

Información del Plan Docente

Año académico 2018/19

Asignatura 29817 - Sistemas automáticos

Centro académico 110 - Escuela de Ingeniería y Arquitectura

326 - Escuela Universitaria Politécnica de Teruel

Titulación 440 - Graduado en Ingeniería Electrónica y Automática

444 - Graduado en Ingeniería Electrónica y Automática

Créditos 6.0

Curso 2

Periodo de impartición Segundo Semestre

Clase de asignatura Obligatoria

Módulo ---

1.Información Básica

1.1. Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

Los objetivos de la asignatura Sistemas Automáticos son los siguientes:

● Asimilar la estructura del bucle clásico de regulación.

● Comprender la función del regulador, de los accionadores y de los sensores.

● Describir la relación que existe entre las acciones proporcional, integral y derivada con la respuesta en régimen permanente y transitorio de un proceso.

● Comprender y asimilar la técnica de diseño de reguladores en el dominio del tiempo por el método de cancelación de polos y del lugar de las raices.

● Comprender y asimilar las técnicas de diseño de reguladores en el dominio de la frecuencia.

● Asimilar y comprender las diferentes formas constructivas o arquitecturas de los autómatas programables.

● Iniciación a la programación de Autómatas

● Asimilar y comprender el proceso de modelado de Sistemas de Eventos discretos mediante redes de Petri.

● Adquirir capacidad de diseño de sistemas de control y regulación.

● Adquirir capacidad de utilización de autómatas programables en el control de procesos continuos.

● Adquirir capacidad de modelado y programación de sistemas de eventos discretos.

1.2. Contexto y sentido de la asignatura en la titulación

Sistemas automáticos es una asignatura de la rama de tecnologías industriales. En este contexto se presentan los conceptos básicos del control de sistemas.

Los alumnos han cursado en semestres anteriores asignaturas de **matemáticas**, **física**, **electrotecnia y Señales y Sistemas** necesarias para comprender los principios básicos utilizados en la asignatura. El alumno aprende en la asignatura a analizar y diseñar bucles de control clásico y otras estructuras de control. También se le introduce en el control por computador.

Al finalizar la asignatura el alumno es capaz de comprender la transcendencia del control de sistemas y su importancia en los procesos industriales desde el punto de vista técnico, económico y ambiental. Los conocimientos adquiridos sirven de base para asignaturas como **Ingeniería de Control y Automatización Industrial**.

1.3. Recomendaciones para cursar la asignatura

Por razones pedagógicas y de contenidos es recomendable haber cursado las materias **Matemáticas**, **Física**, así como las asignaturas de **Fundamentos de Electrotecnia**, **Electrotecnia y Señales y Sistemas**. El estudio previo de estas materias proporciona al alumno las herramientas básicas necesarias para desarrollar, analizar y simular sistemas de control industrial.

El **estudio y trabajo continuado**, desde el primer día del curso, son fundamentales para superar con el máximo aprovechamiento la asignatura.

Es importante resolver cuanto antes las dudas que puedan surgir, para lo cual el estudiante cuenta con la asesoría del profesor, tanto durante las clases como en las horas de tutoría destinadas a ello.

2. Competencias y resultados de aprendizaje

2.1.Competencias

Al superar la asignatura, el estudiante será más competente para...

Aplicar los fundamentos de automatismos y métodos de control.

Combinar los conocimientos básicos y los especializados de Ingeniería para generar propuestas innovadoras y competitivas en la actividad profesional.

Resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico.

Aplicar las tecnologías de la información y las comunicaciones en la Ingeniería.

Usar las técnicas, habilidades y herramientas de la Ingeniería necesarias para la práctica de la misma.

Aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo.

2.2. Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Conoce las propiedades de la realimentación y las acciones básicas de control.

Conoce y sabe aplicar las técnicas de diseño de control de sistemas continuos monovariables, en el dominio temporal.

Conoce y sabe aplicar las técnicas de diseño de control de sistemas continuos monovariables, en el dominio frecuencial.

Conoce y sabe seleccionar esquemas básicos de control.

Sabe diseñar automatismos lógicos basados en autómatas de estados finitos y redes de Petri.

Conoce y sabe aplicar las técnicas básicas de programación de automatismos en autómatas programables.

2.3.Importancia de los resultados de aprendizaje

Los conocimientos que el alumno adquiere en Sistemas Automáticos le inicia en el control y automatización de gran cantidad de tareas de fabricación. Una gran parte de esas tareas o procesos se engloban dentro de dos grupos principales:

- El conocimiento sobre Sistemas continuos le permite abordar tareas como: Control de velocidad de motores, control de temperatura, control de par, control de caudal.
- El conocimiento sobre Sistemas de Eventos Discretos le permite abordar tareas como: Control de operaciones de fabricación, de ensamblaje, de manutención, de almacenaje...

Actualmente en estos procesos se ha alcanzado a un alto grado de automatización. El control de las operaciones es realizado mediante reguladores industriales, computadores industriales, autómatas programables, robots...

Los resultados de aprendizaje de esta asignatura dotan al alumno de capacidad de análisis de situaciones reales de control de accionamientos y de procesos industriales y le capacitan para proponer esquemas y calcular los parámetros de control adecuados que permitan cumplir con unos requisitos de funcionamiento dados. Estos resultados, y las capacidades y habilidades de ellos derivadas, tienen una gran importancia en el entorno industrial, donde el control de procesos y sistemas es una pieza clave y fundamental para el desarrollo del producto, permitiendo reducir costes, tanto económicos como ambientales, y aumentar la calidad final del producto.

3. Evaluación

3.1.Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba EINA (ZARAGOZA)

- Prueba escrita individual (80%). Calificada entre 0 y 10 puntos (CT).
- Evaluación de los créditos prácticos (CP). Calificada entre 0 y 10 puntos (CP), podrá superarse a lo largo del curso. Estará formada por:
- o Trabajo práctico (12%)

o Prácticas de laboratorio (8%).

En cualquier caso se realizará una prueba individual específica de los créditos prácticos durante el periodo de evaluación para los alumnos que no la hayan superado durante el curso, o que deseen subir nota.

Para la superación de la asignatura es condición imprescindible obtener una calificación CP mayor o igual que 4 puntos. Sólo en ese caso, la calificación global de la asignatura será (0.20*CP+ 0.80*CT). En otro caso, la calificación global será la mínima entre 4 y el resultado de aplicar la fórmula anterior. La asignatura se supera con una calificación global de 5 puntos sobre 10

EUPT (TERUEL)

- Prueba escrita individual (80%). Calificada entre 0 y 10 puntos (CT).
- Evaluación de los créditos prácticos (20%). Calificada entre 0 y 10 puntos (CP), podrá superarse a lo largo del curso.

En cualquier caso se realizará una prueba individual específica de los créditos prácticos durante el periodo de evaluación para los alumnos que no la hayan superado durante el curso, o que deseen subir nota.

Para la superación de la asignatura es condición imprescindible obtener una calificación CP y CT mayor o igual que 4 puntos. Sólo en ese caso, la calificación global de la asignatura será (0.20*CP+ 0.80*CT). En otro caso, la calificación global será la mínima entre 4 y el resultado de aplicar la fórmula anterior. La asignatura se supera con una calificación global de 5 puntos sobre 10

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

El proceso de enseñanza se desarrollará en tres niveles principales: clases de teoría, problemas y laboratorio, con creciente nivel de participación del estudiante.

- En las clases de teoría se expondrán las bases teóricas de los sistemas automáticos, ilustrándose con numerosos ejemplos.
- En las clases de problemas se desarrollarán problemas y casos tipo con la participación de los estudiantes.
- Se desarrollarán prácticas de laboratorio en grupos reducidos, donde el estudiante realizará la simulación, puesta en marcha y análisis de sistemas de automatización y control reales.
- Asimismo, para incentivar el trabajo continuo y autónomo del estudiante, se llevarán a cabo actividades de aprendizaje adicionales a realizar a lo largo del semestre.

4.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

TRABAJO PRESENCIAL: 2.4 ECTS (60 horas)

1) Clase presencial (tipo T1) (30 horas presenciales).

Sesiones expositivas de contenidos teóricos y prácticos. Se presentaran los conceptos y fundamentos de los sistemas automáticos, ilustrándolos con ejemplos reales. Se fomentará la participación del estudiante a través de preguntas y

breves debates.

2) Clases de problemas y resolución de casos (tipo T2) (15 horas presenciales).

Se desarrollarán problemas y casos con la participación de los estudiantes, coordinados en todo momento con los contenidos teóricos. Se fomenta que el estudiante trabaje previamente los problemas. Parte de estas horas podrán dedicarse a las **actividades de aprendizaje evaluables** que se especifiquen en cada curso.

3) Prácticas de laboratorio (tipo T3) (15 horas presenciales).

El estudiante realizará la simulación, puesta en marcha y análisis de sistemas de automatización y control reales. Dispondrá de un guión de la práctica, compuesto de estudio previo y apartados de realización práctica en laboratorio. El estudio previo deberá realizarse previamente a la práctica. Cada práctica será calificada en el propio laboratorio.

TRABAJO NO PRESENCIAL: 3.6 ECTS (90 horas)

4) Estudio (tipo T7) (86 horas no presenciales).

Estudio personal del estudiante de la parte teórica y realización de problemas. Se fomentará el trabajo continuo del estudiante mediante la distribución homogénea a lo largo del semestre de las diversas actividades de aprendizaje. Se incluyen aquí las **tutorías**, como atención directa al estudiante, identificación de problemas de aprendizaje, orientación en la asignatura, atención a ejercicios y trabajos...

5) Pruebas de evaluación (tipo T8) (4 horas presenciales).

Además de la función calificadora, la evaluación también es una herramienta de aprendizaje con la que el alumno comprueba el grado de comprensión y asimilación alcanzado.

4.3.Programa

PROGRAMA DE LA ASIGNATURA

Los contenidos que se desarrollan son los siguientes:

Tema 0 Presentación de la asignatura. Introducción histórica

Tema 1 Control de Sistemas de eventos discretos

Introducción a los sistemas de Automatización Industrial. Autómatas Programables Industriales. Entradas/salidas digitales y Analógicas. Captadores y Accionadores. Programación de Sistemas de eventos discretos.

Tema 2 Sistemas Realimentados

Propiedades de sistemas realimentados. Respuesta en régimen permanente. Precisión. Lugar de las raíces. Margen de fase y margen de ganancia. Relación entre respuesta temporal y frecuencial. Criterio de Nyquist caso simplificado.

Tema 3 Control de Sistemas Continuos

Propiedades de sistemas realimentados. Respuesta en régimen permanente. Precisión. Acciones básicas de control. Diseño de controladores. Cancelación de polos y ceros. Lugar de las raíces. Diseño de controladores en el dominio de la frecuencia

Tema 4 Estructuras de control

Modificaciones control PID. Prealimentación. Servopropulsor. Control en cascada.

Tema 5 Control Industrial

Reguladores PID industriales. Tecnología del Control PID. Control feedforward. Control de ratio. Acción PWM. Acción Servo. Acción Calor Frío. Ajuste empírico.

Las prácticas a realizar serán:

ZARAGOZA

● Introducción a la programación de Autómatas.

● Control de sistemas de eventos discretos. Control de estaciones de la célula de fabricación.

● Control de posición y velocidad de un accionamiento servomotor.

● Control de la maqueta de una minicentral

● Implementación de reguladores PID en Autómatas Programables.

TERUEL

● Introducción a la programación de Autómatas.

● Control de sistemas de eventos discretos.

● Control de sistemas continuos. Aeropéndulo 1

● Control de sistemas continuos. Aeropéndulo 2

● Implementación de reguladores PID en Autómatas Programables.

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos

Las clases magistrales y de problemas y las sesiones de prácticas en el laboratorio se imparten según horario establecido por el centro (horarios disponibles en su página web).

Cada profesor informará de su horario de atención de tutoría.

El resto de actividades se planificará en función del número de alumnos y se dará a conocer con la suficiente antelación. Podrá consultarse en http://add.unizar.es

El calendario detallado de las diversas actividades a desarrollar se establecerá una vez que la Universidad y el Centro hayan aprobado el calendario académico (el cual podrá ser consultado en la página web del centro).

La relación y fecha de las diversas actividades, junto con todo tipo de información y documentación sobre la asignatura, se publicará en el anillo digital docente http://add.unizar.es/.

A título orientativo:

● Cada semana hay programadas 3h de clases en aula.

● Aproximadamente cada dos semanas el estudiante realizará una práctica de laboratorio.

● Las actividades adicionales que se programen (trabajos, pruebas, seminarios...) se anunciarán con suficiente antelación, tanto en clase como en http://add.unizar.es/.

● Las fechas de los exámenes y pruebas de convocatoria oficial las fijará la dirección del Centro.

4.5.Bibliografía y recursos recomendados