

Información del Plan Docente

Academic Year 2018/19

Subject 28734 - Extension of Underground Hydrology

Faculty / School 175 - Escuela Universitaria Politécnica de La Almunia

Degree 423 - Bachelor's Degree in Civil Engineering

ECTS 6.0

Year

Semester Second semester

Subject Type Compulsory

Module ---

- 1.General information
- 1.1.Aims of the course
- 1.2. Context and importance of this course in the degree
- 1.3. Recommendations to take this course
- 2.Learning goals
- 2.1.Competences
- 2.2.Learning goals
- 2.3.Importance of learning goals
- 3.Assessment (1st and 2nd call)
- 3.1. Assessment tasks (description of tasks, marking system and assessment criteria)
- 4. Methodology, learning tasks, syllabus and resources

4.1. Methodological overview

Strong interaction between the teacher/student. This interaction is brought into being through a division of work and responsibilities between the students and the teacher. Nevertheless, it must be taken into account that, to a certain degree, students can set their learning pace based on their own needs and availability, following the guidelines set by the teacher.

The current subject is conceived as a stand-alone combination of contents, yet organized into two fundamental and complementary forms, which are: the theoretical concepts of each teaching unit, and the solving of problems/resolution of questions.

4.2.Learning tasks

Involves the active participation of the student, in a way that the results achieved in the learning process are developed, not taking away from those already set out, the activities are the following:

— Face-to-face generic activities:

- 1. **Theory Classes**: The theoretical concepts of the subject are explained and illustrative examples are developed as support to the theory when necessary.
- 2. **Practical Classes**: Problems and practical cases are carried out, complementary to the theoretical concepts studied.
- 3. **Individual Tutorials**: Those carried out giving individual, personalized attention with a teacher from the department. Said tutorials may be in person or online.

— Generic non-class activities:

- 1. Study and understanding of the theory taught in the lectures.
- 2. Understanding and assimilation of the problems and practical cases solved in the practical classes.
- 3. Preparation of seminars, solutions to proposed problems, etc.
- 4. Preparation of the written tests for continuous assessment and final exams.

4.3.Syllabus

BLOCK A.- INTRODUCTION (1 WEEK)

1. INTRODUCTION TO HIDROGEOLOGY. RELATION BETWEEN SURFICIAL AND GROUNDWATER HYDROLOGICAL CYCLE

BLOCK B.- GROUND WATER (8 WEEKS)

- 2.- HYDROGEOLGICAL PARAMETERS: POROSITY, PERMEABILITY, HYDRAULIC CONDUCTIVITY, TRANSMISIVITY, DARCY'S LAW
- 3.- AQUIFER TYPES
- 4.- RELATIONS SURFACE WATER GROUND WATER
- 5.- PIEZOMETRY: HYDROGEOLOGICAL CARTOGRAPHY
- 6.- GROUNDWATER HYDROCHEMISTRY

BLOCK C.- STUDY TECHNIQUES FOR GROUND WATER EXPLORATION (4 WEEKS)

- 7.- INTRODUCTION TO MODELLING OF GROUND WATER FLOW
- 8.- ANALYTICAL SOLUTIONS. PUMPING TESTS: TRANSIENT AND STEADY PUMPING REGIME
- 9.- GRAPHICAL SOLUTIONS: FLOW NETWORKS

BLOCK D.- GROUND WATERS AND CIVIL WORKS (2 WEEKS)

- 10.- GROUND WATER IMPACTS ON CIVIL WORKS. PUMPING WELLS.
- 11.- HYDROGEOTECHNICAL EFFECTS OF CIVIL WORKS.

4.4. Course planning and calendar

The subject has 6 ECTS credits, which represents 150 hours of student work in the subject during the trimester, in other words, 10 hours per week for 15 weeks of class.

A summary of a weekly timetable guide can be seen in the following table. These figures are obtained from the subject file in the Accreditation Report of the degree, taking into account the level of experimentation considered for the said subject is moderate.

Activity	Weekly school hours
Lectures	4
Other Activities	6

Nevertheless the previous table can be shown into greater detail, taking into account the following overall distribution:

— 52 hours of lectures, with 50% theoretical demonstration and 50% solving type problems.

— 4 hours of written assessment tests, two hours per test.

— 90 hours of personal study, divided up over the 15 weeks of the 2nd semester.

4.5.Bibliography and recommended resources