E predicts positive or negative, the method E’ will predict negative or positive
respectively.

If the method is defined by a parameter, the classifier produces a continuous output depending on
the value of the parameter, as shown in Figure 2.9. The typical application fields of ROC analysis
are psychology, medicine, radiology and biometrics and it is increasingly used in machine learning
and data mining.
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Figure 2.9 Roc curve for a parametric method [20].
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3 Classification of everyday objects

As presented in Section 1.2, the objective is to detect objects on a table. The type of objects which it
is going to work with is everyday objects. These objects are fruit or containers. Some kinds of
objects, like a juice carton or a marker pen, were discarded because of their size. The classes of
objects used in this thesis are apples, bananas, bowls, plastic cups, coffee mugs and tobacco
packets. The sizes and shapes of the classes are sometimes similar, that is why it can be more

difficult to distinguish one class from another and the decision boundaries have to be precise.

In this section it is going to be explained how the training and classifier programs are developed.
The explanation will be done using Diagram 3.1 and Diagram 3.2, learning and real-time classifier

diagrams respectively.

Kinect

<H-

Data-set

Diagram 3.1 Training structure. The data-set is the source of samples which is used to build the
classifiers. After reading the data-set, each method creates the recognizer in order to be used in

> SVM classifier

AdaBoost

future classifications.

features

AdaBoost >

AdaBoost
classifier

> | Depth range

Ransac

Segmentation

~ VOSCH

Pre-processing

features

Result

AdaBoost

features

AdaB

Result

Classification

Diagram 3.2 Real-time structure. Kinect sensor receives the information from the environment. The raw data

is processed so that the feature extraction and the classification can be done just with the desired objects.

17




Step by step, all the parts of each diagram will be commented on, following the outline from
Diagram 2.1. A differentiation between the learning and classifier program is done to show the
different parts and sources of each program.

3.1 Data collection

Data collection is the first part of a recognizer program because it is the source from which the
program will read the information. The real-time program reads the information from the Kinect
sensor and the training and test program read it from a data-set. The following section is focused on
the explanation of the information source in the training phase of a recognition problem.

3.1.1 Training phase

Depending on the kind of program, data is read from one source or another. In the learning phase of
this thesis data is read from its own database. In the following section, how the dataset is organized,
and how exactly the information was taken, is thoroughly explained.

3.1.1.1 Data-set

The Data-set is a database specially developed for this project. It consists of different kind of
images and files from different objects, with which the system can be trained and tested.

These images were taken using the Kinect sensor which was situated 38 cm high with a tilt angle of
-15° (Figure 3.1). These parameters were chosen because they fit perfectly supposing the sensor that
can be adapted in a middle-sized mobile robot.

38cm

4

Figure 3.1 Position of the Kinect sensor with a tilt angle of -15° and a range vision of 43°

The Data-set contains four different folders, which are “Depth”,” Images”, “PointClouds” and
“Features”. Each file inside a folder describes different information of an objects” snapshot. Depth
folder contains images, of 640x480 size, that show depth information in greyscale with .jpg
extension. Color images with 640x480 size and extension .jpg can be found in the “images” folder.
“Pointclouds” contains pcd files which describe the point cloud, and “features” contains the pcd
files with the Voxelized Shape and Color Histograms (VOSCH) features for SVM of every
snapshot.

The Data-set contains six different classes: apple, banana, bowl, mug, plastic cup and tobacco. The
first two classes correspond to fruits, the following three classes to containers and the last one to a
cigarette packet. Each folder of the database contains one folder for each class, which carries the
name of the representing class. Inside each, different instances exist, the number of instances being
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different for each class. Figure 3.2 shows all the instances of the data-set. For every object of a class
there are eight snapshots, from which, depth and color information, the corresponding point cloud
and the VOSCH features are extracted.

The names of the color images are built combining the name of the class and a number. The name
of the depth images is built adding a ‘d’, from depth, before the color image name. For point cloud
and feature files a “p’, from point cloud, and, respectively, an ‘f’, from features, are added before
the name. Point cloud files save just the points of the object and none from the environment.

Figure 3.2 Pictures of the 30 instances of the six classes from the data-set ordered by class.

The numbering assignment to an instance of a class is the same for the four existing folders, each
number belongs to a certain snapshot and starts from one. For each object a range of eight numbers
is assigned, one for each snapshot. The structure of the data-set is shown in Diagram 3.3. As an
example, apple6.jpg shows the sixth color image from the first apple of the apple class, and
fapple9.pcd has the VOSCH features of the first image from the second apple of its class.
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Diagram 3.3 Structure of the data-set. The main folder “Data-set” contains “Pictures”, “PointClouds”, “Depth” and
“Features”. Each one contains a folder for each class with all the instances inside.

IV
;

plastic cup

j
]
|

plastic cup plastic cup plastic cup

Each picture of an object can be taken in a different position and from a different orientation. These
positions and orientations are described using a diagram and a picture of the actual object is shown
too. Each diagram consists of:

Small images that symbolized the class each object belongs to.

X<

e A small image of the Kinect sensor that represents the position and orientation of the sensor
38 cm high, this is, looking to the left with a tilt angle of -15°.

?

A number next to each object image, which represents the number assigned to a picture of
that class with that position and orientation. If the image has a range of numbers separated
by a dash, it means that the position of different pictures is the same but the orientation
changes.

Thin lines which mean distances with regard to the sensor situation. The 2 upper lines on
indicate a distance of 5 and 10cm from the middle of the sensor to the right, and the 2 lower
lines, 5 and 10cm to the left. The 3 vertical lines on the lower part indicate a distance of 65,
76 and 87cm from the sensor respectively.

Two examples, one of an apple and one of a bowl, are presented in Diagram 3.4 and Diagram 3.5.
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x-distance (cm)
10

@

-10

87 76 65 y-distancelcm)

Diagram 3.4 Example of the pictures taken for the first apple of the data-set.
The apple is situated at 76 cm from the sensor in front of it. The position of the
apple is the same for the eight snapshots but the orientation changes 45°
clockwise from the first picture. The range of pictures goes from one to eight.

x-distance (cm)

i0

-5

-10

87 76 65 y-distance({cm)

Diagram 3.5 Example of the pictures taken for the first bowl of the data-set. The snapshots from
one to four are situated in front of the sensor at a distance of 76cm. the position for the first four
pictures is the same but the orientation changes 90° clockwise. The position of the pictures from
five to eight is the one shown on the diagram. For example, picture 6 is situated at a distance of
81,5cm from the sensor and 7,Scm to the right. The orientation of the last four snapshots is the
same.

3.1.1.2 Holdout method for cross validation

To select which instances belong to the training set and which ones to the test set, holdout method is
used. The holdout method is the simplest kind of cross validation. The data set is separated into two
sets, called the training set and the testing set. The classifier parameters are calculated using the
training set only. Then, in the test phase, the method predicts the output values for the data in the
testing set and the error rates are calculated using these results. It is necessary to remind that eight
pictures belong to each instance of an object, so if two instances of a class are learnt by the
classifier, it will be actually learning 16 pictures. This way, all the pictures of an instance will be
either in training set or in test set, but there will never be pictures of the same object in both sets.
The advantage of this method is that it is fast to compute although the evaluation may be
significantly different depending on how the division is made.
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3.2 Real-time program

In this section the pre-processing of data made in the real-time programs is going to be presented. In
this phase raw data is processed in order to get the information which the program can work with.

3.2.1 Pre-processing

In the learning phase, the information of the objects is already processed in the dataset, that is, the
features which will be used in SVM are already calculated, and the point cloud of the object is
contained in pcd files. This makes easier the learning program and saves time during the learning
process. In real-time data collection, the sensor receives raw data from the environment, this data
has to be processed in real time in order to be able to calculate the features just for the valid objects.
This data pre-processing is calculated in three parts: elimination of points based on depth range, on
RANSAC algorithm and segmentation of the corresponding image.

3.2.1.1 Depth range

Taking into account the position where the sensor is situated, the possible integration in a mobile
robot in the future and that it is a real-time application, the program should get rid of useless
information as soon as possible to reduce the amount of data, therefore the number of calculations.
The solution to this problem is to think that points out of a fixed depth range are invalid points. The
valid points in this application are the points situated in a distance between 0,5 m and 1 m, the rest
of them, the points closer than 0,5m and further than 1 m, are considered as invalid points, as shown
in Figure 3.3 . In addition, points at a distance of 3,5m or more are already considered invalid by the
sensor due to sensor specification.

—
~—

im 0,5m

Figure 3.3 Example of the depth restriction of the classifiers. Three apples are trying to
be recognize but just the parts of the apples which are between 0,Sm and 1m are
detected by the sensor

3.2.1.2 Random Sample Consensus algorithm (RANSAC)
Random Sample Consensus (RANSAC) [21] is an algorithm which can find mathematical models

using an iterative method. Points which belong to the model are called inliers and if they don't, they
are called outliers. RANSAC uses a simple principle to calculate the model. In each iteration, a
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small set of points is randomly chosen which will be part of a possible model. Then the remaining
points of the set will be checked to know if they can be fit to the current model. The estimation of
remaining iterations in order to get a good set of points which fits the model, changes in each
iteration. This estimation means the number of trials needed to get a model with no outliers in it,
with probability p.

Because in this part of the program, the set of points includes the corresponding points of the table
onto which the objects are put, the RANSAC algorithm is used to get rid of these specific points. In
this case, the mathematical model is a plane representing the table. In the Table 3.1, nine
observations of objects were taken. It represents the number of points eliminated because of the
depth range and the RANSAC algorithm as well as the final points which belong to the object. The
mean of the values of the different objects is calculated to be able to show an estimation of the
percentage of each step from the whole amount of points, 307200:

Range RANSAC Object

244176 58342 4682

245745 56387 5068

244893 57993 4314

243776 60885 2539

245254 60119 1827

248449 56888 1863

243149 59078 4973

240699 62214 4287

244095 58991 4114

Mean of

points 244471 58989 3741

Percentage 79,580% 19,202% 1,218%

Table 3.1 Sample of the number of the eliminated points due to range and
RANSAC and the final object points in nine classifications

Looking at the Table 3.1, it can be seen the need to get rid of those points as soon as possible in
order to avoid computing the information with non-important points.

3.2.1.3 Segmentation

Segmentation is the step in which an image is divided in multiple segments to distinguish between
relevant parts and the background. Different pixels of an image are labeled if they are considered
they belong to a foreground region. Pixels from the same region will have the same label to
distinguish among different regions. The aim of segmentation is the differentiation between
foreground and background and the differentiation among objects in the same image. Different
object have different labels in order to distinguish them in an image. The used algorithm for this
task is [22] which combines the 3D information in a 2D image in order to label the pixels.

3.3 Method application

In this part, it is explained how the programs use the information coming from the pre-processing
phase. First, it is presented how the information is processed to obtain the features of a sample and
the ways which are used in this thesis to get it. Then, it is commented what is the goal of a
classification method and the paradigms in pattern recognition.
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3.3.1 Feature extraction

This stage is very important in order to work with a limited quantity of data. The process in which
the input data is reduced is called dimensionality reduction. There are two major approaches to
dimensionality reduction: feature selection and feature transform. Feature selection reduces the
feature set by discarding features. Feature transform refers to building a new feature space from the
original variables, therefore it is also called feature extraction [23]. The use of a limited feature set
simplifies both the representation of patterns and the complexity of the classifiers. Consequently,
the resulting classifier will be faster and use less memory [9]. Although, it can be intuitive to think
that it would be better to recognize a pattern using a large number of features, this is wrong. It is
true that by increasing the number of attributes, the precision with which the input variables can be
specified increases. But this leads to an exponential grow of the quantity of training data needed to
specify the mapping. This phenomenon has been termed the curse of dimensionality [24]. The
amount of the input data of this thesis is 640x480x6=1843200. 640x480 is the size of the image,
and 6 (3+3) are the depth (x, y, z) and colour (r, g, b) values of each point of the image. If it is
wanted to make a classification among different patterns, the same dimensionality for all the
patterns has to be chosen. This stage is called normalization of data. As an example, the
dimensionality of VOSCH features is 137, as explained in Section 3.3.1.1.

Point clouds cannot give information by themselves, the information of the clouds that is going to
be used is implicit. To be able to work with point clouds and detect different patterns using this
information, some characteristics have to be chosen in order to make a differentiation among
classes. These features have to be good enough to be able to describe the objects as well as possible
so that the classification of the samples can be done.

3.3.1.1 Voxelized Shape and Color Histograms

Voxelized Shape and Color Histograms (VOSCH) [25] is a method which creates feature
descriptors using shape and colour information. The idea fits well with the use of the Kinect sensor
because the sensor provides this data in synchronization. The method is based on Circular Color
Cubic Higher-order Local Auto Correlation (C3- HLAC) [26] with a slight difference, which
reduces the number of features and makes the descriptor to be rotation-invariant, and on the Global
Radius-based Surface Descriptor (GRSD) [27]. C3- HLAC descriptor is a high-dimensional vector
that measures the summation of the multiplied RGB values of neighbouring voxels in a 3x3x3 grid
around a voxel grid of arbitrary size. Each bin in the descriptor is differentiated by the RGB colour
space and the relative position of the two neighbouring voxels. GRSD is a histogram that counts the
number of transitions between different types of voxels. It counts transitions between the geometric
classes of voxel surfaces, which are: free space, plane, cylinder, sphere, rim and noise. The variation
of C3-HLAC used in VOSCH creates 117 features for a point cloud and GRSD 20, this makes the
dimensionality of the VOSCH descriptor 137. VOSCH descriptors are saved as a descriptor type
pcd file.
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Figure 3.4 Example of scaled VOSCH histogram of different categories of objects (top-down: cylinder, cube, cone, plane,
sphere, torus, die) have different values in the first 20 bins of their histograms. Right: different colors of the same category of
a torus have different values in the last 117 bin in the histograms [25].

3.3.1.2 AdaBoost features

Since the goal of AdaBoost in this thesis is not to work with features as complex as VOSCH, new
and easy features have been calculated, they are simply height, width, length and the number of
points of the observation. In this approach, colour has been ruled out because the colour of some
objects in the classes from the data-set can vary. This does not mean that the colour information is
useless, it means that colour is more useful when objects which are trying to be detected have
mainly a fixed colour. So AdaBoost detection rules are focused on the basic geometrical properties
of an object. These are the height, the volume, the proportion of the object and its number of points:

e Height classifier: the classifier differentiates the classes using the height feature.

e Volume classifier: the volume of the objects is used to classify the samples, taking into
account that the calculated volume is the one of the point cloud which describes the object
and not the real dimensions. It is calculated multiplying height x width x length. This value
can vary depending on the perspective of the sample, for example in mugs, in which
sometimes the handle is seen and sometime it is not.
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e Proportion classifier: to calculate the classifier, the three features are used. Width and length
are summed and are divided by the height. This calculation generates the proportion value.

e Point classifier: the classifier tells the difference between object using the number of points
of a point cloud. It differentiates not only between big and small object but also between
object which can be the same size but different geometric shape or texture. In an object with
concave or convex parts, more points will be detected as in one with straights parts. This
way, this classifier can be considered as an easy surface classifier.

3.3.2 Classification method

Once the feature extraction is done, the classification method is applied. With its use, a pattern
recognition using the new sample can be achieved. Pattern recognition can be defined as the
classification of data based on knowledge already gained or on statistical information extracted
from patterns and/or their representations [9]. In this case, “knowledge already gained’ is the
information of the extracted attributes which is done in the training phase.

The two most important paradigms in pattern recognition are statistical [14] and syntactic [28]. In
this classification problem, the programs work with noisy data and uncertainty so statistical
paradigm is used. On the other hand, the background for syntactic pattern recognition is provided
by the formal language theory.

3.4 Post-processing

In this section, it is explained what kind of calculations are done after the classification in the
programs of this thesis. It is commented how the recognition information is presented and how the
important information is shown.

3.4.1 Sensor information representation

The information from the sensor is presented in a window. On the upper left part, the colour image
which the sensor detects is shown and underneath, either depth image in greyscale or infrared
image. This can be decided pressing key ’c’. On the lower part, the correspondence between some
keys on the keyboard and their action is written. The main part of the window is occupied by the 3D
representation of the detected objects. The point of view of the point cloud as well as the distance to
it can be changed using the mouse. The x-axis is described by a red arrow, y-axis by a green arrow
and finally z-axis by a blue arrow. The intersection of all of them represents Kinect position. The
recognized class or classes are written in red on the upper-right part of the window, one under the
other. If no objects were detected, it would be written five “?” symbols. An overview of the sensor
information representation is presented in Figure 3.5:
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2 © © Kinect 3D view

Figure 3.5 Recognition window. On the left, depth and colour information an on the
middle the 3D space. No object is recognized in this picture, that is why the symbol ”?”
appears on the image

3.4.2 Detection representation

After detecting and classifying all objects in the scene, the name of the class of the objects is written
on the upper right part of the window. On the colour image, a circle is drawn around every detected
object and their class is written next to them in green. The classification information is represented
as in Figure 3.6:

9. © ® Kinect 3D view

Figure 3.6 Recognition example of a mug in which the detected object is surrounded with
a red circle with the name of the class “mug” in green. The point cloud is drawn in black
in the space.
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4 Implementation

This thesis has been developed using Linux operative system, Ubuntu 10.04 LTS on a AMD Athlon
64 X2 Dual Core Processor 4800+. To be able to interact with Kinect sensor, Mobile Robot
Programming Toolkit (MRPT) [29] libraries have been used to make it possible to read and modify
the information coming from the environment. These libraries have been integrated into Robotic
Operative System (ROS) [30], which was used to create the SVM recognizer program. AdaBoost
programs have been developed using Eclipse. The ROS project for SVM was also exported to
Eclipse in order to be able to use all the facilities that programming with it offers. AdaBoost
programs were compiled using g++ 4.4.3. and SVM using the open-source build system CMake
2.8.0.

4.1 Point Cloud Data (PCD) format

It is interesting to comment Point Cloud Data (PCD) files [31], because in further steps (learning
phase and real-time application) these are going to be used. PCD files are text files that the Point
Cloud Library [31] uses to work with 3D points. These files are the main source to create features in
the selected methods. PCD files contain the following entries:

VERSION: specifies the PCD file version.

FIELDS: specifies the name of each dimension/field that a point can have.

SIZE: specifies the size of each dimension in bytes. Examples:

e unsigned char/char has 1 byte

e unsigned short/short has 2 bytes
o unsigned int/int/float has 4 bytes
e double has 8 bytes

TYPE: specifies the type of each dimension as a char. The current accepted types are:

e I -represents signed types int8 (char), int16 (short), and int32 (int)

e U - represents unsigned types uint8 (unsigned char), uint16 (unsigned short), uint32
(unsigned int)

e F - represents float types

e COUNT: specifies how many elements does each dimension have. For example, x data usually
has 1 element, but a feature descriptor like the VFH has 308. Basically this is a way to introduce n-
D histogram descriptors at each point, and treating them as a single contiguous block of memory.
By default, if COUNT is not present, all dimensions’ count is set to 1.

e WIDTH: specifies the width of the point cloud dataset in the number of points. WIDTH has two
meanings:

o it can specify the total number of points in the cloud (equal with POINTS) for unorganized
datasets;
e it can specify the width (total number of points in a row) of an organized point cloud dataset.
e HEIGHT: specifies the height of the point cloud dataset in the number of points. HEIGHT has

two meanings:

29



e it can specify the height (total number of rows) of an organized point cloud dataset;
e it is setto 1 for unorganized.

e VIEWPOINT: specifies an acquisition viewpoint for the points in the dataset. This could
potentially be later on used for building transforms between different coordinate systems, or for
aiding with features such as surface normal, that need a consistent orientation.

e POINTS: specifies the total number of points in the cloud. As of version 0.7, its purpose is a bit
redundant.

e DATA: specifies the data type that the point cloud data is stored in. As of version 0.7, two data
types are supported: ascii and binary.

The entries must be specified precisely in the above order. An example of a pcd file is shown in
Listing 4.1, where the header and the first 2 points of the point cloud are presented:

# .PCD w.
VERSION
FIELDS =x
SIZE 4 4 4

TYPFE F F F

COUNT 1 1 1 1

WIDTH 213

HEIGHT 1

VIEWPOINT 0 0 0 1 0 O O
POINTE 213

DATA ascii

0.93773 0.33763 0 4.2108e+06
0.90805 0.35641 0 4.2108e+06

Point Cloud Data file format

z rgb

h-'jn.b.l-c::_'ld

Listing 4.1 Structure of PCD files. The header of this type of files is shown as well as the first two points of 213 that the point
cloud contains. In this file, x, y and z and the float describing the color are used to represent the point cloud.

RGB values of the coloured points are represented as a float in ped files. Since the RGB values
received from the sensor are three floats, one for each channel, the following operations have to be
done to calculate to actual value for the pcd file. Future versions of pcd files will try to use integer
values in order to avoid calculating the transformation shown in Listing 4.2:

S/TYPE CASTING FLOAT R G B -» INTEGEER R G B -» FLOAT RGE
uint32_t colorr, colorg, colork, rgb;
colorr=({imagen.getisFloat (iter2,iterl, 2) ) *255);
colorg=((imagen.getisFloat (iter2,iterl, 1)) *255);

colorb=((imagen.getisFloat (iter2,iterl,0) ) *255);

colorr=colorr<<lG;
colorg=colorg<<8;

rgb = colorr | colorg | colorb;

float urgbh = *reinterpret cast<float*>(&rgb);

Listing 4.2 Transformation of color information in order to work with it in PCD files. First, the three floats that represent the
color (RGB) and transformed as integer. Then, a transformation has to be done to calculate the final float of the RGB value.

30



4.2 Pre-processing Real-time classifier

In this case, instead of using stored data, the information is read in real time from the Kinect sensor.
To be able to read the data, Mobile Robot Programming Toolkit (MRPT) is used. MRPT
implements a common C++ interface to the sensor using the openKinect’s /ibfreenect [32] library to
actually access the sensor. As the programs mainly use the picture and depth information, the
explanation of the used structures is going to focus on this information. To read data from the
Kinect, MRPT saves it in a CObservation3DRangePtr pointer, its structure containing all detected
information from the Kinect in a specific time point. To be able to use the image information two
attributes are read from the pointer, these are, haslntensitylmage, in which a Boolean value tells if
the field intensityImage contains valid data, and intensityImage, which belongs to the
mrpt::utils::Clmage class. This class represents the image as a 480x640 matrix, in which each point
of the matrix represents the colour saved in the following order: blue, green, red (bgr).

BGR(1, 1) BGR (1,2) | BGR (1, 640)

BGR (480, 1) 000 BGR (480, 640)

Figure 4.1 Structure of the matrix which contains the image. Each cell of the matrix contains a BGR
value and represents the colour of the point in that position in a 480x640 colour image.

To get access to depth information hasPoints3D tells if the field points3D contains valid data. The
information of points3D is saved in 3 different arrays, points3D x, points3D y and points3D z
which contain the x, y and z values of the coordinates in the image respectively. The size of each
array is 307200 (640x480) and the depth information is saved one row after another. There is also
further interesting information, such as, the mrpt::math::CMatrix rangelmage, which, if
hasRangelmage is true, contains the floats with the range data as captured by the camera in meters
or the attribute timestamp, which tells the specific time point when the information was taken. This
attribute is used to be sure that the continuous information is read in a correct order.

points3D_x x(1, 1) | x(1, 2) | x(1, 3) f‘ ./ X(480, 640)

307200

points3D_y iz, 1) lyin, 2) (s 3) f - ‘/ y(480, 640)
1 2 3 307200

points30_z z(1,1) | z(1,2) | z(1, 3) /‘ * 0/ z(480, 640)
1 2 3 307200

Figure 4.2 Structure of the arrays which contains the depth points detected by the Kinect sensor. These arrays can be
considered as matrices because the values of the rows of the image are saved one after another
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The possibility of taking information at a same time point makes it possible to work with depth data
in synchronization with colour data. That is a reason why Kinect sensor offers huge possibilities in
real-time applications.

4.2.1 Range depth elimination

To be able to use in following steps only the useful information for the program, invalid points are
canceled using points3D x. As this array contains the distance of all detected points (in which the
value of non-detected points and further than 3,5m points is already 0), it is read and the values not
corresponding to the subsequent range can be changed to 0 in order to represent them as invalid
points.

In the programs, 2D images are pre-processed using depth information, that is, a 480x640 matrix is
filled with the 3D coordinates of corresponding pixel. Class Vertex consists of a label as well as the
X, y, z coordinates of a pixel in an image. This class is used for elements of the matrix. If it is
wanted to set a point of the image as an invalid point, the values of x, ), z are changed to 0 and the
value of the label to -1, otherwise the coordinate values are set to the values of points3D. In Figure
4.3, the colour image that the sensor detects is presented. The objects are situated at 1 meter and
0,5m so the detection of all the point of the object will not be complete. In Figure 4.4, it is shown
the point clouds that the program recognize. Some parts of the object are not recognized because
they are not in a valid range.

Figure 4.3 Color image of the recognition of two samples. Figure 4.4 Point clouds of the two samples. Light blue cloud

The green and orange box is situated at 0,Sm from the corresponds to the box of Figure 4.3 and black one to the

sensor and the bowl at 1m. bowl. In both cases, half of the object is discarded because
their points are not in the valid range.

4.2.2 RansacHTWG class

For this thesis, the class ransacHTWG was created. It is based on the
mrpt::math::RANSAC: :execute, which is the method that calculates the final model. The algorithm
receives a CColouredPointsMap pointer which contains the valid points of the observation in that
moment. This pointer receives the data from the points3D arrays. Just the points with a value higher
than zero in points3D_x array are included in that structure. CColouredPointsMap saves the points
in an array without any order, that is, a point cloud. The main reason to use this structure instead of
points3D or the Vertex matrix is the speed of the calculations. If the whole image was used,
RANSAC should check if the point it is working at that moment with is valid or not. That is why
the parameter contains just the point cloud. Another reason is that the input parameter is just a
pointer and no a huge amount of memory is needed to call the RANSAC algorithm; the size of the
parameter is independent from the point cloud.

RANSAC mainly uses two methods, ransacHTWG::ransacHTWG3Dplane_fit, which calculates,
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using three points from the set, the possible model (plane) for each iteration and
ransacHTWG: :ransacHTWG3Dplane distance, which calculates the distance between the plane
and the rest of the points in order to add them or not to the result set. The used distance to
discriminate between inliers and outliers is given by distanceThreshold which value is 1cm. It could
be considered a large number but two things have to be taken into account: the measurement error,
which can be up to Icm and that it is a real-time program, so the plane needs to be calculated as
fast as possible; making this threshold bigger reduces the number of iterations of the algorithm. The
final result is described by the coefficients which represent the plane. Figure 4.5 show the times in
relation to the chosen threshold for an object of approximately 3500 points.

Although the lower parts of the objects can be included as part of the plane, as in [1] where even
small objects are completely merged, the solution model makes a fairly good approximation of the
plane of the table. The worst example of failure in the point detection is the banana class. It is the
lowest kind of object so, if the banana is not big enough, the amount of noise is big or the position
and orientation are not favourable, the number of detected points for the banana will not be enough
to be considered as a recognizable object (Section 4.2.3).

20
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Figure 4.5 Evolution of the RANSAC computation time (Y-axis) in ms depending on the threshold (X-axis)
in cm. From six millimeters, to choose a bigger threshold, do not make a proportional saving of time.

Once the plane is calculated, it is checked if the valid points of the Vertex matrix are part of it using
the method isNotFloor. If a point is considered as a point of the plane, the x, y, z are set to 0 and the
label to -1, as already done in the depth range elimination (Section 4.2.1).

4.2.3 Segmentation

In this step, just the points of the possible objects are saved in the Vertex matrix. In order to make
the segmentation of the image which the matrix contains, it is used an algorithm which was
developed in HTWG Konstanz [22]. It uses the Verfex matrix, to distinguish the different regions on
the image. To check if a pixel belongs to the same region than its neighbour pixel, Euclidian
distances are measured using the depth information of both pixels. In this manner, after
segmentation a matrix is obtained, in which, points with different labels mean different regions
(objects). In order to use the information of the different regions, Organizador class was created.
This class is basically an array of arrays, which mainly saves all the points (x, ), z) of the same
object in a component of the array and the colour associated to this objects in order to draw it in
future steps. This colour will be the same for all points of an object.

Since the goal of the thesis is not to detect very small objects or big ones, only components with
point clouds, those with a number of points between 800 and 6000 will be considered. This manner,
bigger and smaller objects than the ones we are trying to detect will not be processed, neither will
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the points which represent noise in the image.

4.3 Methods

In this section it is presented how the classifier is created using the data from the data-set and how
the programs use the information from the classifier as well as from the sensor to make the
recognition in real time. In supervised learning the information used in the system is a pair, whose
values are the input-values, which are the calculated features, and the output values, which are 0 or
1 in binary classification depending if we want the system to classify the sample as a positive or
negative. With this information and depending on the algorithm, different values are calculated
(support vector machines, alpha values) in order to classify a new sample in the future.

There are three real-time programs; one of them uses SVM multiclass method from Open Source
Computer Vision (OpenCV) [2]. In order to make a multiclass classification, OpenCV uses One-
Against-One strategy. The two remaining programs use AdaBoost method, one using One-Against-
One strategy and the other One-Against-All strategy. One-Against-One strategy creates a classifier
for each pair of different classes which predicts in which class of the pair better fits a new sample.
These classifiers are used to classify a new sample and the result of each one is saved. The class
with more votes will be the predicted class. One-Against-All strategy creates classifier for each
class (n classifiers) to know if a sample belongs to that class or not. Each classifier predicts a value,
which can be interpreted as the probability of the new sample to belong to that class. The predicted
class will be the class with the highest value. To be able to use libraries connected with point clouds
and artificial intelligence Robot Operative System (ROS) was installed. ROS is a set of libraries
which collect a huge amount of structures and algorithms used to work in robotics.

4.3.1 Training method

To create the SVM classifier, all the instances which belong to the training-set and are saved as
VOSCH features in the data-set are added to an nxm matrix, where # is the number of instances and
m is the number of VOSCH features, 137. Since CvSVM supports multiclass classification, the
desired output for each instance is a label which is different for each class, being the label a float.
Using this matrix, the desired output of the instances and some parameters for the type of classifier,
CvSVM class from OpenCV is used to create the classifier using predict instruction. Since CvSVM
supports multiclass classification, the desired output for each instance is a label which is different
for each class. VOSCH features can be extracted using the VOSCH library of ROS using pcd file
with a point cloud as an input. Taking into account the conclusions presented in [33], a linear
classifier is created. The values of the SVMs are saved in a xml file named “svm.xm!”.

In AdaBoost, four rules of the thumb are created. These weak classifiers are HeightClassifier,
PointClassifier, VolumeClassifier and ProportionClassifier. HeightClassifier and PointClassifier
use the height of the observation and the number of points of the point cloud to distinguish between
classes. VolumeClassifier distinguish between the volume of the smallest polyhedron of six faces in
which the observation can fit inside. ProportionClassifier calculates a proportion between depth and
width, and height of the observation. Although the last two weak classifiers do not use the real
volume or real proportion of the object, the data-set sample and the real-time observation come
from the same source, that is why the comparison can be made. In the Diagram 4.1, the class
diagram for AdaBoost programs is presented.

Thresholds of the weak classifiers are given by an array, in which each component corresponds to a
class, in which a range of values for each classifier is defined. This way, a weak classifier will
consider a sample a member of that class if the sample values are in the range. AdaBoost One-
Against-One and One-Against-All are implemented as arrays of AdaBoost classifiers, in which
following the principle of AdaBoost presented in Listing 2.1, alpha values will be created for each
classifier.
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| AdaBoostCreatorVector |

0

1.n

AdaBoost

+buildClassifiers(x:vector<string>,
y:vector<string>,
ol:objValues,
02:objValues): void
+classify(obj:AdaboostObject*,
ol:objValues,o02:0bjValues): int
+classifyAgainstAll(obj:AdaboostObject,
ol:objValues,
02:0bjValues): double

+registerClassifier(classifier:AdaBoostWeakClassifier):

void

1.n

uses

1.n

Organizador

+table: Org[]

+size: int

+v: PointAndColour[][]
+pd: Vertex[]

+Clear(): void

+IsInOrganizador(l:int): int
+AddOrganizador(l:int): int
+addPoint(vv:Vertex,i:int,c:float): int
+addPoint (vv:Vertex,i:int,colour:Vertex): int
+sizeV(i:int): int

+size(): int

+Colour(i:int): Vertex

1
provides with info

1.n

AdaboostObject

+height: double

+width: double

+depth: double

+ptsObject: CColouredPointMap

+AddPointCloud(pts:CColouredPointMap*): void

1

1.n

AdaBoostWeakClassifier

#alpha: double
#classifierName: string
+classify(obj:AdaboostObject,0l:0bjValues,

02:0bjValues): chool
+setAlpha(alpha:double): void
+getAlpha(): double
+getClassifierName(): string

CalculateValues(): void
+readObject(name:char*): void
+readObject(name:string): void

+printPoints(): void

Diagram 4.1 AdaBoost class diagram

4.3.2 Real-time classifier

At this point, point clouds are saved in the Organizador instance (each object in a different array
component). A loop will sequentially process the objects in both methods.

In SVM, each iteration has four main parts:

e Creation of a pcd file with the points of an object in order to be able to calculate VOSCH

features using the file,

e Addition of the point cloud to a CColouredPoints Map, which is the array of coloured points
which will be used to draw the points on the screen. It is reminded that all points of a same
object have the same colour, which was attached by Organizador instance,

e VOSCH features calculation using the library from ROS,

e (lassification of the features with CvSVM using as classifier the “svm.xm/” file which has

the SVMs.
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In AdaBoost is slightly different:

e Creation of an AdaboostObject which saves the point cloud of an object contained in the
component of Organizador,

e Addition of the point cloud to a CColouredPoints Map,

e C(lassification of the AdaboostObject using the array of classifiers(One-Against-All or One-
Against-One) and registration of the results in an array of results with the same dimension as
the number of classifiers,

e C(Calculation of the detected class depending of the results in the array. In AdaBoost One-
Against-One, the result is the index with the highest amount of “votes”. Each One-One
classifier can “vote” for one the two classes the classifier consists of. This “vote” means that
the component of the array which corresponds to the voted class will be increased by one (in
the beginning all components are set to 0). In AdaBoost One-Against-All, the index with the
highest predicted value for each One-All classifiers is the result of the recognition.

4.4 Post-Processing

As seen in Section 4.3.1 and Section 4.3.2, the way that a classifier uses to describe the recognized
class is a number. In SVM, the number is a float which corresponds to the label attached to a class.
In AdaBoost, the index of the result array indicates the recognized class.

In order to get the name of the recognized class, an easy calculation has to be done. The final label
obtained by SVM has to be transformed to the word which represents the class. Since the results in
AdaBoost are saved in an array, the transformation is done from the index of the array with the
highest value to the corresponding word of the class.

Once the name of the class is known the name is written on the upper-right part of the detection
window (Figure 3.6). On the left part of the window, a green circle (red in AdaBoost One-Against-
One) is drawn around the detected object in the colour image. The method drawCircle of Clmage
class is used. As center of the circle, a close point to the last one of the point cloud of the object is
chosen. Inside the circle, the name of the detected class is written again.

Valid point clouds which are contained in Organizador are drawn on the middle of the window
loading the points using the instruction loadFromPointsMap(). In SVM program, point clouds are
directly drawn on the window, on the other hand, in both AdaBoost programs a transformation is
done. In this case, the point cloud is drawn at the same height of the point (0, 0, 0) (Kinect
position). If no transformation is done, the point cloud is presented in a position which depends on
the inclination of the sensor, that is, beneath the Kinect position. The calculation is done rotating the
points of the point cloud 15° on Y-axis using the Equation ( 4.1 ):

cosf 0 sm B
R,(B) = [ 0 (4.1)
—sin B 0 cosﬂ

In which R,, is the rotation on Y-axis, § is the value of the angle, in this case 15° and [x ¥y Zz]T
are the coordinates of a point.

This way, the point cloud that the sensor detects is shown on the window as the Kinect was situated
on the table pointing towards the object.

4.5 PCD Viewer

PCD viewer is a program from the stack perception pcl of ROS which makes it possible to
represent ped files. The program helps to make a visual differentiation between the instances. It was
used to compare point clouds from the same class and from different classes in order to check their
similarity. This can be the reason of a misclassification. The following images (Applel4 is
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described in Figure 4.6, Banana 62 in Figure 4.7, Bowl 12 in Figure 4.8, Mug48 in Figure 4.9,
Plastic Cupll in Figure 4.10 and Tobacco6 in Figure 4.11) describe an example for each class
showing a point cloud and its corresponding VOSCH histogram.

©.8.@ /home/robolab/Desktop/Data-Set/Features/apple/fappleld.pcd

Figure 4.6 Apple14 point cloud and VOSCH histogram

©.8 @ /home/robolab/Desktop/Data-Set/Features/banana/fbanana62.pcd

Figure 4.7 Banana62 point cloud and VOSCH histogram

888 /home/robolab/Desktop/Data-Set/Features/bowl/fhowi12.pcd

Figure 4.8 Bowl 12 point cloud and VOSCH histogram
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©.0 © /home/robolab/Desktop/Data-Set/Features/mug/fmug48.pcd

Figure 4.9 Mug 48 point cloud and VOSCH histogram

©.0.© /home/robolab/Desktop/Data-Set/Features/plasticcup/fplasticcupl1.ped

Figure 4.10 Plastic cup 11 point cloud and VOSCH histogram

088 PCD viewer

Figure 4.11 Tobacco 6 point cloud and VOSCH histogram

Since the first 20 values of the VOSCH histograms describe the shape of a sample, some visual
comparison of the point clouds using PCD Viewer can be done. For example, the shape values of a
mug and a plastic cup can be similar, as shown in Figure 4.9 and Figure 4.10.

4.6 Implementation characteristics

As introduced in Section 1.3, recognition programs can detect and classify more than one object at
the same time. The classification is processed by the method sequentially in order of detection; first
valid component of the Organizador instance is the first to be analyzed.

Figure 4.12 shows the classification of three samples using AdaBoost One-Against-All. The
detected objects are a mug, a bowl and a tobacco packet.

A good property of VOSCH features is that the descriptor is rotation-invariant. An object can be
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laid horizontally on the table and it could be still recognized. This could happen if the point cloud
that the program detects is not very different from the ones in the data-set. If a mug is laid
horizontally on the table, and the orientation is such that the sensor can see its bottom, the point
cloud created will be very different from the ones the program has learnt. The result of such sample
would be uncertain. Figure 4.13 shows a correct recognition of a plastic cup in these conditions, but
Figure 4.14 shows a misclassification of a plastic cup with a slight different orientation than the one
in Figure 4.13. In Figure 4.15, three different tobacco packets are recognized. The one in the middle
is situated in a different position from the training samples. In the case of AdaBoost, this property
does not exist. If an object is put with a different inclination than in the training-samples, the
geometrical properties of the object can be totally different. If an apple is used an example, the
properties will not be very different (due to the shape of the apple can be similar to a sphere), but if
a tobacco packet is used instead, the dimensions of the object, taking the table as reference (the
absolute dimensions, such as volume, are always the same) will be very different. Because of these
reason, a good classification will not be normally achieved.

Figure 4.13 A plastic cup laid horizontally on the table is
Figure 4.12 A correct multi-classification using SVM. The recognized by SVM. Although the inclination of the sample
classified samples are a mug, a bowl and a tobacco packet. is different than the training-samples, the created point
cloud is similar so the properties of shape and color will be
also similar.
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Figure 4.14 The picture shows a plastic cup which is Figure 4.15 Another example of a detected object with a

recognized by SVM as a tobacco packet. Kinect detects jus different inclination (tobacco packet in the middle). In this

the side of the cup so the shape of the recipient is lost case, a multi-classification of three samples (tobacco
packets) is done.

The same problem can be present if an object is just partially detected. In this thesis, there are two
ways in which this can happen. The first one, it is presented in Figure 4.4, that is, if some parts of
the object are out of the valid range. The second one, if an object is in front of another object that it
is wanted to be detected. These ways, the dimensions of the point cloud will change as well. In
AdaBoost, this will probably lead to a wrong classification. In SVM, The correct classification of
the sample will depend on the part the other object is blocking.

4.7 Possible improvements of the implementation and difficulties

Although the programs can detect very different objects of the same class, there is an important
limitation when they analyze an object which belongs to a class which has not been learnt by the
classifier. In this case, the programs always classify the sample as one of the classes that the
classifier knows, if the number of points of the sample is in the range. Despite the fact that the goal
of the thesis is not to recognize new classes, a possibility to solve this could be to recognize the
object as unknown, if the probability given by the classifier is not big enough to be sure that an
object belongs to a known class. Figure 4.16 shows the misclassification of an unknown class using
AdaBoost One-Against-One method and Figure 4.17 shows it using SVM. Both programs detect an
object but the classification is wrong because the class they are trying to recognize has never been
learnt by the classifiers.
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~Tntensity data

Figure 4.17 SVM recognition of an unknown class (box) in

Fi 4.16 AdaBoost One-Against-O iti f
leure A0St TRIEARAINSTINe Freoption © which the predicted class is a bowl.

an unknown class (box) in which the predicted class is
a mug.

Another interesting result is obtained in the program AdaBoost One-Against-One. Depending on the
two classes which are part of a one-one classifier, a weak classifier can get no error in the training
phase. This happens because features are simple and sometimes the values of the ranges are very
different. As an example, banana-mug classifier can be presented if the samples used to train the
weak classifier have no errors and describe normal objects of those classes. “Height”, weak
classifier, will be able to make a perfect classification and the classification problem can be
formulated as a trivial one, consequently this will be done depending only on the height, ignoring
the rest of the other weak classifiers. A banana on a table will never be higher than a mug.

Talking about the project compilation, because of the installation of ROS, MRPT libraries had to be
added to it in order to use them in ROS projects. The problem was that, at first MRPT used VOSCH
and SVM methods as external programs. As it is a real-time approach, the call of an external
program took almost 100ms each. Although library linking is apparently not a difficult problem to
solve, first a deep study of CMake files had to be done because they are the type of files ROS uses
to compile its libraries. Then there was a collision between PCL libraries defined in both ROS and
MRPT which was solved renaming some libraries and changing dependencies between ROS and
the Point Cloud Library. Finally, to be able to use Eclipse, the project created in ROS was exported
to Eclipse.

As the Kinect development is a recent technology, the information and documentation that can be
found on the Internet is to some extents not complete. Comments in algorithms or examples can
hardly be found, so a deep study of algorithms, data types, data structures, libraries and
dependencies which were not directly used was needed to be done.
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5 Experimental results

In this chapter, the test programs of the different methods are presented. It is explained how they are
built and the results they create. In the Section 5.3, the time that each real-time program needs to
calculate a result is shown.

5.1 Test programs

The structure of the test programs is simple and it has always the same parts. First, the classifier is
trained with the training-set. The way of training depends on the method which is going to be used.
The idea is to create a training set in which, for each different class, the number of instances is
between 30% and 75% trying to use at least 16 instances. Since these are multiclass-classifiers, a
change in the training of a class can vary the results obtained by the classifier in another class. In
order to get good results from the different methods, a study of the training-set has been done [34].
For each method, different numbers of instances from each class are used to train the classifier.
Using ROC method, each combination of the number of instances can be analyzed in order to get a
good training-set for the final test between methods. The criterion to choose the training-set is
simple; the set with the highest hit-rate is selected. Once the classifier is created, the test-set is used,
the classification results and the roots of the test pictures are written in a text file in order to be
studied. In the following sections, the study of the different methods is presented.

5.1.1 SVM test

The following table represents eight different training-set combinations in which, the number of
instances of each class is different (Table 5.1). The column on the left represents the name for the
training-set with the specific number of instances on its right:

Training-set Apple Banana Bowl Mug Plastic cup Tobacco

A 8 8 8 8 8 8

B 8 16 16 16 8 8

C 8 16 16 16 8 16
D 8 16 24 16 8 16
E 8 24 24 16 8 16
F 8 16 24 24 8 16
G 8 16 24 32 8 16
H 8 32 24 16 8 16

Table 5.1 Different training-sets used for SVM named from A to H. Each cell contains the number of snapshots of a class
(column) used to train the method with a training-set (row).

The different training-sets are chosen depending on the number of instances that each class has
(Section 5.1). The following graphics represent the classification results of each class (Apple class
is presented in Figure 5.1, Banana in Figure 5.2, Bowl in Figure 5.3, Mug in Figure 5.4, Plastic Cup
in Figure 5.5 and Tobacco in Figure 5.6) in SVM using ROC method.
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Figure 5.1 ROC representation for Apple class using SVM

Figure 5.2 ROC representation for Banana class using SVM
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Figure 5.4 ROC representation for Mug class using SVM
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The hit rates of all the possible training-sets are shown in Table 5.2:

Training-set | Apple Banana Bowl Mug Plastic cup | Tobacco Overall
A 1,0 0,870 0,167 0,833 1,0 1,0 0,812
B 1,0 0,75 0,063 0,85 1,0 1,0 0,777
C 1,0 0,875 0,063 0,85 1,0 1,0 0,798
D 1,0 0,875 0,875 0,775 1,0 1,0 0,921
E 1,0 0,775 0,875 0,775 1,0 1,0 0,904
F 1,0 0,85 0,875 0,906 1,0 1,0 0,939
G 1,0 0,875 0,875 0,958 1,0 1,0 0,951
H 1,0 0,844 0,875 0,775 1,0 0,938 0,905

Table 5.2 Hit rates of the SVM method depending on the training-set (first column) and the class (first row). The last column
indicates the hit rate counting all the classes.

The number of instances of apple and plastic cup are eight in all training-sets, because with that
number of training instances, the classifiers obtain a perfect result. The hit rate for Bowl class is low
if the number of instances is 16, but it increases if the recognizer is trained with 24.
Using the information from the graphics, the number of instances of G set is chosen in order to

study SVM method:
Training-set Apple Banana Bowl Mug Plastic cup Tobacco
G 8 16 24 32 8 16

Due to the shape of the bowls, the difference between these instances is big. Its shape can be close
to the shape of a mug (Figure 5.7) or can be almost as flat as a plate (Figure 5.8Figure 5.7) and
sometimes Kinect can just detect a part of them. That is why the number of instances of bowl class
is high compared with the number of bowl samples, otherwise the results of the recognition would
be not very precise (Figure 5.3).

2@ PCDviewer

Figure 5.7 Detected point cloud of the third instance of the
bowl class. The shape is similar to the mug one although

the bowl is bigger.

PCD viewer

of the bowl is detected.
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Figure 5.8 Detected point cloud of the first instance of the
bowl class. The shape of the bowl is very flat so just one part




5.1.2 AdaBoost One-Against-One test

In AdaBoost One-Against-One method, Table 5.3 represents the combinations of training sets

depending on the number of instances for each class:

Training-set Apple Banana Bowl Mug Plastic cup Tobacco
A 8 8 8 8 8 8
B 16 16 16 16 16 16
C 16 24 16 16 16 16
D 16 32 16 16 16 16
E 16 40 16 16 16 16
F 16 16 16 24 16 16
G 16 16 16 32 16 16
H 8 16 16 16 8 16
I 16 16 16 16 8 16

Table 5.3 Different training-sets used for AdaBoost One-Against-One SVM named from A to I. Each cell contains the number
of snapshots of a class (column) used to train the method with a training-set (row).

The training-sets used for AdaBoost One-Against-One are different from the ones used in SVM
(Table 5.1). The idea is to try first with data-sets with eight and 16 instances per class, and after that,
try to improve the results increasing the number of instances of class without changing the number
of the others. In training-sets H and I, the number of apple and plastic cup snapshots is decreased to
eight due to the number of pictures of those classes, respectively 32 and 24.

The following graphics represent the results of the different classes in AdaBoost One-Against-One
using ROC method (Apple in Figure 5.9, Banana in Figure 5.10, Bowl in Figure 5.11, Mug in
Figure 5.12, Plastic Cup in Figure 5.13 and Tobacco in Figure 5.14).
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Figure 5.9 ROC representation for Apple class using Figure 5.10 ROC representation for Banana class using
AdaBoost One-Against-One AdaBoost One-Against-One
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Figure 5.11 ROC representation for Bowl class using Figure 5.12 ROC representation for Mug class using
AdaBoost One-Against-One AdaBoost One-Against-One
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Figure 5.13 ROC representation for Plastic Cup class using
AdaBoost One-Against-One

Figure 5.14 ROC representation for Tobacco class using
AdaBoost One-Against-One

Hit rates of the classification with AdaBoost One-Against-One is presented in Table 5.4. Tobacco is
always correctly classified. Plastic Cup results are better if the number of pictures to train the
classifier is eight instead of 16. This means that these eight extra pictures (new ones from eight to

16) used in the training set do not lead to an improve of the results for Plastic Cup class.

Training-set |  Apple Banana Bowl Mug Plastic cup | Tobacco | Overall
A 0,542 0,732 0,917 0,958 0,688 1,0 0,806
B 0,75 0,917 0,875 0,95 0,375 1,0 0,811
C 0,75 0,9 0,875 0,95 0,375 1,0 0,808
D 0,75 0,875 0,875 0,95 0,375 1,0 0,804
E 0,75 0,958 0,875 0,95 0,375 1,0 0,818
F 0,75 0,917 0,875 0,938 0,375 1,0 0,809
G 0,75 0,917 0,875 0,917 0,375 1,0 0,806
H 0,792 0,917 0,875 0,95 0,625 1,0 0,860
I 0,75 0,917 0,875 0,95 0,625 1,0 0,853

Table 5.4 Hit rates of the AdaBoost One-Against-One method depending on the training-set (first column) and the class (first
row). The last column indicates the hit rate counting all the classes.
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H set is the choice of the training-set for AdaBoost One-Against-One:

Training-set

Apple

Banana

Bowl

Mug

Plastic cup

Tobacco

H

8

16

16

16

8

16

5.1.3 AdaBoost One-Against-All test

As in Section 5.1.1 and Section 5.1.2, Table 5.5 represents the different training-sets used, in this
case, in AdaBoost One-Against-All:

Training-set Apple Banana Bowl Mug Plastic cup Tobacco
A 8 8 8 8 8 8
B 16 16 16 16 16 16
C 16 24 16 16 16 16
D 16 32 16 16 16 16
E 16 40 16 16 16 16
F 16 16 16 24 16 16
G 16 16 16 32 16 16
H 8 16 16 16 8 16
I 16 16 16 16 8 16
J 16 40 16 32 16 16

Table 5.5 Different training-sets used for AdaBoost One-Against-All named from A to J. Each cell contains the number of
snapshots of a class (column) used to train the method with a training-set (row).

A new training-set J has been added. This set is a mixture of the Banana instances of E and the Mug
instances of G. Using it, it is checked if some improve in training phase is achieved.

The following graphics (Figure 5.15 for Apple, Figure 5.16 for Banana, Figure 5.17 for Bowl,
Figure 5.18 for Bowl, Figure 5.19 for Plastic Cup and Figure 5.20 for Tobacco) represent the results
of the different classes in AdaBoost One-Against-All using ROC method.
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Figure 5.15 ROC representation for Apple class using Figure 5.16 ROC representation for

AdaBoost One-Against-All

AdaBoost One-Against-All
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Figure 5.17 ROC representation for Bowl class
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Figure 5.18 ROC representation for Mug class
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Figure 5.19 ROC representation for Plastic Cup class
using AdaBoost One-Against-All

Figure 5.20 ROC representation for Tobacco class using
AdaBoost One-Against-All

Table 5.6 presents the results for the different data-sets. Good recognition rates are obtained in
almost all classes with all the sets, with the exception of, for example, Bowl and Mug classes that
get lower rates for A set.

Training-set | Apple Banana Bowl Mug Plastic cup | Tobacco | Overall
A 0,792 0,946 0,625 0,604 0,938 1,0 0,817
B 0,813 0,958 0,875 0,975 1,0 1,0 0,937
C 0,75 0,95 0,875 0,975 1,0 1,0 0,925
D 0,813 0,938 0,875 0,975 1,0 0,938 0,923
E 0,875 1,0 0,875 0,975 1,0 0,938 0,944
F 0,813 0,958 0,875 0,969 1,0 1,0 0,936
G 0,813 0,958 0,875 0,958 1,0 1,0 0,934
H 0,792 0,958 0,875 0,975 0,938 0,938 0,913
I 0,813 0,958 0,875 0,975 0,938 1,0 0,926
J 0,813 1,0 0,875 0,975 1,0 0,938 0,933

Table 5.6 Hit rates of the AdaBoost One-Against-All method depending on the training-set (first column) and the class (first
row). The last column indicates the hit rate counting all the classes.
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The decision is to use E set for AdaBoost One-Against-All:

Training-set Apple Banana Bowl Mug Plastic cup Tobacco

E 16 40 16 16 16 16

5.2 Results

Once the number of instances for each test-set is chosen, the evaluation of the methods can be done.
It has to be taken into account that the test is done using the test-set, so a classification of the
sample will always be done. As it was explained in Section 4.2.2, some bananas will not be detected
because of the size of the point cloud. In this case, instead of detecting a banana or any other class,
the program will not count it as an object. This fact is not considered in the following analysis.

In order to start with the evaluation of the methods, first, ROC diagrams for each method are
presented in order to show an idea of the capacity of the classifiers. ROC diagram of SVM is shown
in Figure 5.21, of AdaBoost OaO in Figure 5.22 and of AdaBoost OaA in Figure 5.23.
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Figure 5.21 ROC representation for all classes using AdaBoost SVM
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Figure 5.22 ROC representation for all classes using AdaBoost One-Against-One
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Figure 5.23 ROC representation for all classes using AdaBoost One-Against-All

To show more specific results, hit rates for each class-method, SVM, AdaBoost One-Against-One
(Oa0) and AdaBoost One-Against-All (Oa0O) and for the complete classifiers are shown in Table
5.7:
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Method Apple Banana Bowl Mug Plastic Cup | Tobacco Overall
SVM 1,0 0,875 0,875 0,958 1,0 1,0 0,951
AdaBoost OaO 0,792 0,917 0,875 0,95 0,625 1,0 0,859
AdaBoost OaA 0,875 1,0 0,875 0,975 1,0 0,938 0,944

Table 5.7 Hit rates of the three methods depending on the class. Last column indicates the mean of hit rates of all the classes

In SVM, some bananas are recognized as a tobacco packet. This is caused because depending on the
orientation of the sample, the point cloud can be similar as the tobacco one. It is reminded that
VOSCH features extraction is an invariant-rotation method (Section 3.3.1.1). There is also a
confusion between Bowl and Mug classes. Some bowls are recognized as mugs and vice versa. The
reason is the similarity of the shapes of the object as described in Figure 5.7.

AdaBoost One-Against-One makes some misclassifications. Apples can be recognized as mugs or
tobacco packets, because of the orientation, the dimensions are similar. The misclassification among
bowls, mugs and plastic cup can also happen due to the reason of size. In bananas, the cause is
different. The dimensions of a banana are different from the bowl one, but looking at the Figure 5.8
and Figure 4.7, it is shown that the point clouds that describe those objects are quite similar.
Concerning AdaBoost One-Against-All, the confusion in the recognition among the classes is
almost the same as in AdaBoost One-Against-One method. The exception is that, instead of
misclassifying some apples as mugs, this method can classify them as plastic cups.

The best method, talking about hit rate, is SVM, then AdaBoost One-Against-All and finally
AdaBoost One-Against-One. Looking at the table, the decision of which classifier has to be used
should be SVM, but more factors have to be considered. In the Section 5.3, these will be
commented.

5.3 Recognition time

Since the first calculation of the programs is the classifier creation, the time that different methods
need to build their classifiers is going to be presented. These times are calculated using the training-
set calculated in section 4.2 for each method. Table 5.8 represents the time that each method needs
to calculate its classifier in ms:

SVM AdaBoost 0OaO | AdaBoostOaA
31,090 ms 2145,699 ms 3985,678 ms

Table 5.8 Mean of time that each method needs to be trained.

Since the training-set size is different for each method, it has been calculated how long it takes to
each classifier to train a sample. Table 5.9 shows these results. Although the difference between
AdaBoost methods is not important, the difference of times between SVM and AdaBoost methods
is considerable:

SVM AdaBoost Oa0O | AdaBoostOaA
0,299ms 26,821ms 33,214ms

Table 5.9 Mean time that each classifier needs to train one simple from the training-set.

Although in this thesis the training of the method is done when the real-time program is launched, a
solution to avoid counting these times is to train the classifier before starting the program and save
the values that describe the classifier in a file. This way, the programs would just have to load the
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file in order to work with the classifier, avoiding its training. This is the main reason why this phase
is not considered in the time analysis of the whole programs.

In real-time recognition it is not only important to obtain a good result but also to do it in a
reasonable time. A trade-off between time and classification success has to exist. The following
tables represent the time that SVM (Table 5.10), AdaBoost One-Against-One (Table 5.11) and
AdaBoost One-Against-All (Table 5.12) need to classify an object. Each column of the tables
represents a step of the recognition process and can vary from one method to another. Range
column contains the time to eliminate the points which are not in the desired range. RANSAC and
plane describe, respectively, the time in which the RANSAC algorithm needs to be calculated and
the time needed to delete the points which belong to the plane calculated by RANSAC. Labeler is
the time that the algorithm needs to label all the valid points of the point cloud. Features and SVM
indicate the time needed to create the VOSCH features and to classify them. Drawing column
shows the time the program needs to draw the points of an object. Although it is not necessary to
count it because it is not an essential part of the recognition process, it is included in order to show
the information as complete as possible. Finally, AdaBoost contains the time needed to calculate the
easy features and classify them under Adaboost. Each row represents a class. The value of each cell
represents the mean of times in the step of the corresponding column, using various samples of the
class described by the row. Total column describes the total time needed to recognize the class
designated by the first cell of the row. Last row of the tables corresponds to the mean of times of all
classes in the step describe in that column.

Range RANSAC Plane Labeler Features SVM Drawing Total
Apple 11,316 1,971 8,956 45,770 465,577 3,583 0,138 537,311
Banana 10,424 1,413 14,290 43,606 164,496 3,780 0,073 238,083
Bowl 13,116 2,315 10,897 53,220 638,098 4,575 0,317 722,538
Mug 10,007 1,440 7,664 41,126 334,392 2,704 0,135 397,467
Plastic cup | 10,118 1,125 7,624 45,208 230,162 3,285 0,102 297,624
Tobacco 11,157 1,179 7,849 41,610 211,523 2,685 0,091 276,093

11,023 1,574 9,547 45,090 340,708 3,435 0,143 411,519

Table 5.10 SVM recognition times for every object depending on the step of the recognizing process. The mean of times for
each class and for each step are described in the last column and in the last row respectively.

Range RANSAC Plane Labeler AdaBoost | Drawing Total
Apple 34,279 3,829 14,567 62,287 16,243 0,180 131,384
Banana 31,332 3,635 13,750 62,002 12,698 0,107 123,525
Bowl 34,052 5,793 14,020 74,938 21,115 0,436 150,354
Mug 29,018 4,506 12,716 59,601 15,056 0,382 121,278
Plastic cup 31,041 5,006 12,418 55,041 14,751 0,195 118,452
Tobacco 29,600 3,500 11,902 55,285 11,020 0,174 111,481

31,554 4,378 13,229 61,526 15,147 0,246 126,079

Table 5.11 AdaBoost One-Against-One for every object depending on the step of the recognizing process. The mean of times
for each class and for each step are described in the last column and in the last row respectively.
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Range RANSAC Plane Labeler AdaBoost | Drawing Total
Apple 30,097 3,883 13,620 54,825 12,655 0,201 115,281
Banana 30,335 3,955 14,834 59,864 12,274 0,136 121,397
Bowl 31,284 5,905 12,377 56,709 16,405 0,476 123,155
Mug 31,306 5,313 12,925 60,974 15,383 0,463 126,363
Plastic cup 31,481 3,660 15,335 67,658 14,736 0,193 133,062
Tobacco 29,380 3,654 13,332 56,853 12,127 0,177 115,522

30,647 4,395 13,737 59,480 13,930 0,274 122,463

Table 5.12 AdaBoost One-Against-All for every object depending on the step of the recognizing process. The mean of times
for each class and for each step are described in the last column and in the last row respectively.

Table 5.10 shows a considerable difference of time in the feature extraction depending on which
class is recognized. The reason why the times of attribute extraction in SVM goes from 164ms to
638ms is that VOSCH method depends on the shape of the object and the transition between the
points [25]. This means, the more complicated the shape of an object is and the more points the
point cloud has, the longer VOSCH algorithm requires to be calculated.

If more than one object is detected by the program, the time of feature creation and method
application of each extra object have to be added to the total time of one recognition. For example,
if two bowls are trying to be detected, the estimated time will be 722ms (mean of a bowl
recognition) + 638ms (VOSCH features extraction of the second bowl) + 4,5ms (SVM
classification of the second bowl) = 1,3 s.

Figure 5.24 helps to understand the time differences between the different methods. For SVM, the
calculation of features and the SVM classification are described by Method. X-axis indicates the
step of the classification and Y-axis the time in ms.
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Figure 5.24 Each part of the recognizing process is described in X-axis. Method indicates the sum of the
feature extraction and the method application and total shows the sum of times of the previous steps for
each classification method.
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Looking at the Table 5.11 and Table 5.12 a slight time difference between AdaBoost can be found.
The reason is the number of classifiers the methods use. Being » the number of classes, in this case
six, One-Against-All method will calculate a solution using » classifiers (one for each class) and

One-Against-One (Z) , where k refers to the number of elements of the One-One classifiers, in this

case, two. Taking this into account, the methods will use six and 15 classifiers to get a classification
result. Although, as explained in Section 4.7, some One-One classifiers are trivial and therefore the
calculation time is short, the number of classifiers of AdaBoost One-Against-One is between 2,5
times bigger than the number of the One-Against-All method. This is the reason why One-Against-
One takes longer to compute.

Looking at time information in Figure 5.24, SVM detection can process 1-3 images per second and
AdaBoost methods 6-8. Considering that a mobile robot has to compute different tasks
simultaneously, like planning or getting information from other sensors, the most suitable choice is
the one that uses the shortest time to be computed. This way, the pattern recognition lets more time
to the other tasks to be executed in the most precise manner.

According with the time results, the selected method should be AdaBoost in order to be able to
identify the objects as soon as possible.
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6 Conclusions and future work

As seen in the previous section, according to the classification or time results, SVM or AdaBoost
method can be the best option for this subject.

Talking about classification results, AdaBoost One-Against-One can be discarded because it is far
from the results which can be obtained using the other two methods. AdaBoost One-Against-All
and SVM generate hit rates of about 95%, whereas One-Against-One method gets an 85% (Table
5.4).

Talking about time results, there is a huge difference between AdaBoost methods and SVM. The
main problem for SVM is the time it needs to calculate the features. The easiest solution to this
problem is to use a faster computer in order to do the calculations more quickly. A second solution
could be to change the extracted characteristics. Instead of using VOSCH features, easier features
could be chosen to avoid the computation time of that phase in the real-time program. Detecting
several objects at once, the time needed becomes too extensive to be used in a real robot.
Nevertheless, VOSCH features are a good solution working with non-real-time images or in real-
time programs where a very fast detection is not required. For example, if a picture or a video
already taken has to be analyzed in order to find some patterns in them. The difference between
AdaBoost methods is slight, being the time for One-Against-One a little bit larger. This difference is
caused by the number of classifiers due to the chosen strategy explained in Section 5.3.

The detection results obtained with AdaBoost One-Against-All are almost as good as the ones
obtained with SVM and the time needed to compute those results is small enough to get a trade-off
between hit rate and time. That is why, the favourite solution to this thesis is to use AdaBoost One-
Against-All method in order to be able to include it in a real robot. The solution of using SVM
cannot be discarded, if the computation of complex features does not take so long.

Regarding AdaBoost, the number of weak learners for the method is not very high, so it could be
taken into account the possibility of creating new weak classifiers so that the final one can be more
complex and new, possibly better, results can be obtained. This way, more calculations have to be
done, but also better results could be obtained using more features discriminating the classes.
Another important part to comment on is the data-set. This data-set was created specifically for this
thesis. Compared with other data-sets which can be found on the Internet, the data-set is smaller, but
the objective of the thesis is not to create a huge set, it is only to use it to train and test the classifier.
As desired the data-set has carried out that role.

Furthermore, some improvements can be made. A good idea is to expand the data-set increasing the
number of instances of the classes and also the number of pictures for each everyday object (for
example, taking 16 pictures instead, that is, adding more positions or turning the object every
22,75°). Another idea is to create a new data-set containing just a range of classes of a specific topic
(for example fruits, containers or the elements of the Eurobot contest). The data-sets presented in
Section 2.2.1 can be also used in order to do an intensive study of the methods. The amount of
classes of objects and instances is huge, so the possibility of checking different algorithms and
method using these sets can be considered.
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