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Anexo A 

Flujo óptico de Horn [1] 

Intuitivamente el flujo óptico  es la idea de que al mirar un objeto en movimiento este lo 

vemos sin prestar demasiada atención al resto de la escena. Es la diferencia entre nuestro 

objetivo a seguir y el resto de la escena. 

Una imagen en el instante ‘t’ la podemos parametrizar como: 

I(x, y, t) 

Donde ‘x’ e ‘y’ son las coordenadas de textura y ‘t’ es el tiempo o fotograma equivalente. 

En un instante siguiente el pixel correspondiente I(x, y, t) sale movido un valor (dx, dy, dt), por 

tanto el pixel en la nueva imagen será: 

I(x + dx, y + dy, t + dt) 

Estos dos instantes los podemos correlacionar gracias a la expansión de Taylor de primer 

orden: 

	I(x + dx, y + dy, t + dt) = I(x, y, t) + ∂I∂x 		dx + ∂I∂y 		dy + ∂I∂t 		dt 
La idea consiste en que el objeto que estamos buscando tendrá la misma energía en un 

instante como en el otro, es decir, la misma luminosidad, el valor de cada pixel se mantendrá 

ya que sólo cambiará su posición, que es lo que queremos calcular, la cantidad de píxeles que 

se ha movido, por tanto podemos igualar I(x + dx, y + dy, t + dt) = I(x, y, t) y el término 

restante deberá ser igual a cero. 

∂I∂x 		dx + ∂I∂y 		dy + ∂I∂t 		dt = 0 

 

Donde: 

∂I∂x = 	 I� 	; 	 ∂I∂y = 	 I�	; 	∂I∂t = 	 I� 	 
I�		dx + I�	dy + I� 	dt = 0 

Si dividimos para ‘dt’: 
I� 		u + I�	v + I� 	= 0 

u = dxdt 		 ; 	v = dydt  
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Esa será nuestra primera ecuación, pero como vemos tenemos dos incógnitas, ‘u’ y ‘v’, que 

serán el flujo óptico horizontal y vertical respectivamente por lo que necesitaremos una 

segunda ecuación. 

Esta segunda limitación o ecuación viene del hecho de que el objeto está sujeto a un 
movimiento como solido rígido o a una pequeña deformación, lo que provoca un ligero cambio 
en estos flujos y por tanto la minimización del cambio de estos en su entorno  supondrá esta 
información requerida: 
 

����������ó� → ∂u∂x� + ∂u∂y� +		∂v∂x� + ∂v∂y� =	u�� 	+ u�� +		v�� 	+ v�� 

 
De esta manera podemos reducir nuestro problema a un problema de minimización en ambas 
ecuaciones, ya que la primera debe de ser cero y la segunda lo más pequeña posible. 
Utilizando � como un parámetro de minimización que relaciona ambos funcionales a 
minimizar, llegamos al siguiente funcional a minimizar: 

�� = � [��! �"� + �#�]%Ω 

 �#� = (I� 		u + I�	v + I�)� 

 �'� = u�� 	+ u�� 	+ v�� 	+ v�� 

 
 
Podemos ver que tenemos un funcional a minimizar del estilo de las ecuaciones de Euler 
Lagrange y por tanto tenemos su solución, podemos ver como se llega a ella en el Anexo J. De 
este modo, dado el siguiente funcional: 
 

(()) = � *+,, )(,), )-(,).%,#
/  

 
Su solución es: 
 ∂L 1t, q(t), q′(t)3∂x4 − d∂t ∂L 1t, q(t), q′(t)3∂v4 = 0		para	i = 1,… , n.		 
Donde: 
 n = número	de	dimensiones	del	espacio. 
 x = q(t); 		E = )′(,) 
 
En nuestro caso tenemos un sistema de ecuaciones de Euler de dos funciones a minimizar, (GH, G�) = (I, E) y dos dimensiones para la variable respecto a las cuales debemos minimizar,	J4 = (J, K), por tanto: 
 ∂L∂fH − M ∂∂x4

∂L∂fH,4
N

4OH = 0			 
 ∂L∂f� − M ∂∂x4

∂L∂f�,4
N

4OH = 0		 
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Donde: 
 * = ��(u�� 	+ u�� 	+ v�� 	+ v��) + (I� 		u + I�	v + I�)� 
 J4 = (J, K) 
 (GH, G�) = (I, E) 
 (GH,4, G�,4) = (GH,�, GH,�; G�,�, G�,�) = +u�, u�; v� , v�. 
 
Introduciendo estas variables en las ecuaciones (1) y (2) se llega  a la siguiente solución: 
 I��I + I�I�E = �∇�I − I�I� I�I�I + I��E = �∇�I − I�I� 
 
 
Para poder resolverla discretamente se siguen 3 aproximaciones vistas en [1]. Como vemos la 
media se calcular dándole más peso a los píxeles más cercanos que a los que están en la 
proyección diagonal y el laplaciano se calcula haciendo el gradiente entre el pixel que estamos 
calculando y la media aproximada de los píxeles de alrededor. 
 ∇�I = 3(IR − I) ∇�E = 3(E̅ − E) IR4,T,U =	16	WI4XH,T,U + I4,TYH,U + I4YH,T,U + I4,TXH,UZ

+ 112	WI4XH,TXH,U + I4XH,TYH,U + I4YH,TYH,U + I4YH,TXH,UZ 

E̅4,T,U =	16	WE4XH,T,U + E4,TYH,U + E4YH,T,U + E4,TXH,UZ
+ 112	WE4XH,TXH,U + E4XH,TYH,U + E4YH,TYH,U + E4YH,TXH,UZ 

 
 
El gradiente para las imágenes se calcula como la media ponderada entre los 4 gradientes 
calculados para dos píxeles cada dos fotogramas consecutivos: 
 \� = 	0.25	(\4YH,T,U	 −	\4,T,U	 + \4YH,TYH,U	 − \4YH,T,U	 +	\4YHT,UYH	 − \4,T,UYH	 + \4YH,TYH,UYH−	\4,TYH,UYH) 
 \� = 	0.25	(\4,TYH,U	 −	\4YH,TYH,U	 + \4YH,T,U	 − \4,TYH,UYH	 +	\4,T,UYH	 − \4YH,TYH,UYH + \4YH,T,UYH−	\4,T,U	) 
 \� = 	0.25	(\4,T,UYH	 −	\4,T,U	 + \4YH,T,UYH − \4YH,T,U	 +	\4,TYH,U	 + 1 − \4,TYH,U	 + \4YH,TYH,UYH	−	\4YH,TYH,U	) 
 
   
Introducimos estas 3 aproximaciones en nuestras ecuaciones: 
 I��I + I�I�E = �∇�I − I�I� I�I�I + I��E = �∇�I − I�I� 
 
Y operando llegamos a: 
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I = 	 +3�� +	I��.IR − I�I�E̅ − I�I�3�� + I�� + I��  

 

E = 	 +3�� +	I��.E̅ − I�I�IR − I�I�3�� + I�� + I��  

 
 
Donde si hacemos un cambio de variables  u = u^YH			y	uR = uR	^ y operamos llegamos 
finalmente a la solución para el cálculo del flujo óptico, k será el número de iteraciones que 
queremos utilizar para llegar a la minimización: 
 

IUYH = IR −	I�+I�IRU +	I�E̅U + I�.3�� + I�� + I��  

 

EUYH = E̅ −	 I�+I�IRU +	I�E̅U + I�.3�� + I�� + I��  

Anexo B 

Flujo óptico de Roth y Black [2] 

Partimos de la función a minimizar, similar a la explicada en el Anexo A pero con la principal 

diferencia de la con la adición de funciones de penalización _`	K	_( : 

�(I, E) = M{bc_`(\H(�, d)4,T − \�(� + I4,T, d + E4,T)) +	be[_((I4,T − I4YH,T) + _((I4,T − I4,TYH)
+ _((E4,T − E4Y,T) + _(+E4,T − E4,TYH)f} �c = M{bc_`(\H(�, d)4,T − \�(� + I4,T, d + E4,T))}	 

Consiste en encontrar los valores del flujo óptico ‘u’ y ‘v’ que minimizan la función anterior, ‘u’ 

y ‘v’ son los píxeles de movimiento entre dos fotogramas consecutivos. El primer término se 

corresponde con la diferencia entre un punto de la imagen primera y su homólogo en el nuevo 

fotograma, que en un caso ideal sería cero. El segundo término consiste de la consideración de 

que estamos trabajando con un sólido rígido y se dan pequeñas deformaciones por lo que el 

flujo no puede tener grandes variaciones. b es un parámetro de regularización mientras que _	son las funciones de penalización de la información dada (primer término) y  penalización 

espacial debida a las diferencias en flujo (segundo termino). 

Las funciones de penalización tienen como función el formalizar los errores que además 

devuelve siempre un número positivo y no surge el fenómeno de cancelación de errores. 

Funciones de penalización utilizadas: 

-Cuadrática o HS.  _(J) = J� 

-Charbonier o Classic-C. _(J) = √	J� + i� 

-Lorentzian o Classic-L.  _(J) = log	(	1 +	 �k�lk) 



5 
 

El ruido es un grave problema para nuestro algoritmo ya que puede ser flujo y pensar que hay 

flujo donde no lo hay, por tanto se sigue el método visto en [3] para limpiar nuestras imágenes 

y conseguir el efecto de la figura 25: 

 

 

 

              

 

 

Figura 25. Comparación de una imagen con ruido y la misma con el ruido eliminado. 

Primero se descompone la imagen en la imagen deseada y el ruido indeseado que hay en ella: 

Im(J, K) = I(J, K) + �(J, K) 

Im = ���no� 

I = ���no� sin pI�%q 

� = pI�%q 

La idea principal se fundamenta en que un pixel rodeado de  4 píxeles iguales entre si y 

diferentes del pixel central será un espurio.  Para detectarlo matemáticamente: 

La derivada en el dominio horizontal se define como: hx = [-1, 0, 1]. Si realizamos la derivada 

de la derivada obtenemos: hxx = [-1, 0, 2, 0, -1] y ℎKK=ℎJJs.  Si componemos hyy con hxx 

surge una máscara en forma de cruz respecto al pixel que analizamos, a este pixel se le da 

valor 4 y a los píxeles que están a su alrededor se les da peso -1. Se multiplica cada valor por su 

peso y se hace la suma, obtenemos un valor que de ser alto significará que estamos ante un 

espurio. Por tanto el objetivo será minimizar valores altos tras la aplicación de esta mascara 

por toda la imagen, por tanto: 

��������p	� t(I�� + I��)�! %J%K 

Sujeto a 2 restricciones, 1 que dice que la media de los valores de todos los píxeles en ambas 

imágenes debe mantenerse y otra que aproxima la variación con una sigma: 

La primera restricción nos habla de que la media del ruido será cero y que su desviación es 

sigma y es dada. 

� I! =	� Im!  
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� (I − Im)�! =	u� 

Sin embargo esto no reportó resultados buenos y se cambió la función a minimizar, con la 

nueva en vez de fijarnos en las derivadas segundas nos fijamos en las primeras, la mascara 

pasa a ser cero el pixel central, 1 en los píxeles de abajo y a la derecha y -1 en los píxeles de 

arriba y a la izquierda, con esto se mide si hay un cambio de textura horizontal y vertical, lo 

que produce que si ambos se cumplen el cambio de textura sea sólo en el punto ya que un 

punto (el espurio) es la unión de dos líneas ( líneas de cambio de textura horizontal y vertical, 

si solo tenemos una de las dos no estamos ante un espurio aunque podría darse el caso de 

tener una línea de espurios). Por tanto la minimización se llevará a cabo en: 

��������p	� tI�� + I��! %J%K 

Tenemos un funcional a minimizar que según el método de los multiplicadores de Lagrange es: 

* = tI�� + I�� + bH(I − Im) + b� 12 (I − Im)� 

 Para  su resolución se utilizan la ecuación de LaGrange (explicada en el anexo J): 

v*vI −	v w v*vI�xvJ − v w v*vI�x
vK = 0 

Con ellas llegamos a: 

v
y
z I�tI�� + I��{

|
vJ +

v
y
z I�tI�� + I��{

|
vK − bH − b�(I − Im) = 0 

La ecuación anterior no se cumplirá en un primer calculo por lo que la igualamos a una variable 

que denotará su valor y se realizarán iteraciones hasta disminuirla al máximo posible. Se 

utilizará el método del gradiente descendente, esta ecuación se iguala a ‘I�’ y convergerá a 

cero con el tiempo. ‘I�’  será el cambio temporal entre imágenes. 

 

I� =
v

y
z I�tI�� + I��{

|
vJ +

v
y
z I�tI�� + I��{

|
vK − b(I − Im) 

                             Restricción	 ~�~N = 0			o�	��	Gpq�,op� 

u(x, y, 0)	o�	%�%q 
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Nótese la no utilización de la primera restricción debido a que esta incluida en nuestro 

procedimiento si la media de u(x, y, 0) es la misma que la de  Im. 

Gracias a esta convergencia a cero podemos calcular b, simplemente multiplicando a ambos 

lados por (I − Im), integrando en ambos lados utilizando la integración por partes y las 

restricciones impuestas y sabiendo que I� converge a 0:  

b(,)(I − Im)� = (I − Im) ∗
��
��
��
��
�v

y
z I�tI�� + I��{

|
vJ +

v
y
z I�tI�� + I��{

|
vK

��
��
��
��
�
 

�b(,)(I − Im)� %J%K = �(I − Im) ∗
��
��
��
��
�v

y
z I�tI�� + I��{

|
vJ +

v
y
z I�tI�� + I��{

|
vK

��
��
��
��
�
%J%K 

b(,) = 12u� �(I − Im) ∗
��
��
��
��
�v

y
z I�tI�� + I��{

|
vJ +

v
y
z I�tI�� + I��{

|
vK

��
��
��
��
�
%J%K 

Para realizar la integral restante se integra por partes como hemos dicho utilizando la siguiente 

fórmula, el término debido a la superficie (teorema de gauss) se elimina por razones físicas: 

� vIvJ4! E%J = −� vEvJ4! I%J 

b(,) = − 12u� �
��
��tI�� + I�� − I�Im�tI�� + I�� − I�Im�

tI�� + I����
�� %J%K 

Discretizamos el modelo en las dos direcciones: 

J4 = �ℎ; K4 = dℎ; 		d = 0	,1… ,�						�q�	�ℎ = 1 

,N = �∆,; 		� = 0,1…. 
I4TN = I(J4, KT , ,N) 
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I4Tm = Im+J4, KT , ,N. + �(�ℎ, dℎ)u 

Donde �	es la aproximación de la diferencia entre una imagen y su homóloga sin ruido, por  

tanto tiene media cero para cumplir con la restricción 1. 

El cambio temporal entre dos imágenes será el calculado ‘I�’ debido a la convergencia de este 

desde la imagen original a la reparada. 

I4TNYH = I4TN +	Δ,ℎ ��
��
�ΔX�

y
�z ΔX�I4TN

w+ΔX�I4TN .� + 1�+ΔX�I4TN , ΔY�I4TN .3�xH/�
{
�|

+ ΔX�
y
�z ΔX�I4TN

w+ΔX�I4TN .� + 1�+ΔX�I4TN , ΔY� I4TN .3�xH/�
{
�|

��
��
�

− ΔtλN 1I4TN − Im(�ℎ, dℎ)3 																		��p�		�, d = 1,2, … ,� 

 

ImTN =	IHTN 	; 		I�TN =	I�XHTN 	; 	I4mN =	I4HN 	; 	I4�N=	I4�XHN 		%o��%��	�	���	�q�%���q�o�	%o	Gpq�,op� 

Para entender la nomenclatura: 

ΔX� I4T = −+I4XH,T − I4T. 

ΔY� I4T = ++I4YH,T − I4T.	 
*q	����q	��p�	ΔX�I4T	K	ΔY�I4T	 

�(	�	, �	) = �í���q	�q%I�q	o�,po	�	K	� 

Finalmente se pasa b  al dominio discreto: 

bN = − ℎ2u� ��
��t(ΔY�I4T)� + (ΔY�I4T)� − (ΔY� I4Tm )+ΔY� I4TN .

t(ΔY� I4T)� + (ΔY�I4T)� − (ΔY�I4Tm )+ΔY�I4TN .
t(ΔY� I4T)� + (ΔY�I4T)���

�� 
Se impone una restricción para cada paso por estabilidad: 

Δtℎ� ≤ � 

Una vez el ruido ya no es un problema, uno de los principales inconvenientes surge cuando 

queremos calcular flujo que se desplaza más de un pixel entre fotogramas.  Para abordar este 

problema se parte de la solución mostrada por [4]. 
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 En primer lugar explicamos como se lleva a cabo la minimización, se utilizará  un modelo 

similar al de los gradientes descendentes de Newton Rapson con la adición de los parámetros 

‘w’ y T(s). Este modelo se utilizará igual para calcular ‘v’, ‘u’ y los coeficientes ‘a’ (que en 

realidad son , como veremos más abajo, los coeficientes que aproximarán el flujo óptico con 

una función lineal) con la diferencia de que para el cálculo del gradiente del funcional (�) se 

aplicará sólo la primera parte de éste (�c) para los valores ‘a’ ya que es donde están estos 

coeficientes implícitos y el funcional entero (�)	para el flujo óptico en si (‘u’ y ‘v’): 

INYH = IN − �(I) 1�(I) v�vI 			��p�	,q%q	I 

ENYH = EN − �(E) 1�(E) v�vE 	��p�	,q%q	E 

�4NYH = �4N − � 1�(�4) v�cv�4 		��p�	,q%q	� 

Donde 0 < w < 2 es un parámetro de sobrerrelajación para corregir en demasía el calculo de INYHdesde IN.  Con estos valores el sistema se ha mostrado que converge aunque el ratio 

exacto de convergencia dependerá de su valor exacto de ‘w’. El cálculo de w(u) y w(v) se 

explicará más adelante. 

T(x) es el límite superior de la derivada segunda de la función objetivo a minimizar, con esto 

nos aseguramos de que si hay un cambio muy grande en la derivada de la función a minimizar 

el cambio en está será pequeño para no calcular valores de IN muy distintos entre uno paso y 

el otro, si ocurriera lo contrario pudiera pasar que el sistema no convergiera al pasarnos del 

valor que minimice la función por utilizar un paso demasiado elevado: 

�(I) = v��vI� ; 	�(E) = v��vE� 	 ; 	�(�) = v��cv��  

Se comienza la iteración con flujo u=0 y el primer cambio ‘du’ en el flujo es computado. El 

nuevo flujo dado por la suma de estos es proyectado en el siguiente nivel de una hipotética  

pirámide. Se realiza el mismo proceso con la imagen original y la que acabamos de calcular 

gracias al flujo y se computa un nuevo ‘du’ en este nivel, el proceso se repetirá hasta que el 

flujo ha sido computado en toda la resolución. 

La región del flujo se describe de manera lineal con los coeficientes � como: 

I(J, K, �) = �I(J, K)E(J, K)� = ��m + �HJ + ��K�� + ��J + ��K� 
En una primera iteración se parte como ya se ha comentado con flujo nulo, por tanto se 

compara la segunda imagen con las mismas posiciones en la primera imagen y se calcula el 

flujo du y dv, con este flujo en la siguiente iteración comparemos las posiciones de la segunda 

imagen (x, y) con las posiciones donde este flujo nos dice que está la primera imagen (J ,	K ). 

Para relacionar unas con otras basta con restar el flujo óptico a la segunda imagen para tener 

las posiciones de ese mismo pixel en la primera imagen: 

(J , K ) = 	 (J, K) − 	G�Idq(I, E) 
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(J , K ) = 	 (J, K) −	(�m, ��) − ¡ ∗	(J  − ¢J, K  − ¢K) 

¡ = ��H					��	��					��� 
Donde Cx y Cy se corresponden con el centro de la región. 

Calculamos ahora las derivadas de los funcionales para poder llevar a cabo el método de 

minimización, para ello utilizaremos la función de penalización _(J, u) de Geman-McClure por 

facilidad  pese a no ser ninguna de las mencionadas anteriormente, el cálculo sería el mismo 

con cualquiera de ellas: 

_(J, u) = J�u� + J� ; 			£(J, u) = v_vJ = 	 2Ju(u� + J�)� 

v�cv�m = M\¤bc £(\H(�, d) − \�+� + I4,T, d + E4,T., uc) 

v�cv�H = M\¤J bc£(\H(�, d) − \�+� + I4,T, d + E4,T., uc) 

v�cv�� = M\¤ Kbc£(\H(�, d) − \�+� + I4,T, d + E4,T., uc) 

v�cv�� = M\�bc £(\H(�, d) − \�+� + I4,T, d + E4,T., uc) 

v�cv�� = M\� Jbc£(\H(�, d) − \�+� + I4,T, d + E4,T., uc) 

v�cv�� = M\� Kbc£(\H(�, d) − \�+� + I4,T, d + E4,T., uc) 

Mientras que los coeficientes T(x) se calculan como: 

��m = Mbc\¤� _--(J)��J 

��H = Mbc\¤�J� _--(J)��J 

��� = Mbc\¤� K�_--(J)��J 

��� = Mbc\�� _--(J)��J 

��� = Mbc\�� J�_--(J)��J 

��� = Mbc\�� K�_--(J)��J 



11 
 

_--(J)��J = 	 2uc� 

Se busca el valor máximo de _--(J)	 para cumplir con la restricción de que T(x) debe de  ser 

máxima, como se ha comentado anteriormente. 

Para el cálculo de T(u), T(v) y las derivadas parciales del funcional (en este caso el funcional 

total, ya que el flujo óptico está definido en su totalidad en él) se calculan de un modo similar 

donde los resultados son: 

�(I) = bc\¤�uc� + 4b¦u¦�  

�(E) = bc\��uc� + 4b¦u¦�  

El parámetro de sobrerrelajación ‘w’ en este caso no se calcula de forma experimental y se 

establece entre 0 y 2 si no que se aproxima como el valor propio máximo de la matriz 

Jacobiana, donde la aproximación para el valor óptimo resulta: 

�§¨� = 211 − ©1 − ª«¬�� 3ª«¬��  

ª«¬� = cosℎ­ 

ℎ = 1� + 1 

� = %��o���ó�	��,p�� 

Se demuestra que un filtrado de mediana en cada iteración de tamaño 5 en ambas direcciones  

da mejores resultados que no llevarlo a cabo o que realizar un filtrado de tamaño 3, 7 o un 

filtrado de tamaño 5 dos veces seguidas 

Por ello se modifica la función objetivo para incluir este filtrado de mediana: 

�(I, E) = M{bc_`(\H(�, d)4,T − \�(� + I4,T, d + E4,T)) +	b¦[_((I4,T − I4YH,T) + _((I4,T − I4,TYH)
+ _(+E4,T − E4Y,T) + _(+E4,T − E4,TYH)fZ +	b� 1®|° − °±|®� + ®|² − ²±|®�3+	M M b�(®E4,T − E 4³,T³® + ®I4,T − I 4³,T³®4³,T³´	�(4,T)4,T ) 

Se corresponde con el mismo del caso anterior con la adición de los dos últimos términos, 

pesados con b� y b�. Los términos  E 	K	I   se corresponden con un nuevo flujo de campo, Nij es 

la región de vecinos utilizada para estos terminos. El porqué de que está adición esté 

relacionado con un filtro de mediana esta demostrado en [5]. En él se expone que esta 

minimización esta relacionada con una computación de la mediana aunque un tanto diferente: 

I UYH4,T = �o%���(µo���q�U 	∪ `�,�) 
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Donde 

 

µo���q�U = WI UYH4³,T³Z	��p�	�-, d-	·	�(�, d) 

I m = 0		 
Data = ¸I4,T, I4,T ± º»ºk , I4,T ± 2 º»ºk , … , I4,T ± ®�4,T® º»�ºk¼ 

®�4,T® = �ú�opq	%o	Eo���q�	%o	(�, d) 

Nótese que  conforme la relación 
º»ºk	aumenta la ecuación de I UYH4,T	 se aproxima a la mediana 

en la primera iteración. 

 

Una optimización de este modelo se consigue con la minimización alternativamente de: 

�m(I, E) = M{bc_`(\H(�, d)4,T − \�(� + I4,T, d + E4,T)) + b¦[_((I4,T − I4YH,T) + _((I4,T − I4,TYH)
+ _(+E4,T − E4Y,T) + _(+E4,T − E4,TYH)fZ +	b� 1®|° − °±|®� + ®|² − ²±|®�3 

y �H(I, E) = b� 1®|° − °±|®� + ®|² − ²±|®�3 +	M M b�(®E4,T − E 4³,T³® + ®I4,T − I 4³,T³®4³,T³´	�(4,T)4,T ) 
 
En primer lugar se minimiza �m(I, E)	respecto a u y v tomando v 		y u 	como fijos y 

posteriormente se hace la operación inversa con �H(I , E ) 

Finalmente se desarrolla una mejora del modelo, en vez de describir el termino no local como 

está descrito actualmente se hace con una función que representa como de probable es para 

un pixel i’ j’ estar en la misma superficie que i j. 

	M M �4,T,4³,T³(®E4,T − E 4³,T³® + ®I4,T − I 4³,T³®4³,T³´	�(4,T)4,T ) 
Esta función estará por tanto relacionada con la distancia entre píxeles, la diferencia entre los 

valores de la imagen en esas posiciones y la oclusión. Como es lógico la función debería  

incrementar con distancias largas entre píxeles o elevada oclusión  como podemos apreciar:  

�4,T,4³,T³ = oJ� ½− |� − �-|� + |d − d-|�2uH� − |\(�, d) − \(�-, d-)|2u�� ¾q(�-, d-)q(�, d)  

 

La oclusión, como vemos en [6] se calculará la divergencia del flujo óptico que distingue entre 

distintos tipos de movimiento: 

q(�, d) = vvJ I(�, d) +	 vvK E(�, d) 
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Anexo C 

Descriptor global basado en líneas 

Se utiliza una técnica llamada detector de Canny [8] para detectar las líneas de una imagen. En 

primer lugar se pasa un filtro gaussiano con una sigma que nos da un suavizado de la imagen 

para eliminar el ruido de esta  y evitar la detección de líneas que no existen debidas a espurios. 

En segundo lugar se calculan los gradientes en la dirección vertical y horizontal: 

¿ = t¿�� + ¿�� 

À = atan	w¿�¿�x 

El ángulo theta se redondea a un ángulo múltiplo de 45 grados. Con este ángulo sabemos la 

dirección de la supuesta línea. Se establece un intervalo donde debemos de introducir un 

límite superior para ver cuando un punto será candidato a formará una línea y cuando no y un 

limite inferior. El límite inferior estará relacionado con lo permisivos que somos al forma la 

línea una vez se ha detectado el punto inicial de ésta. 

Se mirará el valor del gradiente de los pixel posterior y anterior en la dirección del ángulo del 

pixel que estamos comprobando, si el valor de este pixel es superior a los otros dos entonces 

pasará a ser un candidato de línea y guardaremos su valor, en caso contrario será rechazado 

(ver figura 26).  

 

 

 

 

 

Figura 26.  Gradientes y valores en una imagen. Figura tomado de [8] 

A partir de aquí debemos establecer con que puntos nos quedamos para formar parte de una 

línea. El valor máximo del intervalo debe ser alto porque mide como de restrictivos vamos a 

ser en nuestra selección de las líneas. Al escoger un valor alto nos aseguraremos que ese borde 

formará una línea. El valor bajo del intervalo servirá para calcular los bordes que acompañaran 

al borde calculado  con el intervalo alto, por tanto este valor deberá ser bastante pequeño 

para aseguramos de que formamos la línea que empieza en este valor alto. Una vez tenemos 

que píxeles van a formar líneas y cuales no se codifica la imagen en binario, si hay línea se 

iguala el pixel a 1 y si no a 0. Finalmente se procede a contar el número de píxeles que votan 

por una línea u otra. Sabemos que una línea esta parametrizada por ‘ro’ y ‘theta’ (ver figura 

27), por tanto: 
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Con la transformada de Hough, que es un simple procedimiento matemático disponible en 

Matlab, se calcula la posición ‘ro’ y ‘theta’ de cada pixel con valor uno en la figura 27. De esta 

manera hacemos un sistema de votaciones para estas dos variables. Esta votación no la 

realizamos en toda el volumen del vídeo si no que también empleamos celdillas espaciales y 

temporales, en cada una de ellas realizamos la detección de líneas y su respectivo sistema de 

votaciones, así formamos el descriptor que entrenará a la maquina de aprendizaje. 

 

 

 

 

Figura 27 Línea parametrizada por r y Á . Figura tomada de [8]. 

 

Anexo D 

Descriptor global basado en patrones locales binarios [7] 

Descripción de un vídeo a partir de la repetición de patrones binarios en su volumen.  Dado un 

punto del volumen del vídeo, se toman los puntos a su alrededor como vemos en la figura 28, 

se toman los fotogramas anterior y posterior, se describe un circulo alrededor del pixel en la 

imagen central y alrededor del pixel homólogo en las otros dos imágenes. Con estos tres 

círculos más los dos píxeles centrales exteriores tenemos definidos un conjunto de puntos que 

describirán al punto en cuestión.   

 

              

 

 

Figura 28  Volumen de puntos tomados para el cálculo de los patrones binarios respecto de cada punto. Figura tomada de [7] 

 

El primer paso consiste en substraer el valor del pixel central a todos los demás encerrados en 

su volumen. Cada fotograma contendrá P puntos y disponemos de 3 fotogramas para cada 

cálculo del patrón binario, el central y el posterior y anterior. 

Para conseguir invariancia en la escala de grises nos olvidamos de estas diferencias y 

simplemente codificamos en binario su resultado dependiendo de su signo, si este es positivo 

cambiaremos su valor por +1 y si es negativo lo cambiaremos por 0, esto lo representamos con 

la función ‘s’: 
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�(J) = ¸0, J < 01, J ≥ 0 

Se forma una ristra de 0´s y 1´s (siempre en un mismo orden dado) con estos valores y se 

calcula su número decimal, surgen 2^(3P+2) (3P píxeles que rodean al central debido a que 

tomamos 3 fotogramas y 2 píxeles debidos al pixel central correspondiente a los fotogramas 

posterior y anterior) números decimales diferentes, cada vez que aparezca un número será 

contado y así se formara nuestro descriptor. Este cálculo se realiza para cada pixel en el vídeo 

dentro de unos límites, debe de estar dentro de estos límites ya que el círculo no puede ser 

cortado  en los casos de píxeles cerca de las fronteras verticales, horizontales o temporales. En 

el fotograma último y primero por tanto no se podrá calcular, así como los píxeles más 

cercanos a la frontera  que la distancia del radio.  

Es necesaria también invariancia respecto a la rotación, para ello se toma un vector de cinco 

componentes, en la primera y última componente se emplaza el número binario 

correspondiente a los píxeles centrales de los fotogramas posterior y anterior. En las tres 

componentes centrales se hace lo mismo para los 4 píxeles de cada una de las tres imágenes, 

es decir en  la segunda componente se colocan en orden los 4 píxeles de la primera imagen, en 

la tercera lo mismo con la imagen central y en la cuarta componente con la imagen posterior. 

Una vez hecho esto por ejemplo nos queda un vector de este estilo: 

(1, 1010, 1101, 1100, 1)  

Cada una de las componentes del vector se rota el mismo número de veces hasta conseguir el 

número menor en el conjunto global del número binario. Esta rotación no se hace respecto de 

un punto y sí de este modo ya que no hay un solo eje de rotación como ocurre si calculásemos 

los LBP solamente en textura textura [9]. 

Tras la invariancia el vector queda: 

(1, 0101, 1011, 1001, 1) 

Para  P=4 tendremos un clasificador de 16384 valores, es demasiado grande.  

Por ello se hace la siguiente reducción del problema: 

Se toman tres planos ortogonales respecto al punto de referencia, uno será el plano XY, otro el 

plano XT y por último el plano YT. Los tres planos en este caso tendrán el mismo punto central, 

se calculará para cada uno de ellos los LBP igual que  en el caso anterior pero con la diferencia 

de que se toma cada plano independiente del otro y no se calcula el número binario de la 

composición de los tres, si no que se calcula el número binario para cada uno y posteriormente 

se concatenan como vemos en la siguiente imagen (figura 29). 
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Figura 29  Concatenación de tres planos donde a cada uno se aplica los LBP y es independiente de los demás. Figura tomada de 

[7] 

El histograma se define como una matriz Ä4,T donde j representa a que plano nos estamos 

refiriendo y el subíndice i representa el sumatorio de las veces que aparece el nivel ‘i’ para 

todos los planos de su tipo, es decir todos los planos XY, XT o YT. Por nivel ‘i’ entiéndase el 

valor que tomar el número binario al pasarlo a decimal.  

Ä4,T =	 M \WGT(J, K, ,) = �Z�,�,�  

Donde la función ‘I’ devolverá 1 si su ecuación interior ‘A’=true y 0 si ‘A’=false: 

Además se hace una normalización ya que estos planos pueden ser de diferentes tamaños en 

sus dos dimensiones, ya sean espaciales o espaciales y temporales, por ello: 

�4,T =	 Ä4,T∑ ÄU,TNÆÇÈUOm  

Anexo E 

Detector de Harris en 3D 

La idea consiste en calcular la correlación de un píxel con sus alrededores, se realiza con un 

suavizado previo del vídeo y  la correlación se calcula como la diferencia entre un píxel y sus 

vecinos: 

((J, K, ,) ==	MMM�(I, E, ,)(\(I, E, ,) − \(I + J, E + K, � + ,))�
�É�  

Donde �(I, E, ,)	o�	o�	�I�E���%q 

Al igual que se hacia en el cálculo del flujo óptico se quiere aproximar la diferencia \(I, E, ,) −\(I + J, E + K, � + ,)  por el desarrollo en serie de Taylor. La diferencia es que en este caso 

buscaremos máximos en esta diferencia y no mínimos ya que queremos detectar puntos 

salientes en las tres dimensiones. 

I(u + x, v + y, z + t) = I(u, v, t) + ∂I∂x 		dx + ∂I∂y 		dy + ∂I∂t 		dt 
De esta manera la auto-correlación se puede aproximar como: 
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((J, K, ,) = MMM�(I, E, ,) w∂I∂x 		dx + ∂I∂y 		dy + ∂I∂t 		dtx�
�É�  

Expresándolo en forma matricial: 

((J, K, ,) = (J, K, ,)¡	 ËJK,Ì 

Donde A es la matriz de Harris en cada pixel, en este caso queremos que los valores de los 

valores propios sean grandes los tres para tener los puntos salientes en las tres direcciones: 

¡ =	MMM�(I, E, ,) Í \¤� \¤\Î \¤\�\¤\Î \Î� \Î\�\¤\� \Î\� \�� Ï�É�  

Anexo F 

Clasificador 

Se utiliza una maquina de aprendizaje supervisada (Support Vector Machine ‘SVM’), es 

supervisada ya que conocemos la clase de cada video. Se transmite a la maquina la 

información de los descriptores y la clase de video al que pertenece cada uno de ellos. Ésta 

recopila la información y calcula las fronteras entre cada clase para una vez introducimos un 

nuevo video ver dentro de que frontera se encuentra y ser capaz de saber con la máxima 

posible exactitud a que clase pertenece. 

El SVM es un algoritmo muy complejo y disponemos de sus librerías [10]. En estas líneas vamos 

a explicar como opera  exactamente el SVM (ver figura 30).  Lo vamos a hacer de una manera 

meramente intuitiva, ya que vamos a utilizar solamente dos características y dos clases que 

clasificaremos de forma lineal.  

 

 

 

 

 

 

 

 

Figura 30  Ejemplo ilustrativo de como funciona el SVM, 3 clases y 2 características. Tomado de 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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Al tener solo dos características por clase podemos ver fácilmente en el plano X-Y de la figura  

31  como funciona el SVM. En el eje X tendremos la característica ÐH y en el eje Y tendremos la 

característica Ð�.  El valor de ambas nos da una posición en el plano y su valor  será ‘1’ en el 

caso de ser una clase de video u ‘-1’ en el caso de ser la otra clase. Recordemos que el sistema 

real será capaz de distinguir entre cuantos vídeos queramos y no entre solamente 2, en ese 

caso en vez de dar valores ‘-1’ y ‘1’ se les dará valores a las clases mediante numeración de 

estas. 

 

 

 

 

 

 

 

 

 

 

Figura 31 Ejemplo de división que realiza la máquina de aprendizaje. 

Como podemos ver calculamos 2 hiperplanos que  separan nuestras dos clases y entre ambos 

se calcula el hiperplano medio. Sabemos que un hiperplano esta definido como: 

�HÐH + ��Ð� − � = 0 

Donde [�H,	��] es el vector normal ‘w’ y el ‘0’ de la parte de la derecha puede tomar cualquier 

valor siempre y cuando variemos el valor de b para dejar la ecuación intacta. 

El hiperplano limitante de una clase lo forzamos a ser igual a 1 en el borde (mayor que uno 

cuando nos alejemos del borde hacia el exterior) y el hiperplano de la otra clase se fuerza a ser 

igual a -1 (menor que -1 cuando nos alejemos del borde hacia el exterior). 

De esta forma tenemos 2 variables ‘w’ y ‘b’ pero podemos ver que las soluciones son infinitas 

ya que hay infinitos planos paralelos que cumplan estar entre ambas clases debido a las 

diferentes inclinaciones que pueden tomar, por tanto la idea es que los planos separadores se 

encuentren a la máxima distancia posible y así minimizar la posibilidad de fallo. 

Matemáticamente: 

ÑÒ 5 � Ã 1; 	K Ã 1			
ÑÒ 5 � � 51; 	K � 51 
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Por tanto: 

Ó�ÑÒ � �� Ã 1 

De tal forma que se maximice la distancia entre planos que podemos calcular como: 

ÑÒÔ 5 � � 1 

ÑÒÕ 5 � � 51 

Ñ�ÒÔ 5 ÒÕ� � 2 

Ñ
®|Ñ|® �ÒÔ 5 ÒÕ� � 2

®|Ñ|® � %��,����� 

Conseguiremos maximizar la distancia minimizando ®|�|®. El problema es que la norma nos 

obliga a trabajar con raíces cuadradas que no es bueno para el coste computacional por lo que 

pasamos a minimizar  
H
� ®|�|®�. El factor ½ es simplemente por conveniencia matemática, se irá 

al realizar la derivada en la minimización. 
 

Concepto de los multiplicadores de Lagrange: 

Concepto importante  y necesario en nuestro desarrollo.  Introducimos el problema de  

maximizar (minimizar)  una o varias funciones  ‘ f(x, y, z,…) ‘ sujetas a una o varias condiciones 

‘g(x, y, z,…) = c’ (ver figura 32). 

 

 

 

 

 

 

 

 

Figura 32. Representación de un funcional a minimizar f(x, y) sujeto a runa restricción g(x, y)=c. Imagen tomada de el articulo de 

los multiplicadores de LaGrange de Wikipedia. 

 

Para resolverlo, podemos pensar que ambas funciones ‘f’ y ‘g’ deben cortarse para cumplirse a 

la vez. Además, debemos de buscar un máximo (mínimo) de ‘f’ por lo que el valor de esta no 

debe variar respecto a ‘g’ en el punto encontrado [x, y]. 
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Por tanto no nos vale un punto donde ‘f’ y ‘g’ se crucen, si no que necesitamos que en ese 

punto sus tangentes sean iguales, así habremos encontrado el máximo de ‘f’ cumpliendo la 

restricción ‘g’. 

Matemáticamente: 

∇Ö,×f � 5λ∇Ö,×n 
El valor de lambda es debido a que las derivadas aunque iguales  en dirección pueden tener 

distinta dimensión.  

Le ecuación anterior y g(x, y) = c. las podemos unir como una nueva función: 

∇�,�G = −λ∇�,�n 
Λ�J, K, λ� = G�J, K� +  λ�g�x, y� − c� 

Esto es así ya que si hacemos el gradiente respecto a ‘x’ e ‘y’ obtenemos la primera ecuación y  

si lo efectuamos respecto a lambda obtenemos la segunda   g(x, y) = c. Así nuestra solución es: 

∇�,�ÙΛ�J, K, λ� = 0 

El gradiente igualado a cero de esta nueva función viene a ser lo mismo que una maximización 

(minimización) de: 

Λ�J, K, λ� = G�J, K� +  λ�g�x, y� − c� 

Por tanto parece claro que siguiendo con nuestro problema podemos plantearlo de esta 

misma manera a continuación, donde si hacemos este cambio de variables: 

� = −b 

f�x, y� = 12 ®|�|®� 
y�wx + b� − 1 = n�J, K� − � 

 
Tenemos: 

���Ü,#,Ý Þ12 ®|�|®� − M �4[
N

4OH
y4�wx4 − b� − 1ß 

Recordemos que la minimización es el gradiente igualado a cero, por ello la forma de 

expresarlo sigue siendo la misma. El problema que surge es que podríamos minimizarlo 

llevando los valores de � al infinito lo que no resulta correcto. Para resolverlo, maximizamos 

primero respecto a �  y posteriormente continuamos con la minimización: 

���Ü,#��JÝ Þ12 ®|�|®� − M �4[
N

4OH
y4�wx4 − b� − 1]ß 
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Surge otro inconveniente, el factor Ó�ÑÒ � �� 5 1	puede hacerse muy grande, por lo que 

igualaremos los �4 a cero en esos casos y será distinto de cero sólo en la frontera, en esos 

casos los Òà serán nuestros vectores de apoyo (svm) 

Si derivamos respecto a ‘w’ e igualamos a 0 vemos que se tiene que cumplir la siguiente 

relación: 

� = M�4
N

4OH y4x4  
Lo mismo respecto a ‘b’: 

M�4
N

4OH y4 = 0 

Solo algunos 	�4	serán mayores que cero, los correspondientes  Òà  serán los vectores de 

apoyo: 

y4(wx4 − b) = 1 ⇒ wx4 − b = 1y4 ⇔ � = wx4 − y4 

� = 1�eã M wx4 − y4
�äå
4OH  

 

Se realiza un cambio en la forma de expresarlo, se pasa a la forma dual: 

Sustituimos estas 3 ecuaciones en la ecuación original a minimizar: 

� = M�4
N

4OH y4x4  

M�4
N

4OH y4 = 0 

®|�|®� = w ∙ w 

 

Operando, llegamos a: 

*(�) = M�4
N

4OH − 12M�44,T �TK4KTJs4JT = M�4
N

4OH − 12M�44,T �TK4KTç(Js4, JT) 
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Donde está solamente expresada respecto a �4, por tanto se debe maximizar respecto a esta. 

Vemos que aparece una nueva función en vez de J4sJT , aparece la función de Kernel: 

ç+Js4, JT. � 	��J4� ∙ ��JT� 

La función de Kernel es utilizada ya que no siempre queremos separar nuestras clases de 

forma lineal, es por eso que en vez de 	Ó�ÑÒ 5 �� Ã 1 prefiramos otros tipos de separación, 

por ello, de forma general se puede expresar: 

Ó(Ñè(Ò) − �) ≥ 1 

Donde: 

� = M�4
N

4OH y4�(J4) 

� ∙ è(Ò) = M�4
N

4OH y4ç(J4, J) 

La función de Kernel puede tener distintas composiciones, las mejores han sido estudiadas: 

� Polinomio homogéneo:    ç+J4 , JT. = (J4 ∙ JT)é   

� Polinomio no homogéneo   ç+J4, JT. = (J4 ∙ JT + 1)é 

� Función en base radial Gaussiana  :  ç+J4, JT. = oJ� w−ê ë®J4 − JT®ë�x				para γ > 0 

� Tangente hiperbólica:        ç+J4, JT. = tanh	(çJ4 ∙ JT + �) 

¿Qué hacemos si la información no es separable? Si tenemos puntos clasificados en el otro 
dominio y viceversa (ver figura 33). 

 

 

 

 

 

 

 

 
Figura 33.  Información no separable 

En este caso en vez de minimizar solamente la distancia ‘w’ también vamos a minimizar la 

suma de los errores con un peso ‘C’ a determinar para cada uno de ellos: 
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í��[12��s + ¢ΣiT] 
	error	 = 	iT 

Nuestra función a cumplir cambiará por tanto para estos puntos que están fuera del margen, 

en estos casos: Óà(Ñè(Òà) − �) ≥ 1-i4  
Procediendo de la misma manera que en el caso anterior: 

���Ü,#��JÝï Þ12 ®|�|®� − M�4[N
4OH y4(wx4 − b) − 1 + i4] − Mi4ð4

N
4OH ß 

Nuestra forma dual pasará a ser la misma, con la única restricción de que nuestros valores ‘C’ 

deben de ser mayores que ‘�′. Maximizando respecto a ‘�-: 
*(�) = M�4

N
4OH − 12M�44,T �TK4KTç(Js4, JT) 

0 ≤ �4 ≤ ¢ 

Para resolver el hecho de que nuestro problema tiene tantas clases como queramos y no sólo 

2 lo reducimos de un problema de multi-clase a varios problemas de clasificación binarios 

donde podremos utilizar la teoría explicada, tenemos dos opciones: 

1) 1 clase comparada con el resto. 1 vs 1  

2) 1 clase comparada con todas las demás. 1 vs todos. 

Para nuestro problema probamos el Kernel Gaussiano, debemos de maximizar la precisión de 

nuestro SVM respecto a las dos contantes a determinar, ‘C’ que mide el peso dado al error y 

‘gamma’ que proviene del propio Kernel Gaussiano. Está demostrado que hay un rango de 

valores para ambos que maximizan esta eficiencia y los cuales probamos con un doble bucle 

para encontrar la mayor. 

C ·	{2X�, 2X�, … , 2H�, 2H�}; 
ê	·	{2XH�, 2XH�, … , 2H, 2�} 

Realizamos un bucle recorriendo todos los valores  de C y gamma y cogemos los que nos den 

una mayor precisión respecto a un conjunto de validaciones. Una vez lo tenemos, 

comprobamos que realmente funciona con un conjunto de tests. 

 



24 
 

Anexo G 

Distancia entre descriptores 

Se comprueba la validez de nuestro descriptor calculando las distancias entre histogramas de 

distintos vídeos.  Cuanto menor sea esta distancia querrá decir que más similares son los dos 

histogramas de los vídeos que hemos analizado y por tanto si entre vídeos de la misma clase 

esta distancia es visiblemente inferior que entre vídeos de otras clases tendremos que nuestro 

método describe bien el vídeo. 

Como se aprecia en la tabla 13  las respectivas distancias entre clases ‘caballo andando’ y 

‘caballo corriendo’ son menores que la distancia entre cualquiera de estas dos clases y el resto. 

Así mismo el descriptor empareja antes a los caballos por el fondo que por la acción que 

realizan (en este caso correr o andar), es decir la distancia es menor de ‘caballo 1 corriendo’ a 

‘caballo 1 andando’ que de ‘caballo 1 corriendo’ a ‘caballo 2 corriendo’. En el caso de la clase 

‘speech’ la distancia entre ambos vídeos es la mínima posible, por lo tanto describe bien 

personas hablando. Lo mismo ocurre con avión despejando y aterrizando y la clase ping pong, 

también es un buen descriptor para ellos. El descriptor sólo falla en la clase pájaros ya que la 

empareja con la clase ping pong, aunque no falla del todo porque la 2ª, 3ª y 4ª distancias mas 

cortas a pájaro 2 son pájaro 1, avión 2 y avión 1 respectivamente, por tanto parece ser un 

resultado lógico. Llegamos a la conclusión de que es un descriptor aceptable para nuestro 

objetivo y a partir del siguiente experimento utilizaremos la máquina de aprendizaje explicada 

en el apartado 3 en vez de mínimas distancias para clasificar los vídeos. 

 

 Caballo 1 Caballo 1 R Caballo 2 Caballo 2 R Discurso 1 Discurso 2 Avión 1 A 

Caballo 1 0 0.23 0.33 0.32 0.53 0.53 0.48 

Caballo 1 R 0.23 0 0.36 0.35 0.56 0.55 0.52 

Caballo 2 0.33 0.36 0 0.20 0.46 0.44 0.42 

Caballo 2 R 0.32 0.35 0.35 0 0.5 0.48 0.46 

Discurso 1 0.53 0.56 0.56 0.5 0 0.34 0.43 

Discurso 2 0.53 0.55 0.55 0.48 0.34 0 0.41 

Avión 1 A 0.48 0.42 0.42 0.46 0.43 0.41 0 

Avión 1 D 0.44 0.47 0.41 0.42 0.52 0.47 0.36 

Avión 2 A 0.41 0.45 0.38 0.4 0.45 0.44 0.25 

Avión 2 D 0.43 0.47 0.4 0.4 0.49 0.44 0.35 

Pájaros 1 0.56 0.58 0.51 0.54 0.42 0.47 0.44 

Pájaros 2 0.48 0.49 0.44 0.44 0.47 0.42 0.46 

Ping Pong 1 0.47 0.50 0.39 0.4203 0.44 0.42 0.35 

Ping Pong 2 0.45 0.47 0.41 0.43 0.46 0.44 0.38 

Tabla  13(1).  Distancia entre descriptores  
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 Avión 1 D Avión 2 A Avión 2D Pájaros 1 Pájaros 2 Ping-Pong 1 Ping Pong 2 

Caballo 1 0.44 0.41 0.43 0.56 0.48 0.47 0.44 

Caballo 1 R 0.47 0.45 0.47 0.58 0.49 0.50 0.47 

Caballo 2 0.41 0.38 0.4 0.51 0.44 0.39 0.41 

Caballo 2 R 0.42 0.4 0.40 0.54 0.44 0.42 0.43 

Discurso 1 0.52 0.45 0.49 0.42 0.47 0.44 0.46 

Discurso 2 0.47 0.44 0.44 0.47 0.42 0.42 0.44 

Avión 1 A 0.36 0.25 0.35 0.44 0.41 0.35 0.38 

Avión 1 D 0 0.35 0.18 0.48 0.42 0.37 0.40 

Avión 2 A 0.35 0 0.33 0.43 0.41 0.35 0.36 

Avión 2 D 0.18 0.33 0 0.49 0.41 0.35 0.37 

Pájaros 1 0.48 0.43 0.49 0 0.41 0.46 0.45 

Pájaros 2 0.42 0.41 0.41 0.41 0 0.39 0.37 

Ping Pong 1 0.37 0.35 0.35 0.46 0.396 0 0.29 

Ping Pong 2 0.40 0.36 0.37 0.45 0.37 0.29 0 

Tabla  13(2).  Distancia entre descriptores  

 

Anexo H 

Experimentos realizados con ‘dataset Hollywood2’  [14]. Sintonización  

de parámetros 

Se utiliza el dataset  elaborado por Ivan Laptev [14] para afinamiento de los parámetros de 

nuestro descriptor. Véase desde la figura 34 a la figura 39 algunas de las distintas clases 

utilizadas en este dataset. 

 

Figura 34 Conducir 
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Figura 35. Levantarse 

 

Figura 36. Pelea 

 

Figura 37. Correr 

 

 

 

 

 

 

Figura 38 Levantarse 
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Figura 39. Ponerse de pie 

Se trata de un ‘dataset’ de películas de Hollywood. Es utilizado por diversos autores que han 

investigado este problema para así poder hacer una comparación con el estado del arte. Este 

‘dataset’ se divide en 12 acciones (descolgar el teléfono, beso, abrazo, levantarse, sentarse…) 

sacadas de diversas películas de Hollywood, unas se utilizan para realizar el entrenamiento y 

otras distintas para testear nuestro clasificador. 

Debido a su gran extensión se ha llevado a cabo una parte de los vídeos. Se han tomado  20 

vídeos de entrenamiento por clase, 10 vídeos por clase para su validación y 20 vídeos por clase 

para el test final.  

Se ha medido la calidad del descriptor en relación a la precisión de la media, que es un 

parámetro resultado del cociente entre los falsos positivos por clase y la suma de los positivos 

totales (falsos y verdaderos).  

�po����ó� � verdaderos	positivos
verdaderos	positivos � falsos	positivos	 

Se han obtenido unos resultados bastante independientes  a la variación de parámetros, 

podemos decir  que nuestro descriptor es bastante robusto a pequeños cambios y no cambia 

mucho al darse pequeñas variaciones en los vídeos, lo contrario  no hubiera sido un buen 

resultado ya que depender de un  descriptor que cambia en demasía con la variación de 

parámetros no aporta demasiada confianza cuando se intenta probar una ristra nueva de 

vídeos ya que los valores que optimicen a estos nuevos vídeos pueden ser muy diferentes  que 

en experimentos anteriores, esto haría que el sistema fuera más caro computacionalmente 

hablando, en cualquier caso hay unas pequeñas diferencias en los resultados que procedemos 

a comentar: 
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 Aleatorio G-HOG3D  Aleatorio G-HOG3D 

AnswerPhone 0,012 0,026 HugPerson 0,077 0,041 

DriveCar 0,151 0,183 Kiss 0,089 0,111 

Eat 0,120 0,231 Run 0,056 0,109 

FightPerson 0,184 0,325 SitDown 0,045 0,000 

GetOutCar 0,023 0,077 SitUp 0,038 0,050 

HandShake 0,041 0,138 StandUp 0,023 0,108 

mean 0.071 0.112 mean 0.071 0.112 

Tabla 14. Resultados con el G-HOG3D  y unos parámetros iniciales. 

Se realiza un primer experimento. En la tabla 14 se ve como no salen resultados demasiado 

altos.  Analizando los vídeos se ve que quizás el ‘dataset’ de Hollywood2 no sea muy 

interesante para verificar las mejoras que se realicen en nuestro descriptor ya que tiene 

diversos problemas: En algunas tomas ocurren dos mismas acciones a la vez (por ejemplo, ir en 

coche y comer, hablar por teléfono y comer, dar un beso y abrazo al mismo tiempo, etc…) 

además mezcla escenas ‘buenas’ donde aparece la acción especificada con diversas escenas 

donde no ocurre aparentemente nada o incluso ocurre otra acción distinta a la que realmente 

debería de ocurrir. Por esto, se hizo un filtrado del dataset, escogiendo sólo escenas buenas y 

esto dio lugar, como se ve en la tabla 15, a un incremento de casi el 100% en la clasificación de 

vídeos. 

 

 

 Aleatorio G-HOG3D G-HOG3D 

FILTRADO 

AnswerPhone 0,012 0,026 0,100 

DriveCar 0,151 0,183 0,370 

Eat 0,120 0,231 0,391 

FightPerson 0,184 0,325 0,300 

GetOutCar 0,023 0,077 0,214 

HandShake 0,041 0,138 0,161 

HugPerson 0,077 0,041 0,200 

Kiss  0,089 0,111 0,132 

Run 0,056 0,109 0,222 

SitDown 0,045 0,000 0,333 

SitUp 0,038 0,050 0,000 

StandUp 0,023 0,108 0,000 

mean 0.017 0.112 0,202 

Tabla 15. Comparación entre el dataset y el dataset filtrado a sólo tomas buenas 

Como se explicó en la sección descriptores en cada celdilla tenemos los valores de los módulos 

de los vectores direccionales y para fijar si el valor de este módulo es punible como 
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significativo se compara con los demás módulos de dos formas distintas, por un lado si este es 

superior a la media se acepta y por el otro si es superior a la mediana. Como se ve en la tabla 

se han hecho comparaciones y utilizando la mediana se obtienen resultados de entorno al 3% 

superiores. Por tanto, al menos para este dataset, conviene utilizar la mediana (ver tabla 16). 

 

 media mediana media mediana media mediana 

AnswerPhone 0,100 0,105 0,136 0,100 0,059 0,150 

DriveCar 0,345 0,357 0,303 0,370 0,323 0,333 

Eat 0,300 0,333 0,353 0,391 0,296 0,280 

FightPerson 0,300 0,300 0,233 0,300 0,304 0,313 

GetOutCar 0,129 0,107 0,150 0,214 0,069 0,077 

HandShake 0,238 0,250 0,346 0,161 0,208 0,250 

HugPerson 0,143 0,200 0,067 0,200 0,182 0,214 

Kiss  0,180 0,238 0,143 0,132 0,154 0,233 

Run 0,240 0,300 0,211 0,222 0,304 0,318 

SitDown 0,000 0,143 0,400 0,333 0,222 0,333 

SitUp 0,000 0,000 0,000 0,000 0,000 0,000 

StandUp 0,143 0,133 0,000 0,000 0,133 0,177 

mean 0,176 0,206 0,195 0,202 0,188 0,223 

Tabla 16. Comparación ente el uso de media y mediana. 

Las celdillas son divisiones de nuestro vídeo tanto espaciales como temporales, para la división 

temporal se comprueba (ver tabla 17) que a mayor división en el tiempo mejor clasificación 

(hasta un punto donde empieza a bajar  la precisión si seguimos incrementando la 

discretización temporal). El pensamiento es que en el caso de ser una acción continua y 

constante importará poco si discretizamos mucho o poco mientras que si la acción es variable 

con el tiempo mejorará la clasificación con diescretizaciones más altas, por ejemplo para 

describir un beso, si este se compone de mirada inicial, beso y despedida parece que 

funcionaría mejor una descripción temporal dividida en tres partes y no en una sola parte o 

uno dividido en más partes que tres. 

 

 

 

 

 

 

 



30 
 

 1 celdilla 

temporal 

2 celdillas 

temporales 

3 celdillas 

temporales 

4 celdillas 

temporales 

6 celdillas 

temporales 

AnswerPhone 0,000 0,188 0,177 0,150 0,118 

DriveCar 0,000 0,321 0,333 0,333 0,355 

Eat 0,000 0,308 0,318 0,280 0,286 

FightPerson 0,278 0,238 0,208 0,313 0,250 

GetOutCar 0,000 0,036 0,077 0,077 0,100 

HandShake 0,250 0,280 0,280 0,250 0,269 

HugPerson 0,000 0,250 0,214 0,214 0,235 

Kiss  0,092 0,088 0,135 0,233 0,156 

Run 0,500 0,143 0,313 0,318 0,500 

SitDown 0,000 0,000 0,167 0,333 0,200 

SitUp 0,000 0,222 0,000 0,000 0,000 

StandUp 0,167 0,111 0,125 0,177 0,067 

mean 0,107 0,182 0,196 0,223 0,211 

Tabla 17. Aumento de las celdillas temporales 

Las imágenes como hemos explicado anteriormente han sido reducidas (ver figura 40), 

también hemos comprobado el efecto de estas reducciones en los resultados (tabla 18),  entre 

24 y 96 píxeles para la dimensión vertical de la imagen la mejor clasificación la da un valor 

intermedio de 36 / 48 píxeles. La explicación es que para imágenes grandes tenemos 

información con mucho detalle y se calcularán muchos gradientes innecesarios, para imágenes 

muy pequeñas ocurre que perdemos gradientes importantes conforme el pixelado es menor 

en la imagen. 

 
Figura 40.  Fotograma con distintos tamaños. 
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 Tamaño 24 

en altura 

Tamaño 36 

en altura 

Tamaño 48 

en altura 

Tamaño 72  

en altura 

Tamaño 96 

en altura 

AnswerPhone 0,125 0,136 0,118 0,158 0,133 

DriveCar 0,300 0,313 0,355 0,324 0,231 

Eat 0,304 0,250 0,286 0,308 0,296 

FightPerson 0,280 0,273 0,250 0,188 0,125 

GetOutCar 0,048 0,143 0,100 0,063 0,079 

HandShake 0,194 0,273 0,269 0,238 0,214 

HugPerson 0,250 0,182 0,235 0,200 0,071 

Kiss  0,125 0,177 0,156 0,132 0,091 

Run 0,167 0,313 0,500 0,333 0,250 

SitDown 0,250 0,333 0,200 0,333 0,429 

SitUp 0,000 0,200 0,000 0,000 0,000 

StandUp 0,143 0,000 0,067 0,077 0,077 

mean 0,182 0,216 0,211 0,196 0,166 

Tabla 18. Aumento del tamaño en altura 

Para la discretización en textura de las celdillas ocurre algo parecido que para la temporal, en 

este caso hemos analizado como responde ante la variación del número de celdillas verticales 

y horizontales y efectivamente mejoran los resultados a mayor número de celdillas (otra vez, 

hasta llegar a cierto punto, ver tabla 19). En este caso se ha dividido la anchura y altura entre 

un número par para no perder la perspectiva de que la persona es un sujeto simétrico.  

 

 6 celdillas 

espaciales 

8 celdillas 

espaciales 

 6 celdillas 

espaciales 

8 celdillas 

espaciales 

AnswerPhone 0,150 0,210 HugPerson 0,214 0,167 

DriveCar 0,333 0,400 Kiss 0,233 0,143 

Eat 0,280 0,364 Run 0,318 0,235 

FightPerson 0,313 0,250 SitDown 0,333 0,286 

GetOutCar 0,077 0,095 SitUp 0,000 0,000 

HandShake 0,250 0,300 StandUp 0,177 0,077 

mean 0,223 0,211 mean 0,223 0,211 

 Tabla19. Aumento de celdillas espaciales 

Lo mismo ocurre para el número de bins (tabla 20), donde se han utilizado sobretodo números 

pares de configuraciones con el mismo objetivo de preservar la simetría del cual hemos habla 

de anteriormente y el sistema mejora hasta llegar a 6 divisiones por ángulo, 8 divisiones ya da 

lugar a un empeoramiento de los resultados. 
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 6 bins 8 bins 4 bins  6 bins 8 bins 4 bins 

AnswerPhone 0,150 0,105 0,111 HugPerson 0,214 0,200 0,154 

DriveCar 0,333 0,357 0,200 Kiss  0,233 0,238 0,200 

Eat 0,280 0,333 0,143 Run 0,318 0,300 0,286 

FightPerson 0,313 0,300 0,191 SitDown 0,333 0,143 0,000 

GetOutCar 0,077 0,107 0,059 SitUp 0,000 0,000 0,000 

HandShake 0,250 0,250 0,217 StandUp 0,177 0,133 0,133 

mean 0,223 0,206 0,141 mean 0,223 0,206 0,141 

Tabla 20. Aumento de ‘bins’. 

Se han probado otra configuraciones del descriptor, han dado peores resultados debido a que 

se ha utilizado información redundante en el sentido de que es repetida, esto es así ya que en 

vez de utilizar dos ángulos para el descriptor se han utilizado tres y realmente el vídeo es un 

volumen de imágenes y se puede describir con sólo dos ángulos, al igual que para describir un 

solo fotograma es suficiente un solo ángulo y no dos. 

 

Anexo I 

Experimentos realizados con ‘dataset KTH’  [15]. Sintonización  de 

parámetros 

Se trata, como vemos desde la figura 41 a 46, de un dataset más sencillo a la hora del 

reconocimiento debido a la sencillez de sus acciones y el emplazamiento del sujeto en un 

fondo constante donde la única zona móvil es la persona que realiza la acción. 

 

 

 

 

 

Figura 41. Boxear 
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Figura 42. Dar palmas 

 

 

 

 

 

Figura 43. Movimiento de manos 

 

 

 

 

 

Figura 44. Trotar 

 

 

 

 

 

 

Figura 45. Correr 
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Figura 46. Caminar 

Se sigue sintonizando los parámetros de nuestro descriptor. Este dataset de reconocimiento 

de acciones, también viene siendo muy utilizado por diversos autores, la razón por la que lo 

utilizamos, a parte de para poder comparar nuestro descriptor con el resto es porque se trata 

de un ‘dataset’ más sencillo y menos extenso lo que proporciona una visualización y 

comparación de resultados más fácil y rápida. Por etapas se hizo lo siguiente: 

1) Se comienza utilizando el descriptor que mejor ha funcionado en el experimento 

anterior, se utiliza la misma configuración (tabla 21). Disponemos de 100 vídeos en 

total para cada una de las cuatro clases. Se otorgan 32 vídeos para hacer el 

entrenamiento de nuestra maquina de aprendizaje, 32 para la validación de la 

misma y 36 para comprobar los resultados de clasificación. 

 

 Boxing Handclapping Handwaving Jogging Running Walking mean 

G-HOG3D 0.6531 0,9524 0,9140 0,5000 0,5700 0,5600 0.6531 

Tabla 21. Prueba inicial para el G-HOG3D 

 

2) En este descriptor se piensa en la idea de que es más importante el cambio en el 

tiempo de la acción que la acción en si misma. Por ello se piensa que pesando más 

los gradientes calculados en la dimensión temporal mejorará los resultados. Estos 

gradientes se calculan como hemos visto en la sección del descriptor HOG como 

diferencias en la dimensión temporal entre píxeles contiguos. Por este motivo se 

hace una prueba dándole un peso doble a los gradientes temporales respecto a los 

espaciales. Como vemos (tabla 22) los resultados no son bastante más bajos por lo 

que seguiremos pesando igualmente de ahora en adelante. 
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 Boxing Handclapping Handwaving Jogging Running Walking mean 

Peso 

gradiente 

temporal  

unitario 

0,6531 0,9524 0,9140 0,5000 0,5700 0,5600 0.6900 

Peso 

gradiente 

temporal 

doble 

0,4500 0,7300 1 0,4400 0,6190 0,500 0.6200 

Tabla 22. Aumento del peso en el gradiente temporal 

 

3) Utilizamos el mismo descriptor que en la primera etapa, el cambio es que ahora no 
utilizamos los mismos vídeos que antes para entrenar y validar, pasamos 24 de los 
vídeos de validación a entrenamiento. Con esta modificación mejoran los 
resultados, algo que parece evidente ya que se utilizan los mismos vídeos para 
entrenar a nuestra SVM pero en este caso para el entrenamiento propiamente 
dicho se utilizan más videos y menos para la validación ya que con valores de 
entorno al 20% de vídeos para la validación respecto al entrenamiento es 
suficiente. Así, de ahora en adelante utilizaremos esta configuración para los 
vídeos. Ver tabla 23. 

 
 

 Boxing Handclapping Handwaving Jogging Running Walking mean 

Vídeos de 
entrenamiento 

originales 
0,6531 0,9524 0,9140 0,5000 0,5700 0,5600 0.6900 

Mayor número 
de vídeos en 
entrenamiento 

0,6182 0,9167 1 0,6000 0,5800 0,7800 0,7491 

Tabla 23 Incremento del número de vídeos de entrenamiento 

 

4) En esta nueva etapa variamos la forma de aceptación de un punto como 

significativo o no significativo. Como ya se ha explicado, para aceptar el gradiente 

total dentro de una celdilla lo compararemos con el resto mediante las funciones 

media y mediana. Si este valor es más grande que la media o mediana (depende de 

la función que utilicemos) lo tomaremos como significativo. Hemos utilizado la 

mediana ya que en el experimento de Hollywood otorgaba resultados un 3% 

superiores y además es más robusta a valores erróneos. En este caso vemos que  la 

media  funciona un 2% poco mejor y la continuaremos utilizando (ver tabla 24). 
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 Boxing Handclapping Handwaving Jogging Running Walking mean 

mediana 0,6182 0,9167 1 0,6000 0,5800 0,7800 0,7491 

media 0,6111 0,9545 0,9667 0,6000 0,6522 0,8235 0,7680 

Tabla 24. 

 

5) Igual que en la etapa 4 pero sin el suavizado que se le hacía a cada imagen donde 

se elevaba el valor de cada pixel a 0,5 y se hacía una redistribución de los colores 

para utilizar toda la gama de estos, es decir desde 0 a 255. Se ve que el resultado 

mejora sin esta operación que sufrían las imágenes, esto es debido a que el 

suavizado provoca que algunos de gradientes se pierdan, esto es bueno si se 

pierden gradientes pequeños que no aportan la información necesaria, pero si se 

pierden los gradientes importantes es cuando los resultados empeoran (ver tabla 

25). 

 

 Boxing Handclapping Handwaving Jogging Running Walking mean 

Con 
suavizado 

0,6111 0,9545 0,9667 0,6000 0,6522 0,8235 0,7680 

Sin 
suavizado 

0,6800 0,9600 0,9688 0,6296 0,6818 0,7895 0,7849 

Tabla 25. Comparación entre suavizar y no suavizar. 

6) Igual que en la etapa 5 pero en vez de calcular el ángulo que describen nuestro 

vídeo temporalmente mediante el gradiente en ‘x’ y en ‘t’ lo haremos  mediante 

los gradientes en ‘y’ y en ‘t’. Esto da un mejor resultado utilizar la relación de 

gradientes verticales respecto al tiempo antes que la utilización de gradientes 

horizontales respecto al tiempo (ver tabla 26). En un principio parecería lógico que 

los resultados fueran similares o iguales ya que para calcular la posición de un 

vector en tres dimensiones es suficiente con dos ángulos, sean los calculados hasta 

ahora o sea los probados en esta nueva etapa pero en cambio salen unos 

resultados un 4% superiores por lo que seguiremos utilizando esta configuración 

 

 Boxing Handclapping Handwaving Jogging Running Walking mean 

Ángulo 
temporal 
(x-t) 

0,6800 0,9600 0,9688 0,6296 0,6818 0,7895 0,7849 

Ángulo 
temporal 
(y-t) 

0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272 

Tabla 26. Diferentes formas de cálculo del ángulo temporal. 

7) Se calculan los descriptores utilizado tanto en la etapa 5 como en la etapa 6 (ver 

tabla 27) de forma independiente y se juntan uno detrás de otro en un descriptor 

global, se obtienen los mismos  resultados que en la anterior etapa por tanto 
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desechamos esta idea ya que el descriptor es el doble en tamaño y no aporta 

mejores resultados. 

 

 Boxing Handclapping Handwaving Jogging Running Walking mean 

Etapa 5 0,6800 0,9600 0,9688 0,6296 0,6818 0,7895 0,7849 

Etapa 6 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272 

Etapa 5+6 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272 

Tabla 27. Unión etapa 5 y etapa 6 

 

8) Una vez hemos calculado una celdilla al completo se procede a normalizarla como 

ya hemos visto, después se toman los valores mayores que 0.2 y se igual a 0.2 para 

evitar altos gradientes debidos por ejemplo a un cambio de luminosidad que no 

aporta mucha información. Se elimina esta restricción. Los resultados empeoran 

considerablemente al pensar que no íbamos a encontrar valores tan grandes como 

para estropear nuestro descriptor ya que valores grandes restan la aportación de 

los valores más pequeños (ver tabla 28). 

 

 Boxing Handclapping Handwaving Jogging Running Walking mean 

Con límite 
de 0.2 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272 

Sin límite 
de 0.2 0,6863 0,8667 1 0,6098 0,7576 0,8286 0,7915 

Tabla 28. Comparación entre limitación de los gradientes y no limitación 

9) Igual que la etapa 6 pero se aumentan los bins. En este ‘dataset’ un aumento de 

los bins de 6 a 8 si que produce una mejora, aunque realmente poco significativa. 

Ver tabla 29 

 

 Boxing Handclapping Handwaving Jogging Running Walking mean 

6 bins 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272 

8 bins 0,7292 0,9360 1 0,7143 0,8056 0,8158 0,8334 

Tabla 29. 

10) Igual que la etapa 9, el cambio aquí es muy parecido al cambio en 8 donde 

quitábamos la restricción de que si en una celdilla daba un valor mayor de 0.2 se 

igualaba a 0.2, en este caso somos un poco menos restrictivos y dejamos este valor 

en 0.4. Vemos que antes no había funcionado la idea de quitar la operación que 

elimina valores mayores de 0.2, en cambio si hacemos  lo mismo pero con una 

restricción menor de hasta 0.4 los resultados mejoran aunque no es un gran 

cambio. Ver tabla 30. 
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 Boxing Handclapping Handwaving Jogging Running Walking mean 

Límite de 
0.2 

0,7292 0,9360 1 0,7143 0,8056 0,8158 0,8334 

Límite de 
0.4 

0,7083 0,8710 1 0,7879 0,8158 0,8611 0,8406 

Tabla 30. Distintas limitaciones para los valores altos del histograma. 

11) Anteriormente se tomaba cada vídeo por completo y en este apartado se divide el 

vídeo en 4 partes ya que en cada uno transcurren 4 acciones idénticas, así las 

separamos gracias a un fichero de texto que identifica los intervalos donde se 

encuentra cada toma. Se obtienen resultados en torno al 3% superiores como 

podemos ver en la tabla. Se han tomado 12 bins para los ángulos y han ido 

variando las celdillas, nótese el incremento de la precisión al incrementar estas. 

Ver tabla 31. 

 

 Boxing Handclapping Handwaving Jogging Running Walking mean 

1 celdilla 0.7053 0.7624 0.9643 0.6463 0.6270 0.8966 0.7670 

2 celdillas 0.8421 0.77826 0.7132 0.7912 0.8125 0.8727 0.8024 

3 celdillas 0.9153 0.9524 0.7007 0.8068 0.8778 0.8205 0.8456 

4 celdillas 1 0.9022 0.7007 0.7938 0.9277 0.8276 0.8587 

5 celdillas 0.9322 0.9167 0.7619 0.8587 0.8830 0.8889 0.8736 

Tabla 31. Incremento del número de celdillas 

Experimento con detección de acción y substracción de esta 

Se hacen tres pruebas relacionadas, la primera consiste en detectar la zona del fotograma que 

está en movimiento (explicado en sección descriptores) independientemente del movimiento 

de la cámara y analizarla igual que en casos anteriores, se llega a un resultado un uno por 

ciento superior al mejor caso de los anteriores y con la utilización de menos bins.   Además se 

realiza el mismo experimento utilizando sólo el 40% de los vídeos para una mayor rapidez de 

en la próxima comparación.  Ver tabla 32. 

 

 Boxing Handclapping Handwaving Jogging Running Walking mean 

Con detección 
de acción 

1 0.9556 0.7680 0.9041 0.7788 0.9029 0.8849 

Con detección 
acción y 

utilizando el 
40% de vídeos 

 

1 

 
0.9500 

 
0.6531 

 
0.8095 

 
0.6512 

 
1 

 

0.8440 

Tabla 32. Resultado tras la detección de acción 
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La segunda prueba consiste en hacer lo mismo que en el anterior caso pero se intenta mejorar 

la zona del fotograma relacionada con el movimiento en la acción, para ello como se ha 

explicado en la sección 3.5 se introduce un sistema de votaciones donde se selecciona una 

ventana que se ajuste lo mejor posible a 10 fotogramas consecutivos  para suavizar el tamaño 

y posición de la ventana de movimiento, que no sea tan variable de un fotograma a otro y 

capte a la persona en su totalidad, además se hace un cambio constante y lineal del tamaño 

del fotograma para evitar cambios bruscos  en los tamaños de estas ventanas.  El resultado 

para este caso como vemos es un poco inferior que para el caso con la detección del 

movimiento sin suavizar.  Ver tabla 33 

 

 Boxing Handclapping Handwaving Jogging Running Walking mean 

Con detección 
acción y 

utilizando el 
40% de vídeos 

 
1 

 
0.9500 

 

0.6531 

 

0.8095 

 
0.6512 

 
1 

 

0.8440 

Con detección 
acción 

suavizada y 
utilizando el 

40% de vídeos 

 
0.8065 

 

1 

 
0.6250 

 
0.7500 

 

0.8485 

 
1 

 

0.8383 

Tabla 33. Comparación entre detección de acción suavizada y sin suavizar 

 

Como tercera prueba y definitiva se hace que el tamaño de la ventana global que siempre sea 

igual de grande y en la misma posición para evitar la unión de gradientes de distintas zonas del 

cuerpo en una misma celdilla. Para ello se toma las 4 esquinas más alejadas de entre todas las 

ventanas calculadas en el caso anterior, como vemos los resultados mejoran un 4% respecto a 

la misma configuración pero sin substracción del movimiento. Ver tabla 34 

 

 Boxing Handclapping Handwaving Jogging Running Walking mean 

Sin detección 
acción 

1 0.9022 0.7007 0.7938 0.9277 0.8276 0.8587 

Con detección 
acción 

0.9868 0.8812 0.8807 0.8734 0.8269 0.9057 0.8925 

Tabla 34. Comparación entre detección de acción global y no detección de acción 

Anexo J 

Ecuación de Euler-Lagrange 

La naturaleza ahorra energía potencial, siempre busca la posición de equilibrio hacia un estado 

de menos energía. Es por ello que se busca la minimización de la acción, es lo mismo que se 

busca en las minimizaciones de este proyecto como las que se utilizan en las maquinas de 

aprendizaje o en el cálculo del flujo óptico. En nuestro caso la minimización de ‘S’ está definida 
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como la integral de una función lagrangiana ‘L’  desconocida entre dos instantes de tiempo 

dados: 

(�)� � � *+,, )�,�, )-�,�.%,#
/

 

 
Se desea considerar todas las posibles trayectorias que sigue la partícula durante el intervalo 
de tiempo analizado, podemos entonces parametrizarlo con el parámetro �: 
 )�,, �� � )�,� � ��J�� 
 
Donde ���� � ���� � 0	 para que )(,, �) = )(,) en los bordes temporales ya que eso no lo 
queremos cambiar. Sólo es interesante saber que trayectorias hacen que la acción se minimice 
pero la acción en los bordes debe ser la misma ya que todas las trayectorias deben de empezar 
y acabar en el mismo lugar. De este modo derivamos la acción respecto a � e igualamos a 0 
para llegar al mínimo (o máximo): 
 v((), �)v� = 0 

 
Que es lo mismo que: 

� dLd� dt#
¬ = 0 

 
Tras unas operaciones se llega a la buscada ecuación de LaGrange, en primer lugar aplicamos  
la regla de la cadena, descomponemos así la derivada total en sus parciales: 
 dLd� = ∂q∂� ∂L∂) + ∂qñ∂� ∂L∂qñ + ∂t∂� ∂L∂,  

 
 
La derivada del tiempo respecto a �	es cero porque no depende de ella: 
 dLd� = ∂q∂� ∂L∂) + ∂qñ∂� ∂L∂qñ  
 
El segundo termino de la parte de la derecha de la igualdad molesta por lo que se escribe en la 
forma: ∂qñ∂� ∂Ldqñ = 	 w∂q∂� ∂L∂qñ xñ − ∂q∂� w∂L∂qñ xñ  

 
Llegando a: dLd� = ∂q∂� ∂L∂) + w∂q∂� ∂L∂qñ xñ − ∂q∂� w∂L∂qñ xñ  

 
Lo introducimos en la integral: 
 

� Ë∂q∂� ∂Ld) + w∂q∂� ∂Ldqñ xñ − ∂q∂� w∂L∂qñ xñ Ì dt#
¬ = 0 
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� Ë∂q
∂�

∂L
d) 5 ∂q

∂� w∂L
∂qñ x
ñ Ì dt �#

¬
� w∂q

∂�
∂L
∂qñ x
ñ dt#

¬
� 0 

 

Sabiendo que 
òóôÝ en los extremos porque en ellos todas trayectorias deben de tener el mismo 

valor podemos extrapolar que la segunda integral es nula: 
 

� Ë∂q∂� ∂L∂) − ∂q∂� w∂L∂qñ xñ Ì dt = 0#
¬  

 

Que debe cumplirse para cualquier desviación 
òóôÝ: 

 

Ë∂L∂) − w∂L∂qñ xñ Ì = 0 

 ∂L 1t, q(t), q′(t)3∂q(t) − d∂t ∂L 1t, q(t), q′(t)3q′(t) = 0		 
 

Anexo K 

Dataset 

A continuación se muestran las clases del 'dataset' creado (figuras 47 a 54). 

 

 

 

 

 

 

 

 

 

Figura 47. Lancha motora 
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Figura 48. Caballo y Jinete 

 

Figura 49. León caminando 
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Figura 50. Avión despegando 

 

Figura 51. Persona hablando 
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Figura 52. Pelea de sumo 

 

 

 

 

 

 

 

 

 

Figura 53. Punto en tenis 
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Figura 54. Tren 
 

 

 

 

 

 

 


