

Información del Plan Docente

Año académico 2018/19

Asignatura 29813 - Electrotecnia

Centro académico 110 - Escuela de Ingeniería y Arquitectura

326 - Escuela Universitaria Politécnica de Teruel

Titulación 440 - Graduado en Ingeniería Electrónica y Automática

444 - Graduado en Ingeniería Electrónica y Automática

Créditos 6.0

Curso 2

Periodo de impartición Primer Semestre

Clase de asignatura Obligatoria

Módulo ---

1.Información Básica

1.1. Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

Los objetivos de la asignatura son que el alumno llegue a dominar el funcionamiento de las máquinas eléctricas más importantes tanto en su vertiente teórica como práctica, que conozca las aplicaciones industriales más importantes donde intervienen cada una de las máquinas estudiadas durante el curso y que desarrolle una destreza mínima en ensayos de laboratorio y manejo de instrumentación con máquinas eléctricas.

1.2.Contexto y sentido de la asignatura en la titulación

La asignatura de Electrotecnia forma parte del primer semestre de segundo curso del Grado en Ingeniería Electrónica y Automática. Para cursar esta asignatura son imprescindibles sólidos conocimientos de matemáticas, física y circuitos eléctricos, por lo que es recomendable haber cursado y superado las asignaturas de primer curso Matemáticas I y II, Física I y II y Fundamentos de Electrotecnia.

Los conocimientos adquiridos en Electrotecnia, sirven de base para asignaturas como Electrónica de Potencia (tercer curso) e Instalaciones Eléctricas (cuarto curso), entre otras.

1.3. Recomendaciones para cursar la asignatura

Para cursar la asignatura de Electrotecnia son imprescindibles sólidos conocimientos de **matemáticas**, **física y circuitos eléctricos**, por lo que es recomendable haber cursado y superado las asignaturas de primer curso **Matemáticas I y II**, **Física I y II y muy especialmente la asignatura Fundamentos de Electrotecnia** del Grado en Ingeniería Electrónica y Automática.

El **estudio y trabajo continuado**, desde el primer día del curso, son fundamentales para superar con el máximo aprovechamiento la asignatura.

Es importante resolver cuanto antes las dudas que puedan surgir, para lo cual el estudiante cuenta con la asesoría del profesor, tanto durante las clases como en las **horas de tutoría** destinadas a ello.

2. Competencias y resultados de aprendizaje

2.1.Competencias

Al superar la asignatura, el estudiante será más competente para...

Aplicar el conocimiento de electrotecnia.

Resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico.

Usar las técnicas, habilidades y herramientas de la Ingeniería necesarias para la práctica de la misma.

Gestionar la información, manejo y aplicación de las especificaciones técnicas y la legislación necesarias para la práctica de la Ingeniería.

Aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo.

Comunicar y transmitir conocimientos, habilidades y destrezas en castellano.

2.2. Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Comprende los principios de funcionamiento de las máquinas eléctricas y tiene habilidad para aplicarlos al análisis del funcionamiento en régimen permanente y en régimen transitorio de las máquinas eléctricas.

Tiene habilidad para identificar, clasificar y describir el comportamiento de sistemas con máquinas eléctricas a través del uso de métodos analíticos y técnicas de modelado propios del análisis de máquinas eléctricas.

Comprende las necesidades de usuario en la selección de máquinas eléctricas.

Tiene habilidades de trabajo en un laboratorio de electrotecnia.

Comprende los códigos prácticos y estándares de la industria referentes a máquinas eléctricas.

Identifica, clasifica y describe las instalaciones eléctricas en baja, media y alta tensión y las protecciones eléctricas.

2.3.Importancia de los resultados de aprendizaje

Los resultados de aprendizaje adquiridos en Electrotecnia son importantes porque permiten fijar los conocimientos básicos de las máquinas eléctricas, base para el desarrollo de asignaturas clave en la titulación del Grado en Ingeniería Electrónica y Automática como son Electrónica de Potencia (diseño de etapas electrónicas para control), Automatización y Robótica Industrial, entre otras.

3. Evaluación

3.1.Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba EVALUACIÓN POR CURSO:

La evaluación por curso tendrá en cuenta los siguientes aspectos:

1) Trabajos y actividades evaluables (20%)

Con el fin de incentivar el trabajo continuado y conseguir un mejor aprendizaje por parte del alumno, se realizarán actividades evaluables distribuidas a lo largo del semestre. Dichas actividades se irán programando cada curso, consistiendo en diversos ejercicios individuales entregables, cuestionarios, etc. Las actividades concretas a realizar y la ponderación aplicable se comunicarán con suficiente antelación a los estudiantes.

La calificación será de 0 a 10 puntos, suponiendo un 20% de la calificación total.

2) Prácticas de laboratorio (20%)

Se valorará la preparación previa (mediante un test al inicio de la práctica, que supondrá el 50% de la nota) y el desarrollo de la sesión de laboratorio, la capacidad de montaje y puesta en marcha de los equipos, así como los resultados obtenidos (50%).

La calificación será de 0 a 10 puntos, suponiendo un 20% de la calificación total del estudiante (el estudiante que no asista a una sesión en el horario programado tendrá una calificación de 0 en dicha sesión). Para superar la asignatura se deberá obtener una calificación mínima total de las prácticas de 5 puntos sobre 10, calificación que se mantendrá para las dos convocatorias del curso.

Todo estudiante que no supere la nota mínima exigida en este punto, deberá realizar la evaluación global que se detalla más adelante.

3) Examen de la asignatura (60%)

El examen constará de una parte de teoría que supondrá el 30% de la nota total y una parte de problemas que supondrá el 70% de la nota total (promediando con notas iguales o superiores a 4 sobre 10 en cada una de las partes).

La calificación será de 0 a 10 puntos, suponiendo un 60% de la calificación total del estudiante. Para superar la asignatura se deberá obtener una calificación mínima de 5 puntos sobre 10.

En caso de no obtener la nota mínima exigida en alguna de las pruebas, la calificación total en la asignatura será el menor valor entre la media ponderada de las pruebas y "4.0".

EVALUACIÓN GLOBAL:

En cada una de las convocatorias oficiales, los alumnos que no hayan superado las prácticas de laboratorio, podrán optar a una evaluación global que consistirá en:

1) Examen de prácticas de laboratorio (30%)

La calificación será de 0 a 10 puntos, suponiendo un 30% de la calificación total del estudiante. Para superar la asignatura se deberá obtener una calificación mínima de 5 puntos sobre 10.

2) Examen de la asignatura (70%)

El examen constará de una parte de teoría que supondrá el 30% de la nota total y una parte de problemas que supondrá el 70% de la nota total (promediando con notas iguales o superiores a 4 sobre 10 en cada una de las partes). La calificación será de 0 a 10 puntos, suponiendo un 70% de la calificación total del estudiante. Para superar la asignatura se deberá obtener una calificación mínima de 5 puntos sobre 10.

En caso de no obtener la nota mínima exigida en alguna de las pruebas, la calificación total en la asignatura será el menor valor entre la media ponderada de las pruebas y "4.0".

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

El proceso de enseñanza se desarrollará en tres niveles principales: clases de teoría, problemas y laboratorio, con creciente nivel de participación del estudiante.

- En las clases de teoría se expondrán los fundamentos de la Electrotecnia, ilustrándose con numerosos ejemplos y aplicaciones reales.
- En las clases de problemas se desarrollarán problemas y casos tipo con la participación de los estudiantes.
- Se desarrollarán prácticas de laboratorio en grupos reducidos, donde el estudiante comprobará el funcionamiento de las principales máquinas eléctricas.
- Asimismo, para incentivar el trabajo continuo y autónomo del estudiante, se llevarán a cabo actividades de aprendizaje adicionales a realizar a lo largo del semestre.

4.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

TRABAJO PRESENCIAL 2.4 ECTS (60 horas)

1) Clase presencial (tipo T1) (30 horas presenciales).

Sesiones expositivas de contenidos teóricos y prácticos. Se presentarán los conceptos y fundamentos de las máquinas eléctricas, ilustrándolos con ejemplos reales. Se fomentará la participación del estudiante a través de preguntas y breves debates.

2) Clases de problemas y resolución de casos (tipo T2) (15 horas presenciales).

Se desarrollarán problemas y casos con la participación de los estudiantes, coordinados en todo momento con los contenidos teóricos. Se fomentará que el estudiante trabaje previamente los problemas. Parte de estas horas podrán dedicarse a las actividades de aprendizaje evaluables que se especifiquen en cada curso.

3) Prácticas de laboratorio (tipo T3) (15 horas presenciales).

El estudiante comprobará el funcionamiento de las principales máquinas eléctricas en el laboratorio. Dispondrá de un guion de la práctica, que tendrá que preparar previamente.

El programa de prácticas es el siguiente:

- Medidas eléctricas en circuitos de corriente alterna y continua.
- Ensayos del transformador trifásico.
- Automatismos: Maniobras sobre el motor asíncrono.
- Ensayos de la máquina asíncrona.
- Control electrónico de velocidad de un motor asíncrono.

TRABAJO NO PRESENCIAL: 3.6 ECTS (90 horas)

4) Trabajos docentes (tipo T6) (20 horas no presenciales).

Actividades que el estudiante realizará solo o en grupo y que el profesor irá proponiendo a lo largo del período docente.

5) Estudio (tipo T7) (66 horas no presenciales).

Estudio personal del estudiante de la parte teórica y realización de problemas. Se fomentará el trabajo continuo del estudiante mediante la distribución homogénea a lo largo del semestre de las diversas actividades de aprendizaje.

Se incluyen aquí las **tutorías**, como atención directa al estudiante, identificación de problemas de aprendizaje, orientación en la asignatura, atención a ejercicios y trabajos, etc.

6) Pruebas de evaluación (tipo T8) (4 horas no presenciales).

Además de la función calificadora, la evaluación también es una herramienta de aprendizaje con la que el alumno comprueba el grado de comprensión y asimilación alcanzado.

4.3.Programa

El programa que se ofrece al estudiante para ayudarle a lograr los objetivos previstos.

Los contenidos que se desarrollarán son los siguientes:

- 1. Introducción a las instalaciones eléctricas.
- 1. El sistema eléctrico de potencia.
- 2. Los subsistemas de producción, transporte y distribución.
- 2. Aspectos generales de las máquinas eléctricas.
- 1. Selección de máquinas eléctricas y normativa.
- 3. Transformadores
- 1. Sistemas trifásicos.
- 2. Transformador monofásico y trifásico.
- 3. Conexión de transformadores en paralelo.
- 4. Autotransformadores y transformadores de medida y de protección.
- 4. Máquinas rotativas
- 1. Devanados y campo magnético giratorio.
- 2. La máquina asíncrona trifásica.
- 3. La máquina síncrona trifásica.
- 4. La máquina de corriente continua.
- 5. Máquinas especiales.

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos

Las clases magistrales y de problemas y las sesiones de prácticas en el laboratorio se impartirán según horario establecido por el centro (horarios disponibles en su página web).

Cada profesor informará de su horario de atención de tutoría.

El resto de actividades se planificará en función del número de alumnos y se dará a conocer con la suficiente antelación. Podrá consultarse en el ADD: https://moodle2.unizar.es/add/

El calendario detallado de las diversas actividades a desarrollar se establecerá una vez que la Universidad y el Centro hayan aprobado el calendario académico (el cual podrá ser consultado en la página web del centro).

La relación y fecha de las diversas actividades, junto con todo tipo de información y documentación sobre la asignatura, se publicará en el **ADD**:

https://moodle2.unizar.es/add

(para acceder a esta página web el estudiante requiere estar matriculado).

4.5. Bibliografía y recursos recomendados