Información del Plan Docente Academic Year 2018/19 Subject 30166 - Maintenance Management Faculty / School 175 - Escuela Universitaria Politécnica de La Almunia Degree 425 - Bachelor's Degree in Industrial Organisational Engineering **ECTS** 6.0 Year Semester First semester Subject Type Optional Module --- - 1.General information - 1.1.Aims of the course - 1.2. Context and importance of this course in the degree - 1.3. Recommendations to take this course - 2.Learning goals - 2.1.Competences - 2.2.Learning goals - 2.3.Importance of learning goals - 3.Assessment (1st and 2nd call) - 3.1. Assessment tasks (description of tasks, marking system and assessment criteria) - 4. Methodology, learning tasks, syllabus and resources - 4.1. Methodological overview This Maintenance Management course is designed as a set of contents, but distributed in four blocks. The first block, brings together basic concepts, which perhaps students in many cases have already acquired. The second and third blocks form the core of the subject that the subject must contribute to its training. The final block, brings together complementary knowledge to complete the training in Maintenance The first three blocks will be dealt with under three fundamental and complementary ways: the theoretical concepts of each didactic unit, the resolution of problems or questions and practices, supported in turn by another series of activities such as tutorials and seminars and will be tested individually, regardless of the blocks. The fourth block will have a different treatment, because the students will work in groups only previously assigned sections, they will be able to express their preferences but all the subjects will have to be assigned to some group. They will prepare presentation materials and defend their work with a public presentation, which will be valued by the rest of the students and the teacher. **The teacher / student interaction** is carried out in this way, through a distribution of work and responsibilities between students and teachers. However, it must be taken into account that, to a certain extent, students can set the pace of learning according to their needs and availability, following the guidelines set by the teacher. The organization of teaching, involves the active participation of the student, and will be carried out following the following guidelines: - Lectures: Theoretical activities imparted in a fundamentally expositive way by the teacher, in such a way as to expose the theoretical supports of the subject, highlighting the fundamental, structuring the concepts and relating them to each other. - **Practical lessons**: The teacher solves problems or practical cases for illustrative purposes. This type of teaching complements the theory explained in the lectures with practical aspects. - Seminars: The total group of lectures or practical lessons may or may not be divided into smaller groups, as appropriate. They will be used to analyze cases, solve problems, etc. Unlike what happens with the practical lessons, the teacher is not a protagonist, simply listening, counselling, clarifying, evaluating, assessing. It seeks to encourage student participation, as well as making the continuous assessment of students possible and to learn about the performance of learning. - **Practice tasks**: Practice tasks are carried out in groups of two students (or three students at the most), although for the report of the activities (according to the teacher) homonymous groups of different shifts can be associated to encourage team work. - **Group tutorials**: Programmed activities of learning follow-up in which the teacher meets with a group of students to guide their work of autonomous learning and supervision of works directed or requiring a high degree of advice by the teacher. - **Individual tutorials**: These are the ones made through the individual attention of the teacher in the department. They aim to help solve the doubts that students come across, particularly those who for various reasons cannot attend group tutorials or need more personalized attention. These tutorials can be classroom or virtual. #### 4.2.Learning tasks Generic on-site activities: **● Lectures**: The theoretical concepts of the subject will be explained and illustrative practical examples will be developed as support for the theory when it is deemed necessary. **● Practical lessons**: Problems and practical cases will be made as a complement to the theoretical concepts studied. **● Practical tasks**: Students will be divided into several groups of no more than 20 students, being guided by the tutorial action of the teacher. **● Defense and presentation of topics:** on the particular contents that are assigned to each group of students, corresponding to Block 4 #### Generic off-site activities: ● Study and assimilation of the theory explained in the lectures. ● Understanding and assimilation of solved cases in practical lessons. ● Preparation of seminars, solving suggested problems, etc. * Participation in Forums of the subject via Moodle, to provide links of information on the Internet. ● Preparation and development of scripts and corresponding reports. ● Preparation of written continuous assessment tests, and global assessment tests. #### Autonomous tutored activities: Although they will be done on-site, they have been taken into account separately because of their particular features, they will be focused mainly on seminars and tutorials under the supervision of the teacher. **Reinforcement activities:** Off-site activities preferably, via the virtual portal of teaching (Moodle), will be designed to reinforce the basic contents of the subject. These activities can be personalized or not. #### 4.3.Syllabus The theoretical contents are divided into four blocks (numbers 1 to 4) preceded by a block 0 of introduction to Maintenance. The choice of the content of the blocks has been made looking for the express clarification of the final objective, so that with the union of incidental knowledge, the student obtains a structured knowledge, easily assimilated for the Management Engineers. Each of the blocks is composed of subjects, with a temporary assignment of one or two weeks of the course, these topics collect the contents necessary for the acquisition of predetermined learning outcomes. #### **Theoretical contents** | | Block 0: | INTRO | DUCTION | |--|----------|-------|---------| |--|----------|-------|---------| - 1. Maintenance Overview. - 2. Reliability, Historical Management, Machines, Installations. - 3. Conceptual maps ### **Block 1: OVERVIEW OF MAINTENANCE TECHNIQUES** ## 1.- Evolution and structure of maintenance - * Function, objectives, types - * Maintenance companies - * Industries with their own maintenance - * Breakdowns, management and treatment. Organization of the intervention. - * Contrast between corrective and preventive maintenance - * Technical documentation: installations, systems, machines, elements,... - * History data bank. . . ### 2.- Management software - * Databases - * History Data Management - * Storage and purchasing management - * Expert systems. #### **Block 2: OPTIMIZATION OF MAINTENANCE MANAGEMENT** ## 3.- Reliability and Quality - * Reliability. "Maintainability". RCM - * Availability of facilities - * Quality. Typology of breakdowns in machines - * The Japanese Maintenance Method: TPM #### 4.- Warehouse and maintenance material - * Supplies. Supplier approval - * Organization and control of warehouse - * Spare parts catalog - * Inventory control and orders - * Tools and tool management ## 5.- Optimization of economic management - * The cost of integral maintenance - * Cost analysis - * Maintenance Productivity - * Maintenance Outsourcing ### **Block 3: MAINTENANCE PLANNING AND PROCESSES** 6.- Organization of preventive maintenance. | * Concepts and types | |--| | * Human resources (HR) and materials | | * Optimization of the maintenance workshop | | * Periodic inspections and controls. | | 7 Predictive Maintenance | | * Based on vibration analysis | | * Based on oil analysis | | * Based on temperature. Thermography | | * Other analysis and application examples. | | 8 Energy and environmental maintenance | # * Energy processes in production - * Consumption Control - * Comprehensive use of a facility - * Environmental maintenance ## **Block 4: CASE STUDY IN MACHINES AND FACILITIES** #### 9.- Case studies in machines - * Maintenance of mechanical elements - * Maintenance of electrical and electronic elements - * Maintenance of pneumatic and hydraulic elements - * Maintenance of computer equipment * Warehouse control operations using GMAO **Practice 3: MAINTENANCE PLANNING AND PROCESSES** # 30166 - Maintenance Management | 10 Practical cases in facilities | |--| | * Ventilation and air conditioning installations | | * Heating and domestic hot water installations | | * Flexible production lines | | * Facilities in hospitals and large buildings | | * | | | | Practical contents | | Each block presented in the previous section has associated practices, through assumptions and / or simulations, leading to the obtaining of results and their analysis and interpretation. As the topics are developed, these Practices will be proposed, preferably in the classroom and also via the Moodle platform. They will be carried out by the students in weekly one-hour sessions. | | Practice 1: MAINTENANCE TECHNIQUE OVERVIEW | | * Making a historical map on the evolution of Industrial Maintenance | | * Identification of the UNE Regulation on Maintenance Management | | * Introduction to the use of the PGM-Win management program | | | | Practice 2: MAINTENANCE MANAGEMENT OPTIMIZATION | | * Contrast between RCM and TPM methods | * Week 12: Test 3 (Topics 6, 7 and 8) # 30166 - Maintenance Management | * Analysis of the integral use of a facility | |--| | * Description of actual predictive maintenance cases. | | Practice 4: CASE STUDY IN MACHINES AND INSTALLATIONS | | Documentation of one of the applications of units 9 and 10, depending on what is assigned for theoretical defense. | | 4.4.Course planning and calendar | | Temporary distribution of a school week: | | The subject is defined in the Verification Report of the Degree with a low experimental level, that's why the 10 weekly hours are distributed as follows | | * Lectures-practical lessons: 3 hours per week (blocks 1, 2 and 3) | | 5 hours per week (block 4) | | * Practice tasks: 1 hour weekly | | * Other activities: 6 hours per week (blocks 1, 2 and 3) | | 4 hours per week (block 4) | | Test Calendar | | For assessment tests, described in the continuous assessment process, the following timetable is suggested: | | * Week 3: Test 1 (Topics 1 and 2) | | * Week 7: Test 2 (Topics 3, 4 and 5) | ## **Essay Presentation-Defense** Those belonging to Block 4 (Case Studies in Machines and Installations), will be tested orally during the three final weeks of the course, organized according to the number of students and the specific development of the preparatory tasks. ### 4.5. Bibliography and recommended resources #### Resources: Theory Notes, presentations in PWP, typical problems and Web links, all related to the syllabus, will be provided via the Moodle page of the subject Maintenance Management Software (free) and user manuals, will be installed on PCs in the computer room or Laboratory, and will be provided for downloading and installation on the students' personal computers.