
1

Anexo A

Flujo óptico de Horn [1]

Intuitivamente el flujo óptico es la idea de que al mirar un objeto en movimiento este lo

vemos sin prestar demasiada atención al resto de la escena. Es la diferencia entre nuestro

objetivo a seguir y el resto de la escena.

Una imagen en el instante ‘t’ la podemos parametrizar como:

I(x, y, t)

Donde ‘x’ e ‘y’ son las coordenadas de textura y ‘t’ es el tiempo o fotograma equivalente.

En un instante siguiente el pixel correspondiente I(x, y, t) sale movido un valor (dx, dy, dt), por

tanto el pixel en la nueva imagen será:

I(x + dx, y + dy, t + dt)

Estos dos instantes los podemos correlacionar gracias a la expansión de Taylor de primer

orden:

	I(x + dx, y + dy, t + dt) = I(x, y, t) + ∂I∂x 		dx + ∂I∂y 		dy + ∂I∂t 		dt
La idea consiste en que el objeto que estamos buscando tendrá la misma energía en un

instante como en el otro, es decir, la misma luminosidad, el valor de cada pixel se mantendrá

ya que sólo cambiará su posición, que es lo que queremos calcular, la cantidad de píxeles que

se ha movido, por tanto podemos igualar I(x + dx, y + dy, t + dt) = I(x, y, t) y el término

restante deberá ser igual a cero.

∂I∂x 		dx + ∂I∂y 		dy + ∂I∂t 		dt = 0

Donde:

∂I∂x = 	 I� 	; 	 ∂I∂y = 	 I�	; 	∂I∂t = 	 I� 	
I�		dx + I�	dy + I� 	dt = 0

Si dividimos para ‘dt’:
I� 		u + I�	v + I� 	= 0

u = dxdt 		 ; 	v = dydt

2

Esa será nuestra primera ecuación, pero como vemos tenemos dos incógnitas, ‘u’ y ‘v’, que

serán el flujo óptico horizontal y vertical respectivamente por lo que necesitaremos una

segunda ecuación.

Esta segunda limitación o ecuación viene del hecho de que el objeto está sujeto a un
movimiento como solido rígido o a una pequeña deformación, lo que provoca un ligero cambio
en estos flujos y por tanto la minimización del cambio de estos en su entorno supondrá esta
información requerida:

����������ó� → ∂u∂x� + ∂u∂y� +		∂v∂x� + ∂v∂y� =	u�� 	+ u�� +		v�� 	+ v��

De esta manera podemos reducir nuestro problema a un problema de minimización en ambas
ecuaciones, ya que la primera debe de ser cero y la segunda lo más pequeña posible.
Utilizando � como un parámetro de minimización que relaciona ambos funcionales a
minimizar, llegamos al siguiente funcional a minimizar:

�� = � [��! �"� + �#�]%Ω

 �#� = (I� 		u + I�	v + I�)�

 �'� = u�� 	+ u�� 	+ v�� 	+ v��

Podemos ver que tenemos un funcional a minimizar del estilo de las ecuaciones de Euler
Lagrange y por tanto tenemos su solución, podemos ver como se llega a ella en el Anexo J. De
este modo, dado el siguiente funcional:

(()) = � *+,,)(,),)-(,).%,#
/

Su solución es:
 ∂L 1t, q(t), q′(t)3∂x4 − d∂t ∂L 1t, q(t), q′(t)3∂v4 = 0		para	i = 1,… , n.		
Donde:
 n = número	de	dimensiones	del	espacio.
 x = q(t); 		E =)′(,)

En nuestro caso tenemos un sistema de ecuaciones de Euler de dos funciones a minimizar, (GH, G�) = (I, E) y dos dimensiones para la variable respecto a las cuales debemos minimizar,	J4 = (J, K), por tanto:
 ∂L∂fH − M ∂∂x4

∂L∂fH,4
N

4OH = 0			
 ∂L∂f� − M ∂∂x4

∂L∂f�,4
N

4OH = 0		

3

Donde:
 * = ��(u�� 	+ u�� 	+ v�� 	+ v��) + (I� 		u + I�	v + I�)�
 J4 = (J, K)
 (GH, G�) = (I, E)
 (GH,4, G�,4) = (GH,�, GH,�; G�,�, G�,�) = +u�, u�; v� , v�.

Introduciendo estas variables en las ecuaciones (1) y (2) se llega a la siguiente solución:
 I��I + I�I�E = �∇�I − I�I� I�I�I + I��E = �∇�I − I�I�

Para poder resolverla discretamente se siguen 3 aproximaciones vistas en [1]. Como vemos la
media se calcular dándole más peso a los píxeles más cercanos que a los que están en la
proyección diagonal y el laplaciano se calcula haciendo el gradiente entre el pixel que estamos
calculando y la media aproximada de los píxeles de alrededor.
 ∇�I = 3(IR − I) ∇�E = 3(E̅ − E) IR4,T,U =	16	WI4XH,T,U + I4,TYH,U + I4YH,T,U + I4,TXH,UZ

+ 112	WI4XH,TXH,U + I4XH,TYH,U + I4YH,TYH,U + I4YH,TXH,UZ

E̅4,T,U =	16	WE4XH,T,U + E4,TYH,U + E4YH,T,U + E4,TXH,UZ
+ 112	WE4XH,TXH,U + E4XH,TYH,U + E4YH,TYH,U + E4YH,TXH,UZ

El gradiente para las imágenes se calcula como la media ponderada entre los 4 gradientes
calculados para dos píxeles cada dos fotogramas consecutivos:
 \� = 	0.25	(\4YH,T,U	 −	\4,T,U	 + \4YH,TYH,U	 − \4YH,T,U	 +	\4YHT,UYH	 − \4,T,UYH	 + \4YH,TYH,UYH−	\4,TYH,UYH)
 \� = 	0.25	(\4,TYH,U	 −	\4YH,TYH,U	 + \4YH,T,U	 − \4,TYH,UYH	 +	\4,T,UYH	 − \4YH,TYH,UYH + \4YH,T,UYH−	\4,T,U)
 \� = 	0.25	(\4,T,UYH	 −	\4,T,U	 + \4YH,T,UYH − \4YH,T,U	 +	\4,TYH,U	 + 1 − \4,TYH,U	 + \4YH,TYH,UYH	−	\4YH,TYH,U)

Introducimos estas 3 aproximaciones en nuestras ecuaciones:
 I��I + I�I�E = �∇�I − I�I� I�I�I + I��E = �∇�I − I�I�

Y operando llegamos a:

4

I = 	 +3�� +	I��.IR − I�I�E̅ − I�I�3�� + I�� + I��

E = 	 +3�� +	I��.E̅ − I�I�IR − I�I�3�� + I�� + I��

Donde si hacemos un cambio de variables u = u^YH			y	uR = uR	^ y operamos llegamos
finalmente a la solución para el cálculo del flujo óptico, k será el número de iteraciones que
queremos utilizar para llegar a la minimización:

IUYH = IR −	I�+I�IRU +	I�E̅U + I�.3�� + I�� + I��

EUYH = E̅ −	 I�+I�IRU +	I�E̅U + I�.3�� + I�� + I��

Anexo B

Flujo óptico de Roth y Black [2]

Partimos de la función a minimizar, similar a la explicada en el Anexo A pero con la principal

diferencia de la con la adición de funciones de penalización _`	K	_(:

�(I, E) = M{bc_`(\H(�, d)4,T − \�(� + I4,T, d + E4,T)) +	be[_((I4,T − I4YH,T) + _((I4,T − I4,TYH)
+ _((E4,T − E4Y,T) + _(+E4,T − E4,TYH)f} �c = M{bc_`(\H(�, d)4,T − \�(� + I4,T, d + E4,T))}	

Consiste en encontrar los valores del flujo óptico ‘u’ y ‘v’ que minimizan la función anterior, ‘u’

y ‘v’ son los píxeles de movimiento entre dos fotogramas consecutivos. El primer término se

corresponde con la diferencia entre un punto de la imagen primera y su homólogo en el nuevo

fotograma, que en un caso ideal sería cero. El segundo término consiste de la consideración de

que estamos trabajando con un sólido rígido y se dan pequeñas deformaciones por lo que el

flujo no puede tener grandes variaciones. b es un parámetro de regularización mientras que _	son las funciones de penalización de la información dada (primer término) y penalización

espacial debida a las diferencias en flujo (segundo termino).

Las funciones de penalización tienen como función el formalizar los errores que además

devuelve siempre un número positivo y no surge el fenómeno de cancelación de errores.

Funciones de penalización utilizadas:

-Cuadrática o HS. _(J) = J�

-Charbonier o Classic-C. _(J) = √	J� + i�

-Lorentzian o Classic-L. _(J) = log	(1 +	 �k�lk)

5

El ruido es un grave problema para nuestro algoritmo ya que puede ser flujo y pensar que hay

flujo donde no lo hay, por tanto se sigue el método visto en [3] para limpiar nuestras imágenes

y conseguir el efecto de la figura 25:

Figura 25. Comparación de una imagen con ruido y la misma con el ruido eliminado.

Primero se descompone la imagen en la imagen deseada y el ruido indeseado que hay en ella:

Im(J, K) = I(J, K) + �(J, K)

Im = ���no�

I = ���no� sin pI�%q

� = pI�%q

La idea principal se fundamenta en que un pixel rodeado de 4 píxeles iguales entre si y

diferentes del pixel central será un espurio. Para detectarlo matemáticamente:

La derivada en el dominio horizontal se define como: hx = [-1, 0, 1]. Si realizamos la derivada

de la derivada obtenemos: hxx = [-1, 0, 2, 0, -1] y ℎKK=ℎJJs. Si componemos hyy con hxx

surge una máscara en forma de cruz respecto al pixel que analizamos, a este pixel se le da

valor 4 y a los píxeles que están a su alrededor se les da peso -1. Se multiplica cada valor por su

peso y se hace la suma, obtenemos un valor que de ser alto significará que estamos ante un

espurio. Por tanto el objetivo será minimizar valores altos tras la aplicación de esta mascara

por toda la imagen, por tanto:

��������p	� t(I�� + I��)�! %J%K

Sujeto a 2 restricciones, 1 que dice que la media de los valores de todos los píxeles en ambas

imágenes debe mantenerse y otra que aproxima la variación con una sigma:

La primera restricción nos habla de que la media del ruido será cero y que su desviación es

sigma y es dada.

� I! =	� Im!

6

� (I − Im)�! =	u�

Sin embargo esto no reportó resultados buenos y se cambió la función a minimizar, con la

nueva en vez de fijarnos en las derivadas segundas nos fijamos en las primeras, la mascara

pasa a ser cero el pixel central, 1 en los píxeles de abajo y a la derecha y -1 en los píxeles de

arriba y a la izquierda, con esto se mide si hay un cambio de textura horizontal y vertical, lo

que produce que si ambos se cumplen el cambio de textura sea sólo en el punto ya que un

punto (el espurio) es la unión de dos líneas (líneas de cambio de textura horizontal y vertical,

si solo tenemos una de las dos no estamos ante un espurio aunque podría darse el caso de

tener una línea de espurios). Por tanto la minimización se llevará a cabo en:

��������p	� tI�� + I��! %J%K

Tenemos un funcional a minimizar que según el método de los multiplicadores de Lagrange es:

* = tI�� + I�� + bH(I − Im) + b� 12 (I − Im)�

 Para su resolución se utilizan la ecuación de LaGrange (explicada en el anexo J):

v*vI −	v w v*vI�xvJ − v w v*vI�x
vK = 0

Con ellas llegamos a:

v
y
z I�tI�� + I��{

|
vJ +

v
y
z I�tI�� + I��{

|
vK − bH − b�(I − Im) = 0

La ecuación anterior no se cumplirá en un primer calculo por lo que la igualamos a una variable

que denotará su valor y se realizarán iteraciones hasta disminuirla al máximo posible. Se

utilizará el método del gradiente descendente, esta ecuación se iguala a ‘I�’ y convergerá a

cero con el tiempo. ‘I�’ será el cambio temporal entre imágenes.

I� =
v

y
z I�tI�� + I��{

|
vJ +

v
y
z I�tI�� + I��{

|
vK − b(I − Im)

 Restricción	 ~�~N = 0			o�	��	Gpq�,op�

u(x, y, 0)	o�	%�%q

7

Nótese la no utilización de la primera restricción debido a que esta incluida en nuestro

procedimiento si la media de u(x, y, 0) es la misma que la de Im.

Gracias a esta convergencia a cero podemos calcular b, simplemente multiplicando a ambos

lados por (I − Im), integrando en ambos lados utilizando la integración por partes y las

restricciones impuestas y sabiendo que I� converge a 0:

b(,)(I − Im)� = (I − Im) ∗
��
��
��
��
�v

y
z I�tI�� + I��{

|
vJ +

v
y
z I�tI�� + I��{

|
vK

��
��
��
��
�

�b(,)(I − Im)� %J%K = �(I − Im) ∗
��
��
��
��
�v

y
z I�tI�� + I��{

|
vJ +

v
y
z I�tI�� + I��{

|
vK

��
��
��
��
�
%J%K

b(,) = 12u� �(I − Im) ∗
��
��
��
��
�v

y
z I�tI�� + I��{

|
vJ +

v
y
z I�tI�� + I��{

|
vK

��
��
��
��
�
%J%K

Para realizar la integral restante se integra por partes como hemos dicho utilizando la siguiente

fórmula, el término debido a la superficie (teorema de gauss) se elimina por razones físicas:

� vIvJ4! E%J = −� vEvJ4! I%J

b(,) = − 12u� �
��
��tI�� + I�� − I�Im�tI�� + I�� − I�Im�

tI�� + I����
�� %J%K

Discretizamos el modelo en las dos direcciones:

J4 = �ℎ; K4 = dℎ; 		d = 0	,1… ,�						�q�	�ℎ = 1

,N = �∆,; 		� = 0,1….
I4TN = I(J4, KT , ,N)

8

I4Tm = Im+J4, KT , ,N. + �(�ℎ, dℎ)u

Donde �	es la aproximación de la diferencia entre una imagen y su homóloga sin ruido, por

tanto tiene media cero para cumplir con la restricción 1.

El cambio temporal entre dos imágenes será el calculado ‘I�’ debido a la convergencia de este

desde la imagen original a la reparada.

I4TNYH = I4TN +	Δ,ℎ ��
��
�ΔX�

y
�z ΔX�I4TN

w+ΔX�I4TN .� + 1�+ΔX�I4TN , ΔY�I4TN .3�xH/�
{
�|

+ ΔX�
y
�z ΔX�I4TN

w+ΔX�I4TN .� + 1�+ΔX�I4TN , ΔY� I4TN .3�xH/�
{
�|

��
��
�

− ΔtλN 1I4TN − Im(�ℎ, dℎ)3 																		��p�		�, d = 1,2, … ,�

ImTN =	IHTN 	; 		I�TN =	I�XHTN 	; 	I4mN =	I4HN 	; 	I4�N=	I4�XHN 		%o��%��	�	���	�q�%���q�o�	%o	Gpq�,op�

Para entender la nomenclatura:

ΔX� I4T = −+I4XH,T − I4T.

ΔY� I4T = ++I4YH,T − I4T.	
*q	����q	��p�	ΔX�I4T	K	ΔY�I4T	

�(�	, �) = �í���q	�q%I�q	o�,po	�	K	�

Finalmente se pasa b al dominio discreto:

bN = − ℎ2u� ��
��t(ΔY�I4T)� + (ΔY�I4T)� − (ΔY� I4Tm)+ΔY� I4TN .

t(ΔY� I4T)� + (ΔY�I4T)� − (ΔY�I4Tm)+ΔY�I4TN .
t(ΔY� I4T)� + (ΔY�I4T)���

��
Se impone una restricción para cada paso por estabilidad:

Δtℎ� ≤ �

Una vez el ruido ya no es un problema, uno de los principales inconvenientes surge cuando

queremos calcular flujo que se desplaza más de un pixel entre fotogramas. Para abordar este

problema se parte de la solución mostrada por [4].

9

 En primer lugar explicamos como se lleva a cabo la minimización, se utilizará un modelo

similar al de los gradientes descendentes de Newton Rapson con la adición de los parámetros

‘w’ y T(s). Este modelo se utilizará igual para calcular ‘v’, ‘u’ y los coeficientes ‘a’ (que en

realidad son , como veremos más abajo, los coeficientes que aproximarán el flujo óptico con

una función lineal) con la diferencia de que para el cálculo del gradiente del funcional (�) se

aplicará sólo la primera parte de éste (�c) para los valores ‘a’ ya que es donde están estos

coeficientes implícitos y el funcional entero (�)	para el flujo óptico en si (‘u’ y ‘v’):

INYH = IN − �(I) 1�(I) v�vI 			��p�	,q%q	I

ENYH = EN − �(E) 1�(E) v�vE 	��p�	,q%q	E

�4NYH = �4N − � 1�(�4) v�cv�4 		��p�	,q%q	�

Donde 0 < w < 2 es un parámetro de sobrerrelajación para corregir en demasía el calculo de INYHdesde IN. Con estos valores el sistema se ha mostrado que converge aunque el ratio

exacto de convergencia dependerá de su valor exacto de ‘w’. El cálculo de w(u) y w(v) se

explicará más adelante.

T(x) es el límite superior de la derivada segunda de la función objetivo a minimizar, con esto

nos aseguramos de que si hay un cambio muy grande en la derivada de la función a minimizar

el cambio en está será pequeño para no calcular valores de IN muy distintos entre uno paso y

el otro, si ocurriera lo contrario pudiera pasar que el sistema no convergiera al pasarnos del

valor que minimice la función por utilizar un paso demasiado elevado:

�(I) = v��vI� ; 	�(E) = v��vE� 	 ; 	�(�) = v��cv��

Se comienza la iteración con flujo u=0 y el primer cambio ‘du’ en el flujo es computado. El

nuevo flujo dado por la suma de estos es proyectado en el siguiente nivel de una hipotética

pirámide. Se realiza el mismo proceso con la imagen original y la que acabamos de calcular

gracias al flujo y se computa un nuevo ‘du’ en este nivel, el proceso se repetirá hasta que el

flujo ha sido computado en toda la resolución.

La región del flujo se describe de manera lineal con los coeficientes � como:

I(J, K, �) = �I(J, K)E(J, K)� = ��m + �HJ + ��K�� + ��J + ��K�
En una primera iteración se parte como ya se ha comentado con flujo nulo, por tanto se

compara la segunda imagen con las mismas posiciones en la primera imagen y se calcula el

flujo du y dv, con este flujo en la siguiente iteración comparemos las posiciones de la segunda

imagen (x, y) con las posiciones donde este flujo nos dice que está la primera imagen (J ,	K).

Para relacionar unas con otras basta con restar el flujo óptico a la segunda imagen para tener

las posiciones de ese mismo pixel en la primera imagen:

(J , K) = 	 (J, K) − 	G�Idq(I, E)

10

(J , K) = 	 (J, K) −	(�m, ��) − ¡ ∗	(J − ¢J, K − ¢K)

¡ = ��H					��	��					���
Donde Cx y Cy se corresponden con el centro de la región.

Calculamos ahora las derivadas de los funcionales para poder llevar a cabo el método de

minimización, para ello utilizaremos la función de penalización _(J, u) de Geman-McClure por

facilidad pese a no ser ninguna de las mencionadas anteriormente, el cálculo sería el mismo

con cualquiera de ellas:

_(J, u) = J�u� + J� ; 			£(J, u) = v_vJ = 	 2Ju(u� + J�)�

v�cv�m = M\¤bc £(\H(�, d) − \�+� + I4,T, d + E4,T., uc)

v�cv�H = M\¤J bc£(\H(�, d) − \�+� + I4,T, d + E4,T., uc)

v�cv�� = M\¤ Kbc£(\H(�, d) − \�+� + I4,T, d + E4,T., uc)

v�cv�� = M\�bc £(\H(�, d) − \�+� + I4,T, d + E4,T., uc)

v�cv�� = M\� Jbc£(\H(�, d) − \�+� + I4,T, d + E4,T., uc)

v�cv�� = M\� Kbc£(\H(�, d) − \�+� + I4,T, d + E4,T., uc)

Mientras que los coeficientes T(x) se calculan como:

��m = Mbc\¤� _--(J)��J

��H = Mbc\¤�J� _--(J)��J

��� = Mbc\¤� K�_--(J)��J

��� = Mbc\�� _--(J)��J

��� = Mbc\�� J�_--(J)��J

��� = Mbc\�� K�_--(J)��J

11

_--(J)��J = 	 2uc�

Se busca el valor máximo de _--(J)	 para cumplir con la restricción de que T(x) debe de ser

máxima, como se ha comentado anteriormente.

Para el cálculo de T(u), T(v) y las derivadas parciales del funcional (en este caso el funcional

total, ya que el flujo óptico está definido en su totalidad en él) se calculan de un modo similar

donde los resultados son:

�(I) = bc\¤�uc� + 4b¦u¦�

�(E) = bc\��uc� + 4b¦u¦�

El parámetro de sobrerrelajación ‘w’ en este caso no se calcula de forma experimental y se

establece entre 0 y 2 si no que se aproxima como el valor propio máximo de la matriz

Jacobiana, donde la aproximación para el valor óptimo resulta:

�§¨� = 211 − ©1 − ª«¬�� 3ª«¬��

ª«¬� = cosℎ­

ℎ = 1� + 1

� = %��o���ó�	��,p��

Se demuestra que un filtrado de mediana en cada iteración de tamaño 5 en ambas direcciones

da mejores resultados que no llevarlo a cabo o que realizar un filtrado de tamaño 3, 7 o un

filtrado de tamaño 5 dos veces seguidas

Por ello se modifica la función objetivo para incluir este filtrado de mediana:

�(I, E) = M{bc_`(\H(�, d)4,T − \�(� + I4,T, d + E4,T)) +	b¦[_((I4,T − I4YH,T) + _((I4,T − I4,TYH)
+ _(+E4,T − E4Y,T) + _(+E4,T − E4,TYH)fZ +	b� 1®|° − °±|®� + ®|² − ²±|®�3+	M M b�(®E4,T − E 4³,T³® + ®I4,T − I 4³,T³®4³,T³´	�(4,T)4,T)

Se corresponde con el mismo del caso anterior con la adición de los dos últimos términos,

pesados con b� y b�. Los términos E 	K	I se corresponden con un nuevo flujo de campo, Nij es

la región de vecinos utilizada para estos terminos. El porqué de que está adición esté

relacionado con un filtro de mediana esta demostrado en [5]. En él se expone que esta

minimización esta relacionada con una computación de la mediana aunque un tanto diferente:

I UYH4,T = �o%���(µo���q�U 	∪ `�,�)

12

Donde

µo���q�U = WI UYH4³,T³Z	��p�	�-, d-	·	�(�, d)

I m = 0		
Data = ¸I4,T, I4,T ± º»ºk , I4,T ± 2 º»ºk , … , I4,T ± ®�4,T® º»�ºk¼

®�4,T® = �ú�opq	%o	Eo���q�	%o	(�, d)

Nótese que conforme la relación
º»ºk	aumenta la ecuación de I UYH4,T	 se aproxima a la mediana

en la primera iteración.

Una optimización de este modelo se consigue con la minimización alternativamente de:

�m(I, E) = M{bc_`(\H(�, d)4,T − \�(� + I4,T, d + E4,T)) + b¦[_((I4,T − I4YH,T) + _((I4,T − I4,TYH)
+ _(+E4,T − E4Y,T) + _(+E4,T − E4,TYH)fZ +	b� 1®|° − °±|®� + ®|² − ²±|®�3

y �H(I, E) = b� 1®|° − °±|®� + ®|² − ²±|®�3 +	M M b�(®E4,T − E 4³,T³® + ®I4,T − I 4³,T³®4³,T³´	�(4,T)4,T)

En primer lugar se minimiza �m(I, E)	respecto a u y v tomando v 		y u 	como fijos y

posteriormente se hace la operación inversa con �H(I , E)

Finalmente se desarrolla una mejora del modelo, en vez de describir el termino no local como

está descrito actualmente se hace con una función que representa como de probable es para

un pixel i’ j’ estar en la misma superficie que i j.

	M M �4,T,4³,T³(®E4,T − E 4³,T³® + ®I4,T − I 4³,T³®4³,T³´	�(4,T)4,T)
Esta función estará por tanto relacionada con la distancia entre píxeles, la diferencia entre los

valores de la imagen en esas posiciones y la oclusión. Como es lógico la función debería

incrementar con distancias largas entre píxeles o elevada oclusión como podemos apreciar:

�4,T,4³,T³ = oJ� ½− |� − �-|� + |d − d-|�2uH� − |\(�, d) − \(�-, d-)|2u�� ¾q(�-, d-)q(�, d)

La oclusión, como vemos en [6] se calculará la divergencia del flujo óptico que distingue entre

distintos tipos de movimiento:

q(�, d) = vvJ I(�, d) +	 vvK E(�, d)

13

Anexo C

Descriptor global basado en líneas

Se utiliza una técnica llamada detector de Canny [8] para detectar las líneas de una imagen. En

primer lugar se pasa un filtro gaussiano con una sigma que nos da un suavizado de la imagen

para eliminar el ruido de esta y evitar la detección de líneas que no existen debidas a espurios.

En segundo lugar se calculan los gradientes en la dirección vertical y horizontal:

¿ = t¿�� + ¿��

À = atan	w¿�¿�x

El ángulo theta se redondea a un ángulo múltiplo de 45 grados. Con este ángulo sabemos la

dirección de la supuesta línea. Se establece un intervalo donde debemos de introducir un

límite superior para ver cuando un punto será candidato a formará una línea y cuando no y un

limite inferior. El límite inferior estará relacionado con lo permisivos que somos al forma la

línea una vez se ha detectado el punto inicial de ésta.

Se mirará el valor del gradiente de los pixel posterior y anterior en la dirección del ángulo del

pixel que estamos comprobando, si el valor de este pixel es superior a los otros dos entonces

pasará a ser un candidato de línea y guardaremos su valor, en caso contrario será rechazado

(ver figura 26).

Figura 26. Gradientes y valores en una imagen. Figura tomado de [8]

A partir de aquí debemos establecer con que puntos nos quedamos para formar parte de una

línea. El valor máximo del intervalo debe ser alto porque mide como de restrictivos vamos a

ser en nuestra selección de las líneas. Al escoger un valor alto nos aseguraremos que ese borde

formará una línea. El valor bajo del intervalo servirá para calcular los bordes que acompañaran

al borde calculado con el intervalo alto, por tanto este valor deberá ser bastante pequeño

para aseguramos de que formamos la línea que empieza en este valor alto. Una vez tenemos

que píxeles van a formar líneas y cuales no se codifica la imagen en binario, si hay línea se

iguala el pixel a 1 y si no a 0. Finalmente se procede a contar el número de píxeles que votan

por una línea u otra. Sabemos que una línea esta parametrizada por ‘ro’ y ‘theta’ (ver figura

27), por tanto:

14

Con la transformada de Hough, que es un simple procedimiento matemático disponible en

Matlab, se calcula la posición ‘ro’ y ‘theta’ de cada pixel con valor uno en la figura 27. De esta

manera hacemos un sistema de votaciones para estas dos variables. Esta votación no la

realizamos en toda el volumen del vídeo si no que también empleamos celdillas espaciales y

temporales, en cada una de ellas realizamos la detección de líneas y su respectivo sistema de

votaciones, así formamos el descriptor que entrenará a la maquina de aprendizaje.

Figura 27 Línea parametrizada por r y Á . Figura tomada de [8].

Anexo D

Descriptor global basado en patrones locales binarios [7]

Descripción de un vídeo a partir de la repetición de patrones binarios en su volumen. Dado un

punto del volumen del vídeo, se toman los puntos a su alrededor como vemos en la figura 28,

se toman los fotogramas anterior y posterior, se describe un circulo alrededor del pixel en la

imagen central y alrededor del pixel homólogo en las otros dos imágenes. Con estos tres

círculos más los dos píxeles centrales exteriores tenemos definidos un conjunto de puntos que

describirán al punto en cuestión.

Figura 28 Volumen de puntos tomados para el cálculo de los patrones binarios respecto de cada punto. Figura tomada de [7]

El primer paso consiste en substraer el valor del pixel central a todos los demás encerrados en

su volumen. Cada fotograma contendrá P puntos y disponemos de 3 fotogramas para cada

cálculo del patrón binario, el central y el posterior y anterior.

Para conseguir invariancia en la escala de grises nos olvidamos de estas diferencias y

simplemente codificamos en binario su resultado dependiendo de su signo, si este es positivo

cambiaremos su valor por +1 y si es negativo lo cambiaremos por 0, esto lo representamos con

la función ‘s’:

15

�(J) = ¸0, J < 01, J ≥ 0

Se forma una ristra de 0´s y 1´s (siempre en un mismo orden dado) con estos valores y se

calcula su número decimal, surgen 2^(3P+2) (3P píxeles que rodean al central debido a que

tomamos 3 fotogramas y 2 píxeles debidos al pixel central correspondiente a los fotogramas

posterior y anterior) números decimales diferentes, cada vez que aparezca un número será

contado y así se formara nuestro descriptor. Este cálculo se realiza para cada pixel en el vídeo

dentro de unos límites, debe de estar dentro de estos límites ya que el círculo no puede ser

cortado en los casos de píxeles cerca de las fronteras verticales, horizontales o temporales. En

el fotograma último y primero por tanto no se podrá calcular, así como los píxeles más

cercanos a la frontera que la distancia del radio.

Es necesaria también invariancia respecto a la rotación, para ello se toma un vector de cinco

componentes, en la primera y última componente se emplaza el número binario

correspondiente a los píxeles centrales de los fotogramas posterior y anterior. En las tres

componentes centrales se hace lo mismo para los 4 píxeles de cada una de las tres imágenes,

es decir en la segunda componente se colocan en orden los 4 píxeles de la primera imagen, en

la tercera lo mismo con la imagen central y en la cuarta componente con la imagen posterior.

Una vez hecho esto por ejemplo nos queda un vector de este estilo:

(1, 1010, 1101, 1100, 1)

Cada una de las componentes del vector se rota el mismo número de veces hasta conseguir el

número menor en el conjunto global del número binario. Esta rotación no se hace respecto de

un punto y sí de este modo ya que no hay un solo eje de rotación como ocurre si calculásemos

los LBP solamente en textura textura [9].

Tras la invariancia el vector queda:

(1, 0101, 1011, 1001, 1)

Para P=4 tendremos un clasificador de 16384 valores, es demasiado grande.

Por ello se hace la siguiente reducción del problema:

Se toman tres planos ortogonales respecto al punto de referencia, uno será el plano XY, otro el

plano XT y por último el plano YT. Los tres planos en este caso tendrán el mismo punto central,

se calculará para cada uno de ellos los LBP igual que en el caso anterior pero con la diferencia

de que se toma cada plano independiente del otro y no se calcula el número binario de la

composición de los tres, si no que se calcula el número binario para cada uno y posteriormente

se concatenan como vemos en la siguiente imagen (figura 29).

16

Figura 29 Concatenación de tres planos donde a cada uno se aplica los LBP y es independiente de los demás. Figura tomada de

[7]

El histograma se define como una matriz Ä4,T donde j representa a que plano nos estamos

refiriendo y el subíndice i representa el sumatorio de las veces que aparece el nivel ‘i’ para

todos los planos de su tipo, es decir todos los planos XY, XT o YT. Por nivel ‘i’ entiéndase el

valor que tomar el número binario al pasarlo a decimal.

Ä4,T =	 M \WGT(J, K, ,) = �Z�,�,�

Donde la función ‘I’ devolverá 1 si su ecuación interior ‘A’=true y 0 si ‘A’=false:

Además se hace una normalización ya que estos planos pueden ser de diferentes tamaños en

sus dos dimensiones, ya sean espaciales o espaciales y temporales, por ello:

�4,T =	 Ä4,T∑ ÄU,TNÆÇÈUOm

Anexo E

Detector de Harris en 3D

La idea consiste en calcular la correlación de un píxel con sus alrededores, se realiza con un

suavizado previo del vídeo y la correlación se calcula como la diferencia entre un píxel y sus

vecinos:

((J, K, ,) ==	MMM�(I, E, ,)(\(I, E, ,) − \(I + J, E + K, � + ,))�
�É�

Donde �(I, E, ,)	o�	o�	�I�E���%q

Al igual que se hacia en el cálculo del flujo óptico se quiere aproximar la diferencia \(I, E, ,) −\(I + J, E + K, � + ,) por el desarrollo en serie de Taylor. La diferencia es que en este caso

buscaremos máximos en esta diferencia y no mínimos ya que queremos detectar puntos

salientes en las tres dimensiones.

I(u + x, v + y, z + t) = I(u, v, t) + ∂I∂x 		dx + ∂I∂y 		dy + ∂I∂t 		dt
De esta manera la auto-correlación se puede aproximar como:

17

((J, K, ,) = MMM�(I, E, ,) w∂I∂x 		dx + ∂I∂y 		dy + ∂I∂t 		dtx�
�É�

Expresándolo en forma matricial:

((J, K, ,) = (J, K, ,)¡	 ËJK,Ì

Donde A es la matriz de Harris en cada pixel, en este caso queremos que los valores de los

valores propios sean grandes los tres para tener los puntos salientes en las tres direcciones:

¡ =	MMM�(I, E, ,) Í \¤� \¤\Î \¤\�\¤\Î \Î� \Î\�\¤\� \Î\� \�� Ï�É�

Anexo F

Clasificador

Se utiliza una maquina de aprendizaje supervisada (Support Vector Machine ‘SVM’), es

supervisada ya que conocemos la clase de cada video. Se transmite a la maquina la

información de los descriptores y la clase de video al que pertenece cada uno de ellos. Ésta

recopila la información y calcula las fronteras entre cada clase para una vez introducimos un

nuevo video ver dentro de que frontera se encuentra y ser capaz de saber con la máxima

posible exactitud a que clase pertenece.

El SVM es un algoritmo muy complejo y disponemos de sus librerías [10]. En estas líneas vamos

a explicar como opera exactamente el SVM (ver figura 30). Lo vamos a hacer de una manera

meramente intuitiva, ya que vamos a utilizar solamente dos características y dos clases que

clasificaremos de forma lineal.

Figura 30 Ejemplo ilustrativo de como funciona el SVM, 3 clases y 2 características. Tomado de

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

18

Al tener solo dos características por clase podemos ver fácilmente en el plano X-Y de la figura

31 como funciona el SVM. En el eje X tendremos la característica ÐH y en el eje Y tendremos la

característica Ð�. El valor de ambas nos da una posición en el plano y su valor será ‘1’ en el

caso de ser una clase de video u ‘-1’ en el caso de ser la otra clase. Recordemos que el sistema

real será capaz de distinguir entre cuantos vídeos queramos y no entre solamente 2, en ese

caso en vez de dar valores ‘-1’ y ‘1’ se les dará valores a las clases mediante numeración de

estas.

Figura 31 Ejemplo de división que realiza la máquina de aprendizaje.

Como podemos ver calculamos 2 hiperplanos que separan nuestras dos clases y entre ambos

se calcula el hiperplano medio. Sabemos que un hiperplano esta definido como:

�HÐH + ��Ð� − � = 0

Donde [�H,	��] es el vector normal ‘w’ y el ‘0’ de la parte de la derecha puede tomar cualquier

valor siempre y cuando variemos el valor de b para dejar la ecuación intacta.

El hiperplano limitante de una clase lo forzamos a ser igual a 1 en el borde (mayor que uno

cuando nos alejemos del borde hacia el exterior) y el hiperplano de la otra clase se fuerza a ser

igual a -1 (menor que -1 cuando nos alejemos del borde hacia el exterior).

De esta forma tenemos 2 variables ‘w’ y ‘b’ pero podemos ver que las soluciones son infinitas

ya que hay infinitos planos paralelos que cumplan estar entre ambas clases debido a las

diferentes inclinaciones que pueden tomar, por tanto la idea es que los planos separadores se

encuentren a la máxima distancia posible y así minimizar la posibilidad de fallo.

Matemáticamente:

ÑÒ 5 � Ã 1; 	K Ã 1			
ÑÒ 5 � � 51; 	K � 51

19

Por tanto:

Ó�ÑÒ � �� Ã 1

De tal forma que se maximice la distancia entre planos que podemos calcular como:

ÑÒÔ 5 � � 1

ÑÒÕ 5 � � 51

Ñ�ÒÔ 5 ÒÕ� � 2

Ñ
®|Ñ|® �ÒÔ 5 ÒÕ� � 2

®|Ñ|® � %��,�����

Conseguiremos maximizar la distancia minimizando ®|�|®. El problema es que la norma nos

obliga a trabajar con raíces cuadradas que no es bueno para el coste computacional por lo que

pasamos a minimizar
H
� ®|�|®�. El factor ½ es simplemente por conveniencia matemática, se irá

al realizar la derivada en la minimización.

Concepto de los multiplicadores de Lagrange:

Concepto importante y necesario en nuestro desarrollo. Introducimos el problema de

maximizar (minimizar) una o varias funciones ‘ f(x, y, z,…) ‘ sujetas a una o varias condiciones

‘g(x, y, z,…) = c’ (ver figura 32).

Figura 32. Representación de un funcional a minimizar f(x, y) sujeto a runa restricción g(x, y)=c. Imagen tomada de el articulo de

los multiplicadores de LaGrange de Wikipedia.

Para resolverlo, podemos pensar que ambas funciones ‘f’ y ‘g’ deben cortarse para cumplirse a

la vez. Además, debemos de buscar un máximo (mínimo) de ‘f’ por lo que el valor de esta no

debe variar respecto a ‘g’ en el punto encontrado [x, y].

20

Por tanto no nos vale un punto donde ‘f’ y ‘g’ se crucen, si no que necesitamos que en ese

punto sus tangentes sean iguales, así habremos encontrado el máximo de ‘f’ cumpliendo la

restricción ‘g’.

Matemáticamente:

∇Ö,×f � 5λ∇Ö,×n
El valor de lambda es debido a que las derivadas aunque iguales en dirección pueden tener

distinta dimensión.

Le ecuación anterior y g(x, y) = c. las podemos unir como una nueva función:

∇�,�G = −λ∇�,�n
Λ�J, K, λ� = G�J, K� + λ�g�x, y� − c�

Esto es así ya que si hacemos el gradiente respecto a ‘x’ e ‘y’ obtenemos la primera ecuación y

si lo efectuamos respecto a lambda obtenemos la segunda g(x, y) = c. Así nuestra solución es:

∇�,�ÙΛ�J, K, λ� = 0

El gradiente igualado a cero de esta nueva función viene a ser lo mismo que una maximización

(minimización) de:

Λ�J, K, λ� = G�J, K� + λ�g�x, y� − c�

Por tanto parece claro que siguiendo con nuestro problema podemos plantearlo de esta

misma manera a continuación, donde si hacemos este cambio de variables:

� = −b

f�x, y� = 12 ®|�|®�
y�wx + b� − 1 = n�J, K� − �

Tenemos:

���Ü,#,Ý Þ12 ®|�|®� − M �4[
N

4OH
y4�wx4 − b� − 1ß

Recordemos que la minimización es el gradiente igualado a cero, por ello la forma de

expresarlo sigue siendo la misma. El problema que surge es que podríamos minimizarlo

llevando los valores de � al infinito lo que no resulta correcto. Para resolverlo, maximizamos

primero respecto a � y posteriormente continuamos con la minimización:

���Ü,#��JÝ Þ12 ®|�|®� − M �4[
N

4OH
y4�wx4 − b� − 1]ß

21

Surge otro inconveniente, el factor Ó�ÑÒ � �� 5 1	puede hacerse muy grande, por lo que

igualaremos los �4 a cero en esos casos y será distinto de cero sólo en la frontera, en esos

casos los Òà serán nuestros vectores de apoyo (svm)

Si derivamos respecto a ‘w’ e igualamos a 0 vemos que se tiene que cumplir la siguiente

relación:

� = M�4
N

4OH y4x4
Lo mismo respecto a ‘b’:

M�4
N

4OH y4 = 0

Solo algunos 	�4	serán mayores que cero, los correspondientes Òà serán los vectores de

apoyo:

y4(wx4 − b) = 1 ⇒ wx4 − b = 1y4 ⇔ � = wx4 − y4

� = 1�eã M wx4 − y4
�äå
4OH

Se realiza un cambio en la forma de expresarlo, se pasa a la forma dual:

Sustituimos estas 3 ecuaciones en la ecuación original a minimizar:

� = M�4
N

4OH y4x4

M�4
N

4OH y4 = 0

®|�|®� = w ∙ w

Operando, llegamos a:

*(�) = M�4
N

4OH − 12M�44,T �TK4KTJs4JT = M�4
N

4OH − 12M�44,T �TK4KTç(Js4, JT)

22

Donde está solamente expresada respecto a �4, por tanto se debe maximizar respecto a esta.

Vemos que aparece una nueva función en vez de J4sJT , aparece la función de Kernel:

ç+Js4, JT. � 	��J4� ∙ ��JT�

La función de Kernel es utilizada ya que no siempre queremos separar nuestras clases de

forma lineal, es por eso que en vez de 	Ó�ÑÒ 5 �� Ã 1 prefiramos otros tipos de separación,

por ello, de forma general se puede expresar:

Ó(Ñè(Ò) − �) ≥ 1

Donde:

� = M�4
N

4OH y4�(J4)

� ∙ è(Ò) = M�4
N

4OH y4ç(J4, J)

La función de Kernel puede tener distintas composiciones, las mejores han sido estudiadas:

� Polinomio homogéneo: ç+J4 , JT. = (J4 ∙ JT)é

� Polinomio no homogéneo ç+J4, JT. = (J4 ∙ JT + 1)é

� Función en base radial Gaussiana : ç+J4, JT. = oJ� w−ê ë®J4 − JT®ë�x				para γ > 0

� Tangente hiperbólica: ç+J4, JT. = tanh	(çJ4 ∙ JT + �)

¿Qué hacemos si la información no es separable? Si tenemos puntos clasificados en el otro
dominio y viceversa (ver figura 33).

Figura 33. Información no separable

En este caso en vez de minimizar solamente la distancia ‘w’ también vamos a minimizar la

suma de los errores con un peso ‘C’ a determinar para cada uno de ellos:

23

í��[12��s + ¢ΣiT]
	error	 = 	iT

Nuestra función a cumplir cambiará por tanto para estos puntos que están fuera del margen,

en estos casos: Óà(Ñè(Òà) − �) ≥ 1-i4
Procediendo de la misma manera que en el caso anterior:

���Ü,#��JÝï Þ12 ®|�|®� − M�4[N
4OH y4(wx4 − b) − 1 + i4] − Mi4ð4

N
4OH ß

Nuestra forma dual pasará a ser la misma, con la única restricción de que nuestros valores ‘C’

deben de ser mayores que ‘�′. Maximizando respecto a ‘�-:
*(�) = M�4

N
4OH − 12M�44,T �TK4KTç(Js4, JT)

0 ≤ �4 ≤ ¢

Para resolver el hecho de que nuestro problema tiene tantas clases como queramos y no sólo

2 lo reducimos de un problema de multi-clase a varios problemas de clasificación binarios

donde podremos utilizar la teoría explicada, tenemos dos opciones:

1) 1 clase comparada con el resto. 1 vs 1

2) 1 clase comparada con todas las demás. 1 vs todos.

Para nuestro problema probamos el Kernel Gaussiano, debemos de maximizar la precisión de

nuestro SVM respecto a las dos contantes a determinar, ‘C’ que mide el peso dado al error y

‘gamma’ que proviene del propio Kernel Gaussiano. Está demostrado que hay un rango de

valores para ambos que maximizan esta eficiencia y los cuales probamos con un doble bucle

para encontrar la mayor.

C ·	{2X�, 2X�, … , 2H�, 2H�};
ê	·	{2XH�, 2XH�, … , 2H, 2�}

Realizamos un bucle recorriendo todos los valores de C y gamma y cogemos los que nos den

una mayor precisión respecto a un conjunto de validaciones. Una vez lo tenemos,

comprobamos que realmente funciona con un conjunto de tests.

24

Anexo G

Distancia entre descriptores

Se comprueba la validez de nuestro descriptor calculando las distancias entre histogramas de

distintos vídeos. Cuanto menor sea esta distancia querrá decir que más similares son los dos

histogramas de los vídeos que hemos analizado y por tanto si entre vídeos de la misma clase

esta distancia es visiblemente inferior que entre vídeos de otras clases tendremos que nuestro

método describe bien el vídeo.

Como se aprecia en la tabla 13 las respectivas distancias entre clases ‘caballo andando’ y

‘caballo corriendo’ son menores que la distancia entre cualquiera de estas dos clases y el resto.

Así mismo el descriptor empareja antes a los caballos por el fondo que por la acción que

realizan (en este caso correr o andar), es decir la distancia es menor de ‘caballo 1 corriendo’ a

‘caballo 1 andando’ que de ‘caballo 1 corriendo’ a ‘caballo 2 corriendo’. En el caso de la clase

‘speech’ la distancia entre ambos vídeos es la mínima posible, por lo tanto describe bien

personas hablando. Lo mismo ocurre con avión despejando y aterrizando y la clase ping pong,

también es un buen descriptor para ellos. El descriptor sólo falla en la clase pájaros ya que la

empareja con la clase ping pong, aunque no falla del todo porque la 2ª, 3ª y 4ª distancias mas

cortas a pájaro 2 son pájaro 1, avión 2 y avión 1 respectivamente, por tanto parece ser un

resultado lógico. Llegamos a la conclusión de que es un descriptor aceptable para nuestro

objetivo y a partir del siguiente experimento utilizaremos la máquina de aprendizaje explicada

en el apartado 3 en vez de mínimas distancias para clasificar los vídeos.

 Caballo 1 Caballo 1 R Caballo 2 Caballo 2 R Discurso 1 Discurso 2 Avión 1 A

Caballo 1 0 0.23 0.33 0.32 0.53 0.53 0.48

Caballo 1 R 0.23 0 0.36 0.35 0.56 0.55 0.52

Caballo 2 0.33 0.36 0 0.20 0.46 0.44 0.42

Caballo 2 R 0.32 0.35 0.35 0 0.5 0.48 0.46

Discurso 1 0.53 0.56 0.56 0.5 0 0.34 0.43

Discurso 2 0.53 0.55 0.55 0.48 0.34 0 0.41

Avión 1 A 0.48 0.42 0.42 0.46 0.43 0.41 0

Avión 1 D 0.44 0.47 0.41 0.42 0.52 0.47 0.36

Avión 2 A 0.41 0.45 0.38 0.4 0.45 0.44 0.25

Avión 2 D 0.43 0.47 0.4 0.4 0.49 0.44 0.35

Pájaros 1 0.56 0.58 0.51 0.54 0.42 0.47 0.44

Pájaros 2 0.48 0.49 0.44 0.44 0.47 0.42 0.46

Ping Pong 1 0.47 0.50 0.39 0.4203 0.44 0.42 0.35

Ping Pong 2 0.45 0.47 0.41 0.43 0.46 0.44 0.38

Tabla 13(1). Distancia entre descriptores

25

 Avión 1 D Avión 2 A Avión 2D Pájaros 1 Pájaros 2 Ping-Pong 1 Ping Pong 2

Caballo 1 0.44 0.41 0.43 0.56 0.48 0.47 0.44

Caballo 1 R 0.47 0.45 0.47 0.58 0.49 0.50 0.47

Caballo 2 0.41 0.38 0.4 0.51 0.44 0.39 0.41

Caballo 2 R 0.42 0.4 0.40 0.54 0.44 0.42 0.43

Discurso 1 0.52 0.45 0.49 0.42 0.47 0.44 0.46

Discurso 2 0.47 0.44 0.44 0.47 0.42 0.42 0.44

Avión 1 A 0.36 0.25 0.35 0.44 0.41 0.35 0.38

Avión 1 D 0 0.35 0.18 0.48 0.42 0.37 0.40

Avión 2 A 0.35 0 0.33 0.43 0.41 0.35 0.36

Avión 2 D 0.18 0.33 0 0.49 0.41 0.35 0.37

Pájaros 1 0.48 0.43 0.49 0 0.41 0.46 0.45

Pájaros 2 0.42 0.41 0.41 0.41 0 0.39 0.37

Ping Pong 1 0.37 0.35 0.35 0.46 0.396 0 0.29

Ping Pong 2 0.40 0.36 0.37 0.45 0.37 0.29 0

Tabla 13(2). Distancia entre descriptores

Anexo H

Experimentos realizados con ‘dataset Hollywood2’ [14]. Sintonización

de parámetros

Se utiliza el dataset elaborado por Ivan Laptev [14] para afinamiento de los parámetros de

nuestro descriptor. Véase desde la figura 34 a la figura 39 algunas de las distintas clases

utilizadas en este dataset.

Figura 34 Conducir

26

Figura 35. Levantarse

Figura 36. Pelea

Figura 37. Correr

Figura 38 Levantarse

27

Figura 39. Ponerse de pie

Se trata de un ‘dataset’ de películas de Hollywood. Es utilizado por diversos autores que han

investigado este problema para así poder hacer una comparación con el estado del arte. Este

‘dataset’ se divide en 12 acciones (descolgar el teléfono, beso, abrazo, levantarse, sentarse…)

sacadas de diversas películas de Hollywood, unas se utilizan para realizar el entrenamiento y

otras distintas para testear nuestro clasificador.

Debido a su gran extensión se ha llevado a cabo una parte de los vídeos. Se han tomado 20

vídeos de entrenamiento por clase, 10 vídeos por clase para su validación y 20 vídeos por clase

para el test final.

Se ha medido la calidad del descriptor en relación a la precisión de la media, que es un

parámetro resultado del cociente entre los falsos positivos por clase y la suma de los positivos

totales (falsos y verdaderos).

�po����ó� � verdaderos	positivos
verdaderos	positivos � falsos	positivos	

Se han obtenido unos resultados bastante independientes a la variación de parámetros,

podemos decir que nuestro descriptor es bastante robusto a pequeños cambios y no cambia

mucho al darse pequeñas variaciones en los vídeos, lo contrario no hubiera sido un buen

resultado ya que depender de un descriptor que cambia en demasía con la variación de

parámetros no aporta demasiada confianza cuando se intenta probar una ristra nueva de

vídeos ya que los valores que optimicen a estos nuevos vídeos pueden ser muy diferentes que

en experimentos anteriores, esto haría que el sistema fuera más caro computacionalmente

hablando, en cualquier caso hay unas pequeñas diferencias en los resultados que procedemos

a comentar:

28

 Aleatorio G-HOG3D Aleatorio G-HOG3D

AnswerPhone 0,012 0,026 HugPerson 0,077 0,041

DriveCar 0,151 0,183 Kiss 0,089 0,111

Eat 0,120 0,231 Run 0,056 0,109

FightPerson 0,184 0,325 SitDown 0,045 0,000

GetOutCar 0,023 0,077 SitUp 0,038 0,050

HandShake 0,041 0,138 StandUp 0,023 0,108

mean 0.071 0.112 mean 0.071 0.112

Tabla 14. Resultados con el G-HOG3D y unos parámetros iniciales.

Se realiza un primer experimento. En la tabla 14 se ve como no salen resultados demasiado

altos. Analizando los vídeos se ve que quizás el ‘dataset’ de Hollywood2 no sea muy

interesante para verificar las mejoras que se realicen en nuestro descriptor ya que tiene

diversos problemas: En algunas tomas ocurren dos mismas acciones a la vez (por ejemplo, ir en

coche y comer, hablar por teléfono y comer, dar un beso y abrazo al mismo tiempo, etc…)

además mezcla escenas ‘buenas’ donde aparece la acción especificada con diversas escenas

donde no ocurre aparentemente nada o incluso ocurre otra acción distinta a la que realmente

debería de ocurrir. Por esto, se hizo un filtrado del dataset, escogiendo sólo escenas buenas y

esto dio lugar, como se ve en la tabla 15, a un incremento de casi el 100% en la clasificación de

vídeos.

 Aleatorio G-HOG3D G-HOG3D

FILTRADO

AnswerPhone 0,012 0,026 0,100

DriveCar 0,151 0,183 0,370

Eat 0,120 0,231 0,391

FightPerson 0,184 0,325 0,300

GetOutCar 0,023 0,077 0,214

HandShake 0,041 0,138 0,161

HugPerson 0,077 0,041 0,200

Kiss 0,089 0,111 0,132

Run 0,056 0,109 0,222

SitDown 0,045 0,000 0,333

SitUp 0,038 0,050 0,000

StandUp 0,023 0,108 0,000

mean 0.017 0.112 0,202

Tabla 15. Comparación entre el dataset y el dataset filtrado a sólo tomas buenas

Como se explicó en la sección descriptores en cada celdilla tenemos los valores de los módulos

de los vectores direccionales y para fijar si el valor de este módulo es punible como

29

significativo se compara con los demás módulos de dos formas distintas, por un lado si este es

superior a la media se acepta y por el otro si es superior a la mediana. Como se ve en la tabla

se han hecho comparaciones y utilizando la mediana se obtienen resultados de entorno al 3%

superiores. Por tanto, al menos para este dataset, conviene utilizar la mediana (ver tabla 16).

 media mediana media mediana media mediana

AnswerPhone 0,100 0,105 0,136 0,100 0,059 0,150

DriveCar 0,345 0,357 0,303 0,370 0,323 0,333

Eat 0,300 0,333 0,353 0,391 0,296 0,280

FightPerson 0,300 0,300 0,233 0,300 0,304 0,313

GetOutCar 0,129 0,107 0,150 0,214 0,069 0,077

HandShake 0,238 0,250 0,346 0,161 0,208 0,250

HugPerson 0,143 0,200 0,067 0,200 0,182 0,214

Kiss 0,180 0,238 0,143 0,132 0,154 0,233

Run 0,240 0,300 0,211 0,222 0,304 0,318

SitDown 0,000 0,143 0,400 0,333 0,222 0,333

SitUp 0,000 0,000 0,000 0,000 0,000 0,000

StandUp 0,143 0,133 0,000 0,000 0,133 0,177

mean 0,176 0,206 0,195 0,202 0,188 0,223

Tabla 16. Comparación ente el uso de media y mediana.

Las celdillas son divisiones de nuestro vídeo tanto espaciales como temporales, para la división

temporal se comprueba (ver tabla 17) que a mayor división en el tiempo mejor clasificación

(hasta un punto donde empieza a bajar la precisión si seguimos incrementando la

discretización temporal). El pensamiento es que en el caso de ser una acción continua y

constante importará poco si discretizamos mucho o poco mientras que si la acción es variable

con el tiempo mejorará la clasificación con diescretizaciones más altas, por ejemplo para

describir un beso, si este se compone de mirada inicial, beso y despedida parece que

funcionaría mejor una descripción temporal dividida en tres partes y no en una sola parte o

uno dividido en más partes que tres.

30

 1 celdilla

temporal

2 celdillas

temporales

3 celdillas

temporales

4 celdillas

temporales

6 celdillas

temporales

AnswerPhone 0,000 0,188 0,177 0,150 0,118

DriveCar 0,000 0,321 0,333 0,333 0,355

Eat 0,000 0,308 0,318 0,280 0,286

FightPerson 0,278 0,238 0,208 0,313 0,250

GetOutCar 0,000 0,036 0,077 0,077 0,100

HandShake 0,250 0,280 0,280 0,250 0,269

HugPerson 0,000 0,250 0,214 0,214 0,235

Kiss 0,092 0,088 0,135 0,233 0,156

Run 0,500 0,143 0,313 0,318 0,500

SitDown 0,000 0,000 0,167 0,333 0,200

SitUp 0,000 0,222 0,000 0,000 0,000

StandUp 0,167 0,111 0,125 0,177 0,067

mean 0,107 0,182 0,196 0,223 0,211

Tabla 17. Aumento de las celdillas temporales

Las imágenes como hemos explicado anteriormente han sido reducidas (ver figura 40),

también hemos comprobado el efecto de estas reducciones en los resultados (tabla 18), entre

24 y 96 píxeles para la dimensión vertical de la imagen la mejor clasificación la da un valor

intermedio de 36 / 48 píxeles. La explicación es que para imágenes grandes tenemos

información con mucho detalle y se calcularán muchos gradientes innecesarios, para imágenes

muy pequeñas ocurre que perdemos gradientes importantes conforme el pixelado es menor

en la imagen.

Figura 40. Fotograma con distintos tamaños.

31

 Tamaño 24

en altura

Tamaño 36

en altura

Tamaño 48

en altura

Tamaño 72

en altura

Tamaño 96

en altura

AnswerPhone 0,125 0,136 0,118 0,158 0,133

DriveCar 0,300 0,313 0,355 0,324 0,231

Eat 0,304 0,250 0,286 0,308 0,296

FightPerson 0,280 0,273 0,250 0,188 0,125

GetOutCar 0,048 0,143 0,100 0,063 0,079

HandShake 0,194 0,273 0,269 0,238 0,214

HugPerson 0,250 0,182 0,235 0,200 0,071

Kiss 0,125 0,177 0,156 0,132 0,091

Run 0,167 0,313 0,500 0,333 0,250

SitDown 0,250 0,333 0,200 0,333 0,429

SitUp 0,000 0,200 0,000 0,000 0,000

StandUp 0,143 0,000 0,067 0,077 0,077

mean 0,182 0,216 0,211 0,196 0,166

Tabla 18. Aumento del tamaño en altura

Para la discretización en textura de las celdillas ocurre algo parecido que para la temporal, en

este caso hemos analizado como responde ante la variación del número de celdillas verticales

y horizontales y efectivamente mejoran los resultados a mayor número de celdillas (otra vez,

hasta llegar a cierto punto, ver tabla 19). En este caso se ha dividido la anchura y altura entre

un número par para no perder la perspectiva de que la persona es un sujeto simétrico.

 6 celdillas

espaciales

8 celdillas

espaciales

 6 celdillas

espaciales

8 celdillas

espaciales

AnswerPhone 0,150 0,210 HugPerson 0,214 0,167

DriveCar 0,333 0,400 Kiss 0,233 0,143

Eat 0,280 0,364 Run 0,318 0,235

FightPerson 0,313 0,250 SitDown 0,333 0,286

GetOutCar 0,077 0,095 SitUp 0,000 0,000

HandShake 0,250 0,300 StandUp 0,177 0,077

mean 0,223 0,211 mean 0,223 0,211

 Tabla19. Aumento de celdillas espaciales

Lo mismo ocurre para el número de bins (tabla 20), donde se han utilizado sobretodo números

pares de configuraciones con el mismo objetivo de preservar la simetría del cual hemos habla

de anteriormente y el sistema mejora hasta llegar a 6 divisiones por ángulo, 8 divisiones ya da

lugar a un empeoramiento de los resultados.

32

 6 bins 8 bins 4 bins 6 bins 8 bins 4 bins

AnswerPhone 0,150 0,105 0,111 HugPerson 0,214 0,200 0,154

DriveCar 0,333 0,357 0,200 Kiss 0,233 0,238 0,200

Eat 0,280 0,333 0,143 Run 0,318 0,300 0,286

FightPerson 0,313 0,300 0,191 SitDown 0,333 0,143 0,000

GetOutCar 0,077 0,107 0,059 SitUp 0,000 0,000 0,000

HandShake 0,250 0,250 0,217 StandUp 0,177 0,133 0,133

mean 0,223 0,206 0,141 mean 0,223 0,206 0,141

Tabla 20. Aumento de ‘bins’.

Se han probado otra configuraciones del descriptor, han dado peores resultados debido a que

se ha utilizado información redundante en el sentido de que es repetida, esto es así ya que en

vez de utilizar dos ángulos para el descriptor se han utilizado tres y realmente el vídeo es un

volumen de imágenes y se puede describir con sólo dos ángulos, al igual que para describir un

solo fotograma es suficiente un solo ángulo y no dos.

Anexo I

Experimentos realizados con ‘dataset KTH’ [15]. Sintonización de

parámetros

Se trata, como vemos desde la figura 41 a 46, de un dataset más sencillo a la hora del

reconocimiento debido a la sencillez de sus acciones y el emplazamiento del sujeto en un

fondo constante donde la única zona móvil es la persona que realiza la acción.

Figura 41. Boxear

33

Figura 42. Dar palmas

Figura 43. Movimiento de manos

Figura 44. Trotar

Figura 45. Correr

34

Figura 46. Caminar

Se sigue sintonizando los parámetros de nuestro descriptor. Este dataset de reconocimiento

de acciones, también viene siendo muy utilizado por diversos autores, la razón por la que lo

utilizamos, a parte de para poder comparar nuestro descriptor con el resto es porque se trata

de un ‘dataset’ más sencillo y menos extenso lo que proporciona una visualización y

comparación de resultados más fácil y rápida. Por etapas se hizo lo siguiente:

1) Se comienza utilizando el descriptor que mejor ha funcionado en el experimento

anterior, se utiliza la misma configuración (tabla 21). Disponemos de 100 vídeos en

total para cada una de las cuatro clases. Se otorgan 32 vídeos para hacer el

entrenamiento de nuestra maquina de aprendizaje, 32 para la validación de la

misma y 36 para comprobar los resultados de clasificación.

 Boxing Handclapping Handwaving Jogging Running Walking mean

G-HOG3D 0.6531 0,9524 0,9140 0,5000 0,5700 0,5600 0.6531

Tabla 21. Prueba inicial para el G-HOG3D

2) En este descriptor se piensa en la idea de que es más importante el cambio en el

tiempo de la acción que la acción en si misma. Por ello se piensa que pesando más

los gradientes calculados en la dimensión temporal mejorará los resultados. Estos

gradientes se calculan como hemos visto en la sección del descriptor HOG como

diferencias en la dimensión temporal entre píxeles contiguos. Por este motivo se

hace una prueba dándole un peso doble a los gradientes temporales respecto a los

espaciales. Como vemos (tabla 22) los resultados no son bastante más bajos por lo

que seguiremos pesando igualmente de ahora en adelante.

35

 Boxing Handclapping Handwaving Jogging Running Walking mean

Peso

gradiente

temporal

unitario

0,6531 0,9524 0,9140 0,5000 0,5700 0,5600 0.6900

Peso

gradiente

temporal

doble

0,4500 0,7300 1 0,4400 0,6190 0,500 0.6200

Tabla 22. Aumento del peso en el gradiente temporal

3) Utilizamos el mismo descriptor que en la primera etapa, el cambio es que ahora no
utilizamos los mismos vídeos que antes para entrenar y validar, pasamos 24 de los
vídeos de validación a entrenamiento. Con esta modificación mejoran los
resultados, algo que parece evidente ya que se utilizan los mismos vídeos para
entrenar a nuestra SVM pero en este caso para el entrenamiento propiamente
dicho se utilizan más videos y menos para la validación ya que con valores de
entorno al 20% de vídeos para la validación respecto al entrenamiento es
suficiente. Así, de ahora en adelante utilizaremos esta configuración para los
vídeos. Ver tabla 23.

 Boxing Handclapping Handwaving Jogging Running Walking mean

Vídeos de
entrenamiento

originales
0,6531 0,9524 0,9140 0,5000 0,5700 0,5600 0.6900

Mayor número
de vídeos en
entrenamiento

0,6182 0,9167 1 0,6000 0,5800 0,7800 0,7491

Tabla 23 Incremento del número de vídeos de entrenamiento

4) En esta nueva etapa variamos la forma de aceptación de un punto como

significativo o no significativo. Como ya se ha explicado, para aceptar el gradiente

total dentro de una celdilla lo compararemos con el resto mediante las funciones

media y mediana. Si este valor es más grande que la media o mediana (depende de

la función que utilicemos) lo tomaremos como significativo. Hemos utilizado la

mediana ya que en el experimento de Hollywood otorgaba resultados un 3%

superiores y además es más robusta a valores erróneos. En este caso vemos que la

media funciona un 2% poco mejor y la continuaremos utilizando (ver tabla 24).

36

 Boxing Handclapping Handwaving Jogging Running Walking mean

mediana 0,6182 0,9167 1 0,6000 0,5800 0,7800 0,7491

media 0,6111 0,9545 0,9667 0,6000 0,6522 0,8235 0,7680

Tabla 24.

5) Igual que en la etapa 4 pero sin el suavizado que se le hacía a cada imagen donde

se elevaba el valor de cada pixel a 0,5 y se hacía una redistribución de los colores

para utilizar toda la gama de estos, es decir desde 0 a 255. Se ve que el resultado

mejora sin esta operación que sufrían las imágenes, esto es debido a que el

suavizado provoca que algunos de gradientes se pierdan, esto es bueno si se

pierden gradientes pequeños que no aportan la información necesaria, pero si se

pierden los gradientes importantes es cuando los resultados empeoran (ver tabla

25).

 Boxing Handclapping Handwaving Jogging Running Walking mean

Con
suavizado

0,6111 0,9545 0,9667 0,6000 0,6522 0,8235 0,7680

Sin
suavizado

0,6800 0,9600 0,9688 0,6296 0,6818 0,7895 0,7849

Tabla 25. Comparación entre suavizar y no suavizar.

6) Igual que en la etapa 5 pero en vez de calcular el ángulo que describen nuestro

vídeo temporalmente mediante el gradiente en ‘x’ y en ‘t’ lo haremos mediante

los gradientes en ‘y’ y en ‘t’. Esto da un mejor resultado utilizar la relación de

gradientes verticales respecto al tiempo antes que la utilización de gradientes

horizontales respecto al tiempo (ver tabla 26). En un principio parecería lógico que

los resultados fueran similares o iguales ya que para calcular la posición de un

vector en tres dimensiones es suficiente con dos ángulos, sean los calculados hasta

ahora o sea los probados en esta nueva etapa pero en cambio salen unos

resultados un 4% superiores por lo que seguiremos utilizando esta configuración

 Boxing Handclapping Handwaving Jogging Running Walking mean

Ángulo
temporal
(x-t)

0,6800 0,9600 0,9688 0,6296 0,6818 0,7895 0,7849

Ángulo
temporal
(y-t)

0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272

Tabla 26. Diferentes formas de cálculo del ángulo temporal.

7) Se calculan los descriptores utilizado tanto en la etapa 5 como en la etapa 6 (ver

tabla 27) de forma independiente y se juntan uno detrás de otro en un descriptor

global, se obtienen los mismos resultados que en la anterior etapa por tanto

37

desechamos esta idea ya que el descriptor es el doble en tamaño y no aporta

mejores resultados.

 Boxing Handclapping Handwaving Jogging Running Walking mean

Etapa 5 0,6800 0,9600 0,9688 0,6296 0,6818 0,7895 0,7849

Etapa 6 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272

Etapa 5+6 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272

Tabla 27. Unión etapa 5 y etapa 6

8) Una vez hemos calculado una celdilla al completo se procede a normalizarla como

ya hemos visto, después se toman los valores mayores que 0.2 y se igual a 0.2 para

evitar altos gradientes debidos por ejemplo a un cambio de luminosidad que no

aporta mucha información. Se elimina esta restricción. Los resultados empeoran

considerablemente al pensar que no íbamos a encontrar valores tan grandes como

para estropear nuestro descriptor ya que valores grandes restan la aportación de

los valores más pequeños (ver tabla 28).

 Boxing Handclapping Handwaving Jogging Running Walking mean

Con límite
de 0.2 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272

Sin límite
de 0.2 0,6863 0,8667 1 0,6098 0,7576 0,8286 0,7915

Tabla 28. Comparación entre limitación de los gradientes y no limitación

9) Igual que la etapa 6 pero se aumentan los bins. En este ‘dataset’ un aumento de

los bins de 6 a 8 si que produce una mejora, aunque realmente poco significativa.

Ver tabla 29

 Boxing Handclapping Handwaving Jogging Running Walking mean

6 bins 0,7447 0,9655 1 0,6571 0,7632 0,8330 0,8272

8 bins 0,7292 0,9360 1 0,7143 0,8056 0,8158 0,8334

Tabla 29.

10) Igual que la etapa 9, el cambio aquí es muy parecido al cambio en 8 donde

quitábamos la restricción de que si en una celdilla daba un valor mayor de 0.2 se

igualaba a 0.2, en este caso somos un poco menos restrictivos y dejamos este valor

en 0.4. Vemos que antes no había funcionado la idea de quitar la operación que

elimina valores mayores de 0.2, en cambio si hacemos lo mismo pero con una

restricción menor de hasta 0.4 los resultados mejoran aunque no es un gran

cambio. Ver tabla 30.

38

 Boxing Handclapping Handwaving Jogging Running Walking mean

Límite de
0.2

0,7292 0,9360 1 0,7143 0,8056 0,8158 0,8334

Límite de
0.4

0,7083 0,8710 1 0,7879 0,8158 0,8611 0,8406

Tabla 30. Distintas limitaciones para los valores altos del histograma.

11) Anteriormente se tomaba cada vídeo por completo y en este apartado se divide el

vídeo en 4 partes ya que en cada uno transcurren 4 acciones idénticas, así las

separamos gracias a un fichero de texto que identifica los intervalos donde se

encuentra cada toma. Se obtienen resultados en torno al 3% superiores como

podemos ver en la tabla. Se han tomado 12 bins para los ángulos y han ido

variando las celdillas, nótese el incremento de la precisión al incrementar estas.

Ver tabla 31.

 Boxing Handclapping Handwaving Jogging Running Walking mean

1 celdilla 0.7053 0.7624 0.9643 0.6463 0.6270 0.8966 0.7670

2 celdillas 0.8421 0.77826 0.7132 0.7912 0.8125 0.8727 0.8024

3 celdillas 0.9153 0.9524 0.7007 0.8068 0.8778 0.8205 0.8456

4 celdillas 1 0.9022 0.7007 0.7938 0.9277 0.8276 0.8587

5 celdillas 0.9322 0.9167 0.7619 0.8587 0.8830 0.8889 0.8736

Tabla 31. Incremento del número de celdillas

Experimento con detección de acción y substracción de esta

Se hacen tres pruebas relacionadas, la primera consiste en detectar la zona del fotograma que

está en movimiento (explicado en sección descriptores) independientemente del movimiento

de la cámara y analizarla igual que en casos anteriores, se llega a un resultado un uno por

ciento superior al mejor caso de los anteriores y con la utilización de menos bins. Además se

realiza el mismo experimento utilizando sólo el 40% de los vídeos para una mayor rapidez de

en la próxima comparación. Ver tabla 32.

 Boxing Handclapping Handwaving Jogging Running Walking mean

Con detección
de acción

1 0.9556 0.7680 0.9041 0.7788 0.9029 0.8849

Con detección
acción y

utilizando el
40% de vídeos

1

0.9500

0.6531

0.8095

0.6512

1

0.8440

Tabla 32. Resultado tras la detección de acción

39

La segunda prueba consiste en hacer lo mismo que en el anterior caso pero se intenta mejorar

la zona del fotograma relacionada con el movimiento en la acción, para ello como se ha

explicado en la sección 3.5 se introduce un sistema de votaciones donde se selecciona una

ventana que se ajuste lo mejor posible a 10 fotogramas consecutivos para suavizar el tamaño

y posición de la ventana de movimiento, que no sea tan variable de un fotograma a otro y

capte a la persona en su totalidad, además se hace un cambio constante y lineal del tamaño

del fotograma para evitar cambios bruscos en los tamaños de estas ventanas. El resultado

para este caso como vemos es un poco inferior que para el caso con la detección del

movimiento sin suavizar. Ver tabla 33

 Boxing Handclapping Handwaving Jogging Running Walking mean

Con detección
acción y

utilizando el
40% de vídeos

1

0.9500

0.6531

0.8095

0.6512

1

0.8440

Con detección
acción

suavizada y
utilizando el

40% de vídeos

0.8065

1

0.6250

0.7500

0.8485

1

0.8383

Tabla 33. Comparación entre detección de acción suavizada y sin suavizar

Como tercera prueba y definitiva se hace que el tamaño de la ventana global que siempre sea

igual de grande y en la misma posición para evitar la unión de gradientes de distintas zonas del

cuerpo en una misma celdilla. Para ello se toma las 4 esquinas más alejadas de entre todas las

ventanas calculadas en el caso anterior, como vemos los resultados mejoran un 4% respecto a

la misma configuración pero sin substracción del movimiento. Ver tabla 34

 Boxing Handclapping Handwaving Jogging Running Walking mean

Sin detección
acción

1 0.9022 0.7007 0.7938 0.9277 0.8276 0.8587

Con detección
acción

0.9868 0.8812 0.8807 0.8734 0.8269 0.9057 0.8925

Tabla 34. Comparación entre detección de acción global y no detección de acción

Anexo J

Ecuación de Euler-Lagrange

La naturaleza ahorra energía potencial, siempre busca la posición de equilibrio hacia un estado

de menos energía. Es por ello que se busca la minimización de la acción, es lo mismo que se

busca en las minimizaciones de este proyecto como las que se utilizan en las maquinas de

aprendizaje o en el cálculo del flujo óptico. En nuestro caso la minimización de ‘S’ está definida

40

como la integral de una función lagrangiana ‘L’ desconocida entre dos instantes de tiempo

dados:

(�)� � � *+,,)�,�,)-�,�.%,#
/

Se desea considerar todas las posibles trayectorias que sigue la partícula durante el intervalo
de tiempo analizado, podemos entonces parametrizarlo con el parámetro �:
)�,, �� �)�,� � ��J��

Donde ���� � ���� � 0	 para que)(,, �) =)(,) en los bordes temporales ya que eso no lo
queremos cambiar. Sólo es interesante saber que trayectorias hacen que la acción se minimice
pero la acción en los bordes debe ser la misma ya que todas las trayectorias deben de empezar
y acabar en el mismo lugar. De este modo derivamos la acción respecto a � e igualamos a 0
para llegar al mínimo (o máximo):
 v((), �)v� = 0

Que es lo mismo que:

� dLd� dt#
¬ = 0

Tras unas operaciones se llega a la buscada ecuación de LaGrange, en primer lugar aplicamos
la regla de la cadena, descomponemos así la derivada total en sus parciales:
 dLd� = ∂q∂� ∂L∂) + ∂qñ∂� ∂L∂qñ + ∂t∂� ∂L∂,

La derivada del tiempo respecto a �	es cero porque no depende de ella:
 dLd� = ∂q∂� ∂L∂) + ∂qñ∂� ∂L∂qñ

El segundo termino de la parte de la derecha de la igualdad molesta por lo que se escribe en la
forma: ∂qñ∂� ∂Ldqñ = 	 w∂q∂� ∂L∂qñ xñ − ∂q∂� w∂L∂qñ xñ

Llegando a: dLd� = ∂q∂� ∂L∂) + w∂q∂� ∂L∂qñ xñ − ∂q∂� w∂L∂qñ xñ

Lo introducimos en la integral:

� Ë∂q∂� ∂Ld) + w∂q∂� ∂Ldqñ xñ − ∂q∂� w∂L∂qñ xñ Ì dt#
¬ = 0

41

� Ë∂q
∂�

∂L
d) 5 ∂q

∂� w∂L
∂qñ x
ñ Ì dt �#

¬
� w∂q

∂�
∂L
∂qñ x
ñ dt#

¬
� 0

Sabiendo que
òóôÝ en los extremos porque en ellos todas trayectorias deben de tener el mismo

valor podemos extrapolar que la segunda integral es nula:

� Ë∂q∂� ∂L∂) − ∂q∂� w∂L∂qñ xñ Ì dt = 0#
¬

Que debe cumplirse para cualquier desviación
òóôÝ:

Ë∂L∂) − w∂L∂qñ xñ Ì = 0

 ∂L 1t, q(t), q′(t)3∂q(t) − d∂t ∂L 1t, q(t), q′(t)3q′(t) = 0		

Anexo K

Dataset

A continuación se muestran las clases del 'dataset' creado (figuras 47 a 54).

Figura 47. Lancha motora

42

Figura 48. Caballo y Jinete

Figura 49. León caminando

43

Figura 50. Avión despegando

Figura 51. Persona hablando

44

Figura 52. Pelea de sumo

Figura 53. Punto en tenis

45

Figura 54. Tren

