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Descriptores globales para video

RESUMEN

En internet se almacenan grandes cantidades de imdagenes y videos. Las dos principales
plataformas web que tratan con este tipo de informacidn son Google y YouTube
respectivamente. El nimero de imdgenes y videos que poseen es tan grande que se requieren
técnicas para clasificarlos segln su contenido, es decir se necesitan técnicas para predecir,
ante un nuevo video o imagen, a que categoria pertenece. En imagenes el problema ha sido
muy estudiado. En videos ha habido mucho menos trabajo. Los videos necesitan ser

clasificados en categorias como por ejemplo politica, deportes, musica, etc. Es importante que
esta clasificacion sea de acuerdo con su contenido. YouTube actualmente clasifica sus videos
segln las descripciones que el responsable que los ha subido ha escrito para identificarlo. De
esta manera hay muchos videos clasificados errdneamente. La clasificaciéon de videos también
puede ser interesante en reconocimiento de personas u objetos (como carteles escritos) en
ambientes complicados grabados por cdmaras corrientes o camaras de vigilancia. También

pueden aportar aplicaciones para dispositivos mdviles.

Los aspectos mas relevantes para la clasificacion de videos son los descriptores y las maquinas
de aprendizaje. Los descriptores de video se encargan de describir el video segun su contenido.
Las maquinas de aprendizaje toman estas descripciones de cada video para aprender a que
tipo de video pertenece cada descripcion y asi ante la aparicién de un video sin clasificar poder
determinar a que categoria pertenece. En este proyecto final de carrera se han usado ambos
aspectos y principalmente se han estudiado los descriptores de videos. Los descriptores que
hay en la actualidad son de dos tipos, globales y locales. Los globales describen el video de
forma global y los locales describen sélo zonas salientes del video. Estas zonas salientes del
video son localizadas mediante detectores. Se ha propuesto un descriptor global para videos y
un detector de zonas salientes para describirlas localmente. El descriptor global esta basado en
el calculo de gradientes en las tres dimensiones del video. El detector local aplicado es la
extensién a 3 dimensiones del detector SIFT 2D que es el mayor usado en imagenes. Ambas
propuestas se han implementado en Matlab y se han evaluado de manera extensiva en bases
de datos publicas y con implementaciones actuales.

Ademas serdn utilizadas estas bases de datos de videos para realizar un afinamiento de los
parametros de los descriptores y deducir que parametros son los mejores. Se estudiard el
porqué de los resultados aparecidos. Los resultados que se han obtenido han mejorado los
resultados en bases de datos de videos extensos y complejos. En el caso del detector local
propuesto, no se ha apreciado mejora con respecto a los detectores propuestos en la literatura
actual.
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1. Introduccion

1.1. Clasificacion automatica de videos

La vision por computador es la disciplina cuyo objetivo se puede expresar intuitivamente como
“que las maquinas puedan ver”. Pese a la simplicidad de la frase, la visidn artificial ¢
automatica es una tarea compleja y lejos de estar resuelta en el caso general. La vision artificial
es una disciplina muy fragmentada que abarca campos como la visién 3D, el reconocimiento
de objetos y de escenas o el seguimiento de objetos mdviles. De entre ellos, uno de los
aspectos que puede resultar de gran interés en un futuro préximo es el reconocimiento
automatico de videos por su contenido.

Para entender por qué este problema de clasificacidn es interesante podemos fijarnos en un
ejemplo con imagenes. Google dispone de un eficiente algoritmo de reconocimiento de
patrones en imagenes gracias al cual aporta dos aplicaciones muy conocidas en cuanto a uso
aungue no en cuanto a los algoritmos en los que se basan:

e Google imagenes: Es la versidon en imagenes del buscador Google. Dada una palabra o

frase introducida en la barra de busqueda, Google imagenes devuelve las imagenes
relacionadas con esa busqueda. Se puede apreciar su funcionamiento en la figura 1 tras la
busqueda de la palabra ‘iglesia’.
Anteriormente, al introducir una busqueda en Google imagenes, Google buscaba imagenes
donde la palabra buscada se encontrara en un texto cercano o en su mismo titulo.
Actualmente Google ha mejorado este algoritmo, incorpora un sistema de reconocimiento
de imagenes para que ademas de buscar las imagenes con la palabra correspondiente
busca también imagenes por reconocimiento. De esta manera se evitan muchos falsos
positivos, es decir imagenes que contienen la palabra buscada pero no se corresponden en
contenido con lo que se esta buscando.

iglesia O] n

Filtro SafeSearch ma

Bulsquedas relacionadas: ibi iglesia iglesia dibujo iglesia catolica iglesia para colorear iglesia interior jglesia cristiana

Figura 1. Busqueda de ‘iglesia’ en Google, se buscan imagenes relacionadas con la palabra iglesia y ademas fotos reconocidas

como una iglesia gracias al algoritmo utilizado por Google.

e Google goggles: Aplicacidon para moéviles de Google. Consiste en el reconocimiento de
imagenes al realizar una foto. Se realiza una foto a una iglesia y Google goggles es capaz de
reconocerla gracias al mencionado algoritmo de reconocimiento, decirnos que iglesia es,
donde se encuentra y la informacién que necesitemos. Nétese que a diferencia del caso



anterior con Google imagenes la clasificacion es realizada Unicamente con informacién de

la propia imagen, puesto que es la Unica informacidn que tenemos. Si hacemos una

fotografia a la caratula de un libro o un videojuego también es capaz de reconocerlo y de

aconsejarnos una web para adquirirlo. En la figura 2 se muestra un ejemplo en el cual se

ha fotografiado un

cuadro famoso y Google googles lo identifica y proporciona

informacidn sobre él via web.
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and Diego Rivera Art by Frida ...
Frida Kahlo (1907 - 1954) was a legendary
Mexican painter whose striking artworks
reflected a lifetime of unbearable pain, ...

Figura 2. Imagen ejemplo de Google donde se toma una foto de un cuadro y Google consigue clasificarlo y darnos su

informacion via internet.

Estas dos aplicaciones que estdn siendo utilizadas por Google seria interesante que pudieran

ser extendidas a videos. YouTube es un sistema de almacenamiento de videos que a dia de hoy

utiliza un sistema de busqueda solamente relacionado con la palabra/frase introducida y la

correspondencia de esta con las ‘tags’ o palabras clave que contiene el video para ser

encontrado, como ejemplo ver figura 3.
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Figura 3. Busqueda de la palabra ciclismo en YouTube.

YouTube no reconoce los videos, sélo busca segin la palabra

introducida y su correspondencia con las palabras clave que el responsable del video ha

utilizado antes de subirlo

a la web. Debido a esto youtube devuelve muchos falsos positivos en



la busqueda introducida, en la misma figura 3 se aprecia como los dos primeros videos que
devuelve YouTube no estan relacionados con la palabra buscada.

Con el uso de un algoritmo de reconocimiento de videos, YouTube seria capaz de reconocerlos
de una manera mas eficaz. Extrapolando la aplicacién de Google goggles, una posible
aplicacion podria ser que al realizar un video de una pelicula o algo previamente grabado como
podria ser un acto histérico, el sistema de reconocimiento seria capaz de reconocerlo y
decirnos de que video se trata. En videos tendremos mas informacién que en imagenes ya que
en un video disponemos de muchas imagenes, pero en contrapatida la tarea de clasificacion es
mas compleja ya que es mas dificil y costoso procesar toda esta informacion.

1.2 Objetivos y resumen

Una de las partes mas importantes de los sistemas de reconocimiento son los descriptores. Los
descriptores deben de describir el video de la mejor forma posible de manera que extraigan
caracteristicas tipicas de cada tipo de video y que a su vez estas carateristicas sirvan para
distinguirlo de los demas. Por ejemplo, en imagenes, si describimos una imagen de forma que
encontremos dos ventanas, una puerta y un tejado el sistema de reconocimiento deberia de
saber reconocer esa imagen como la imagen de un casa. En concreto en este proyecto final de
carrera se van a estudiar descriptores globales y descriptores locales. Ambos descriptores
utilizan un algoritmo similar de descripcién, la principal diferencia es que los descriptores
locales aplican este descriptor a puntos o zonas caracteristicos del video mientras que los
globales lo aplican a todo el volumen del video. De esta manera otra diferencia entre ambos es
que los descriptores locales necesitan de la localizacion de los puntos caracteristicos o
salientes que se realizard con un detector.

se pierdan algunos puntos clave pero no todos

Gracias a ambos descriptores (descriptor global por un lado y detector y descriptor local por el
otro) ya tenemos el video descrito, con esta descripcion hay que ensenarle a una maquina de
aprendizaje de la misma manera de la que aprendemos los seres humanos, por repeticion. Se
le envia a esta maquina una serie de descripciones de videos y la clase de video a la que
pertenecen. Con esta informacién es capaz de aprender que tipo de descripciones en cada
clase de video se relacionan con cada clase. Ante la entrada de un nuevo video, buscara entre
las clases de videos de los que ya ha aprendido previamente cual se parece mas y asi conseguir
su reconocimiento.



En este proyecto se propone un descriptor global no utilizado antes y un detector de puntos
caracteristicos local tampoco utilizado antes. Se define descriptor como el calculo de
gradientes de color en la imagen / video. Un descriptor global calcularia los gradientes a lo
largo y ancho de las imagenes que se ven en la figura 4. Como se puede apreciar estos
gradientes saldrian diferentes para cada imagen y por tanto el descriptor cambiaria, ya que
solo lo aplicamos una vez y a toda la imagen. En cambio para el caso de un detector y
descriptor local se calculan estos gradientes sélo en una regidn alrededor del punto clave
determinado por el detector. Por esta razén el descriptor local es mas robusto ya que muchos
de los puntos clave se mantienen al introducir otro objeto en la imagen (el coche en este caso)
aunque aparecen otros nuevos debidos al nuevo objeto.

El objetivo de este proyecto de fin de carrera es la evaluaciéon de descriptores globales y
locales para clasificacion automatica de videos. El trabajo desarrollado se puede resumir en:

Propuesta de un descriptor global de videos (apartado 2).
Propuesta de un detector local para videos (apartado 3).
Implementacion de ambos (detector y descriptor) en Matlab.
Seleccion y uso de librerias para aprendizaje automatico.

vk wN e

Seleccion de datasets para evaluacién con el estado del arte en clasificacién
automatica de videos.
6. Sintonizacion de parametros de los descriptores globales para optimizar los resultados
de clasificacion.
7. Sintonizacion de parametros de los descriptores y detectores locales para optimizar los
de resultados clasificacion.
8. Evaluacion de ambos descriptores y comparaciéon con el estado del arte.
Como adelanto de las conclusiones, los descriptores globales funcionan mejor en datasets mas
amplios, con mucha informacién y con muchas clases a determinar, ademas de en datasets
donde no solo la acciéon es necesaria si no también el fondo donde se desarrolla. Dicho esto los
descriptores globales pueden ser una buena opcidn ya que YouTube dispone de una cantidad
inmensa de videos y de clases de videos que necesitarian de su reconocimiento.

El resto del documento se organiza de la siguiente manera: la seccidon 2 da los detalles del
descriptor global propuesto. La seccidn 3 desarrolla el detector local propuesto. La seccién 4
describe la maquina de aprendizaje utilizada (clasificador). Las secciones 5y 6 comparan los
descriptores utilizados. La seccion 7 muestra un dataset propio. La seccion 8 muestra los
experimentos realizados. En la seccién 9 se encuentran las conclusiones, la 10 propone el
posible trabajo futuro y la seccidn 11 aporta los anexos.

2. Descriptores globales de video

El descriptor es un vector de nimeros (cada numero es una caracteristica) que tiene la funcion
de dar un significado computacional a cada video, deberda de proporcionar descripciones
similares para videos de una clase y descripciones diferentes para videos de clases diferentes.
Basamos nuestro descriptor en el histograma de los gradientes orientados utilizado en
imagenes (HOG [13,14]) y que aplicaremos tanto en videos (apartado 2.1) como en flujo éptico
(apartado 2.2). También expondremos otros tipos de descriptor (apartados 2.3 a 2.7).



2.1 Descriptor propuesto. Histogramas globales de gradientes

orientados en 3D (G-HOG3D)

Explicamos el concepto en 2D [12,13] en el apartado 2.2.1y en el apartado 2.2.2 lo
extendemos a la tercera dimension para explicar el algoritmo completo en 2.2.3.

2.1.1 Histogramas de gradientes orientados en 2D

Dada una imagen, se obtiene la matriz que contiene los valores de cada uno de sus pixeles
para cada uno de los 3 colores (rojo, verde y azul) a lo largo y ancho de su superficie (matriz de
‘n’ filas, ‘m’ columnas y 3 canales para cada calor). Se calculan las derivadas de la textura de la
imagen. En matrices tenemos datos discretos, por tanto no podemos derivar explicitamente.
Para derivar en discreto se restan los valores de los pixeles que estan en la direccion respecto
la que queremos derivar. Esto lo conseguimos gracias al filtrado de esta matriz con mascaras
derivativas, sustituyen cada pixel por el valor de la derivada buscada. Se puede realizar para
cada uno de los tres colores o pasando la imagen a escala de grises y derivando en ella.

Existen varios mascaras para realizar estas derivadas, la que planteamos a continuacidn esta
demostrado que es el que mejor funciona segun [12,13]. Consiste en calcular los gradientes en
‘xi y en 'y’ mediante la resta de los pixeles contiguos al pixel y situados en la direccién de la
derivada, tanto horizontalmente para los gradientes en ‘x’, como verticalmente para los
gradientes en ‘y’. Se trata de mdscaras centradas.

Con estas mascaras se calculan los gradientes horizontales (G, ) y verticales (G,):

G, =1Qm,
Gy, =1Qm,
my = [—1,0,1]

my = —[-1,0,1]7

I es laimagen a tratar. G y G, tienen tres dimensiones debidas a cada uno de los tres colores
de la imagen (rojo, verde y azul). Se toma el gradiente maximo de los tres colores.

Se calcula el médulo y dngulo para cada pixel:

G = /ze +6G,°

6 = atan2(G,, Gy)

Se divide la imagen en celdillas espaciales, y cada una de las celdillas se divide en ‘bins’ (ver
figura 5) que es como llamaremos a las regiones angulares que determinan los histogramas
angulares. Se toma cada pixel dentro de la celdilla y se suma su mdédulo (G) al ‘bin al que
corresponda si su médulo es mayor que un umbral a imponer (este umbral serd la media o la
mediana de los mddulos dentro de cada celdilla).

10
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Figura 5. Division de la imagen en 4 celdillas, para cada una se suman los gradientes en el histograma angular que en este caso
se ha tomado de 8 regiones angulares.

2.1.2 Extensién a 3D

La formulacién anterior es la utilizada para el procesamiento de imagenes, en nuestro caso
tenemos un problema en una dimensién mas debido al afiadido del tiempo en el video, por lo
tanto se ha afiadido la variable temporal a estas ecuaciones y en vez de tener una imagen
bidimensional tenemos un video en 3D. Nuestras variables seran ‘x’,’y’, y el tiempo ‘t’. En este
caso se calculan dos angulos (6 y ¥ ) para podes describir las dos dimensiones. Notese esta
extension en la figura 6. 6 se corresponde con el angulo espacial igual que en 2D y i se
corresponde al dngulo temporal.

Figura 6. Division del video en celdillas, en este caso 64 celdillas, para cada una se suman los gradientes en el histograma
angular que en este caso se ha tomado de 8 regiones angulares para cada uno de los dos angulos, es decir 64 combinaciones
angulares para cada una de las 64 combinaciones espacio-temporales de las celdillas.

2.1.3 Desarrollo del algoritmo

Se divide cada video en sus fotogramas. La primera operacion que se hace en cada imagen es
escalarla un factor a determinar (hacemos la imagen mas pequefia) para conseguir que los
pequefios detalles queden difuminados y no produzcan gradientes innecesarios, un ejemplo
podria ser el reconocimiento de un portatil donde el contenido de la pantalla es innecesario
para nosotros y sélo nos interesa los gradientes entre los bordes de este y el ambiente.

11



Respecto al formato de la imagen no cambiamos de color (rojo, verde, azul) a blanco y negro
ya que estd comprobado en [13] que el primero da mejores resultados en 2D como ya se ha
comentado en el apartado 2.1.1. Tendremos 3 matrices por imagen (una para el color rojo,
otra para el verde y otra para el azul).

Se utiliza la compresién gamma (¥), con ello conseguimos un efecto parecido al escalado de
imagen, consiste en elevar cada pixel de la matriz a un factor igual a 0.5 con el objetivo de
disminuir los gradientes, el resultado serd que los grandes gradientes disminuirdan pero
seguiran teniendo su efecto y los pequefios gradientes tenderdn a desaparecer y no ‘molestar’
a nuestro descriptor. Después de la compresién gamma se divide por el maximo valor de la
imagen y se multiplica por 255 para situar todos los valores de la imagen entre toda la escala
de valores desde 0 (negro) a 255 (blanco):

Y
I'=255~ (maX(IV))

Se realiza el calculo de los gradientes respecto a cada una de las tres direcciones. Utilizamos
mascaras derivativas centradas ([-1, 0,1]) igual que en el caso de 2D (apartado 2.2.1):

Tenemos las siguientes mascaras derivativas:

m, = [—1,0,1]
my, = —m,"
mt = mx

Las aplicamos al video y calculamos el médulo y gradiente de cada pixel. Notese que ahora
tenemos dos angulos, el angulo 8 igual que en imagenes y el angulo iy debido al cambio
temporal.

Gryt =iyt @Mmyys

Gx y: tiene tres dimensiones debidas a cada uno de los tres colores de la imagen (rojo, verde y
azul). Se toma el gradiente maximo de los tres colores.

El mdédulo y angulo se calculan como:

G = \/ze +G,2+G,*
0 = atanZ(Gy, Gy)

Y = atan2(G,,Gy)

12



Calculamos dos angulos ya que es la informacidn necesaria para definir un vector en 3
dimensiones. A continuacion se detalla la manera en la que se forma nuestro descriptor a
partir de celdillas espaciales y temporales y ‘bins’ espaciales y temporales.

Un solo pixel no es representativo por lo que se juntan varios pixeles en celdillas para ser
procesados conjuntamente y no uno a uno. Por ello se divide el video en celdillas volumétricas
(tendran tres dimensiones, 2 espaciales y una temporal). Las celdillas o bloques del descriptor
pueden tener tanto forma cubica como estérica, en nuestro caso optaremos por la forma
cubica. En cada celdilla se forma un histograma de combinaciones angulares para cada uno de
los dos angulos. Para cada regidn angular se suma el médulo (G) de cada pixel si este mddulo
es mayor que un umbral (como en 2D este umbral sera la media o mediana de los mddulos de
las celdillas).

Para clarificar, en el apartado resultados (apartado 8), se utilizara la nomenclatura “4 celdillas
espaciales”, “5 celdillas temporales’” que significa que el video se ha dividido en 4 partes para
las dimensiones espaciales (horizontal y vertical) y en cinco partes para las dimension
temporal. Por ejemplo, en la figura 6 hay 4 celdillas en las dimensiones espaciales (dimensién
horizontal y vertical) y 4 en las temporales. En total hay 4*4*4 = 64 celdillas. Ademas en este
caso para cada celdilla tiene 8 regiones angulares o ‘bins’ para cada uno de los dos angulos, es
decir 8*8=64 combinaciones de regiones angulares en cada celdilla.

Una vez procesados todos los mddulos de los pixeles de una celdilla se procede a su
normalizacién para tener todas las celdillas en una escala fija y comun.

Existen 4 tipos de normalizaciones, vamos a utilizar la segunda de la lista que sigue a este
parrafo. Esta normalizacién también recorta los valores del descriptor a un maximo de 0.2 para
evitar darle mas importancia a gradientes debidos a cambios no importantes como por
ejemplo cambios fuertes debidos a cambios en la luminosidad de un cuerpo donde por un lado
le da la sombra y en el otro le refleja la luz del sol. Probamos esta normalizacién tanto de
forma global en el descriptor completo, como de forma singular en cada una de las celdillas y
dio mejor resultado la segunda que es la que se utilizara.

v

/Hv”§+sz

v

/“v”§+£2

Misma normalizacién que en caso anterior con el recorte de los valores a un maximo de 0.2

Norma L2 f=

Norma L2.2: f=

v

Norma L1: f= W

v

Ll-raiz: f= W
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Las celdillas y ‘bins’ pueden tener superposiciéon. Consiste en dividir el video en celdillas y
‘bins’ de manera que las fronteras contiguas se solapen unas con otras y asi hacer la division
de una manera mas suave. Para ver un ejemplo remito a la figura 7 donde se realiza este
método en una imagen en 2D.

Figura 7. Ejemplo de celdillas ordinarias en la 12 imagen y celdillas con superposicion en la 22 imagen. Figura tomada
de [7]

Se forma el descriptor concatenando cada uno de los histogramas de combinaciones angulares
de cada una de las celdillas. Por ejemplo si tenemos 4 celdillas espaciales (en las dos
direcciones), 4 celdillas temporales y 8 ‘bins’ para cada regidn angular el descriptor tendra una
longitud de 4096 = 4*4*4*8*8. Finalmente se realiza una normalizacién unitaria al descriptor
completo.

2.2 Descriptor propuesto. Histogramas globales de gradientes de flujo
orientados en 3D (G-HOF3D).

El flujo dptico es el movimiento que ha sufrido un pixel de una imagen a otra. Si tenemos una
camara estatica el flujo éptico del fondo sera nulo mientras que el fondo éptico de la accidn
gue estemos grabando sera distinto de cero.

El flujo ptico se centra en movimientos y no en textura. Si la textura esta muy relacionada con
la accidén el flujo dptico perdera esa informacién del fondo. Se han probado dos modelos de
calculo de flujo entre dos imagenes, el modelo de Horn de 1981 [1] y el modelo de Roth y Black
de 2010 [2]. Explicamos ambos en los apartados 2.2.1 y 2.2.2 y demostramos en el apartado
2.2.3 con una comparacion de célculo de flujo entre dos imagenes que el modelo explicado en
[2], es mucho mas preciso y lo utilizaremos para nuestros experimentos.

El descriptor G-HOF3D es el mismo que el descriptor G-HOG3D del apartado 2.1 pero en vez
de analizar fotogramas se analizaran el flujo éptico de estos fotogramas. Es decir en vez de
tener un video de imagenes tenemos un video de flujo dptico. La principal diferencia es que el
video de flujo dptico contiene ‘imagenes del movimiento’. Otra diferencia es que antes por
cada imagen teniamos 3 matrices debidas a cada uno de los 3 colores y ahora tendremos dos
matrices una debida al flujo horizontal y otra debida al flujo horizontal.

2.2.1 Flujo 6ptico [Horn 1981]

El flujo éptico es la idea de que al mirar un objeto en movimiento este lo vemos sin prestar
demasiada atencidn al resto de la escena. Es la diferencia entre nuestro objetivo a seguir y el
resto de la escena. A continuacién se explica brevemente la solucién de Horn, para una
explicacion detallada remito al lector al anexo A.
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El flujo éptico de Horn se basa en la minimizaciéon del siguiente funcional:
Ez=f[ﬁE£+Ewa
Q

Epy®> = (I u+1,v+1,)?
EZ =u? +uy? +v,2 +v,72

Donde [ se corresponde con el volumen del video, u y v son el flujo éptico horizontal y
vertical. El subindice ‘x’ se corresponde con derivada en la direccién horizontal y el subindice
‘v’ se corresponde con derivada en la direccion vertical.

Queremos minimizar el anterior funcional ya que:

e E. eslaecuacidn debida a que el objeto estd sujeto a un movimiento como solido rigido o
a una pequefia deformacién. Esto quiere decir que el cambio en el flujo debe de ser muy
pequeiio y por tanto se requiere de la minimizacién del gradiente del flujo, es decir de E.

* E, representa el cambio que ha sufrido un pixel de un fotograma a otro, este cambio
también lo queremos minimizar ya que debe de ser cero.

2.2.2 Flujo 6ptico [Roth y Black 2010]

Se ha comprobado el algoritmo del aparado anterior para la deteccién de flujo por la imagen y
no ha dado los resultados esperados (como veremos en el apartado 2.2.3). Se expone a
continuacién un algoritmo mas preciso visto en [2].

Explico brevemente el flujo dptico de Roth y Black, para una explicacion detallada remito al
lector al anexo B.

Se parte de la funcién a minimizar, similar a la expuesta en el apartado 2.2.1 pero con la
principal diferencia de la con la adicién de funciones de penalizacién pD y pS :

E(u,v) = Z{ADPD(h(i:]') =Lty j+v)+ As[pSj — wigqjy + pS(Wij — Ui jen
i,j
+pSWij — Vi jy + pS(Vij — vijen |}
Ep = ) (opDUs (i) = (i + o] + vy}
i,j

Consiste en encontrar los valores del flujo éptico u y v que minimizan la funcién anterior,
u y v son el nimero de pixeles de movimiento entre dos fotogramas consecutivos. El
primer término se corresponde con la diferencia entre un punto de la imagen primera y su
homdlogo en el nuevo fotograma, que en un caso ideal seria cero. El segundo término consiste
de la consideracién de que estamos trabajando con un sdlido rigido y se dan pequenas
deformaciones por lo que el flujo no puede tener grandes variaciones. A es un parametro de
regularizacion mientras que p son las funciones de penalizacidn de la informacién dada
(primer término) y penalizacién espacial debida a las diferencias en flujo (segundo término).
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Las funciones de penalizacidon tienen como funciéon el formalizar los errores, devuelven
siempre un numero positivo y no surge el fendmeno de cancelacion de errores. Las posibles
funciones de penalizacion que se utilizan en este algoritmo son:

-Cuadrética o HS. p(x) = x?

-Charbonier o Classic-C. p(x) = vV x2 + €2
2
-Lorentzian o Classic-L. p(x) = log(1 + %

2.2.3 Comparacion entre ambos

Se utilizara el flujo dptico de Roth y Black [2] ya que como podemos apreciar en la imagen de
abajo a la derecha en la figura 8 el flujo de estas personas en movimiento es constante en sus
cuerpos y no se crean gradientes debidos a cambios en textura no importantes como los
pliegues de su ropa que si se dan en el flujo de Horn (abajo a la izquierda en la figura 8).

Figura 8. Arriba dos fotogramas consecutivos, abajo flujo 6ptico para ambos. El flujo 6ptico calculado abajo a la izquierda
corresponde con el algoritmo de Horn y el de abajo a la derecha con el algoritmo de Roth y Black.

2.3 Deteccion del movimiento. Ventana de seguimiento de la accion.
Nuestro objetivo es describir el movimiento que sucede en un video. Vamos a utilizar el
descriptor global en este experimento pero vamos a acotar la zona del fotograma a aplicarlo,
sélo se aplicard en la zona que éste que estd en movimiento. Nos centramos en la zona en
movimiento y de este modo no importa en que zona del video se encuentre la accién. En
contraposicidn haciendo esto nos olvidamos de la escena que puede ser tan importante como
la accion.

La idea principal es buscar el movimiento de la accidn y separarla del fondo. Cuando las
cdmaras estan en movimiento resulta muy complicado ya que se produce movimiento por
toda la imagen. Se intentd separar el movimiento del fondo de la persona con cdmaras
moviles pero no fue posible ya que el movimiento del fondo no es constante. Su flujo éptico
varia ya que no todas las zonas a las que apunta la cdmara estdn a la misma distancia y por
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tanto su velocidad sera diferente y se producirdan muchos flujos distintos de los cuales sera
dificil predecir cual es nuestro objetivo.

En cambio este problema no surge si la cdmara es estatica como ocurre en el dataset KTH [15],
realmente a veces no es estatica del todo pero debido a la planitud del fondo se podra
diferenciar el fondo de la accidn con bastante exactitud.

En primer lugar se pasa un filtro de mediana por todas las imagenes para eliminar los pixeles
espurios. Se toman los fotogramas de 3 en 3 y se calcula el gradiente temporal del fotograma
central:

Gt=1t®mt

Una vez tenemos este gradiente temporal se calcula las gradientes en el eje horizontal y en el
eje vertical de este gradiente temporal para calcular los bordes donde se ha producido el
movimiento. Finalmente se calcula el médulo de estos dos gradientes verticales y horizontales:

Gex =G Q@ my

th=6t®my

G = ’Gtxz + Gtxz

Los valores altos (mas altos que un umbral que ahora determinaremos) de ‘G’ determinaran si
hay movimiento o no en la imagen. Se pasa un filtro gaussiano por ‘G’ para suavizar los
gradientes de la imagen ya que en ocasiones surgen en lugares de la imagen donde no hay
nada en movimiento y son debidos a cambios de luminosidad, al ser tan escasos se corrigen en
su mayoria con este filtro gaussiano.

Se calcula el histograma de este mddulo (figura 9), se ve claramente como hay una zona inicial
muy grande debida a todos los pixeles que no se mueven y una zona mas extensa pero mucho
mas lineal y con una repeticion mucho mas baja debida a la accién en movimiento.

La zona del histograma (figura 9) debida al movimiento se corresponde con valores bajos y
constantes entre si. Se procederd de la siguiente manera (figura 9): una vez se detecten 5
valores seguidos en el histograma menores que un valor limite se tomara el valor minimo de
esos valores como el valor minimo que tendra movimiento.

1400

1200 - B

1000 - 1

8001 Zona donde se repiten 5
valores menores que un
maximo. Zona donde

empieza el movimiento
400 F : 4

600

200+ B

Figura 9. Histograma de los gradientes en textura de los gradientes temporales.

17



En el mddulo (G) de cada pixel se buscan valores mayores que el dado por el histograma
anterior y asi tendremos los pixeles que se corresponden con accidn en movimiento. Se
tomara la ventana que englobe a todos los pixeles que estén en movimiento no sin antes
incrementar la ventana un 30% en ambas direcciones para dar margen.

Con la forma de calculo anterior surge el problema de que en un fotograma la ventana de
movimiento detecta por ejemplo sélo las manos de la persona y en el siguiente detecta la
persona entera, por tanto estamos mezclando las manos con otras zonas del cuerpo, como
puede ser la cabeza y esto no es del todo correcto. Por ello se realiza un sistema de votaciones,
cada 10 fotogramas se calcula el tamafio dado por la mediana de los tamafios. La posicion de la
imagen se calcula del mismo modo, asi se tiene un tamafio estandar cada diez fotogramas.
Para pasar de este tamafio al dado por los siguientes diez fotogramas se realizan de forma
lineal y no de forma brusca.

Finalmente la tercera modificacion viene dada ya que la modificacién anterior no arregla del
todo el problema dado en la primera aproximacion asi que en este caso se toman todas las
ventanas que describen el video y se forma una ventana fija y global que englobe a todas las
ventanas calculadas en cada fotograma. Esta ventana fija describe bien la zona de movimiento
a lo largo de todo el video como vemos en la figura 10.

Figura 10 Fotograma completo y ventana de movimiento.

2.4 Descriptor global basado en lineas
Para una explicacidn detallada remito al lector al anexo C.

Se utiliza una técnica llamada detector de Canny [8] para detectar las lineas de una imagen. Las
lineas tendran valor uno y los demas pixeles tendran valor 0. Con la transformada de Hough,
que es una funcién de Matlab, se calcula la posicién ‘ro’ y ‘theta’ de cada pixel con valor uno
en la imagen (ver figura 11). De esta manera hacemos un sistema de votaciones para estas dos
variables. Esta votacion no la realizamos en toda el volumen del video si no que también
empleamos celdillas espaciales y temporales, en cada una de ellas realizamos la deteccidn de
lineas y su respectivo sistema de votaciones, asi formamos el descriptor que entrenara a la
magquina de aprendizaje.

%

o
Figura 11 Linea parametrizada por ‘r' y 0 . Figura tomada de [8].
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2.5 Descriptor global basado en espacio de colores (L-a-b)

Este espacio de colores sirve para procesar los colores que puede percibir el ojo humano. 'Ll
representa la luminosidad (0 = blanco, 100 = negro), ‘a’ representa su posicidn entre magenta
y verde, valores negativos representan mas cerca de magenta y positivos de verde y lo mismo
ocurre para ‘b’, donde representa la posicién entre amarillo y azul.

Se realiza un histograma para ‘L, ‘a’ y ‘b’ en 4, 14 y 14 regiones respectivamente para formar
un descriptor global de 14*14*4 = 784 dimensiones.

2.6 Descriptor global basado en patrones locales binarios
Para una explicacion completa remito al lector al anexo D.

Se utiliza el cddigo publico [7] para su implementacién.

Los patrones binarios se determinan mediante un ndmero binario que surge de la comparacién
de un pixel central con los pixeles de alrededor. Si un pixel tiene un valor en la escala de grises
mas alto que el pixel central entonces se le atribuird un 1, si no un 0. Se sitian los 0’sy 1's en
un determinado orden para formar un nimero binario que se pasara a decimal. La frecuencia
normalizada de estos nimeros determinara nuestro descriptor. Se puede aplicar el algoritmo a
todo el video o se puede discretizar en celdillas volumétricas para después concatenarlas como
se ha hecho en los demas descriptores.

2.7 Descriptor global basado en restas entre videos

Método basado en la idea vista en [16] sobre reconocimiento de imagenes a partir de su
parecido con un dataset grande de imdgenes. En este articulo se toman 80 millones de
imagenes en escala reducida y se tienen como un dataset de entrenamiento. Dada una nueva
imagen para reconocer se compara con las imagenes de entrenamiento y la imagen a la que
mas se parezca le atribuird la clase que tenga. En este proyecto realizamos esta misma idea
pero en videos.

Dado un video a clasificar se calcula la distancia de este respecto a los videos de
entrenamiento y el que de la distancia minima determinara la clase de video a la que
pertenece.

Se escalan todos los videos y se pasan a escala de grises. Los hacemos pequefios en tamafio
para eliminar los detalles de las imdgenes, no queremos detalles como puedan ser pliegues de
la ropa, colores, gorras, etc. Sélo queremos la esencia de lo que esta ocurriendo.

Ademas de reducirlos, hay que hacerlo a un tamafio comuln ya que la comparacion sera la
norma de la resta entre volimenes de videos. La norma minima sera el video al que mas se
parece.

d(i) = norma(I(i) — 1)

Donde ‘I’ es el video a clasificar, ‘d (i)’ es la distancia de este video al video de entrenamiento e
‘I (i)’ es cada uno de los videos de entrenamiento. La minima ‘d (i)’ dara la clase del video a
clasificar.
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3. Descriptores locales de video

Los descriptores locales de video operan en tres pasos, primero se calculan puntos de interés
del video (apartado 3.1), con estos puntos se calculan sus descripciones (apartado 3.2) y
finalmente con la descripcién de todos los puntos se crea un diccionario donde estos
descriptores se agrupan en ‘K’ grupos o palabras (apartado 3.3). Al conjunto de palabras se le
denomina bolsa de palabras. Cada punto clave pertenecera a una palabra y la frecuencia de
cada palabra dentro del video determinara el descriptor de nuestro video. Dado un nuevo
video a clasificar se calculardn sus puntos clave y descriptores para clasificarlos con las
palabras surgidas en el entrenamiento, le frecuencia de estas palabras determinard el
descriptor a comparar con los descriptores de entrenamiento.

3.1 Localizacion de puntos de interés

Uno de los métodos mas utilizados para la deteccidn de puntos de interés en los Ultimos afios
han sido los detectores de Harris en 3D (apartado 3.1.1) como se puede ver en [17], ademas ha
habido otros tipo de selecciones de puntos clave como es la clasificacién densa, es decir,
escoger los puntos clave de una forma distribuida y prefijada, y también otro tipo de seleccidn
surge de escoger estos puntos clave al azar. Existen otras formas de deteccidén pero en este
proyecto final de carrera se presenta una manera no utilizada todavia, la detecciéon de estos
puntos clave con un detector SIFT en 3D (apartado 3.1.2) que surge de extender el detector
SIFT en 2D [18] a la tercera dimensién temporal.

3.1.1 Detector de Harris en 3D
Para una explicacidn detallada remito al lector al anexo E.

El detector de Harris calcula puntos de interés que tengan elevados gradientes en las tres
direcciones (x, vy, t). Para ello calcula la siguiente matriz ‘A’ en cada pixel y determina como
puntos caracteristicos aquellos que tienen los valores propios altos en las tres direcciones.

Iz Ll, Ll

A=Y Y wvo|hdy, G bl
u v t

Ll Ll If

Donde ‘W’ es el suavizado e I, ;" son los gradientes de el video en cada una de las tres
direcciones.

3.1.2 Detector propuesto. Detector SIFT en 3D

Tomamos la idea de [19] donde aplica un detector SIFT 3D para detectar puntos en imagenes
en 3D. Adaptamos este algoritmo al nuestro cambiando su tercera dimensidn ‘z’ por nuestra
tercera dimension temporal ‘t’ para aplicarlo en videos y no en imagenes en 3 dimensiones. Es
un algoritmo mas avanzado que el Harris 3D para la deteccién de puntos caracteristicos ya que
con este algoritmo no solamente detectamos puntos salientes en las 3 dimensiones sino que
también nos aseguramos de que seran puntos invariantes a la escala. Se aplica a diferentes
tamanfios del video con el objetivo de detectar diferentes puntos clave, en un video ampliado
detectaremos muchos puntos y en un video reducido detectaremos muchos menos (ver figura
12).
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Fig.12 Comparacién entre los puntos clave detectados a una escala cercana (12 imagen) y una escala lejana (22 imagen).

Los puntos detectados a escalas diferentes no serdn los mismos. En un video de tamanfo
grande podemos detectar muchos puntos en una casa pertenecientes a las ventanas, puertas,
etc. En el mismo video reducido sdlo tendremos un punto clave perteneciente a toda la casa
como vemos en la figura 12. Ademds, como explicaremos en el siguiente parrafo, esta
busqueda de puntos clave también se realiza buscando maximos y minimos respecto a
distintos suavizados en la imagen, que es la principal caracteristica de los detectores SIFT.

En primer lugar se adapta el video a una escala oportuna (una escala menor para que el coste
computacional sea menor), si es la escala la original mejor porque se detectardn mas puntos
clave como se ve en la figura 12. Se pasa el video a escala de grises y se normaliza el valor de
cada pixel a escala [0,1] para poder realizar las restricciones que se impondran una vez
detectados los puntos caracteristicos para eliminar los puntos erréneos. El siguiente paso
consiste en formar las octavas, la octava consiste en formar una piramide de videos suavizados
cada vez en mayor medida.

OCTAVA

K*o

e DOG (4)
DOG (3)

- DOG (2)

DOG (1)

= = =

~N w

Q Q Q
1

Gaussianas Diferencia de Gaussianas

Fig.13 Formacidn de octavas. En cada octava tenemos una piramide de videos de un mismo tamaiio. Cada video de la piramide
se suaviza y conforme estamos en un valor mas alto de la piramide el suavizado es mayor. Por cada par de videos suavizados
con estas gaussianas (videos de color verde) se realiza una extraccidn que resulta en los videos diferencia de gaussianas (DOG,
videos de color azul) y finalmente se procede a la busqueda de maximos y minimos locales (figura 14)

El primer video se suaviza con un valor ‘o’ que ird incrementando su valor al multiplicarlo por
un factor ‘k’ constante como podemos ver en la figura 13. Una vez tenemos construida esta
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pirdmide llamada octava se sustraen 2 a 2 estos videos suavizados como podemos ver en la
citada figura.

Obtenemos los videos diferencia de gaussianas (DOG). La siguiente octava se formara tomando
el video suavizado nimero 4 de la piramide verde de la figura 13 y se situara en el primer nivel
de la siguiente piramide para volver a repetir el proceso. Una vez tenemos todas las diferencias
de gaussianas se procede a la busqueda de los puntos salientes. Para ello, como se puede
apreciar en la figura 14, se toma cada pixel de las diferencias de gaussianas (DOG (2) y DOG
(3)) y se busca si es un maximo o minimo local respecto de los 26 pixeles que tiene alrededory
respecto de los 27 pixeles que tiene en las ‘DOG’ posterior y anterior a él, si este pixel resulta
ser un maximo o minimo local respecto de estos 80 pixeles sera un punto clave.

DOG (1) DOG (2) DOG (3)
DOG (2) DOG (3) DOG (4)

Figura 14. Bisqueda de maximos y minimos locales. Para cada pixel de DOG(2) Y DOG(3) se comprueba si es un
maximo/minimo local comparandolo con los 26 pixeles que tiene alrededor en su mismo volumen y con los 27 pixeles de las
DOG(1) Y DOG(3) en el caso de DOG(2) y DOG(2) Y DOG(4) en el caso de DOG(3) correspondientes a la misma zona volumétrica.
Si el pixel rojo resulta ser un maximo o minimo entre estos 80 pixeles sera un punto caracteristico potencial. Este proceso se
repite para cada escala del video.

Se imponen dos restricciones para eliminar puntos caracteristicos mal calculados:

e Restriccidn puntos pobremente localizados en un borde:
Ademas de querer puntos maximos y minimos locales también queremos que cumplan
gue tengan una gran variacion en las tres direcciones en las que esta definido. Para ello
se forma la matriz hessiana a partir de las derivadas segundas de las diferencias de
gaussianas ‘DOG’:

DOGyy DOGyy DOGyr
H= DOGXY DOGYY DOGYT
DOGyy DOGy;y DOGpr

Estd demostrada la validez de la siguiente ecuacién para rechazar estos puntos:

Eliminamos punto si:
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traza 3 2r+1)3
determinante (H ) r?2

r =40
traza = DOGXX + DOGYY + DOGTT

e Restriccién de poca densidad.
Si la diferencia de gaussianas es menor que un cierto umbral (0.03 en nuestro caso) no
tomamos ese punto como punto clave, la razén es que si DOG < 0.03 significa que no
hay un cambio de contraste necesario para considerar un punto clave en el tiempo,
debe de haber un alto contraste tanto en el cambio de textura como en el cambio
temporal.

3.2 Descriptores locales

3.2.1 Histogramas locales de gradientes orientados en 3D (S-HOG3D)

Mismo descriptor que el utilizado para analizar los videos de manera global (apartado 2.1), en
este caso en vez de utilizar este descriptor sobre todo el video se utilizard sobre una region
alrededor del punto clave. Esta region se determinara como % de la anchura del video, % de la
altura del video y % de la dimensién temporal del video.

3.2.2 Descriptor SIFT en 3D
Se expande el descriptor anterior donde se introducen 3 innovaciones vistas en [20]:

¢ Invariancia a rotacion

Se realiza una reorientacion de los dos angulos, se calcula dos histogramas de las
magnitudes de los gradientes, dividiendo el video en 36 zonas angulares para el angulo 6y
otro para el angulo Y. En estos histogramas se toma la zona angular donde la suma de las
magnitudes es mayor y se coloca este angulo como referencia (=0 y 1 = 0) para asi hacer
nuestro sistema invariante a la rotacién

*  Angulo sélido.
Se dividen las magnitudes de los gradientes por el angulo sdlido (w) para hacerlas

. . . . G
independientes del angulo que tienen. G = -~

¢ Ventana gaussiana aplicada al video

Se aplica una ventana gaussiana de 3D a la zona local de video a describir con el propdsito
de que los gradientes centrales tengan mas importancia que los gradientes en los
extremos. Es decir los gradientes mas cercanos al punto clave seran tomados mas en
cuenta que los mas lejanos.

3.3 Bolsas de palabras (BOW)

Se utiliza la bolsa de palabras vista en [21]. La bolsa de palabras es un diccionario donde se
almacenan un nimero de palabras a determinar a partir de los descriptores calculados en cada
punto clave. Los videos de entrenamiento nos daran un conjunto de ‘n’ descriptores que
agruparemos en ‘K’ grupos que formaran la bolsa de palabras. Cada grupo tendra un centroide
y dado un video de test calcularemos la distancia de sus puntos clave a cada uno de los
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centroides de cada palabra y el que de una distancia menor nos dard la clase del punto clave.
Para agrupar los descriptores de los puntos clave en grupos se opera como se indica en la
figura 15. Para la agrupacion se ha utilizado el algoritmo ‘k-means’.

Descriptores

=

Centroides

Figura 15. Formacion de grupos a partir descriptores caracterizados por sus caracteristicas, en este caso se forman 3 grupos a

partir de 13 descriptores y 2 caracteristicas por descriptor. Los 13 descriptores de la imagen no tienen ninguna clase atribuida

en un principio. Al utilizar la funcién k-means con k=3 grupos se forman los tres grupos (negro, verde y rojo en este caso) con
sus respectivos centroides.

Una vez tenemos un video descrito con un conjunto de puntos clave y la clase a la que
pertenece cada punto clave se procede a la formacién del descriptor. Para ello se divide el
video en zonas o contextos como vemos en la figura 16, para cada una se suma la frecuencia
de cada punto clave que aparece en el contexto. Esto se realiza con una funcién probabilistica
(Kernel gaussiana) la cual le da mas peso a los puntos clave cercanos al centro del contexto
que a los puntos clave de los extremos. La probabilidad de que una palabra/punto clave x;
exista dado que estamos en un contexto C; se calcula como:

p(xiG) = ) Klxyx)

xieC]-

(x — x;)? N 0 —-y)? (t—t)?
52 55 82

K(x;,x) = exp

Donde ‘K’ es la funcién Kernel Guassiana, ‘x’ es la localizacién del centro del contexto, 'x;‘es la
localizacion del punto clave/palabra 'y ’(Sx,y,t’ es la anchura del contexto en cada una de las tres

direcciones.

Después de calcular la probabilidad de cada palabra se normaliza respecto a las demas:

b(xilc;) = p(xlc) / D p(xlcy)

xeC]-
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Figura 16. Division del video en contextos, en este caso dos contextos en la variable horizontal, dos en la variable temporal y
uno en la variable vertical.

Finalmente se concatena el vector de caracteristicas de cada contexto (que seran las
frecuencias normalizadas de cada punto clave en el contexto). El descriptor queda:

d = [b0y|C)s s DO |CL), oy BOAICo), ey DO IC2)s ey BOELIC), ) B | Con)]

Donde ‘n’ es el numero de palabras y ‘m’ el nimero de contextos.

4. Clasificador

Para una explicacion mas detallada del algoritmo remito al lector al Anexo F.

Se utiliza una maquina de aprendizaje supervisada, el adjetivo supervisada viene de que la
maquina recibe videos de entrenamiento y también recibe las clases de este video, si no
conociera las clases seria no supervisada. Esta maquina recibe de cada video la informacién de
su descripcion y la clase de video a la que pertenece. Con esta informacidn la maquina calcula
las fronteras entre distintas clases para una vez queremos clasificar un nuevo video calcular
dentro de que frontera se sitla su descriptor y asi tratar de adivinar a que clase pertenece.

Utilizamos las librerias que se han desarrollado [10] en los ultimos afos. Una forma intuitiva
para entender como funciona esta libreria podemos verla en la figura 17. En ella tenemos un
espacio bidimensional, es decir cada clase esta compuesta por dos caracteristicas. Hay un total
de 3 clases, la morada, azul y amarilla. La maquina calcula las fronteras como vemos en la
imagen de la derecha de la figura 17. Dado un nuevo video se comprueba en que zona se
encuentra de las 3 para determinar su clase.

Figura 17. Ejemplo ilustrativo de como funciona el SVM, 3 clases y 2 caracteristicas. Tomado de
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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5. Comparacion entre descriptores locales y globales.

Como se puede apreciar en la figura 18, en el primer caso se extraen puntos caracteristicos
alrededor de los cuales se utiliza el descriptor HOG3D, con todas estas descripciones se forma
una bolsa de palabras donde la frecuencia de cada uno de ellos da lugar al descriptor buscado.
Algo parecido surge en segundo caso, la Unica diferencia es que los puntos caracteristicos los
determinamos nosotros de forma que el descriptor analice todo el video de forma continua.
En el dltimo caso tenemos nuestro descriptor donde se aplica el G-HOG3D (apartado 2.1) a
todo el video y se forma asi el descriptor.

WOG3D(celdilla,)

f
© ,
S : I IV ; HOG3D(celdilla
S S-HOG3D=|"", = D-HOCED= o s £ (.(.L dilla,)
: g : :
£ foa] 8 7. .| G-HOG3D=| HOG3D(celdilla,
w1 o W_k :
- w1l ccrowk HOG3D(celdilla,)

Figura 18. Comparacion entre descriptores locales (12 y 22) y globales (32). Figura extraida de [11]

6. Comparacion entre G-HOG3D y G-HOF3D

La principal diferencia entre ambos es que G-HOF3D analiza la accién en los videos, el
movimiento, no analiza la escena. Esto se puede apreciar en las magnitudes de sus vectores en
la tercera imagen de la figura 19 donde en una se aprecia la escena perfectamente y en la
cuarta imagen sélo se aprecia la deportista con el baldn sin incluir la cancha de baloncesto.

Figura 19. Comparacion entre gradientes de textura (32 imagen) y de flujo (42 imagen). Figura extraida de [11]

7. Dataset

Se ha elaborado un dataset para testear los descriptores (véase dos clases en la figura 20). Esta
formado por 8 clases de videos, en la figura 20 se puede ver dos clases de este dataset. Para
ver el resto de clases remito al Anexo K. La prueba del descriptor en este dataset propio
resulto satisfactoria pero se tuvo que buscar otros dataset disponibles en la web para poder
hacer una comparacién realista con los demas descriptores. En el apartado 8 se introducen
estos descriptores y los resultados obtenidos.
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Figura 20. 2 clases del dataset realizado. La primer es la clase lancha motora y la segunda la clase caballo y jinete.

8. Experimentos

8.1. Experimentos para el descriptor global

8.1.1 Distancia entre descriptores

Se comprueba la validez de nuestro descriptor calculando las distancias entre histogramas de
distintos videos. Por ejemplo el video avion 1 aterrizando tiene la minima distancia con el
video avidon 2 aterrizando (0.25) mientras que las distancias con los otros videos que no se
corresponden con la clase avidn aterrizando son entre 0.35 y 0.52. Para visualizar los
resultados completos remito al lector al anexo G

8.1.2 Experimentos realizados con ‘dataset Hollywood?2’ [14]. Sintonizacion de
parametros

Para una explicacidn mas detallada del trabajo realizado y para visualizar todas las clases de
este dataset remito al lector al Anexo H.

Se utiliza el dataset elaborado por Ivan Laptev [14] para afinamiento de los parametros de
nuestro descriptor. Véase en la figura 21, 2 de las 12 clases utilizadas en este dataset.

Figura 21. 2 clases en el ‘dataset Hollywood?2’. Conducir (arriba) y levantarse (debajo).

Se trata de un ‘dataset’ de peliculas de Hollywood. Es utilizado por diversos autores que han
investigado este problema para asi poder hacer una comparacion con el estado del arte. Este
‘dataset’ se divide en 12 acciones (descolgar el teléfono, beso, abrazo, levantarse, sentarse...)
sacadas de diversas peliculas de Hollywood, unas se utilizan para realizar el entrenamiento y
otras distintas para testear nuestro clasificador.
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Debido a su gran extension se ha llevado a cabo en sélo una parte de los videos. Se han
tomado 20 videos de entrenamiento por clase, 10 videos por clase para su validacién y 20
videos por clase para el test final.

Se ha medido la calidad del descriptor en relacién a la precisién de la media, que es un
parametro resultado del cociente entre los falsos positivos por clase y la suma de los positivos
totales (falsos y verdaderos).

verdaderos positivos

precisién = — —
verdaderos positivos + falsos positivos

Como adelanto de los resultados la configuracién que mejor resultados ha dado ha sido con 6
celdillas espaciales, 4 celdillas temporales, 6 bins angulares, 48 pixeles en altura para el
tamaiio del videos y el uso de la mediana de la celdilla en la aceptacién de un médulo como
significante. Estos resultados han sido de un 22.3 % de precisién. No se han obtenido
resultados muy altos en relacién a otros ‘datasets’ ya que se han tomado muy pocos videos
para asi favorecer la rapidez computacional y poder optimizar los pardmetros mas
rapidamente.

Por otra parte se han obtenido unos resultados bastante independientes a la variacién de
parametros, podemos decir que nuestro descriptor es bastante robusto a pequefios cambios y
no cambia mucho al darse pequefias variaciones en los parametros, lo contrario no hubiera
sido un buen resultado ya que depender de un descriptor que cambia en demasia con la
variacion de parametros no aporta demasiada confianza cuando se intenta probar un conjunto
nuevo de videos ya que los valores que optimicen a estos nuevos videos pueden ser muy
diferentes que en experimentos anteriores. Esto haria que el sistema fuera mds caro
computacionalmente hablando, en cualquier caso hay unas pequefias diferencias en los
resultados que procedemos a comentar:

e En una prueba inicial se obtienen unos resultados de un 11%, 4% superiores a los
obtenidos al azar. Nos damos cuenta de un problema que tiene este dataset y es que
en cada video se dan muchas tomas que no tienen nada que ver con la clase a
reconocer. Por ello se realiza un filtrado de los videos para seleccionar sélo las tomas
buenas y los resultados mejoran el doble. Dando un 20.2% respecto al 7% que da el
azar.

e En este dataset el uso de la mediana de la celdilla como limite inferior (apartado 2.1.3)

para la aceptacidn de un gradiente funciona mejor que la media.
e El aumento del nimero de celdillas y ‘bins’ mejora los resultados hasta llegar a un

punto de inflexion donde empeoran. En este datase ese punto es 6 celdillas
espaciales, 4 celdillas temporales y 6 ‘bins’ para ambos angulos.

e Eltamano de la imagen es mejor que sea pequefio para eliminar detalles irrelevantes.
Se prueban los tamafiios 24, 36, 48 ,72 y 96. Un tamafo de 36 y 48 proporciona los
mejores resultados. Un tamano de 24 es demasiado pequefio y a partir de 64
demasiado grande.

8.1.3 Experimentos realizados con ‘dataset KTH’ [15]. Sintonizacion de parametros
Para una explicacidn mas detallada del trabajo realizado y para visualizar todas las clases de
este dataset remito al lector al Anexo I.
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Se trata, como vemos en la figura 22, de un dataset mas sencillo a la hora del reconocimiento

debido a la sencillez de sus acciones y el emplazamiento del sujeto en un fondo constante

donde la Unica zona moévil es la persona que realiza la accién.

Figura 22. Clases boxear y dar palmas en dataset KTH

Se sigue sintonizando los pardametros de nuestro descriptor. Para visualizar el desarrollo
completo de estas pruebas remito al lector al anexo, a continuacién expongo los resultados
mas relevantes:

Darle un mayor peso a los gradientes temporales respecto a los espaciales empeora
los resultados

En este dataset el uso de la media de la celdilla como limite inferior (apartado 2.1.3)
para la aceptacion de un pixel funciona mejor que la mediana.

El suavizado llevado a cabo por la compresién gamma (apartado 2.1.3) da peores
resultados al suavizar y eliminar parte de los gradientes.

Una vez normalizadas las celdillas se les impone un limite superior para acotar
gradientes muy altos debidos a errores en el calculo de gradientes como puede ser la
presencia de luces y sombras. Este limite es beneficioso y el valor dptimo para este
dataset es de 0.4 aunque es muy parecido al resultado que da el limite de 0.2
ordinario.

En este caso un aumento de bins de 6 a 8 no empeora los resultados.

Finalmente la deteccidon del movimiento presentada en 2.3 produce un incremento de
resultados del 4% dando la mejor tasa de reconocimiento obtenida en este apartado
para este dataset siendo esta del 89.25% como se ve en la tabla 1.

Boxing Handclapping  Handwaving Jogging Running Walking mean
G-HOG3D 1 0.9022 0.7007 0.7938 0.9277 0.8276 0.8587
G-HOG3D con
deteccion de 0.9868 0.8812 0.8807 0.8734 0.8269 0.9057 0.8925
movimiento

Tabla 1 Comparativa entre G-HOG3D con y sin la ventana de deteccién de movimiento.

8.1.4 Experimentos con otros descriptores
En la tabla 2 se recogen los resultados de otros descriptores descritos en la seccion

descriptores tales como: descriptor basado en ‘lineas’ (apartado 2.4) , descriptor de colores

‘LAB’ (apartado 2.5), ‘Local Binary Patterns ‘ (apartado 2.6) o descriptor basado en la resta
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entre videos escalados a una escala pequefia (apartado 2.7). En el caso de los ‘Local Binary
Patterns’ se realiza utilizando celdillas y sin utilizarlas, es decir, se calculan los patrones locales
binarios para todo el video o para pequefias porciones del video resultado de la division de
este en celdillas temporales y espaciales. Podemos apreciar que LBP funciona bastante bien
en este dataset y el descriptor de colores LAB no ya que todos los videos tienen una
distribucidn de colores bastante parecida y se hace dificil la diferenciacién entre videos gracias
solo a esta descripcion. El descriptor de lineas y el descriptor basado en semejanza de videos
tienen unos resultados parecidos y bastante lejanos de los mejores del descriptor G-HOG3D. El
volumen para los videos en el descriptor de semejanza de videos sera de 12 pixeles

horizontales, 16 verticales y 12 temporales.

Boxing Handclapping  Handwaving Jogging Running Walking
LBP usando 07963  0.8427 09560  0.6092  0.6796  0.8763  0.7934
celdillas
LBPsinusar 47003 0.8161 06947 07361 06562  0.8632  0.7594
celdillas
Descriptor
de colores 0.2857 0.2769 0.3919 0 0 0 0.1591
LAB
Lineas 0,5385 0,5051 0,6204 0,4375 0,4815 0,6438 0,5378
G-HOG3D 0.9322 0.9167 0.7619 0.8587 0.8830 0.8889 0.8736
G-HOG3D con
deteccion de 0.9868 0.8812 0.8807 0.8734 0.8269 0.9057 0.8925
accion
Resta de videos
en escala 0.6600 0.4100 0.4580 0.4792 0.3300 0.4580 0.4600
pequefa

Tabla 2 Comparativa entre G-HOG3D con los demas descriptores utilizados.

8.1.5 Experimentos con adicién del flujo éptico en el ‘KTH dataset’

En este experimento se ha utilizado la aproximacién del flujo éptico descrita en el apartado
2.2.2 y se han calculado los gradientes de este flujo del mismo modo que hacemos con los
histogramas de gradientes orientados (apartado 2.2). Se han calculado por tanto los
descriptores G-HOF3D, G-HOG3D y ademas se ha formado otro descriptor concatenando los
vectores de ambos descriptores. Ademas se ha utilizado también la superposicién como se ha
comentado en el apartado 2.1.3, en vez de calcular celdillas una detrds de otra se han colocado
de forma que las celdillas tengan unas zonas comun de interseccién. La configuracion de las
siguientes pruebas sera: 4 celdillas espaciales y temporales, 8 bins, uso de la mediana como
limite para la aceptacién de los mddulos de cada pixel y 48 pixeles de tamanio en altura. EI KTH
dataset no tiene fondo por lo que en este caso los resultados del G-HOF3D y G-HOG3D son
muy parecidos ya que sdélo importa la acciéon y no el escenario. El hecho de aumentar la
informacién del descriptor concatenando el G-HOF3D al G-HOG3D resulta en una mejora de
los resultados y el factor de superposicidon no los mejora.
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Handclapping  Handwaving Jogging Running Walking

G-HOG3D 0,9371 0,8125 0,7778 0,7708 0,6250 0,8889 0,8020
G-HOF3D 0,8042 0,7093 0,7500 0,6944 0,5208 0,8403 0,7198
G_HOG?P, 0,8951 0,7708 0,8542 0,6806 0,7292 0,7778 0,7847
Superposicion
G_HOF?.’D., 0,8604 0,6597 0,7361 0,7222 0,5764 0,8819 0,7394
Superposicion
G-HOG3D G-HOF 0,9301 0,8750 0,7917 0,7917 0,5972 0,9306 0,8193
G-HOG3D G-
HOF3D 0,9231 0,7431 0,8681 0,8056 0,6319 0,9306 0,8170

Superposicion
Tabla 3 Comparativa entre G-HOG3D y G-HOG3D con el uso de superposicion

Se hace un nuevo experimento con el afiadido de nuevos videos de entrenamiento, los videos
afiadidos serdn los mismos de entrenamiento actuales pero se les da la vuelta para estar de
forma inversa, es decir, si antes teniamos a una persona andando de derecha a izquierda ahora
la tendremos andando de izquierda a derecha pero el video sigue siendo el mismo. Asi
disponemos de un dataset de entrenamiento el doble de amplio lo que deberia de dar mejores
resultados pese a lo que podemos ver en la siguiente tabla 4 en comparacién con la anterior.

Con esto se consigue que la concatenacién de ambos descriptores no sea beneficiosa si no
perjudicial.

Handclapping  Handwaving  Jogging Running Walking

G-HOG3D 0,8462 0,8264 0,7708 0,8125 0,6181 0,9028 0,7961

G-HOF3D 0,7278 0,6755 0,8780 0,5464 0,7327 0,8231 0,7305

G-HOG?P, 0,9161 0,7986 0,7916 0,6111 0,6250 0,7847 0,7545
Superposicion

G-HOB.D., 0,8881 0,6736 0,7431 0,7153 0,5764 0,8958 0,7487
Superposicion

G-HOG3D G-HOF 0,7832 0,6736 0,7361 0,7361 0,5417 0,8403 0,7185

G-HOG3D G-
HOF3D 0,8462 0,6667 0,7431 0,7361 0,6181 0,8611 0,7452

Superposicion
Tabla 4 Comparativa entre G-HOG3D y G-HOG3D con el uso de superposicion y con el afiadido de videos invertidos en el
entrenamiento.

8.1.6 Comparacion con el estado del arte [11]

Una vez se ha realizado la sintonizacién de parametros ahora nos comparamos con la
literatura actual. La configuracion de parametros utilizada sera la de 4 celdillas espaciales vy
temporales, 8 ‘bins’ angulares y tamafio de la imagen de 48 pixeles en altura. La comparacién
se hace respecto a los siguientes datasets (ver figura 23): KTF, UCF sports[22], Olympic
Sports[22] y HMDBJ[23]. En las tablas 5 a 8 se ha representado los resultados del mejor
descriptor local para cada uno de los datasets y los resultados de los descriptores globales (G-
HOG3D y G-HOF3D). En el KTH dataset se obtienen los peores resultados. El KTH dataset es el
mas sencillo y pequefio de los dataset, los datasets medianos serian el UFC y Olympic sports
donde en ellos se obtienen resultados similares a los descriptores locales. Finalmente en el
dataset mas extenso y complicado se obtienen unos resultados que casi doblan a los
resultados provenientes de los descriptores locales.
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Figura 23 Diferentes datasets para realizar la comparacion. Figura extraida de [11]
LOCAL G-HOG3D G-HOF3D
UCF dataset 62.00 60.51 43.05
Tabla 5. Resultados para el UCF dataset. Resultados extraidos de [11]
LOCAL G-HOG3D G-HOF3D
KTH dataset 90.00 80.20 71.98
Tabla 6. Resultados para el KTH dataset. Resultados extraidos de [11]
LOCAL G-HOG3D G-HOF3D
Olympic Sports 85.60 86.00 43.05
Dataset
Tabla 7. Resultados para el Olympic sports dataset. .Resultados extraidos de [11].
LOCAL G-HOG3D G-HOF3D
HMDB dataset 22.83 42.01 15.25

Tabla 8. Resultados para el HMDB dataset. Resultados extraidos de [11].
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8.2. Experimentos para el detector local

8.2.1 Experimentos realizados con el ‘KTH dataset’. Sintonizacién de parametros

Se realiza un primer experimento (tabla 9) para ver la variacién respecto al cambio en el
numero de palabras en el que dividimos nuestros puntos clave. Un aumento de palabras
mejora los resultados hasta llegar a un punto donde se estabiliza. Este punto llega muy pronto
respecto a lo esperado debido a que el dataset KTH es muy simple y no es posible dividirlo en
mas numero de palabras.

Boxing Handclapping  Handwaving Jogging Running Walking
50 palabras 0.0857 0.0278 0.0556 0.3889 0.4440 0.0833 0.1810
200 palabras 0.4571 0.6111 0.7500 0.4167 0.500 0.8333 0.5947
300 palabras 0.7330 0.6842 0.7297 0.4359 0.6552 0.6429 0.6469
500 palabras 0.7812 0.7941 0.7949 0.4651 0.7037 0.6750 0.7023
750 palabras 0.6667 0.6970 0.8056 0.4250 0.7143 0.5952 0.6506
1000 palabras 0.7568 0.7586 0.7800 0.4474 0.6923 0.6042 0.6738
2000 palabras 0.5745 0.7600 0.8260 0.4872 0.7700 0.6900 0.6864

Tabla 9. Resultados para el HMDB dataset. Resultados extraidos de [11]

Se realiza un experimento (tabla 10) para comprobar que un aumento del tamafo de la
imagen aumenta los resultados al detectarse mas puntos caracteristicos

Boxing Handclapping  Handwaving Jogging Running Walking
Tamaiio 48 0.7812 0.7941 0.7949 0.4651 0.7037 0.6750 0.7023
Tamaiio 64 0.7317 0.8919 0.8919 0.4615 0.7273 0.7500 0.7432

Tabla 10. Resultados para el HMDB dataset. Resultados extraidos de [11]

Se realiza un experimento (tabla 11) para comprobar si funciona mejor sumar palabras dentro
de un contexto mediante probabilidades o sin ellas.

Boxing Handclapping  Handwaving Jogging Running Walking
Con probabilidad 0.4571 0.6111 0.7500 0.4167 0.5000 0.8333 0.5947
Sin probabilidad 0.4571 0.6111 0.7500 0.3889 0.5000 0.8056 0.5800

Tabla 11. Resultados para el HMDB dataset. Resultados extraidos de [11]

Se realiza un experimento (tabla 12) para comprobar que el uso de contextos no mejora
nuestros resultados en este dataset.

Handclapping  Handwaving Jogging Running Walking
1 contexto 0.7330 0.6842 0.7297 0.4359 0.6552 0.6429 0.6469
8 contextos (2 en
‘“,2en'y’,2en 0.4857 0.4444 0.6667 0.3889 0.4440 0.6944 0.5208

()
t')
Tabla 12. Resultados para el HMDB dataset. Resultados extraidos de [11]
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9. Conclusiones
Los descriptores globales han resultado funcionar mejor en datasets grandes y de muchas

clases. En el KTH dataset, que es el mas sencillo y a la vez menos extenso, ha dado los peores

resultados respecto a los descriptores locales aunque aun asi de han alcanzado cotas de mas

del 80% de reconocimiento.

Las principales conclusiones que se extraen de nuestros experimentos sobre los descriptores

globales son:

El descriptor G-HOG-3D da mejores resultados que el descriptor G-HOF-3D.

La unién de los descriptores G-HOG-3D (apartado 2.1) y G-HOF-3D (apartado 2.2) da los
mejores resultados.

Una mascara derivativa centrada da mejor resultado que una mascara no centrada.
([-1,0,1] funciona mejor que [-1,1])

A mayor numero de celdillas mejores resultados hasta llegar a saturar en torno a 6-8
celdillas.

A mayor numero de ‘bins’ mejores resultados hasta llegar a saturar (8-12 ‘bins’). La
aparicion de esta saturacidn se debe a que si por ejemplo nos vamos al extremo de que un
celdilla = 1 pixel y el tamafio del 'bin' = 12 lo que ocurre es que analizamos el video
completamente pixel a pixel. De esta manera no agrupamos en celdillas y es imposible que
dos videos sean parecidos.

La normalizacién de celdillas aporta mejores resultados. Acotar los picos de los gradientes
también mejora los resultados.

Detectar la ventana de movimiento da mejores resultados en el KTH dataset. Este dataset
tiene un fondo plano y apenas sin movimiento de cdmara, quizds en datasets mas
complejos donde la cdmara entra en accion y el fondo esta relacionado con la accién esto
no es asi. Seria interesante analizar esto como trabajo futuro.

La reduccién de imagenes mejora los resultados al eliminar detalles innecesarios que
provocan gradientes poco o nada relevantes.

A mayor nimero de videos de entrenamiento mejores resultados sin saturar.

Las principales conclusiones que se extraen de nuestros experimentos sobre los descriptores

locales son:

A mayor nimero de palabras mejores resultados. Se llega a un punto donde aumentar
palabras no mejora los resultados si no que los mantiene o los empeora. Esto es debido a
que los videos de entrenamiento tienen un ndmero finito de palabras que es imposible de
saber a priori pero si se puede experimentalmente.

Al contrario que en descriptores globales a mayor tamafio de las imagenes mejores
resultados. Esto es debido a que se localizan mds puntos caracteristicos (ver figura 4) y la
descripcién es mas completa.

10. Trabajo futuro

De este proyecto final de carrera se extraen algunas posibles areas para una investigacion

futura:
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Comprobar los resultados que da el descriptor global en datasets todavia mas amplios. Los
resultados dados en el dataset HMDB que es el mas amplio hasta fecha han sido muy
buenos y puede ser que este descriptor sea una de las mejores soluciones en este
problema.

Comprobar los resultados que el descriptor global aporta en otras areas de
reconocimiento como el reconocimiento de escenas y objetos.

Seguir testeando el detector y descriptor local en datasets mds complicados y analizando
el fotograma a tamafio completo en vez de a tamaino reducido. Previsiblemente, los
resultados para descriptores locales mejorardn al extraer mas puntos, pero permaneceran
igual para descriptores globales.

Testear el descriptor global con posibles mejoras como pueden ser las impuestas en el
descriptor utilizado para el sift (descritas en el apartado 3.2.2) u otras diferentes.

Creacion de un dataset de entrenamiento de millones de videos de igual manera que se ha
hecho en [16] con imagenes vy realizar la clasificacion de videos mediante la distancia de
estos a cada uno de los videos del dataset de entrenamiento.
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