Anexo A

Flujo optico de Horn [1]

Intuitivamente el flujo éptico es la idea de que al mirar un objeto en movimiento este lo
vemos sin prestar demasiada atencidn al resto de la escena. Es la diferencia entre nuestro
objetivo a seguir y el resto de la escena.

Una imagen en el instante ‘t’ la podemos parametrizar como:

I(x,y,1t)
Donde ‘x’ e ‘y’ son las coordenadas de texturay ‘t’ es el tiempo o fotograma equivalente.

En un instante siguiente el pixel correspondiente I(x, y, t) sale movido un valor (dx, dy, dt), por
tanto el pixel en la nueva imagen sera:

I[(x+dx,y +dy, t+dt)

Estos dos instantes los podemos correlacionar gracias a la expansidon de Taylor de primer
orden:
I(x + dx, y + dy, t + dt) = I( t)+aI d +aI d +aI dt
X X, ) =1XY, S UXT = A
yroy YU ok oy YT ot

La idea consiste en que el objeto que estamos buscando tendrd la misma energia en un
instante como en el otro, es decir, la misma luminosidad, el valor de cada pixel se mantendra
ya que sélo cambiard su posicidn, que es lo que queremos calcular, la cantidad de pixeles que
se ha movido, por tanto podemos igualar I(x + dx,y + dy,t+dt) = I(x,y,t) y el término
restante debera ser igual a cero.

ol d +aI d +aI dt=0

ax XTay Yo T
Donde:
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= Ix;a—y= Iy;a= I
[, dx+1,dy+1,dt=0
Si dividimos para ‘dt’:
Lu+tlv+I =0
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Esa serad nuestra primera ecuacién, pero como vemos tenemos dos incégnitas, ‘U’ y ‘v’, que
seran el flujo éptico horizontal y vertical respectivamente por lo que necesitaremos una
segunda ecuacion.

Esta segunda limitacion o ecuacién viene del hecho de que el objeto estd sujeto a un
movimiento como solido rigido o a una pequeia deformacién, lo que provoca un ligero cambio
en estos flujos y por tanto la minimizacidon del cambio de estos en su entorno supondra esta
informacién requerida:

2 2 2 2
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De esta manera podemos reducir nuestro problema a un problema de minimizacién en ambas
ecuaciones, ya que la primera debe de ser cero y la segunda lo mas pequefia posible.
Utilizando a« como un pardametro de minimizacién que relaciona ambos funcionales a
minimizar, llegamos al siguiente funcional a minimizar:

E? = f [a? Ec* + E,2]dQ
Q
Epy® = (I u+1,v+1,)?

EZ =u? +uy? +v,2 +v,72

Podemos ver que tenemos un funcional a minimizar del estilo de las ecuaciones de Euler
Lagrange y por tanto tenemos su solucién, podemos ver como se llega a ella en el Anexo J. De
este modo, dado el siguiente funcional:

b
5@ = [ Lea©.q )
Su solucion es:

oL(ta®.q4®) doL(ta®.q®)
0x; ot 0v;

=0 parai=1,...,n

Donde:
n = numero de dimensiones del espacio.
x=q(t); v=q'(t)

En nuestro caso tenemos un sistema de ecuacionBEsléede dos funciones a minimizar,
(fi, f>) = (u,v) y dos dimensiones para la variable respecto adaks debemos minimizar,
x; = (x,y), por tanto:

n
oL 0 oL _
ofy  Laoxiof;
n
oL 9 oL

af, izla_xl-afz,i -
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Donde:
L=a?(u? +u? +v,> +v,2)+ (1, u+ 1, v+1)3?
xi = (%)
(v f2) = W)
(frif2,) = (fl,xrfl,y;fz,xvfz,y) = (ux' Uy} Vi, Vy)
Introduciendo estas variables en las ecuaciongs(@)se llega a la siguiente solucion:
L u+ L1y = aV?u — L1,

Llyu+1,%v = aV?u — LI,

Para poder resolverla discretamente se siguendXia@ciones vistas en [1]. Como vemos la
media se calcular dandole mas peso a los pixelsscer@anos que a los que estan en la
proyeccion diagonal y el laplaciano se calculaéradd el gradiente entre el pixel que estamos
calculando y la media aproximada de los pixelesdgledor.

Viu = 3(u —u)
Vv =37 —v)
_ 1
i = g {Wimajp + ijeng + Wivs ik + Uik
1
+ IR {ui—l,j—l,k T Ui—1j+1,k T Uit1,j+1k T ui+1,j—1,k}
1
Oijke = g {Vienj ¥ Vijrng + Vivnjp + Vijovk)
1

+ IR {Ui—l,j—l,k t Vi1 j+1k T Vit j+1k T Ui+1,j—1,k}
El gradiente para las imagenes se calcula comoeldiamponderada entre los 4 gradientes
calculados para dos pixeles cada dos fotogramagcetivos:

Ly = 025 (Tj1jk — Lijk + livrjere —lisnje + livijesr —lijrer +livnjeieen
= lijr1k+1)

I, = 0.25 (I jr1k — Livnjerk Flivnje — Lijriksr + lijesr — livnjeiest + liva kst
= Lijk)

Iy = 0.25 (i jrev1 = lije + livnjerr = livnjre + Lok ¥ 1= Lijrape + livejraper
- Ii+1,j+1,k)
Introducimos estas 3 aproximaciones en nuestraCEres:

L°u+ Llv = aV?u — L1,
Llyu+1,%v=aV?u -1

Y operando llegamos a:



(Ba? + L,2)u— 1,5 — LI,
3a2 + 1,7 + 1,

(Ba? + L))o - LLu—1L)1,
3a? + 1,2 + 1,

Donde si hacemos un cambio de variablas= u**' yu=uk y operamos llegamos
finalmente a la solucién para el calculo del flgjatico, k sera el nimero de iteraciones que
queremos utilizar para llegar a la minimizacion:

L(La* + I,v% +1;)

uktl s >
3a% +1,° +1,

=Uu-—-

L (La* + 1L,o* +1;)
3a? + 1,2 + 1,

vk+1 =7 —

Anexo B

Flujo optico de Roth y Black [2]
Partimos de la funciéon a minimizar, similar a la explicada en el Anexo A pero con la principal
diferencia de la con la adicién de funciones de penalizacién pD y pS :

E(u,v) = Z{ADPDUl(i:]’) =Lty j+v)+ As[pSj — Wi jy + oS — Ui jen
i,j
+pSWij — Vi jy + pS(vij — vijen |}
Ep = ) (opDUs (i) = (i + o] + vy}
i,j

Consiste en encontrar los valores del flujo dptico ‘U’ y ‘v’ que minimizan la funcién anterior, ‘v’
y ‘v’ son los pixeles de movimiento entre dos fotogramas consecutivos. El primer término se
corresponde con la diferencia entre un punto de la imagen primera y su homdlogo en el nuevo
fotograma, que en un caso ideal seria cero. El segundo término consiste de la consideracion de
que estamos trabajando con un sdlido rigido y se dan pequefias deformaciones por lo que el
flujo no puede tener grandes variaciones. A es un parametro de regularizacion mientras que
p son las funciones de penalizacidn de la informacién dada (primer término) y penalizaciéon
espacial debida a las diferencias en flujo (segundo termino).

Las funciones de penalizacion tienen como funcidon el formalizar los errores que ademas
devuelve siempre un nimero positivo y no surge el fenomeno de cancelacion de errores.
Funciones de penalizacién utilizadas:

-Cuadrética o HS. p(x) = x?

-Charbonier o Classic-C. p(x) = V x? + €2

2
-Lorentzian o Classic-L. p(x) = log( 1 + %



El ruido es un grave problema para nuestro algoritmo ya que puede ser flujo y pensar que hay
flujo donde no lo hay, por tanto se sigue el método visto en [3] para limpiar nuestras imagenes
y conseguir el efecto de la figura 25:

Figura 25. Comparacion de una imagen con ruido y la misma con el ruido eliminado.
Primero se descompone la imagen en la imagen deseada y el ruido indeseado que hay en ella:
uo(x»J’) = u(ny) + n(x,y)
Uy = imagen
u = imagensinruido
n = ruido

La idea principal se fundamenta en que un pixel rodeado de 4 pixeles iguales entre si y
diferentes del pixel central serd un espurio. Para detectarlo matematicamente:

La derivada en el dominio horizontal se define como: hx = [-1, 0, 1]. Si realizamos la derivada
de la derivada obtenemos: hxx = [-1, 0, 2, 0, -1] y hyy:hxxT. Si componemos hyy con hxx
surge una mascara en forma de cruz respecto al pixel que analizamos, a este pixel se le da
valor 4 y a los pixeles que estan a su alrededor se les da peso -1. Se multiplica cada valor por su
peso y se hace la suma, obtenemos un valor que de ser alto significara que estamos ante un
espurio. Por tanto el objetivo serd minimizar valores altos tras la aplicacién de esta mascara
por toda la imagen, por tanto:

minimizar f /(uxx + uyy)? dxdy
Q

Sujeto a 2 restricciones, 1 que dice que la media de los valores de todos los pixeles en ambas
imagenes debe mantenerse y otra que aproxima la variacién con una sigma:

La primera restriccion nos habla de que la media del ruido sera cero y que su desviacién es

[ u

sigma y es dada.



| @w-uwy= o
Q

Sin embargo esto no reportd resultados buenos y se cambid la funcién a minimizar, con la
nueva en vez de fijarnos en las derivadas segundas nos fijamos en las primeras, la mascara
pasa a ser cero el pixel central, 1 en los pixeles de abajo y a la derecha y -1 en los pixeles de
arriba y a la izquierda, con esto se mide si hay un cambio de textura horizontal y vertical, lo
que produce que si ambos se cumplen el cambio de textura sea sélo en el punto ya que un
punto (el espurio) es la unién de dos lineas ( lineas de cambio de textura horizontal y vertical,
si solo tenemos una de las dos no estamos ante un espurio aunque podria darse el caso de
tener una linea de espurios). Por tanto la minimizacion se llevara a cabo en:

minimizar J ’uxz + uy? dxdy
Q

Tenemos un funcional a minimizar que segun el método de los multiplicadores de Lagrange es:

1
L= /uxz +uy? + 21 (u—up) +/12§(u — Uug)?

Para su resolucidn se utilizan la ecuacidn de LaGrange (explicada en el anexo J):

oL JaL
o 9(2) (s

du dx dy

Con ellas llegamos a:

o —Y%x 9 YW
/uxz + uy? ’uxz + uy?
ax + ay _Al_lz(u_uO)=0

La ecuacién anterior no se cumplira en un primer calculo por lo que la igualamos a una variable
que denotara su valor y se realizaran iteraciones hasta disminuirla al maximo posible. Se
utilizara el método del gradiente descendente, esta ecuacion se iguala a ‘u;’ y convergerd a
cero con el tiempo. ‘u;’ serd el cambio temporal entre imagenes.

\ ’uxz +uy2/ N \ ’uxz +uy2/ A

Ye = d0x dy

. ... 0u
Restriccion 5= 0 enla frontera

u(x,y,0) es dado



Notese la no utilizacion de la primera restriccion debido a que esta incluida en nuestro
procedimiento si la media de u(x, y, 0) es la misma que la de u.

Gracias a esta convergencia a cero podemos calcular A, simplemente multiplicando a ambos
lados por (u — ug), integrando en ambos lados utilizando la integracién por partes y las
restricciones impuestas y sabiendo que u; converge a 0:

(o ) oo
F)

At)(u —up)? = (u —up) *

NN
f/l(t)(u —ug)?dxdy = J(u — Ug) * \ Jux;x-}_ uyz/ + \ Juxazy+ uyz/ dxdy

1 J(u_uo)* \ /uxz +uy2/
o

A(t) = F

\ /uxz +uy2/
dxdy

Para realizar la integral restante se integra por partes como hemos dicho utilizando la siguiente
féormula, el término debido a la superficie (teorema de gauss) se elimina por razones fisicas:

f du g f dv d
—uvdx = — —udx
q 0x; q 0x;

|
U, U Uyu
/'l(t)——— [/ux2+uy \/ * Ox ¥ %y |dxdy

u,? + uy Juxz + usz

Discretizamos el modelo en las dos direcciones:
x; =iy, =jh, j=0,1..,N conNh=1
n=nlAt; n=0,1...

uﬁ' = u(x;, yj, tn)



u?j = U, (xl-,yj, tn) + @(ih,jh)o

Donde ¢ es la aproximacidn de la diferencia entre una imagen y su homdloga sin ruido, por
tanto tiene media cero para cumplir con la restriccién 1.

El cambio temporal entre dos imagenes sera el calculado ‘u;” debido a la convergencia de este
desde la imagen original a la reparada.

[

At / Ay
uit =g+ ft A% | 4 o 1/2
2
l \((Azug) + (m(@uy, %))

/ ]

AYul |

+AY | s nxn21/2|

\((A_uij) + (m(A’_‘uij,A+uij ) ) |
— AtA" (u{; — uo(ih,jh)) para i,j =1,2,...,N

n _.n..n _ .n I N R ]
Upj = Ugjy Unj = Un—_1j; Ujp = Ujzs Uiy

= ujy_, debidas a las condiciones de frontera
Para entender la nomenclatura:
Ay = —(uimq,j — uyj)
Yug = +(wipr; — uyj)
Lo mismo para AYu;; y Aﬁuij
m(a,b) = minimo modulo entreay b

Finalmente se pasa A al dominio discreto:

h
" = —g[\/ (Buy)? + Wy )?

]
(A’iu?j)(A’iu% (Aﬁ:u?j)(Aﬁu% |

\/(Aﬁuij)z + (A u;))? \/(Niuij)z + (A u;))?

Se impone una restriccidn para cada paso por estabilidad:

At
PSC

Una vez el ruido ya no es un problema, uno de los principales inconvenientes surge cuando
qgueremos calcular flujo que se desplaza mas de un pixel entre fotogramas. Para abordar este
problema se parte de la solucién mostrada por [4].



En primer lugar explicamos como se lleva a cabo la minimizacion, se utilizara un modelo
similar al de los gradientes descendentes de Newton Rapson con la adicién de los pardmetros
‘W’ y T(s). Este modelo se utilizara igual para calcular v/, ‘U’ y los coeficientes ‘a’ (que en
realidad son , como veremos mas abajo, los coeficientes que aproximaran el flujo dptico con
una funcidn lineal) con la diferencia de que para el célculo del gradiente del funcional (E) se
aplicara sélo la primera parte de éste (Ep) para los valores ‘@’ ya que es donde estan estos
coeficientes implicitos y el funcional entero (E’) para el flujo dptico en si (‘u’y ‘V'):

utl =y — W(u)—a—E Para todo u
T(u) ou
vl =p" —w(v) ok Para todo v
T(v) dv
1 O0E
n+1 n
n+l — gn P tod
al al @) 74, ara todo a

Donde 0 < w < 2 es un parametro de sobrerrelajacion para corregir en demasia el calculo de
u™*tldesde u™. Con estos valores el sistema se ha mostrado que converge aunque el ratio
exacto de convergencia dependera de su valor exacto de ‘w’. El calculo de w(u) y w(v) se
explicard mas adelante.

T(x) es el limite superior de la derivada segunda de la funcion objetivo a minimizar, con esto
nos aseguramos de que si hay un cambio muy grande en la derivada de la funcidon a minimizar
el cambio en estd sera pequefio para no calcular valores de u™ muy distintos entre uno paso y
el otro, si ocurriera lo contrario pudiera pasar que el sistema no convergiera al pasarnos del
valor que minimice la funcién por utilizar un paso demasiado elevado:

azE.T()_azE.T()_aZED
guz’ WV T gz W T g2

T(u) =

Se comienza la iteracién con flujo u=0 y el primer cambio ‘du’ en el flujo es computado. El
nuevo flujo dado por la suma de estos es proyectado en el siguiente nivel de una hipotética
pirdmide. Se realiza el mismo proceso con la imagen original y la que acabamos de calcular
gracias al flujo y se computa un nuevo ‘du’ en este nivel, el proceso se repetird hasta que el
flujo ha sido computado en toda la resolucidn.

La regidn del flujo se describe de manera lineal con los coeficientes a como:

u(x,y)] _ [ao +ax + azy]

ulxy, @) = [v(x,y) = las + ayx + agy

En una primera iteracién se parte como ya se ha comentado con flujo nulo, por tanto se
compara la segunda imagen con las mismas posiciones en la primera imagen y se calcula el
flujo du y dv, con este flujo en la siguiente iteracion comparemos las posiciones de la segunda
imagen (x, y) con las posiciones donde este flujo nos dice que estd la primera imagen (X, ¥).
Para relacionar unas con otras basta con restar el flujo dptico a la segunda imagen para tener
las posiciones de ese mismo pixel en la primera imagen:

x,9) = (xy) = flujo(u,v)
9



%,9) = (x,y) = (ag,a3) =A* (X = Cx,J = Cy)

4=[a, a

Donde Cx y Cy se corresponden con el centro de la region.

Calculamos ahora las derivadas de los funcionales para poder llevar a cabo el método de
minimizacidn, para ello utilizaremos la funcidn de penalizacién p(x, g) de Geman-McClure por
facilidad pese a no ser ninguna de las mencionadas anteriormente, el célculo seria el mismo
con cualquiera de ellas:

2 ap 2x0

Vo) =5 = G

X,0) =——;
px0) =507

9E, . . .
0. = Z Ixdp Y (U1 (i, ) = L (i + wyj,j + vi5), 0p)

0Ep . ) .
0_c11 = 2 Lyx App (1, (i, ) — L(1 + Ujj,J + Ui,j)» Ip)

0Ep
da,

2 Le yApp (I, (i, ) — L (i + ug jj + vi5), 0p)
0Ep . . .
6_a3 = Z LAp YU, (i, j) — I, (i+ Ujj,j + vi,j)' op)
0Ep . . .
6_a4 = Z Ly x2pp (1, (i, )) — L(i+ Ujj,j + vi,j)' op)
0Ep . . .
92, Z L yApp (3 (i, ) — L(i +u; j,j + vij), 0p)
Mientras que los coeficientes T(x) se calculan como:
Ta, = Z Aply? p" (x)max
Ta, = Z Aply?x? p"' (x)max
Ta, = Z Aply® y?p" (x)max
Ta; = Z /IDIy2 p" (x)max
Ta, = z Apl,? x?p" (x)max

Tas = Z Apl,? y2p" (x)max
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2
p"'(x)max = —
Op
Se busca el valor méximo de p''(x) para cumplir con la restriccion de que T(x) debe de ser
maxima, como se ha comentado anteriormente.

Para el calculo de T(u), T(v) y las derivadas parciales del funcional (en este caso el funcional
total, ya que el flujo dptico esta definido en su totalidad en él) se calculan de un modo similar
donde los resultados son:

Aply? 42
T(u) = 25+ —
UD Us
Al 4
T(U) = 2 +—2
GD Us

El pardmetro de sobrerrelajacién ‘w’ en este caso no se calcula de forma experimental y se
establece entre 0 y 2 si no que se aproxima como el valor propio maximo de la matriz
Jacobiana, donde la aproximacion para el valor éptimo resulta:

2 (1 V1= )

2
Hmax

Wopt =

Umax = COS hi

1
n+1

h =

n = dimensiéon matriz

Se demuestra que un filtrado de mediana en cada iteraciéon de tamafio 5 en ambas direcciones
da mejores resultados que no llevarlo a cabo o que realizar un filtrado de tamafio 3, 7 o un
filtrado de tamafio 5 dos veces seguidas

Por ello se modifica la funcidn objetivo para incluir este filtrado de mediana:

E(u,v) = Z{ADPD(Il(i'j) — L +u ;) +vi))+ AslpSQui; — Uierjy + pS(Uij — Ui 1)
ij
Y Y
+pS(vij = iy ) + pS(vij — v D]} + 22 (||u —al|” +|lv - )
+ 2 Z As(|vi; = D o]+ |wiy — @y 1))
Lj i'j'e NG, j)

Se corresponde con el mismo del caso anterior con la adiciéon de los dos ultimos términos,
pesados con A, y A5. Los términos ¥ y @i se corresponden con un nuevo flujo de campo, Nij es
la regiéon de vecinos utilizada para estos terminos. El porqué de que esta adicion esté
relacionado con un filtro de mediana esta demostrado en [5]. En él se expone que esta
minimizacién esta relacionada con una computacion de la mediana aunque un tanto diferente:

@k, . = median(Vecinos® U Data)
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Donde

Vecinos® = {2**1;s .} parai’,j' e N(i,j)

29=0

_ 13 13 A3
Data = {ui_j,ui,j Toou t ZZ' o Uiy X |Ni.j|E}

Az

|Nl-,j| = numero de vecinos de (i, j)

. oo A Lo ~ . .
Nétese que conforme la relacién f aumenta la ecuacién de uk“i_j se aproxima a la mediana
2

en la primera iteracion.

Una optimizacidn de este modelo se consigue con la minimizacidn alternativamente de:

Eo(u,v) = E{AD,DD(Il(i'j) — L+ u)j+vij) + A[pS(uj — wigrjy + S j — Uy )
i,j
+pS(ij—vie ) +pS(vij — v} + A2 (||u - ﬁ||2 +|lv— 9||2)
y
2 2 . N
Erwv) =2 ([l =l + [l =21")+ D" > AgCloi = O] + iy — oD
07 i e NGL))

En primer lugar se minimiza Ey(u,v) respecto a u y v tomando ¥ y {icomo fijos y
posteriormente se hace la operacion inversa con E; (i1, )

Finalmente se desarrolla una mejora del modelo, en vez de describir el termino no local como
estd descrito actualmente se hace con una funcién que representa como de probable es para
un pixel i’ j’ estar en la misma superficie que i j.

wij i i (i = D jr| + [uiy = 2 )
iLj i'j'e NG, j)
Esta funcidn estara por tanto relacionada con la distancia entre pixeles, la diferencia entre los
valores de la imagen en esas posiciones y la oclusion. Como es légico la funcién deberia

incrementar con distancias largas entre pixeles o elevada oclusion como podemos apreciar:

NS 0 Lk o et At G L Y Bt (G 1 LGV )
i,j,i'j p 20.12 20'22 O(l,])

La oclusidon, como vemos en [6] se calculara la divergencia del flujo éptico que distingue entre
distintos tipos de movimiento:

d d
0(l']) = au(l']) + E‘U(l'})
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Anexo C

Descriptor global basado en lineas

Se utiliza una técnica llamada detector de Canny [8] para detectar las lineas de una imagen. En
primer lugar se pasa un filtro gaussiano con una sigma que nos da un suavizado de la imagen
para eliminar el ruido de esta y evitar la deteccién de lineas que no existen debidas a espurios.
En segundo lugar se calculan los gradientes en la direccidn vertical y horizontal:

G= [G2+G2

G
atan |-

X

El angulo theta se redondea a un angulo multiplo de 45 grados. Con este dngulo sabemos la
direccion de la supuesta linea. Se establece un intervalo donde debemos de introducir un
limite superior para ver cuando un punto sera candidato a formara una linea y cuando no y un
limite inferior. El limite inferior estard relacionado con lo permisivos que somos al forma la
linea una vez se ha detectado el punto inicial de ésta.

Se mirara el valor del gradiente de los pixel posterior y anterior en la direccidon del angulo del
pixel que estamos comprobando, si el valor de este pixel es superior a los otros dos entonces
pasard a ser un candidato de linea y guardaremos su valor, en caso contrario sera rechazado
(ver figura 26).

s 51 [« o1
4 B4
5 L BT E

ER P

Figura 26. Gradientes y valores en una imagen. Figura tomado de [8]

A partir de aqui debemos establecer con que puntos nos quedamos para formar parte de una
linea. El valor maximo del intervalo debe ser alto porque mide como de restrictivos vamos a
ser en nuestra seleccién de las lineas. Al escoger un valor alto nos aseguraremos que ese borde
formara una linea. El valor bajo del intervalo servira para calcular los bordes que acompafiaran
al borde calculado con el intervalo alto, por tanto este valor debera ser bastante pequeiio
para aseguramos de que formamos la linea que empieza en este valor alto. Una vez tenemos
que pixeles van a formar lineas y cuales no se codifica la imagen en binario, si hay linea se
iguala el pixel a 1y si no a 0. Finalmente se procede a contar el nimero de pixeles que votan
por una linea u otra. Sabemos que una linea esta parametrizada por ‘ro’ y ‘theta’ (ver figura
27), por tanto:
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Con la transformada de Hough, que es un simple procedimiento matematico disponible en
Matlab, se calcula la posicidn ‘ro’ y ‘theta’ de cada pixel con valor uno en la figura 27. De esta
manera hacemos un sistema de votaciones para estas dos variables. Esta votacion no la
realizamos en toda el volumen del video si no que también empleamos celdillas espaciales y
temporales, en cada una de ellas realizamos la deteccién de lineas y su respectivo sistema de
votaciones, asi formamos el descriptor que entrenard a la maquina de aprendizaje.

o]

Figura 27 Linea parametrizada por ry 0 . Figura tomada de [8].

Anexo D

Descriptor global basado en patrones locales binarios [7]

Descripcion de un video a partir de la repeticién de patrones binarios en su volumen. Dado un
punto del volumen del video, se toman los puntos a su alrededor como vemos en la figura 28,
se toman los fotogramas anterior y posterior, se describe un circulo alrededor del pixel en la
imagen central y alrededor del pixel homdlogo en las otros dos imagenes. Con estos tres
circulos mas los dos pixeles centrales exteriores tenemos definidos un conjunto de puntos que
describirdn al punto en cuestién.

~| o L

Figura 28 Volumen de puntos tomados para el calculo de los patrones binarios respecto de cada punto. Figura tomada de [7]

El primer paso consiste en substraer el valor del pixel central a todos los demas encerrados en
su volumen. Cada fotograma contendra P puntos y disponemos de 3 fotogramas para cada
calculo del patrdn binario, el central y el posterior y anterior.

Para conseguir invariancia en la escala de grises nos olvidamos de estas diferencias y
simplemente codificamos en binario su resultado dependiendo de su signo, si este es positivo
cambiaremos su valor por +1 y si es negativo lo cambiaremos por 0, esto lo representamos con
la funcion ‘s’

14



0, x<0
S(x)={1, x>0

Se forma una ristra de 0's y 1’s (siempre en un mismo orden dado) con estos valores y se
calcula su nimero decimal, surgen 2~(3P+2) (3P pixeles que rodean al central debido a que
tomamos 3 fotogramas y 2 pixeles debidos al pixel central correspondiente a los fotogramas
posterior y anterior) nimeros decimales diferentes, cada vez que aparezca un nimero serd
contado y asi se formara nuestro descriptor. Este calculo se realiza para cada pixel en el video
dentro de unos limites, debe de estar dentro de estos limites ya que el circulo no puede ser
cortado en los casos de pixeles cerca de las fronteras verticales, horizontales o temporales. En
el fotograma ultimo y primero por tanto no se podra calcular, asi como los pixeles mas
cercanos a la frontera que la distancia del radio.

Es necesaria también invariancia respecto a la rotacidn, para ello se toma un vector de cinco
componentes, en la primera y Ultima componente se emplaza el numero binario
correspondiente a los pixeles centrales de los fotogramas posterior y anterior. En las tres
componentes centrales se hace lo mismo para los 4 pixeles de cada una de las tres imagenes,
es decir en la segunda componente se colocan en orden los 4 pixeles de la primera imagen, en
la tercera lo mismo con la imagen central y en la cuarta componente con la imagen posterior.

Una vez hecho esto por ejemplo nos queda un vector de este estilo:
(1, 1010, 1101, 1100, 1)

Cada una de las componentes del vector se rota el mismo nimero de veces hasta conseguir el
numero menor en el conjunto global del nimero binario. Esta rotaciéon no se hace respecto de
un punto y si de este modo ya que no hay un solo eje de rotacidon como ocurre si calculdsemos
los LBP solamente en textura textura [9].

Tras la invariancia el vector queda:

(1,0101, 1011, 1001, 1)

Para P=4 tendremos un clasificador de 16384 valores, es demasiado grande.
Por ello se hace la siguiente reduccién del problema:

Se toman tres planos ortogonales respecto al punto de referencia, uno sera el plano XY, otro el
plano XT y por ultimo el plano YT. Los tres planos en este caso tendrdn el mismo punto central,
se calculard para cada uno de ellos los LBP igual que en el caso anterior pero con la diferencia
de que se toma cada plano independiente del otro y no se calcula el nimero binario de la
composicion de los tres, si no que se calcula el nimero binario para cada uno y posteriormente
se concatenan como vemos en la siguiente imagen (figura 29).

15



ﬁx

Y

) =p
Y LU Y O 1 A P
L4 1 i

YT

Figura 29 Concatenacion de tres planos donde a cada uno se aplica los LBP y es independiente de los demas. Figura tomada de
(71

El histograma se define como una matriz H; ; donde j representa a que plano nos estamos

refiriendo y el subindice i representa el sumatorio de las veces que aparece el nivel ‘i’ para

todos los planos de su tipo, es decir todos los planos XY, XT o YT. Por nivel ‘i’ entiéndase el

valor que tomar el nimero binario al pasarlo a decimal.

Hi,j = Z I{fj(x,y, t) = l}

Xyt
Donde la funcidn ‘I’ devolvera 1 si su ecuacion interior ‘A’=true y 0 si ‘A’=false:

Ademas se hace una normalizacidn ya que estos planos pueden ser de diferentes tamafios en
sus dos dimensiones, ya sean espaciales o espaciales y temporales, por ello:
H

i,j
N: . = — 4

L] n]'_l
k=0 Hk,j

Anexo E

Detector de Harris en 3D

La idea consiste en calcular la correlacion de un pixel con sus alrededores, se realiza con un
suavizado previo del video y la correlacion se calcula como la diferencia entre un pixel y sus
vecinos:

S(x,y,t) == ZEZW(u,v,t)(I(u,v,t) —I(u+x,v+yz+t))?
u v t

Donde w(u, v, t) es el suavizado

Al igual que se hacia en el célculo del flujo éptico se quiere aproximar la diferencia I (u,v,t) —
I(u+x,v+y,z+t) por el desarrollo en serie de Taylor. La diferencia es que en este caso
buscaremos maximos en esta diferencia y no minimos ya que queremos detectar puntos
salientes en las tres dimensiones.

dl

ol ol
I(u+x,v+y,z+t)—I(u,v,t)+& dx+6_y dy+a dt

De esta manera la auto-correlacién se puede aproximar como:
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S(x, y,t)—EZEw(uv t)(— dx+—y dy+% dt)2

Expresandolo en forma matricial:

x
S(x,y,t) = (x,y,)A <y>
t

Donde A es la matriz de Harris en cada pixel, en este caso queremos que los valores de los
valores propios sean grandes los tres para tener los puntos salientes en las tres direcciones:

IR Ixly Il

A= ZZZW(u v, ) |Ixly 12 Iyl

Ixle Iyl If

Anexo F

Clasificador

Se utiliza una maquina de aprendizaje supervisada (Support Vector Machine ‘SVM’), es
supervisada ya que conocemos la clase de cada video. Se transmite a la maquina la
informacién de los descriptores y la clase de video al que pertenece cada uno de ellos. Esta
recopila la informacion y calcula las fronteras entre cada clase para una vez introducimos un
nuevo video ver dentro de que frontera se encuentra y ser capaz de saber con la maxima
posible exactitud a que clase pertenece.

El SVM es un algoritmo muy complejo y disponemos de sus librerias [10]. En estas lineas vamos
a explicar como opera exactamente el SVM (ver figura 30). Lo vamos a hacer de una manera
meramente intuitiva, ya que vamos a utilizar solamente dos caracteristicas y dos clases que
clasificaremos de forma lineal.

Figura 30 Ejemplo ilustrativo de como funciona el SVM, 3 clases y 2 caracteristicas. Tomado de
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Al tener solo dos caracteristicas por clase podemos ver facilmente en el plano X-Y de la figura
31 como funciona el SVM. En el eje X tendremos la caracteristica X; y en el eje Y tendremos la
caracteristica X,. El valor de ambas nos da una posicién en el plano y su valor sera ‘1’ en el
caso de ser una clase de video u ‘-1’ en el caso de ser la otra clase. Recordemos que el sistema
real sera capaz de distinguir entre cuantos videos queramos y no entre solamente 2, en ese
caso en vez de dar valores -1’ y ‘1’ se les dard valores a las clases mediante numeracién de
estas.

/
/

A
. y
S X
4N 7 1
% /

Figura 31 Ejemplo de divisidon que realiza la maquina de aprendizaje.

Como podemos ver calculamos 2 hiperplanos que separan nuestras dos clases y entre ambos
se calcula el hiperplano medio. Sabemos que un hiperplano esta definido como:

a1X1+a2X2 _b = 0

Donde [aq4, a,] es el vector normal ‘w’ y el ‘0’ de la parte de la derecha puede tomar cualquier
valor siempre y cuando variemos el valor de b para dejar la ecuacion intacta.

El hiperplano limitante de una clase lo forzamos a ser igual a 1 en el borde (mayor que uno
cuando nos alejemos del borde hacia el exterior) y el hiperplano de la otra clase se fuerza a ser
igual a -1 (menor que -1 cuando nos alejemos del borde hacia el exterior).

De esta forma tenemos 2 variables ‘W’ y ‘b’ pero podemos ver que las soluciones son infinitas
ya que hay infinitos planos paralelos que cumplan estar entre ambas clases debido a las
diferentes inclinaciones que pueden tomar, por tanto la idea es que los planos separadores se
encuentren a la maxima distancia posible y asi minimizar la posibilidad de fallo.

Matematicamente:



Por tanto:
y(wx+b)=>1
De tal forma que se maximice la distancia entre planos que podemos calcular como:
wx;—b=1
wx; —b=-1

w(xq —xz) =2

w 2 . )
m (x4 —x3) = m = distancia

Conseguiremos maximizar la distancia minimizando ||w||. El problema es que la norma nos
obliga a trabajar con raices cuadradas que no es bueno para el coste computacional por lo que

L 1 2 . . . - L
pasamos a minimizar EHW” . El factor % es simplemente por conveniencia matematica, se ira

al realizar la derivada en la minimizacion.

Concepto de los multiplicadores de Lagrange:

Concepto importante vy necesario en nuestro desarrollo. Introducimos el problema de
maximizar (minimizar) una o varias funciones ‘f(x, y, z,...) * sujetas a una o varias condiciones
‘e(x, v, z,...) = ¢’ (ver figura 32).

fx.y)

X

Figura 32. Representacion de un funcional a minimizar f(x, y) sujeto a runa restriccion g(x, y)=c. Imagen tomada de el articulo de
los multiplicadores de LaGrange de Wikipedia.

Para resolverlo, podemos pensar que ambas funciones ‘' y ‘g’ deben cortarse para cumplirse a
la vez. Ademds, debemos de buscar un maximo (minimo) de ‘f" por lo que el valor de esta no
debe variar respecto a ‘g’ en el punto encontrado [x, y].
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Por tanto no nos vale un punto donde ‘f' y ‘g’ se crucen, si no que necesitamos que en ese
punto sus tangentes sean iguales, asi habremos encontrado el maximo de ‘f cumpliendo la
restriccion ‘g’.

Matematicamente:
Vx,yf = —AVX,yg

El valor de lambda es debido a que las derivadas aunque iguales en direcciéon pueden tener
distinta dimension.

Le ecuacidn anteriory g(x, y) = c. las podemos unir como una nueva funcion:

Vx,yf = _}\Vx,yg
A(x,y,l) = f(x»Y) + }\(g(X, Y) - C)

Esto es asi ya que si hacemos el gradiente respecto a ‘x’ e ‘y’ obtenemos la primera ecuacién y
si lo efectuamos respecto a lambda obtenemos la segunda g(x, y) = c. Asi nuestra solucién es:

Vx,y?\A(x' Y A) = O

El gradiente igualado a cero de esta nueva funcidn viene a ser lo mismo que una maximizacion
(minimizacidn) de:

A(x,y,?\) = f(x:}’) + A(g(X, Y) - C)

Por tanto parece claro que siguiendo con nuestro problema podemos plantearlo de esta
misma manera a continuacion, donde si hacemos este cambio de variables:

a=—-1

1 2
fx,y) =5 |Iwll
y(wx+b)—1=g(xy)—c

Tenemos:

n

. 1 2
MiNy p,a E“W” - Z a;[yi(wx; —b) — 1
i=1

Recordemos que la minimizacion es el gradiente igualado a cero, por ello la forma de
expresarlo sigue siendo la misma. El problema que surge es que podriamos minimizarlo
llevando los valores de a al infinito lo que no resulta correcto. Para resolverlo, maximizamos
primero respecto a a y posteriormente continuamos con la minimizacion:

n

, 1 2
min,, ,max, §||W|| - Z a;[y;(wx; —b) — 1]

i=1

20



Surge otro inconveniente, el factor y(wx + b) — 1 puede hacerse muy grande, por lo que
igualaremos los @; a cero en esos casos y sera distinto de cero sélo en la frontera, en esos
casos los x; seran nuestros vectores de apoyo (svm)

Si derivamos respecto a ‘w’ e igualamos a 0 vemos que se tiene que cumplir la siguiente
relacion:

n
w = Z a; yiXi
i=1

Lo mismo respecto a ‘b’:

n

ZaiYi=0

i=1
Solo algunos «a; serdan mayores que cero, los correspondientes x; seran los vectores de

apoyo:

yi(wxi—b)=1=>WXi—b=}7(:>b=wxi—yi
i

Ngy

1 Z
b = — . — Vs
NSV £ WX; Vi

i=1

Se realiza un cambio en la forma de expresarlo, se pasa a la forma dual:

Sustituimos estas 3 ecuaciones en la ecuacidn original a minimizar:

n
w = Z a; YiX;
i=1
n

ZaiYi =0

i—1

||W||2=W'W

Operando, llegamos a:

n n

1 T 1 T
L(a) = Z a; — Ez a; a;y;yix" i xj = Z a; — Ez a; a;y;yik(x", x;)

i=1 i i=1 i
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Donde esta solamente expresada respecto a «;, por tanto se debe maximizar respecto a esta.
Vemos que aparece una nueva funcién en vez de xl-ij , aparece la funcién de Kernel:

k(xTinj) = ¢(x;)- fp(xj)

La funcion de Kernel es utilizada ya que no siempre queremos separar nuestras clases de
forma lineal, es por eso que en vez de y(wx — b) = 1 prefiramos otros tipos de separacion,
por ello, de forma general se puede expresar:

yweo(x)—b) =1

Donde:

n
w = z a;yip(x;)
i=1
n

W) = ) @ik, )

i=1
La funcion de Kernel puede tener distintas composiciones, las mejores han sido estudiadas:
= Polinomio homogéneo:  k(x;,x;) = (x; - x;)%
= Polinomio no homogéneo k(x;,x;) = (x; - x; + 1)4
* Funcion en base radial Gaussiana : k(xi,xj) = exp (—y | |xi - xj||2> paray >0
» Tangente hiperbdlica: k(xi, xj) = tanh(kx; - x; + ¢)

¢, Qué hacemos si la informacion no es separable? Si tenemos puntos clasificados en el otro
dominio y viceversa (ver figura 33).

<+
+ Y e
4

*§
4+
++ ’r++
+ + ¢+

+

Figura 33. Informacion no separable

En este caso en vez de minimizar solamente la distancia ‘w’ también vamos a minimizar la
suma de los errores con un peso ‘C’ a determinar para cada uno de ellos:
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I
Mm[z ww’ + CZg]
error = ¢

Nuestra funcidn a cumplir cambiara por tanto para estos puntos que estan fuera del margen,
en estos casos:

yiwe(x;) —b) = 1-¢

Procediendo de la misma manera que en el caso anterior:
n

n
1 2
min,, ,max,g §||W|| - Z ai[yiwx; —=b) =1+ ] — ) &p;
i=1 i=1
Nuestra forma dual pasara a ser la misma, con la Unica restriccién de que nuestros valores ‘C’

deben de ser mayores que ‘a’. Maximizando respecto a ‘a’:
n

1
L(a) = z a; — EZ a; @y yik (", x;)

i=1 i,j

OS(XL'<C

Para resolver el hecho de que nuestro problema tiene tantas clases como queramos y no sélo
2 lo reducimos de un problema de multi-clase a varios problemas de clasificacion binarios
donde podremos utilizar la teoria explicada, tenemos dos opciones:

1) 1 clase comparada con el resto. 1vs 1
2) 1 clase comparada con todas las demas. 1 vs todos.

Para nuestro problema probamos el Kernel Gaussiano, debemos de maximizar la precision de
nuestro SVM respecto a las dos contantes a determinar, ‘C’ que mide el peso dado al errory
‘eamma’ que proviene del propio Kernel Gaussiano. Estd demostrado que hay un rango de
valores para ambos que maximizan esta eficiencia y los cuales probamos con un doble bucle
para encontrar la mayor.

Ce{275,273,...,213 215},
ye{2715,2713 . 21,23}
Realizamos un bucle recorriendo todos los valores de Cy gamma y cogemos los que nos den

una mayor precisién respecto a un conjunto de validaciones. Una vez lo tenemos,
comprobamos que realmente funciona con un conjunto de tests.
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Anexo G

Distancia entre descriptores

Se comprueba la validez de nuestro descriptor calculando las distancias entre histogramas de
distintos videos. Cuanto menor sea esta distancia querra decir que mas similares son los dos
histogramas de los videos que hemos analizado y por tanto si entre videos de la misma clase
esta distancia es visiblemente inferior que entre videos de otras clases tendremos que nuestro
método describe bien el video.

Como se aprecia en la tabla 13 las respectivas distancias entre clases ‘caballo andando’ y
‘caballo corriendo’ son menores que la distancia entre cualquiera de estas dos clases y el resto.
Asi mismo el descriptor empareja antes a los caballos por el fondo que por la accién que
realizan (en este caso correr o andar), es decir la distancia es menor de ‘caballo 1 corriendo’ a
‘caballo 1 andando’ que de ‘caballo 1 corriendo’ a ‘caballo 2 corriendo’. En el caso de la clase
‘speech’ la distancia entre ambos videos es la minima posible, por lo tanto describe bien
personas hablando. Lo mismo ocurre con avidn despejando y aterrizando y la clase ping pong,
también es un buen descriptor para ellos. El descriptor sélo falla en la clase pajaros ya que la
empareja con la clase ping pong, aunque no falla del todo porque la 22, 32 y 42 distancias mas
cortas a pajaro 2 son pdjaro 1, avidn 2 y avion 1 respectivamente, por tanto parece ser un
resultado légico. Llegamos a la conclusidon de que es un descriptor aceptable para nuestro
objetivo y a partir del siguiente experimento utilizaremos la maquina de aprendizaje explicada
en el apartado 3 en vez de minimas distancias para clasificar los videos.

Caballo 1 Caballo 1R Caballo 2 Caballo 2R Discurso 1 Discurso 2 Avién 1A

Caballo 1 0 0.23 0.33 0.32 0.53 0.53 0.48
Caballo 1R 0.23 0 0.36 0.35 0.56 0.55 0.52
Caballo 2 0.33 0.36 0 0.20 0.46 0.44 0.42
Caballo 2R 0.32 0.35 0.35 0 0.5 0.48 0.46
Discurso 1 0.53 0.56 0.56 0.5 0 0.34 0.43
Discurso 2 0.53 0.55 0.55 0.48 0.34 0 0.41
Avién 1A 0.48 0.42 0.42 0.46 0.43 0.41 0

Avién 1D 0.44 0.47 0.41 0.42 0.52 0.47 0.36
Avién 2 A 0.41 0.45 0.38 0.4 0.45 0.44 0.25
Avién 2D 0.43 0.47 0.4 0.4 0.49 0.44 0.35
Pajaros 1 0.56 0.58 0.51 0.54 0.42 0.47 0.44
Pajaros 2 0.48 0.49 0.44 0.44 0.47 0.42 0.46
Ping Pong 1 0.47 0.50 0.39 0.4203 0.44 0.42 0.35
Ping Pong 2 0.45 0.47 0.41 0.43 0.46 0.44 0.38

Tabla 13(1). Distancia entre descriptores
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Avion 1D Avion 2 A Avién 2D Pajaros 1 Pajaros 2 Ping-Pong 1 Ping Pong 2
Caballo 1 0.44 0.41 0.43 0.56 0.48 0.47 0.44
Caballo 1R 0.47 0.45 0.47 0.58 0.49 0.50 0.47
Caballo 2 0.41 0.38 0.4 0.51 0.44 0.39 0.41
Caballo 2R 0.42 0.4 0.40 0.54 0.44 0.42 0.43
Discurso 1 0.52 0.45 0.49 0.42 0.47 0.44 0.46
Discurso 2 0.47 0.44 0.44 0.47 0.42 0.42 0.44
Avién 1A 0.36 0.25 0.35 0.44 0.41 0.35 0.38
Avién 1D 0 0.35 0.18 0.48 0.42 0.37 0.40
Avién 2 A 0.35 0 0.33 0.43 0.41 0.35 0.36
Avién 2D 0.18 0.33 0 0.49 0.41 0.35 0.37
Pajaros 1 0.48 0.43 0.49 0 0.41 0.46 0.45
Pajaros 2 0.42 0.41 0.41 0.41 0 0.39 0.37
Ping Pong 1 0.37 0.35 0.35 0.46 0.396 0 0.29
Ping Pong 2 0.40 0.36 0.37 0.45 0.37 0.29 0
Tabla 13(2). Distancia entre descriptores
Anexo H

Experimentos realizados con ‘dataset Hollywood?2’ [14]. Sintonizacion

de parametros
Se utiliza el dataset elaborado por Ivan Laptev [14] para afinamiento de los parametros de

nuestro descriptor. Véase desde la figura 34 a la figura 39 algunas de las distintas clases

utilizadas en este dataset.

Property of Universal

A

Figura 34 Conducir
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Figura 35. Levantarse

Figura 36. Pelea

Figura 37. Correr

Figura 38 Levantarse

26



Figura 39. Ponerse de pie

Se trata de un ‘dataset’ de peliculas de Hollywood. Es utilizado por diversos autores que han
investigado este problema para asi poder hacer una comparacion con el estado del arte. Este
‘dataset’ se divide en 12 acciones (descolgar el teléfono, beso, abrazo, levantarse, sentarse...)
sacadas de diversas peliculas de Hollywood, unas se utilizan para realizar el entrenamiento y
otras distintas para testear nuestro clasificador.

Debido a su gran extension se ha llevado a cabo una parte de los videos. Se han tomado 20
videos de entrenamiento por clase, 10 videos por clase para su validacion y 20 videos por clase
para el test final.

Se ha medido la calidad del descriptor en relacién a la precisién de la media, que es un
parametro resultado del cociente entre los falsos positivos por clase y la suma de los positivos
totales (falsos y verdaderos).

verdaderos positivos

precisién = — —
verdaderos positivos + falsos positivos

Se han obtenido unos resultados bastante independientes a la variacion de parametros,
podemos decir que nuestro descriptor es bastante robusto a pequefios cambios y no cambia
mucho al darse pequefias variaciones en los videos, lo contrario no hubiera sido un buen
resultado ya que depender de un descriptor que cambia en demasia con la variacién de
pardmetros no aporta demasiada confianza cuando se intenta probar una ristra nueva de
videos ya que los valores que optimicen a estos nuevos videos pueden ser muy diferentes que
en experimentos anteriores, esto haria que el sistema fuera mdas caro computacionalmente
hablando, en cualquier caso hay unas pequeias diferencias en los resultados que procedemos
a comentar:
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Aleatorio G-HOG3D Aleatorio G-HOG3D

AnswerPhone 0,012 0,026 HugPerson 0,077 0,041
DriveCar 0,151 0,183  «iss 0,089 0,111
Eat 0,120 0,231  Run 0,056 0,109
FightPerson 0,184 0,325  sitbown 0,045 0,000
GetOutCar 0,023 0,077  situp 0,038 0,050
HandShake 0,041 0,138  standUp 0,023 0,108
ean 0.071 0.112  ,con 0.071 0.112

Tabla 14. Resultados con el G-HOG3D y unos parametros iniciales.

Se realiza un primer experimento. En la tabla 14 se ve como no salen resultados demasiado
altos. Analizando los videos se ve que quizds el ‘dataset’ de Hollywood2 no sea muy
interesante para verificar las mejoras que se realicen en nuestro descriptor ya que tiene
diversos problemas: En algunas tomas ocurren dos mismas acciones a la vez (por ejemplo, ir en
coche y comer, hablar por teléfono y comer, dar un beso y abrazo al mismo tiempo, etc...)
ademads mezcla escenas ‘buenas’ donde aparece la accion especificada con diversas escenas
donde no ocurre aparentemente nada o incluso ocurre otra accién distinta a la que realmente
deberia de ocurrir. Por esto, se hizo un filtrado del dataset, escogiendo sélo escenas buenas y
esto dio lugar, como se ve en la tabla 15, a un incremento de casi el 100% en la clasificacion de
videos.

Aleatorio G-HOG3D G-HOG3D

FILTRADO
AnswerPhone 0,012 0,026 0,100
DriveCar 0,151 0,183 0,370
Eat 0,120 0,231 0,391
FightPerson 0,184 0,325 0,300
GetOutCar 0,023 0,077 0,214
HandShake 0,041 0,138 0,161
HugPerson 0,077 0,041 0,200
Kiss 0,089 0,111 0,132
Run 0,056 0,109 0,222
SitDown 0,045 0,000 0,333
SitUp 0,038 0,050 0,000
StandUp 0,023 0,108 0,000
CeET 0.017 0.112 0,202

Tabla 15. Comparacion entre el dataset y el dataset filtrado a sélo tomas buenas

Como se explicd en la seccidn descriptores en cada celdilla tenemos los valores de los mdédulos
de los vectores direccionales y para fijar si el valor de este mddulo es punible como
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significativo se compara con los demds médulos de dos formas distintas, por un lado si este es
superior a la media se acepta y por el otro si es superior a la mediana. Como se ve en la tabla
se han hecho comparaciones y utilizando la mediana se obtienen resultados de entorno al 3%
superiores. Por tanto, al menos para este dataset, conviene utilizar la mediana (ver tabla 16).

media mediana media mediana media mediana
AnswerPhone 0,100 0,105 0,136 0,100 0,059 0,150
DriveCar 0,345 0,357 0,303 0,370 0,323 0,333
Eat 0,300 0,333 0,353 0,391 0,296 0,280
FightPerson 0,300 0,300 0,233 0,300 0,304 0,313
GetOutCar 0,129 0,107 0,150 0,214 0,069 0,077
HandShake 0,238 0,250 0,346 0,161 0,208 0,250
HugPerson 0,143 0,200 0,067 0,200 0,182 0,214
Kiss 0,180 0,238 0,143 0,132 0,154 0,233
Run 0,240 0,300 0,211 0,222 0,304 0,318
SitDown 0,000 0,143 0,400 0,333 0,222 0,333
SitUp 0,000 0,000 0,000 0,000 0,000 0,000
StandUp 0,143 0,133 0,000 0,000 0,133 0,177
mean 0,176 0,206 0,195 0,202 0,188 0,223

Tabla 16. Comparacion ente el uso de media y mediana.

Las celdillas son divisiones de nuestro video tanto espaciales como temporales, para la division
temporal se comprueba (ver tabla 17) que a mayor division en el tiempo mejor clasificaciéon
(hasta un punto donde empieza a bajar la precision si seguimos incrementando la
discretizacion temporal). El pensamiento es que en el caso de ser una accién continua y
constante importara poco si discretizamos mucho o poco mientras que si la accién es variable
con el tiempo mejorard la clasificacién con diescretizaciones mas altas, por ejemplo para
describir un beso, si este se compone de mirada inicial, beso y despedida parece que
funcionaria mejor una descripcion temporal dividida en tres partes y no en una sola parte o
uno dividido en mas partes que tres.
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1 celdilla 2 celdillas 3 celdillas 4 celdillas 6 celdillas

temporal  temporales  temporales  temporales  temporales
AnswerPhone 0,000 0,188 0,177 0,150 0,118
DriveCar 0,000 0,321 0,333 0,333 0,355
Eat 0,000 0,308 0,318 0,280 0,286
FightPerson 0,278 0,238 0,208 0,313 0,250
GetOutCar 0,000 0,036 0,077 0,077 0,100
HandShake 0,250 0,280 0,280 0,250 0,269
HugPerson 0,000 0,250 0,214 0,214 0,235
Kiss 0,092 0,088 0,135 0,233 0,156
Run 0,500 0,143 0,313 0,318 0,500
SitDown 0,000 0,000 0,167 0,333 0,200
SitUp 0,000 0,222 0,000 0,000 0,000
StandUp 0,167 0,111 0,125 0,177 0,067
mean 0,107 0,182 0,196 0,223 0,211

Tabla 17. Aumento de las celdillas temporales

Las imagenes como hemos explicado anteriormente han sido reducidas (ver figura 40),
también hemos comprobado el efecto de estas reducciones en los resultados (tabla 18), entre
24 y 96 pixeles para la dimension vertical de la imagen la mejor clasificaciéon la da un valor
intermedio de 36 / 48 pixeles. La explicacién es que para imagenes grandes tenemos
informacién con mucho detalle y se calculardn muchos gradientes innecesarios, para imagenes
muy pequefias ocurre que perdemos gradientes importantes conforme el pixelado es menor
en la imagen.

Figura 40. Fotograma con distintos tamaiios.
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Tamaiio 24 ETLETTE] Tamaiio 48 Tamaiio 72 Tamaiio 96

en altura en altura en altura en altura en altura
AnswerPhone 0,125 0,136 0,118 0,158 0,133
DriveCar 0,300 0,313 0,355 0,324 0,231
Eat 0,304 0,250 0,286 0,308 0,296
FightPerson 0,280 0,273 0,250 0,188 0,125
GetOutCar 0,048 0,143 0,100 0,063 0,079
HandShake 0,194 0,273 0,269 0,238 0,214
HugPerson 0,250 0,182 0,235 0,200 0,071
Kiss 0,125 0,177 0,156 0,132 0,091
Run 0,167 0,313 0,500 0,333 0,250
SitDown 0,250 0,333 0,200 0,333 0,429
SitUp 0,000 0,200 0,000 0,000 0,000
StandUp 0,143 0,000 0,067 0,077 0,077
mean 0,182 0,216 0,211 0,196 0,166

Tabla 18. Aumento del tamafio en altura

Para la discretizacion en textura de las celdillas ocurre algo parecido que para la temporal, en
este caso hemos analizado como responde ante la variaciéon del nimero de celdillas verticales
y horizontales y efectivamente mejoran los resultados a mayor nimero de celdillas (otra vez,
hasta llegar a cierto punto, ver tabla 19). En este caso se ha dividido la anchura y altura entre
un numero par para no perder la perspectiva de que la persona es un sujeto simétrico.

6 celdillas 8 celdillas 6 celdillas 8 celdillas

espaciales espaciales espaciales espaciales
AnswerPhone 0,150 0,210  HugPerson 0,214 0,167
DriveCar 0,333 0,400 Kiss 0,233 0,143
Eat 0,280 0,364 Run 0,318 0,235
FightPerson 0,313 0,250 SitDown 0,333 0,286
GetOutCar 0,077 0,095 SitUp 0,000 0,000
HandShake 0,250 0,300 StandUp 0,177 0,077
mean 0,223 0,211 mean 0,223 0,211

Tablal9. Aumento de celdillas espaciales

Lo mismo ocurre para el nimero de bins (tabla 20), donde se han utilizado sobretodo nimeros
pares de configuraciones con el mismo objetivo de preservar la simetria del cual hemos habla
de anteriormente y el sistema mejora hasta llegar a 6 divisiones por angulo, 8 divisiones ya da
lugar a un empeoramiento de los resultados.
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AnswerPhone 0,150 0,105 0,111 HugPerson 0,214 0,200 0,154
DriveCar 0,333 0,357 0,200 Kiss 0,233 0,238 0,200
Eat 0,280 0,333 0,143 Run 0,318 0,300 0,286
FightPerson 0,313 0,300 0,191 SitDown 0,333 0,143 0,000
GetOutCar 0,077 0,107 0,059 SitUp 0,000 0,000 0,000
HandShake 0,250 0,250 0,217 StandUp 0,177 0,133 0,133
mean 0,223 0,206 0,141 mean 0,223 0,206 0,141

Tabla 20. Aumento de ‘bins’.

Se han probado otra configuraciones del descriptor, han dado peores resultados debido a que
se ha utilizado informacién redundante en el sentido de que es repetida, esto es asi ya que en
vez de utilizar dos angulos para el descriptor se han utilizado tres y realmente el video es un
volumen de imagenes y se puede describir con sdlo dos dngulos, al igual que para describir un
solo fotograma es suficiente un solo angulo y no dos.

Anexo |

Experimentos realizados con ‘dataset KTH’ [15]. Sintonizacion de
parametros

Se trata, como vemos desde la figura 41 a 46, de un dataset mas sencillo a la hora del
reconocimiento debido a la sencillez de sus acciones y el emplazamiento del sujeto en un
fondo constante donde la Unica zona mdvil es la persona que realiza la accidn.

Figura 41. Boxear

32



Figura 42. Dar palmas

Figura 43. Movimiento de manos

Figura 44. Trotar

Figura 45. Correr
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Figura 46. Caminar

Se sigue sintonizando los pardmetros de nuestro descriptor. Este dataset de reconocimiento
de acciones, también viene siendo muy utilizado por diversos autores, la razén por la que lo
utilizamos, a parte de para poder comparar nuestro descriptor con el resto es porque se trata
de un ‘dataset’ mas sencillo y menos extenso lo que proporciona una visualizacidn y
comparacion de resultados mas facil y rapida. Por etapas se hizo lo siguiente:

1) Se comienza utilizando el descriptor que mejor ha funcionado en el experimento
anterior, se utiliza la misma configuracion (tabla 21). Disponemos de 100 videos en
total para cada una de las cuatro clases. Se otorgan 32 videos para hacer el
entrenamiento de nuestra maquina de aprendizaje, 32 para la validacion de la
misma y 36 para comprobar los resultados de clasificacién.

Boxing Handclapping Handwaving  Jogging Running Walking mean

G-HOG3D 0.6531 0,9524 0,9140 0,5000 0,5700 0,5600 0.6531

Tabla 21. Prueba inicial para el G-HOG3D

2) En este descriptor se piensa en la idea de que es mas importante el cambio en el
tiempo de la accidn que la accién en si misma. Por ello se piensa que pesando mas
los gradientes calculados en la dimensidon temporal mejorara los resultados. Estos
gradientes se calculan como hemos visto en la seccién del descriptor HOG como
diferencias en la dimension temporal entre pixeles contiguos. Por este motivo se
hace una prueba dandole un peso doble a los gradientes temporales respecto a los
espaciales. Como vemos (tabla 22) los resultados no son bastante mas bajos por lo
qgue seguiremos pesando igualmente de ahora en adelante.
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Peso
gradiente
temporal
unitario

Handclapping Handwaving  Jogging Running Walking

0,6531 0,9524 0,9140 0,5000 0,5700 0,5600 0.6900

Peso
gradiente
temporal
doble

3)

0,4500 0,7300 1 0,4400 0,6190 0,500 0.6200

Tabla 22. Aumento del peso en el gradiente temporal

Utilizamos el mismo descriptor que en la primera etapa, el cambio es que ahora no
utilizamos los mismos videos que antes para entrenar y validar, pasamos 24 de los
videos de validacion a entrenamiento. Con esta modificacion mejoran los
resultados, algo que parece evidente ya que se utilizan los mismos videos para
entrenar a nuestra SVM pero en este caso para el entrenamiento propiamente
dicho se utilizan mas videos y menos para la validacién ya que con valores de
entorno al 20% de videos para la validacién respecto al entrenamiento es
suficiente. Asi, de ahora en adelante utilizaremos esta configuracion para los
videos. Ver tabla 23.

Boxing Handclapping  Handwaving  Jogging Running Walking

Videos de

entrenamiento  0,6531 0,9524 0,9140 0,5000 0,5700 0,5600 0.6900

originales

Mayor nimero

de videos

en 0,6182 0,9167 1 0,6000 0,5800 0,7800 0,7491

entrenamiento

4)

Tabla 23 Incremento del niimero de videos de entrenamiento

En esta nueva etapa variamos la forma de aceptacién de un punto como
significativo o no significativo. Como ya se ha explicado, para aceptar el gradiente
total dentro de una celdilla lo compararemos con el resto mediante las funciones
media y mediana. Si este valor es mas grande que la media o mediana (depende de
la funciéon que utilicemos) lo tomaremos como significativo. Hemos utilizado la
mediana ya que en el experimento de Hollywood otorgaba resultados un 3%
superiores y ademas es mas robusta a valores erréneos. En este caso vemos que la
media funciona un 2% poco mejor y la continuaremos utilizando (ver tabla 24).
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Handclapping  Handwaving Jogging Running Walking

mediana

0,6182 0,9167 1 0,6000 0,5800 0,7800 0,7491

media

5)

0,6111 0,9545 0,9667 0,6000 0,6522 0,8235 0,7680

Tabla 24.

Igual que en la etapa 4 pero sin el suavizado que se le hacia a cada imagen donde
se elevaba el valor de cada pixel a 0,5 y se hacia una redistribucion de los colores
para utilizar toda la gama de estos, es decir desde 0 a 255. Se ve que el resultado
mejora sin esta operacion que sufrian las imagenes, esto es debido a que el
suavizado provoca que algunos de gradientes se pierdan, esto es bueno si se
pierden gradientes pequefos que no aportan la informacion necesaria, pero si se
pierden los gradientes importantes es cuando los resultados empeoran (ver tabla
25).

Con
suavizado

Handclapping  Handwaving Jogging Running Walking

0,6111 0,9545 0,9667 0,6000 0,6522 0,8235 0,7680

Sin
suavizado

6)

0,6800 0,9600 0,9688 0,6296 0,6818 0,7895 0,7849

Tabla 25. Comparacion entre suavizar y no suavizar.

Igual que en la etapa 5 pero en vez de calcular el dngulo que describen nuestro
video temporalmente mediante el gradiente en ‘X’ y en ‘t’ lo haremos mediante
los gradientes en ‘y’ y en ‘t’. Esto da un mejor resultado utilizar la relacién de
gradientes verticales respecto al tiempo antes que la utilizacion de gradientes
horizontales respecto al tiempo (ver tabla 26). En un principio pareceria légico que
los resultados fueran similares o iguales ya que para calcular la posicidon de un
vector en tres dimensiones es suficiente con dos dngulos, sean los calculados hasta
ahora o sea los probados en esta nueva etapa pero en cambio salen unos
resultados un 4% superiores por lo que seguiremos utilizando esta configuraciéon

Boxing Handclapping  Handwaving  Jogging Running Walking
Angulo
temporal 0,6800 0,9600 0,9688 0,6296 0,6818 0,7895 0,7849
(x-t)
Angulo
temporal 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272
(y-t)
Tabla 26. Diferentes formas de calculo del angulo temporal.
7) Se calculan los descriptores utilizado tanto en la etapa 5 como en la etapa 6 (ver

tabla 27) de forma independiente y se juntan uno detras de otro en un descriptor
global, se obtienen los mismos resultados que en la anterior etapa por tanto
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desechamos esta idea ya que el descriptor es el doble en tamafio y no aporta
mejores resultados.

Handclapping  Handwaving Jogging Running Walking
Etapa 5 0,6800 0,9600 0,9688 0,6296 0,6818 0,7895 0,7849
Etapa 6 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272
Etapa 5+6 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272

Tabla 27. Union etapa 5 y etapa 6

8) Una vez hemos calculado una celdilla al completo se procede a normalizarla como
ya hemos visto, después se toman los valores mayores que 0.2 y se igual a 0.2 para
evitar altos gradientes debidos por ejemplo a un cambio de luminosidad que no
aporta mucha informacidon. Se elimina esta restriccidn. Los resultados empeoran
considerablemente al pensar que no ibamos a encontrar valores tan grandes como
para estropear nuestro descriptor ya que valores grandes restan la aportacion de
los valores mas pequefios (ver tabla 28).

Handclapping  Handwaving Jogging Running Walking
Con limite
de 0.2 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272
Sin limite
de 0.2 0,6863 0,8667 1 0,6098 0,7576 0,8286 0,7915

Tabla 28. Comparacion entre limitacion de los gradientes y no limitacion

9) lgual que la etapa 6 pero se aumentan los bins. En este ‘dataset’ un aumento de
los bins de 6 a 8 si que produce una mejora, aunque realmente poco significativa.

Ver tabla 29

Boxing Handclapping  Handwaving Jogging Running Walking mean
6 bins 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272
8 bins 0,7292 0,9360 1 0,7143 0,8056 0,8158 0,8334

Tabla 29.

10) Igual que la etapa 9, el cambio aqui es muy parecido al cambio en 8 donde
quitdbamos la restriccién de que si en una celdilla daba un valor mayor de 0.2 se
igualaba a 0.2, en este caso somos un poco menos restrictivos y dejamos este valor
en 0.4. Vemos que antes no habia funcionado la idea de quitar la operacién que
elimina valores mayores de 0.2, en cambio si hacemos lo mismo pero con una
restriccion menor de hasta 0.4 los resultados mejoran aunque no es un gran
cambio. Ver tabla 30.
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Boxing Handclapping  Handwaving Jogging Running Walking

L'm(')t‘; % 07202  0,9360 1 0,7143 08056  0,8158  0,8334
L'm(;tzde 0,7083  0,8710 1 0,7879  0,8158  0,8611  0,8406

Tabla 30. Distintas limitaciones para los valores altos del histograma.

11) Anteriormente se tomaba cada video por completo y en este apartado se divide el
video en 4 partes ya que en cada uno transcurren 4 acciones idénticas, asi las
separamos gracias a un fichero de texto que identifica los intervalos donde se
encuentra cada toma. Se obtienen resultados en torno al 3% superiores como
podemos ver en la tabla. Se han tomado 12 bins para los angulos y han ido
variando las celdillas, ndtese el incremento de la precisidon al incrementar estas.
Ver tabla 31.

Boxing Handclapping  Handwaving Jogging Running Walking
1 celdilla 0.7053 0.7624 0.9643 0.6463 0.6270 0.8966 0.7670
2 celdillas 0.8421 0.77826 0.7132 0.7912 0.8125 0.8727 0.8024
3 celdillas 0.9153 0.9524 0.7007 0.8068 0.8778 0.8205 0.8456
4 celdillas 1 0.9022 0.7007 0.7938 0.9277 0.8276 0.8587
5 celdillas 0.9322 0.9167 0.7619 0.8587 0.8830 0.8889 0.8736

Tabla 31. Incremento del nimero de celdillas

Experimento con deteccion de accion y substraccion de esta

Se hacen tres pruebas relacionadas, la primera consiste en detectar la zona del fotograma que
estd en movimiento (explicado en seccién descriptores) independientemente del movimiento
de la cdmara y analizarla igual que en casos anteriores, se llega a un resultado un uno por
ciento superior al mejor caso de los anteriores y con la utilizacién de menos bins. Ademas se
realiza el mismo experimento utilizando sélo el 40% de los videos para una mayor rapidez de
en la proxima comparacién. Ver tabla 32.

Boxing Handclapping  Handwaving Jogging Running Walking
con dete‘c,C|on 1 0.9556 0.7680 0.9041 0.7788 0.9029 0.8849
de accidn
Con deteccién
acciony
utilizando el 1 0.9500 0.6531 0.8095 0.6512 1 0.8440

40% de videos

Tabla 32. Resultado tras la deteccion de accion
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La segunda prueba consiste en hacer lo mismo que en el anterior caso pero se intenta mejorar
la zona del fotograma relacionada con el movimiento en la accidn, para ello como se ha
explicado en la seccién 3.5 se introduce un sistema de votaciones donde se selecciona una
ventana que se ajuste lo mejor posible a 10 fotogramas consecutivos para suavizar el tamafo
y posicién de la ventana de movimiento, que no sea tan variable de un fotograma a otro y
capte a la persona en su totalidad, ademads se hace un cambio constante y lineal del tamafio
del fotograma para evitar cambios bruscos en los tamafios de estas ventanas. El resultado
para este caso como vemos es un poco inferior que para el caso con la deteccion del
movimiento sin suavizar. Ver tabla 33

Handclapping  Handwaving  Jogging Running Walking

Con deteccién
acciony
utilizando el 1 0.9500 0.6531 0.8095 0.6512 1 0.8440
40% de videos

Con deteccién
accion
suavizaday
utilizando el
40% de videos

0.8065 1 0.6250 0.7500 0.8485 1 0.8383

Tabla 33. Comparacién entre deteccién de accién suavizada y sin suavizar

Como tercera prueba y definitiva se hace que el tamafio de la ventana global que siempre sea
igual de grande y en la misma posicidn para evitar la unién de gradientes de distintas zonas del
cuerpo en una misma celdilla. Para ello se toma las 4 esquinas mas alejadas de entre todas las
ventanas calculadas en el caso anterior, como vemos los resultados mejoran un 4% respecto a
la misma configuracién pero sin substracciéon del movimiento. Ver tabla 34

Boxing Handclapping  Handwaving Jogging Running Walking

Sin deteccidn

., 1 0.9022 0.7007 0.7938 0.9277 0.8276 0.8587
daccion
C°”adcecti§:1°'°” 09868  0.8812  0.8807 0.8734 0.8269  0.9057  0.8925
Tabla 34. Comparacion entre deteccidn de accion global y no deteccion de accion
Anexo ]

Ecuacion de Euler-Lagrange

La naturaleza ahorra energia potencial, siempre busca la posicion de equilibrio hacia un estado
de menos energia. Es por ello que se busca la minimizacién de la accidn, es lo mismo que se
busca en las minimizaciones de este proyecto como las que se utilizan en las maquinas de
aprendizaje o en el cdlculo del flujo éptico. En nuestro caso la minimizacion de ‘S’ esta definida
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como la integral de una funcién lagrangiana ‘L’ desconocida entre dos instantes de tiempo
dados:

b
5@ = [ Lea©.q @)

Se desea considerar todas las posibles trayectorias que sigue la particula durante el intervalo
de tiempo analizado, podemos entonces parametrizarlo con el parametro a:

q(t, @) = q(t) + n(x)a

Donde n(a) = n(b) = 0 para que q(t,a) = q(t) en los bordes temporales ya que eso no lo
qgueremos cambiar. Sélo es interesante saber que trayectorias hacen que la accién se minimice
pero la accidon en los bordes debe ser la misma ya que todas las trayectorias deben de empezar
y acabar en el mismo lugar. De este modo derivamos la accion respecto a a e igualamos a 0
para llegar al minimo (o maximo):

05(q,a) 0
da
Que es lo mismo que:
7 dL dt=0
. da

Tras unas operaciones se llega a la buscada ecuacién de LaGrange, en primer lugar aplicamos
la regla de la cadena, descomponemos asi la derivada total en sus parciales:

dL 6q6L+6qaL+ at oL
da dadq 0dadq dadt

La derivada del tiempo respecto a a es cero porque no depende de ella:
dlL. 6qaL+aq6L
da 0dadq dadq

El segundo termino de la parte de la derecha de la igualdad molesta por lo que se escribe en la
forma:

dq 0L <aq‘aL) aq <a‘L)
dadq  \dadq/ da\dq
Llegando a:
dL _ 9qaL <aq'aL) aq (a'L)
da dadq \dadq/ da\dq

Lo introducimos en la integral:
b(dqaL (dqaLy dq /dL
[{ (222050
. \dadgq \dadq/ Jda\dq
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b/9qaL dq /L b /8q aL
[/ (et SaG)oe [ Gisacmo
o \dadq 0da\dq e \0adq

9q

Sabiendo que = en los extremos porque en ellos todas trayectorias deben de tener el mismo

valor podemos extrapolar que la segunda integral es nula:
b/dqoL aq /dL
[[(Gese-Se) -
¢ \dadq 0Ja\dq
Que debe cumplirse para cualquier desviacion 2—2:
L /0L
Se-)-o
dg \dq

oL (t,q(t),q'(t)) d oL (t,q(t),q'(t)) ~o
aq(t) ot q () -

Anexo K

Dataset
A continuacion se muestran las clases del 'dataset' creado (figuras 47 a 54).

Figura 47. Lancha motora
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Figura 48. Caballo y Jinete

Figura 49. Le6n caminando
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Figura 50. Avidn despegando

Figura 51. Persona hablando
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Figura 52. Pelea de sumo

Figura 53. Punto en tenis
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Figura 54. Tren
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