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Summary 

The peach is one of the most important global tree crops within the economically important 

Rosaceae family. The crop is faced with numerous pest and disease, especially fungal pathogens 

that infect stone fruits in the field, on transit and in the store. Over 50 % postharvest, global loss 

has been ascribed to the brown rot disease of the species of Monilinia and in the recent years the 

disease has been so critical in the orchard that some stone fruits were abandoned. And in Spain, 

particularly, the disease has been associated with well over 60 % fruit losses after harvest. 

Although, there exist different control options, the breeding for resistance remains an ideal 

management option for brown rot disease control considering the uniqueness of its sustainability in 

the chain of crop production and environmental compatibility. The thesis aims at phenotyping 

peach germplasm of the Aula Dei-CSIC tolerant cultivars and progenies to brown rot of Monilinia 

laxa with good quality. The study focuses on peach breeding within the Ebro valley of the 

Mediterranean eco-zone, through the use of tolerant variety or genotypes with good quality 

characteristics in brown rot disease management. Chapter I sets an evaluation method, by 

optimizing the available protocols, to screen tolerance to brown rot by Monilinia spp. in peach 

germplasm. This was enhanced and achieved with the comprehensive bibliographic review and 

compilation of information currently available on peach and the resultant effect of interaction 

(brown rot) with species of Monilinia and available management options. Chapter II examines the 

effect of physicochemical factors of pH and titratable acidity (TA) in the host-pathogen interaction 

of peach and M. laxa in-vitro and in-vivo. This study encompasses the necessity to know the 

evolution of fruit maturity in new and old varieties in relation to potential Monilinia infection in 

immature fruits. Chapter III is a screening test based upon artificial fruit inoculation to validate on 

several parental lines of the peach breeding program (‘Crown Princess’, ‘Big Top’, ‘Andross’, and 

‘BabyGold 9’). In addition, cultivars with different phenolic content and early (‘Tebana’) or late 

harvested, as the Spanish traditional non-melting flesh cultivars (‘Miraflores’, ‘Calanda Tardío’ and 

‘Calante’), were included in the study. The correlation of pathogenic factors with their biochemical 

composition concerning acids, phenolic contents in flesh-fruit is also discussed. Chapter IV screens 

sixty eight progenies from the ‘Babygold 9’ × ‘Crown Princess’ population of the breeding program 

of EEAD-CSIC for susceptibility to brown rot of Monilia laxa. Physicochemical traits, such as fruit 

firmness and soluble solids content were recorded before and after storage. Titratable acidity, pH, 

and antioxidant composition were also measured at harvest for correlation with pathogenic factors. 

 

Key words: Prunus persica; Monilinia spp; host; pathogen; stone fruits; crop protection; plant 

breeding; ex-situ; in-situ; germplasm; fungus; alkaline; physicochemical; genetic tolerance, 

bioactive, susceptibility; brown rot; phytochemicals; plant improvement; necrotrophic fungi; 

infection; introgression; genotypes; firmness. 
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Resumen 

El melocotonero es uno de los cultivos frutales, de la familia de las rosáceas, de mayor importancia 

económica del mundo. Existen numerosas plagas y enfermedades que afectan a este cultivo, 

especialmente hongos patógenos de fruto que son infectivas en el campo, durante el tránsito y en 

el almacenamiento. Más del 50 % de la pérdida global en poscosecha se ha atribuido a la 

enfermedad de podredumbre parda causada por especies del género Monilinia, y en los últimos 

años la enfermedad ha sido tan acusada en el cultivo que ha producido el abandono de la 

producción de algunas variedades de fruta de hueso. En España, la enfermedad se ha asociado con 

más del 60 % de pérdidas de fruta después de la cosecha. Aunque existen ciertas opciones de 

control y tratamiento, la selección genética para la resistencia sigue siendo una alternativa ideal de 

manejo para el control de la enfermedad producida por la podredumbre parda, teniendo en cuenta 

su sostenibilidad y la compatibilidad ambiental. Esta tesis tiene como objetivo principal el 

fenotipado del germoplasma de melocotón existente en la Estación Experimental de Aula Dei-CSIC 

y de cultivares y progenies para la detección de tolerancias a la podredumbre parda producida por 

Monilinia laxa. El estudio se enfoca en la mejora de los cultivos de melocotones, en la Valle de Ebro 

de la zona ecológica mediterránea, a través del uso de variedades tolerantes o genotipos con 

características de buena calidad en relación a la enfermedad de la podredumbre parda. El Capítulo 

I establece un método de evaluación, al optimizar los protocolos disponibles, para detectar más 

fácilmente la tolerancia a la podredumbre parda por Monilinia spp. en germoplasma de 

melocotónero. Esto se logró con una revisión bibliográfica exhaustiva y la compilación de la 

información actualmente disponible sobre melocotón y el efecto resultante de la interacción 

(podredumbre parda) con las especies de Monilinia y las opciones de control y manejo disponibles. 

El Capítulo II examina el efecto de los factores fisicoquímicos del pH y la acidez titulable (TA) en la 

interacción huésped-patógeno entre el melocotón y M. laxa tanto in-vitro como in-vivo. Este 

estudio abarca la necesidad de conocer la evolución de la madurez de la fruta en las variedades de 

melocotones verdes y maduros en relación con la posible infección por Monilinia en frutos 

inmaduros en precosecha. El Capítulo III es una prueba de detección basada en la inoculación 

artificial de fruta para validar en varias líneas parentales del programa de mejora genética de 

melocotón ('Crown Princess', 'Big Top', 'Andross' y 'BabyGold 9'). Además, se incluyeron en el 

estudio cultivares con diferente contenido fenólico y precoces ('Tebana') o tardíos, como los 

cultivares tradicionales españoles de carne no firme ('Miraflores', 'Calanda Tardío' y 'Calante'). 

También se discute la correlación de los factores patogénicos con su composición bioquímica con 

respecto a los ácidos y los contenidos fenólicos en la pulpa. El Capítulo IV examina sesenta y ocho 

progenies de la población 'Babygold 9' × 'Crown Princess' del programa de mejora de EEAD-CSIC por 

susceptibilidad a la podredumbre parda de Monilia laxa. Los rasgos físicoquímicos, tales como la 

firmeza de la fruta y el contenido de sólidos solubles, se registraron antes y después del 
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almacenamiento. La acidez titulable, el pH y la composición antioxidante también se midieron en la 

cosecha para obtener la correlación con los factores patógenos. 

 

Palabras clave: Prunus persica; Monilinia spp; huésped; patógeno; fruta de hueso; protección de 

cultivos; ex-situ; in-situ; germoplasma; hongo; alcalino; fisicoquímico; tolerancia genética; 

bioactivo; susceptibilidad; podredumbre parda; fitoquímicos; protección; mejora; hongos 

necrotróficos; infección; introgresión; genotipos; firmeza. 
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Review 

Peach brown rot: Still in search of an ideal management 
option 

Preprint. Peach brown rot: Still in search of an ideal management option. [Agriculture 
(forthcoming), doi: 10.20944/preprints201806.0269.v1)] 

 
Abstract: The peach is one of the most important global tree crops within the economically 
important Rosaceae family. The crop is faced with numerous pest and disease, especially fungal 
pathogens that infect it in the field, on transit and in the store. Over 50 % postharvest global loss has 
been ascribed to the brown rot disease especially in late-ripening varieties and in recent years the 
disease has been so unembroidered in the orchard that some stone fruit were abandoned before 
harvest. In Spain, particularly, the disease has been associated with well over 60 % fruit losses after 
harvest. The most common management option available for the control of this disease include: 
chemical, biological, and physical approaches. The effects of these treatments, especially the 
biochemical fungicides (BCAs and conventional fungicides) on the environment, human health, and 
strain fungicide resistance, incline to over cloud the intended efficacy of these control strategies. This 
review has intended to, comprehensively, compile information currently available on peach and the 
resultant effect of interaction with species of Monilinia cum available management options. The 
breeding for brown rot resistance remains an ideal management strategy for brown rot disease 
control considering the uniqueness of its sustainability in the chain of crop production. 
 
Keywords: Prunus persica; Monilinia spp; host and pathogen; stone fruits; crop protection; plant 
breeding.  
 
1. Introduction 

 The peaches [Prunus persica (L.) Batch] and nectarines [P. persica var. nectarina (Aiton) Maxim], 

are economically important members among the hundreds of species of Prunus including the 

cultivated almond [Prunus dulcis (Mill.) D.A Webb], the apricot [P. armeniaca (L).], the European 

plum [P. domestica (L).], the Japanese plum [P. salicina (L).] and the cherry [P. avium (L)].  

 Available information from FAO [FAOSTAT, 2016] in 2016 indicates important countries (Figure 

1) for the production of peach and nectarines. China was leader in production (14.47 MT), followed 

by Spain (1.53 MT), Italy (1.43 MT), USA (0.93 MT), and Greece (0.85 MT). And for areas (hectars) 

under cultivation in the EU-28, Spain is the largest (86,896 ha), followed by Italy (69,005 ha) and 

Greece (44,271 ha). 

 There are numerous fungal pathogens that infect the peach both in pre-and postharvest states. 

Prominent ones include Rhizopus nigricans, Mucor spp., Botrytis cinerea, Geotrichum candidum, 

Alternaria spp., Aspergillus spp., Penicillium spp., and Monilinia spp. (Usall et al., 2015). But for the 

purpose of this work we shall be dwelling on the principal casual pathogens of brown rot in 

peaches. Species of Monilinia are associated with brown rot, which is the most economically 

important, disease of stone fruit worldwide (Rungjindamai et al., 2014; Villarino et al., 2013). Brown 
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rot incidence in peach greatly varies during fruit development (Mari et al., 2003). Fruits are less 

susceptible to brown rot at the early stage of formation becoming resistant in correspondence to 

pit hardening and increase susceptibility afterwards (Guidarelli et al., 2014; Obi et al., 2018). 

 

 
Figure 1. Global map of peach and necterine production by countries [1] 

Source: http://www.fao.org/faostat/en/#data/QC/visualize (acessed on 3rd June, 2018) 

 

Brown rot is a polycyclic epidemic (Seem, 1984) hence various secondary or monocyclic 

components of the brown rot infection sequence are generated throughout the annual growth 

cycle of the host (Schumann and D`Arcy, 2006). The fungus survives the winter (transmitted from 

year to year) in several structures such as mummified fruits (Casals et al., 2015), in canopy or on the 

ground (Hrustić et al., 2013), fruit peduncles (Ritchie, 2000), cankers on twigs, spurs and branches 

(Villarino et al., 2013; Melgarejo et al., 1986; Kreidl et al., 2015). These propagules infest materials, 

(Gell et al., 2009), serve as sources of primary inoculum to infect blossoms, buds and young shoots, 

to establish source of secondary inoculum. 

 Consequently, the universal annual losses from the epidemic have been estimated at 1.7 

thousand million Euros (cited in Oliveira-Lino et al., 2016). And in Spain, particularly, the disease has 

been associated with up to 80 % of incidence fruit losses after harvest (Egüen et al., 2015; Usall et 

al., 2015; Teixidó et al., 2018), mostly under favourable environmental conditions for the 

commencement and growth of the diseases in the orchard. 

 There are various control and management strategies for brown rot epidemic in peach 

cultivation. These options include: biological, conventional, chemical, physical, botanicals, and host 

resistance techniques (Rungjindamai et al., 2014). In the present review we will focus on peach and 

the resultant effect of interaction with species of Monilinia cum available management strategies 

with a view to developing sustainable peach breeding scheme. 

 

http://www.fao.org/faostat/en/#data/QC/visualize
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2. The Peach 

 The peach is the third most important global tree crop after apples (Malus spp.) and pears 

(Pyrus spp.) within the economically important Rosaceae family and the largest producer is China, 

followed by European countries (Spain and Italy), and the United States (FAOSTAT, 2016). The 

origin of peach is traceable to the Eastern Asian continent of Western part of China, where it could 

have been cultivated for 4,000 years and subsequently dispersed to Europe, Africa and America 

(Byrne et al., 2012). Documentation of the first cultivated peach was recorded in Chinese 

manuscripts as early as the 10th Century BC. In China the species presents the greatest richness in 

germplasm and has the largest collections of peach germplasm with wild peaches still growing 

today (Byrne et al., 2012; Desmond and Bassi, 2008). 

 In the EU agriculture, the fruit sector weight 6.7% of its agricultural output, being peaches the 
third after apples and oranges (EUROSTAT, 2018). In this zone the cultivation / and or production is 
concentrated in the countries of the Mediterranean region, including Spain, Italy, Greece and 
France, owing to the fact that the potential risk of damage from frost (Charrier et al., 2015) is less 
here than in the countries of the Northern part of the EU. Hence most plant disease models are 
known to use different climatic variables and operate at a different spatial and temporal scale than 
do the global climate models (Chakraborty et al., 2000). 
 
2.1. Geography and ecological requirement of peaches 

 There are the local or modern peach cultivars depending on whether the cultivar is originally 

indigenous or foreign (Font i Forcada et al., 2013) in the domain of cultivation. Geographically, 

global commerce has brought peach tree cultivation into both the Northern and Southern 

hemispheres (Byrne et al., 2012) which experience contrasting summers and winters allowing for 

year round availability. Peach trees require wet winters and hot dry summers and will not flourish 

in Oceanic climates (Byrne et al., 2012). Therefore, the Spanish peaches are cultivated under the 

Mediterranean climate and found concentrated within specific regions (see section 2.3). Among the 

available varieties of peach, the yellow-fleshed varieties such as the famous Elberta, Redhaven, and 

Halford are preferred in North America (USA), while both yellow- and white-fleshed types are 

popular in Europe (Byrne et al., 2012; Font i Forcada et al., 2014). 

 Often times the cropping practices employed in a region for the production of peach is 

principally determined by the different environmental and nutritional requirements (Byrne et al., 

2012). This plantation crop, though cultivated mainly in temperate zones, between 30 and 45º 

latitude N and S, is not very resistant to cold, and it requires up to 400 to 800 cold-hours for 

flowering and good fruit set (Byrne et al., 2012). They are intolerant of severe cold and, therefore, 

cannot be grown successfully where temperatures normally fall to -23 and -26 oC (Byrne et al., 

2012). On the other hand, they do not grow satisfactorily where the winters are too mild, and most 
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varieties require some winter chilling to induce them to burst into growth after the annual dormant 

period.  

 Edaphically, the peach does well on various soil types but in general it grows best on well-
drained sandy or gravelly loams. Hence, peach seedling is susceptible, to both calcareous and 
waterlogged soils (Egilla and Byrne 1989; Byrne et al., 2012). Nevertheless, the search for iron 
chlorosis tolerant rootstocks, using peach × almond hybrids, has led to selection of highly vigorous 
rootstocks such as ‘GF 677’ (Bernhard and Grasselly, 1981), which was widely adopted in the 
Mediterranean basin countries, including Spain. By the way, there exist in Spain some tolerant 
rootstocks to calcareous and waterlogged soil (Pinochet et al., 1999; Jiménez et al., 2008). 
Nitrogen-rich soils exceptionally support performance of peach crops (Gil-Albert, 1991). This 
improved performance is achieved when soil acidity is maintained above pH 6.0. Consequently a 
soil pH below 5.5 is deleterious to peach tree growth, fruit yield and size, and tree longevity 
(Cummings, 1989). However, such deleterious effects of soil pH below 5.5 have been associated to 
the toxicity of Aluminium (Al) or low Calcium (Ca) ion availability (Cummings, 1989), an issue 
managed by lime application to raise the soil pH. 
 
2.2. Botany and susceptibility of peach 

 The peaches could be classified according the flesh type (non-melting or melting) flesh colour 

(yellow, orange, white or yellow/orange), fruit type (peach or nectarine), and stone type (clingstone 

or freestone) (Font i Forcada et al., 2013). Clingstone peaches have flesh that adheres firmly to the 

stone and the freestones have stones that separate easily from the ripe flesh. Most yellow-fleshed 

peaches are clingstone varieties while white-fleshed peaches fall into the freestone category (Font i 

Forcada et al., 2013). The greatest difference between the two is really about texture and taste. 

Clingstone varieties tend to lean on the side of extremely juicy and flavour, making them very 

suitable for baking and canning while freestone varieties are generally less succulent and thus 

chosen for fresh eating in most regions. The Spanish peach industry, hitherto, was based on yellow, 

non-melting fleshed and clingstone types; however, the replacement of the Spanish traditional 

varieties by introduced ones, mostly from North America, has induced the domain of the melting 

flesh cultivars (Font i Forcada et al., 2014). 

 Peaches under commercial cultivation (Figure 2) are usually kept between 3 and 4 metres by 

pruning, without which they can reach 6.5 metres in height (Bassi and Moneté, 2008; 

Encyclopaedia Britannica, 2017),. The leaves are glossy green, lance-shaped, and long pointed; they 

usually have glands (Font i Forcada et al., 2013) at their bases that secrete a fluid to attract ants and 

other insects, enabling pollination. It is self pollinative and has an impressive blossoming (Figure 2 

d). The flowers, borne in the leaf axils, are arranged singly or in groups of two or three at nodes 

along the shoots of the previous season’s growth. The five petals, usually pink or pink-salmon (Font 

i Forcada et al., 2013), but occasionally white five sepals, and three whorls of stamens are borne on 

the outer rim of the short tube, known as the hypanthium that forms the base of the flower that 

can be showy or no-showy (Font i Forcada et al., 2013).   
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The fruit is a large drupe with a thin epidermis, a pulpy mesocarp and a woody endocarp containing 

the seed, more or less globose, with a longitudinal groove, and a cavity around the peduncle. 

Ordinarily the skin of most ripe peaches is downy or fuzzy; however, the nectarines are class of 

peaches with smooth skins (Bassi and Moneté, 2008; Encyclopaedia Britannica, 2017). 

 The degree of susceptibility to infection by Monilinia spp. is variable throughout fruit 

development. Susceptibility is high during the early stages of fruit development, decreases during 

the green fruit or pit hardening stage and increases again during the ripening period (Lee and 

   
a: Fruit harvested peach orchard in the 

summer 
b: Flowering peach orchard at early 

spring 
c: Flower buds (receptacle, sepals, 

and petals intact 

   
d: Flower in blossom (petals, stamens 

and pistil exposed) 
e: Flower petals and stamen shrinking 

and about to fall off 
f: Young peach fruits exposed as 

petals and 

   
g: Hundred percent fruit setting stage h: Physiologically matured peach 

fruits 
i: Commercially matured peach 

fruits 
Figure 2: The evolution of peach from one season to the other (bare orchard to commercial 

maturity) at the Aula Dei peach germplasm 



12 
 

Bostock, 2006; Obi et al., 2018;). Phenologically, peach fruit development generally undergo four 

stages (S-1 to S-IV) from flowering to maturation: fruit set (S-I), characterised by cell division and 

elongation, also referred to as the exponential growth phase; pit hardening (S-II), the endocarp 

hardens to form the stone and scarcely any increase in fruit size; the pre-climacteric phase (S-III), 

resumption of rapid cell division and fruit size enlargement, another exponential growth phase; and 

the climacteric stage (S-IV), final cell division, cell expansion and ripening/maturation (Lombardo et 

al., 2011; Gogorcena et al., 2012). 

 Peach nutrient has been found to be at its peak in the first stages of fruit formation and 

gradually reduces as the fruit develops (Xu et al., 2001). Therefore, the period of highest brown rot 

susceptibility conversely coincides with the lowest peach nutrient contents. 

 

2.3. Economic significance of peach 

 China has the largest area of peach cultivation and the largest output of peach yield in the 

world, with an annual peach cultivation area of 4.520 × 105 ha and yield of 4.600 × 109 kg in 2016 

(FAOSTAT, 2016). Production of peaches and nectarines in 2017/18 for the EU-28 is estimated at 4 

million MT, 6 % higher compared to the previous cropping season 2016/17 (Table 1), and this is 

attributable to an expected increase in most of the major producers, hence the EU has remained a 

net exporter of peaches and nectarines with total exports largely exceeding imports for three 

seasons running (Figure 3). However, there was a steady slop on this EU export for the three years 

of 2014/15 to 2016/17 (Figure 3), undoubtedly suggesting an increase in the percentage of internal 

consumers of this precious product within the EU-28 during this period. 

 
Table 1: Production and estimation of peaches and nectarines (MT) in the EU-28 main producing 
countries in different campaigns. 
Country 2015/16 2016/17 2017/18 
Spain  1,581,510 1,475,849 1,487,444 

Italy 1,408,504 1,262,127 1,362,749 

Greece 777,160 788,120 910,000 

France 217,146 207,004 214,800 

Source: USDA, (2017); MAPAMA, (2017) 

 

And in Spain, the peach is one of the most important stone fruits in commercial production. The 

mean production for the period of 1994-2014 was 1.10 MT followed by almond with 0.23 MT 

(FAOSTAT, 2016). As earlier highlighted in section 2.1, the cultivation of this plantation crop (peach) 

is principally localized in the Mediterranean arc which includes in Spain Cataluña (27 %), Aragon (25 

%) and Murcia (22 %), as the first three largest regional producers accordingly. Other upcoming 

commercial producers are: Andalucía (9 %), Extremadura (8 %) and the Valencia Community (7 %) 

(MAGRAMA, 2016). According to a special global report (USDA, 2017) Spain has become, in the last 
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4 seasons, the largest peach and nectarine producer in EU-28. The reasons for this feat were 

attributed to factors including: stead performance from the country’s most important regions, 

(Aragón, Cataluña and Murcia), together with the improved productivity in Extremadura, Andalusia 

and Region of Valencia; increase of early and mid-season peaches, mainly due to good flowering 

and fruit set; introduction of newer varieties in recent years (USDA, 2017). According to the Spanish 

Ministry of Agriculture, MAPAMA (2017), peach and nectarine production in Spain for 2017/18 is 

projected to reach almost 1.487 MT accounting for almost 40 % share of the total EU-28 peach and 

nectarine production. This is 0.7 % higher compared to the previous season due to favourable 

weather conditions that resulted in a production with very good quality and calibres. 

 Globally, the utility of peaches are unlimited ranging from fresh eating, poaching, baking, grilling 

and processing into jams, syrups, ice creams and preserving in syrup (Cropotova, 2013). They are 

also utilized for fresh fruit salads, savoury salads, appetizers and for desserts such as cakes and pies. 

Peaches, especially yellow-fleshed varieties, are chiefly rich in vitamin A. In summary, peaches are 

high-antioxidant foods that have anti-inflammatory and microbial properties; hence, peach 

nutrition offers a bunch of impressive health benefits (Abidi et al., 2011; Infante et al., 2011; 

Stojanovic et al., 2016). Incidentally the optimum peach commodity production is hindered by 

brown rot epidemic with significant economic consequence. Orchards have been abandoned for 

the severity of this disease in recent times (Rungjindamai et al., 2014). Consequently, the universal 

annual losses from the epidemic have been estimated at 1.7 thousand million Euros (Oliveira-Lino 

et al., 2016). And in Spain, particularly, the disease has been associated with as high as 80% fruit 

losses after harvest (Egüen et al., 2015; Usall et al., 2015; Teixidó et al., 2018), mostly under 

favourable environmental conditions for the commencement and growth of the diseases in the 

orchard. 

 

 
Figure 3: Total import and export of EU-28 of fresh peaches and nectarines during three seasons  

(2014-2017). Source: USDA, (2017) 
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3. Brown rot 
 

3.1. Monilinia spp. 

 Monilinia belongs to the group of necrotrophic fungi (Ascomycota) in the order of Heliotiales 

(Leotiales), a large family of inoperculate discomycetes which includes both human and plant 

pathogens (Dugan, 2006). The teleomorph genus is Sclerotinia spp. (Position in classification: 

Sclerotiniaceae, Helotiales, Leotiomycetidae, Leotiomycetes, Pezizomycotina, Ascomycota) 

(http://www.indexfungorum.org/). The species of Monilinia are among major causal organisms of 

brown rot disease on various orchard tree crops including: (a) stone fruits (Hrustić et al., 2015; 

Rungjindamai et al., 2014; Žežlina et al., 2016) such as the apricots (Pascal et al., 1994; Walter et al., 

2004), peach (Villarino et al., 2013, 2016; Obi et al., 2017, 2018), nectarine (Obi et al., 2017), cherry 

(Holb et al., 2013), and plum (Pascal et al., 1994); (b) the almond (Cimen et al., 2007) and 

occasionally, (c) some pome fruits (Holb, 2008; Poniatowska, 2013) such as the apple (Holb and 

Scherm, 2007), pear (Xu et al., 2001) and quince (Hrustić et al., 2012). 

 Monilinia laxa (Aderhold and Ruhland) Honey is one of the most important species of Monilinia 

globally associated with the brown rot in stone and pome fruits (Rungjindamai et al., 2014). M. 

fructigena (Honey), M. fructicola (G. Winter) (Villarino et al., 2013) and M. polystroma (G. Leeuwen) 

(Obi et al., 2017; van Leeuwen et al., 2002) are other important species. The disease is highly 

destructive on peach from fruit formation to storage. Additional losses are caused by blighting of 

flowers and twigs. 

 Hitherto, M. laxa and M. fructigena, were reported to be the two most important particularly in 

Spain until 2006. Then, M. fructicola was detected for the first time in peach orchards in the Ebro 

valley, Lerida, Spain (Villarino et al., 2013), and increased in population displacing M. laxa, a 

supposedly indigenous pathogen (de Cal et al., 2014), to the same level in frequency of occurrence 

(de Cal et al., 2014). Nowadays, in Spain, both Monilinia species (M. laxa (Aderh.et Ruhl.) and M. 

fructicola (G. Wint.) Honey) coexist in the field (Rungjindamai et al., 2014; Villarino et al., 2013). It 

can be inference that M. laxa and M. fructicola have similar epidemiological physiognomies (Bernat 

et al., 2017 b), for such inherent ecological coexistence. Incidentally, the epidemiology and 

management of M. fructicola has been most extensively studied, whereas the equally important M. 

laxa has had less attention (Rungjindamai et al., 2014). 

 Changes in the frequency of occurrence of different fungal pathogen species may also be due to 

fungicide resistance. Egüen et al. (2015) suggested that fungicide resistance of the M. fructicola 

population is co-acting among other factors as an adaptation in the pathogen to change the 

frequency of occurrence of the three Monilinia species in Spain. The displacement of M. laxa by M. 

fructicola has been also attributed to its conjugational potency related to sexual exchange and 

ability to produce ascopores from pseudosclerotial mummified fruits and their gradual process of a 

sexual propagation in Spain (de Cal et al., 2014). However, M. laxa is not known to produce 

http://www.indexfungorum.org/).
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apothecia (de Cal et al., 2014), while M. fructicola does from which ascopores can easily be 

disseminated in the spring for possible infection in fruiting season (Holtz et al., 1998). 

 

3.2. Geographical distribution of species of Monilinia  

 The occurrence and distribution of the species of Monilinia (Figure 4), are global having been 

detected in virtually all the continents of the world (Rungjindamai et al., 2014; Oliveira-Lino et al., 

2016), where potential host are cultivated. This assertion is exceptionally established by their 

presence as detected, especially when peach fruit is moved (imported) from one country of origin 

to the other (Rungjindamai et al., 2014). Presently, six closely related species of brown rot fungi 

have so far been reported, particularly on stone and pome fruit, including M. laxa (Aderh. & 

Ruhland) Honey, M. fructicola (G. Winter) Honey, M. fructigena Honey, M. polystroma G. C.M. van 

Leeuwen, M. yunnanensis M. J. Hu & C. X. Luo, and M. mumecola Y. Harada, Y. Sasaki & T. Sano 

(Oliveira-Lino et al., 2016; Zhu et al., 2016; Vasić and Vico, 2018). 

 The geographic distribution of these species differs across the world. Hence M. laxa and M. 
fructicola are found more globally distributed (Rungjindamai et al., 2014; Oliveira-Lino et al., 2016; 
Zhu et al., 2016; Vasić and Vico, 2018), across the six continents of the world. M. fructigena is 
mostly restricted to European countries (Rungjindamai et al., 2014; Zhu et al., 2016; Vasić and Vico, 
2018). It is a quarantine pathogen for Canada, the USA, Australia, and New Zealand. Its presence 
has also been reported in Africa (Morocco and Egypt) but it is not present in South and North 
America (Ivic et al., 2014). M. polystroma (van Leeuwen et al., 2002; Petróczy and Palkovics, 2009) 
have been reported in Japan, Hungary, China, Croatia, and Slovenia (Zhu et al., 2016); M. mumecola 
in Japan and China (Zhu et al., 2016), while M. yunnanensis (Hu et al, 2011) is only domiciled in 
China (Zhu et al., 2016).  M. mumecola is not present in Europe (Hrustić et al 2013). Consequently, 
it is no longer relevant to affirm that the different species of Monilinia are distributed in specific 
regions considering the obvious ubiquitous pattern of spread. 
 

 
Figure 4. Global map showing the present continental distribution of the species of Monilinia spp.: 

Source CABI (https://www.cabi.org/isc/ (accessed on June 15, 2018) 

https://www.cabi.org/isc/
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3.3. Life cycle of species of Monilinia 

 The species of Monilinia as polycyclic pathogen (Seem, 1984) produces numerous secondary 

cycles throughout the annual growth cycle of the host (Figure 5). The fungus survives the winter 

(transmitted from year to year) in several structures such as mummified fruits (Casals et al., 2015; 

Adaskaveg et al., 2008; Janisiewicz et al., 2013), in canopy or on the ground (Hrustić et al., 2013), 

fruit peduncles (Ritchie, 2000), cankers on twigs, spurs and branches (Melgarejo et al., 1986; Kreidl 

et al., 2015). These propagules infested materials, according to Gell et al., (2009), serve as sources 

of primary inoculum and when weather conditions are suitable spores can infect blossoms, buds 

and young shoots, now establishing source of secondary inoculum (Gell et al., 2009)  

 So far, the main primary inoculum in Spanish orchards is mainly the mycelium and conidia 

present in the mummies found in affected trees or on the orchard floor (Villarino et al., 2010). It 

has also been shown that there is a positive correlation between the number of mummies in the 

trees and the incidence of postharvest fruit rots (Gell et al., 2009; Villarino et al., 2010). 

 

 

Figure 5: Brown rot disease cycle 
 

 It is also very important to note here that brown rot propagules are practically everywhere 

during the fruit-ripening period. In addition, infection is almost certain to occur if the weather is 

moist and extended over time (Ritchie, 2000), and if the fruit skin is bruised in any way (Xu et al., 

2007). 

 Brown rot is spread by the dispersal of Monilinia propagules, through other microorganisms 

(Byrne et al., 2012), wind and water (Nagarajan and Singh, 1990), insects, birds, and man (Bosshard 

et al., 2006). They are also transferred by systems as from rain / overhead irrigation splashes 
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(Ritchie, 2000). Finally, insect and hail wounds, fruit cracking, limb rubs, twig punctures and a 

variety of picking and packing injuries are predisposing factors that greatly increase the losses due 

to brown rot (Ellis, 2008). Young uninjured fruits are thus, always fairly, safe from infection. Hence a 

clarion call for adequate orchard sanitary (Hong, 1997; Ritchie, 2000) observation at all times, 

especially at the onset of spring. And special care should be taken during harvesting and packing to 

prevent puncturing or bruising of ripe fruit. In addition, wild or neglected stone fruit trees that 

serve as collateral reservoirs for the disease must always be removed (Ellis, 2008). 

 For M. fructicola, an occasional source of inoculum can be sexual spores (ascospores) 

(Rungjindamai et al., 2014). At about blossom time, a mummified fruit produces up to 20 or more 

small, tan, cup-like structures on slender stalks that are called apothecia (sg. apothecium). As an 

apothecium matures, it becomes thicker and the cup opens to a bowl-like disc 3 to 12 mm in 

diameter across the top. The inner surface of each of this bowl-like disc is lined with thousands of 

spore-containing sacs (Asci). At this stage, the slightest disturbance or air movement will cause an 

apothecium to effectively discharge millions of spores. If a film of water (either from dew, rain or 

irrigation, especially the overhead) is present for 5 hours or longer, the spores can germinate and 

penetrate the plant / or plant parts (Rungjindamai et al., 2014).  

 Infected blossoms soon wilt and tan-gray tufts, composed of masses of another type of asexual 

spore (conidia), develop on the outside of the flower shuck (Villarino et al., 2010). If the infected 

blossom does not drop off, the fungus soon grows through the pedicel to the twig initiating a 

canker. Masses of conidia are soon produced on the newly cankered twig surface during moist 

periods throughout the early part of fruit development period. Entering the summer period, spores 

are easily detached and, like the ascospores, are mainly wind-borne. And the brown rot disease 

cycle continues as indicated in Figure 5. However, when conditions (weather) are unfavourable, the 

infection can remain latent (EPPO, 2010) until fruit maturity, the optimal time of disease 

development (Bernat et al., 2017 b; Thomidis, 2017). 

 M. laxa as a mycelium overwinters in twig cankers, blighted blossoms parts, peduncles, and 

mummified peach fruits in canopy or on the ground (Hrustić et al., 2013). And in the spring these 

mycelia propagules begin to sporulate and produce abundant conidia which initiate infection on 

close contact with susceptible tissues such as blossoms, spurs and twigs (Fazekas et al., 2014). In 

continuation of the disease cycle fruits are susceptible to M. laxa infections particularly in the time 

of fruit maturing which may lead to a disease epidemic by harvest and infected fruits mummified 

(Fazekas et al., 2014). 

 
3.4. Ecological requirements of Monilinia species 

 Epiphytologically, the knowledge on the ecological requirement of Monilinia species is 

important information in the development of a predictive model to comprehend the epidemiology 

of brown rot and proffer adequate disease management strategies (Tian and Bertolini, 1999; Xu 
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and Robinson 2000). Important abiotic factors determining the potential for conidia germination 

and the growth of Monilinia propagules on the host exterior includes: temperature (T), water 

availability (Water activity aw) and period of wetting (W) (Gell et al., 2008). These are in addition to 

the strong influence played by the moisture content of the spore, age of the spore and inoculum 

concentration on pathogenicity at the period of any conducive environmental factors. According to 

Casals et al. (2010), more than 80 % of viable conidia can germinate at 25 oC and 0.99 aw within 2 h 

for the species of M .fructicola, M. fructigena but 4 h for M. laxa. The authors observed that the 

three species can germinate at a temperature range of 0 to 35 oC under 0.99 - 0.95 aw. The optimum 

temperature for M. fructicola and M. laxa performance is reported to be 24.5 oC and 19.8 oC, 

respectively (Angel et al., 2017). The estimated maximum temperature for lesion development I 

higher for M. fructicola (30 oC) than for M. laxa (10 oC), inferring that M. fructicola is favoured by 

warmer weather than M. laxa. Hence, Bernat et al., (2017 b) reported that M. fructicola is better 

adapted to high temperatures, whereas M. laxa is better adapted to low temperatures. These 

authors observed that under optimal conditions M. laxa is as aggressive as M. fructicola on peach 

fruit. M. laxa unlike the others (M. fructicola and M. fructigena) has the potential to germinate in 

the absence of free water (aw) in the host, making it relatively more virulent. The minimum 

germination temperatures estimated for M. fructicola and M. laxa are 4.7 oC and 0 oC, respectively 

(Obi et al., 2017). Nevertheless, conidia of M. laxa have been reported to germinate even at -4 oC 

(Tian and Bertolini, 1999). 

 Though the lowest storage temperature for stone fruit is 0 oC, conidia of the species of 

Monilinia, in general, could have the potential to germinate at temperature range of 0 oC to 35 oC 

from 2 h of initial exposure in-vitro, especially when the value of free water (aw) or relative humidity 

(RH) under equilibrium condition is under 0.99 - 0.90aw. Hence the pathogen on intimacy with 

peach skin can germinate under 0 - 40 oC at 100 - 80 % RH (Villarino et al., 2010). However, an 

optimum temperature range for brown rot (Moniliosis) initiation in peach at commercial stage is 

22.5 - 25 oC, with which more than 79 % of fruits could be infected under a wetting periods of 12 h 

minimum (Gell.et al., 2008). 

 

3.5. Characterization and identification of Monilinia species  

 Monilinia species, including M. laxa (Aderhold and Ruhland) Honey, M. fructigena (Honey), M. 

fructicola (G. Winter) and M. polystroma (G. Leeuwen) appear difficult to differentiate from one to 

another. However, relative distinction is possible through the use of “CMM”, which is observation 

and combination of cultural / morphological and molecular methods (EPPO, 2009). The main 

characteristic on morphological variance (classical) between M. laxa and the other three related 

EU-28 species in culture are presented in Table 2. 

 

3.5.1. Classical methods 
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 As it is indicated in Table 2, classical qualitative or quantitative characterization and 

identification in species of Monilinia is possible by combining cultural physiognomies (van Leeuwen 

and Kesteren, 1998), such as growth rate, growth pattern and colony colour index (CCI), with 

morphological data, such as conidial dimensions and the length of the germ tube (de Cal and 

Melgarejo, 1999). 

 An in-vitro epidemiological study, according to Villarino et al., (2010), the conidia of M. laxa 

could germinate only after 4 h of incubation as against the 2 h with M. fructicola and M. fructigena 

at the same temperature and available water (aw) conditions. Though the lowest temperature for 

peach storage is 0 oC, a potential pathogenic activity of M. laxa even at -4 oC has been reported 

(Tian and Bertolini, 1999). On potato dextrose agar (PDA) the colonies of M. laxa are greyish-brown 

while the colonies of the M. fructigena are yellowish or creamy (EPPO, 2003). 

 
Table 2: Main characteristic variance between Monilinia laxa and the other three associated EU-28 species in culture 

Characteristics /  
Pathogen 

M. laxa M. fructicola M. fructigena M. polystroma Source 

Conidia dimension  11-13 x 8-9.5 µm 12.5-14.5 x 8-10 
µm 

17.5-20.5 x 
10.5-12.5 µm 

13-17 x 9-10.5 µm EPPO Bull., (2009); 
van Leeuwen et al., (2002) 

Number of germ 
tube 

1/conidia 1/conidia 2/conidia 2/conidia EPPO Bull., (2009);  
van Leeuwen et al., (2002) 

Form of germ tube Short and twisted Long and straight Long and 
straight 

Long and straight EPPO Bull, (2009);  
van Leeuwen et al., (2002) 

Size description Smaller Larger Similar to M. 
laxa 

Similar to M. 
fructigena 

EPPO Bull., (2009); 
van Leeuwen et al., (2002) 

Length of germ 
tube (> 18 h at 
22oC) 

150-350 µm 750-900 µm 600-900 µm 700-1000 µm 
EPPO Bull., (2009); 
van Leeuwen et 
al.,(2002) 

Sporulation Delayed and 
sparse 

Quick, intense 
and abundant 

Sparse Sparse EPPO Bull., (2009); 
van Leeuwen et al., (2002) 

Sporulation range* 0 - 3.7 2.8 - 5.3 - na Hu et al., (2011) 
Mean sporulation* 1.8 3.9 na na Hu et al., (2011)  
Colony colour Hazel/Isabelline 

(greyish-brown) 
Hazel/ Isabelline 
(greenish-brown) 

Pale luteous 
(yellowish/crea
my) 

Pale luteous 
(yellowish/creamy) 

EPPO Bull., (2003); 
Petróczy et al., (2009); 
Petróczy et al., (2012) 

Mycelium in distinct 
layers /colony 
rosetted 

Resetting 
(mycelium in 
distinct layers on 
top of each) 

No/rare On distinct 
tufts; rings of 
aerial mycelium 

Intense formation of 
black, stromatal 
plates initiated after 
10-12 d incubation 

van Leeuwen et al., 
(2002); 
EPPO Bull., (2009); 
Petróczy et al., (2012) 

Colony rosette with 
black arcs 

Yes No No No EPPO Bull., (2009); 
van Leeuwen et al., (2002) 

Concentric ring of 
spores 

No Yes Sometimes Sometimes van Leeuwen et al., (2002) 

Colony margins Serrulate/lobed Not lobed but 
entire 

Not lobed but 
entire 

Not lobed but entire van Leeuwen et al., 
(2002); 
Petróczy et al., (2012) 

Range of colony 
growth rate (mm / 
24h) 

2 - 11 9 - 20 0 - 12  de Cal et al., (1999); van 
Leeuwen et al., (2002) 

Mean colony 
growth rate (mm / 
24 h) (in continuous 
darkness) 

6 13 3.7 7 EPPO Bull., (2003); Hu et 
al., (2011); 
Petróczy et al., (2012) 

Growth rating scale Low High Low-moderate Moderate van Leeuwen et al., (2002)  

*Log transformed number of conidia per cm, (Hu et al., 2011); nd = not detected, na = not available. 

 



20 
 

 Though with some certain similarities, particularly between M. laxa and M. fructicola, in germ 

tube per conidia and colony colours they exist peculiar and pronounced characteristics in culture of 

the former (M. laxa) from the rest including: the possession of the smallest conidia dimension (11-

13 x 8-9.5 µm), short and twisted germ tube, shorter length of germ tube (150-350 µm) at 22 oC of 

more than 18 h of incubation. In addition colony formation in M. laxa is in distinct layers on top of 

each other (resetting) with black curvatures and never associated with concentric ring of spores. 

Also, in the M. laxa the colony margins are serrulate or lobed with low growth rating scale. In 

general identification in culture of Monilinia species is often difficult because appearance varies 

from isolates to isolates within the same species (Côté et al., 2004 b). However, the 

aforementioned quantitative methods are overlapping screening system and therefore, the need 

for a standardized conditions (molecular method) starting with pure cultures (Figure 6). 

 

 
Figure 6: Pure cultures (PDA) and morphologies of the three major species of Monilinia at 10 days (22 oC), of 

incubation: (a) M. laxa, (b) M. fructicola and (c) M. fructigena. 

Source: http://pbt.padil.gov.au/pbt/index.php?q=node/15&pbtID=79 (9th April 2018) 

 

3.5.2. Molecular methods 

 Information exists on several molecular characterization and methods used since the first 

decade of this century to distinguish Monilinia species (Rungjindamai et al., 2014; Oliveira-Lino et 

al., 2016; Côté et al., 2004 b; Gell et al., 2007; van Brouwershaven et al., 2010). Most of the 

molecular methods for disease detection includes the Polymerase chain reaction (PCR) which is an 

in-vitro, primer directed, enzymatic reaction capable of exponential amplification of DNA (Oliveira-

Lino et al., 2016). A recent review, by Balodi et al., (2017) revealed that the molecular techniques 

includes many PCR variants [PCR, nested PCR (nPCR), cooperative PCR (Co-PCR), multiplex PCR (M-

PCR), real-time PCR (RT-PCR); DNA fingerprinting), and fluorescence in-situ hybridization (FISH)] all 

largely involving the DNA as principle nucleic acid. 

http://pbt.padil.gov.au/pbt/index.php?q=node/15&pbtID=79
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 The Monilinia-specific DNA primers of the internal transcribed spacer (ITS region) method was 

employed by Forster and Adaskaveg, (2000) in the detection of early brown rot infections in cherry 

fruits. With the same technique (ITS) Ioos and Frey, (2000) used the end point PCR to study the 

genomic variation within M. laxa, M. fructigena and M. fructicola, and designed primers to 

successfully achieve directly on the diseased fruits. This method is considered the standard test, 

according to Riccioni and Valente, (2015). Species-specific detection of M. fructicola from California 

stone fruits and flowers was developed by Boehm et al., (2001) using the PCR technique in 2001. 

Côté et al., (2004 b) worked on the characterization and identification of M. fructigena, M. 

fructicola, M. laxa, and M. polystroma using a Multiplex-PCR.  

 Later, Gell et al., (2007) utilized two different PCR approaches for universal diagnosis of brown 

rot and identification of Monilinia spp. in stone fruit trees combining a set of universal primers with 

the inclusion of an internal control for diagnosis of brown rot, caused by the three more important 

species. Recently, RT:PCR developed by van Brouwershaven et al., (2010) validated against all four 

brown-rot causing Monilinia (M. laxa, M. fructicola, M. fructigena and M. polystroma). More 

recently, Guinet et al., (2016) have used a multiplex RT-PCR to detecting and discriminating the 

three common species of Monilinia, including M. laxa, on Prunus and Malus. And, Papavasileiou et 

al., (2016) applying the high-resolution melting (HRM) techniques distinguished the six different 

species of Monilinia in peach (M. laxa, M. fructicola, M. fructigena, M. mumecola, M. lithartiana 

and M. yunnanensis) analysing the melting curve of amplicons of two universal primer pairs.  

 In another development, Garcia-Benitez et al., (2017 b) compared the overnight freezing-

incubation technique (ONFIT) and RT-PCR / quantitative polymerase chain reaction (qPCR)-based 

methods modified to detect latent brown rot infections and, subsequently, distinguishing between 

the Monilinia spp. in flowers and peach fruit. The same authors (Garcia-Benitez et al., 2017 b) later 

validated the method in reference to test performance accuracy, analytical specificity and 

sensitivity, repeatability, and reproducibility, as defined by standard PM7/98 of the European Plant 

Protection Organization (EPPO) for detection of Monilinia spp. being more sensitive, reliable, and 

quicker than ONFIT for detecting a latent brown rot infection.  

 Another established method is the fast multiplex quantitative / real-time polymerase chain 

reaction (qPCR / RT-PCR method) developed by van Brouwershaven et al., (2010), modified and 

validated by Garcia-Benitez et al., (2017 b) in reference to test performance accuracy, analytical 

specificity and sensitivity, repeatability, and reproducibility, also as defined by standard PM7/98 of 

EPPO for the detection of Monilinia spp. 

 Rapid, accurate and reliable (Fazinic et al., 2017) detection of Monilinia latent infections (Garcia-

Benitez et al., 2017 a) is needed to prevent and control dispersion of Monilinia spp. in infected 

localities and non-infected countries (Papavasileiou et al., 2016). The overnight freezing-incubation 

technique (ONFIT) is one of the established methods for detecting latent brown rot infection, but 

the test time-cost is between 7 to 9 days (Bernat et al., 2017a). The advantage of the qPCR-based 
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method for detecting a latent Monilinia infection in peaches are its high sensitivity, its ease and 

rapidity of execution, the low number of handling steps, and reduced personal costs. However, its 

disadvantages includes the high cost of consumables and reagents, which are much greater than 

those of ONFIT, and the occurrence of false positives due to detection of nonviable fungal DNA 

(Garcia-Benitez et al., 2017 b). 

 Merits of DNA-based detection methods include: reliability, time-saving, higher sensitivity and 

specificity, when compared to the processes of artificial cultivation, the traditional and serological 

assays techniques as found documented (Guinet et al., 2016; Garcia-Benitez et al., 2017 b). For 

example the molecular technique of multiplex RT-PCR assay (one step) developed by Guinet et al., 

(2016) is efficient and prompt in characterising the three major species of Monilinia responsible for 

brown rot (M. laxa, M. fructicola and M. fructigena). These authors also inferred that the 

exceptional reliability of their results are of paramount importance in the framework of 

phytosanitary regulations, considering the fact that the performance data were generated and the 

assay fully validated in accordance to the EPPO guidelines (EPPO, 2010). 

 In summary, molecular biology based methods are progressively providing the means for timely 

identification of quarantine plant pathogens including some species of Monilinia. The method does 

not necessitate isolation of the particular species of Monilinia and, therefore, significantly 

accelerates the identification process compared with methods based on quantitative 

characteristics. Finally, these methods can potentially be invigorated to directly and specifically 

identify the species infecting peach commodity. Its prominence, no doubt, is also necessitated by 

overlapping classical screening system. 

 

3.5.3. Limitations of molecular methods 

 There are indisputable limitations associated with molecular technique assays, among which 

includes: potential existence of genetic similarity between different species of pathogens at primer 

/ probe binding sites due to mispriming; possibility of inept estimate of the viability of pathogen 

and the likelihood of contamination of commercial reagents with target sequences leading to, 

apparently positive but, a deceptive result. The formation of non-specific products due to mis-

priming and formation of artefacts in form of primer dimers adds more complexities to the 

probability of correct interpretation (Balodi et al., 2017). Other authors, Guinet et al., (2016) have 

observed that under less stringent reaction conditions, the test might be able to stand limited 

experimental errors or equipment drift (e.g., pipetting errors or thermic issues with the thermal 

cycler). 

 In the last decade, several protocols did not distinguish among some Monilinia species, although 

modern RT-PCR has been modified to overcome this (Zhu et al., 2016; Garcia-Benitez et al., 2017 

b;). The works of Förster and Adaskaveg, (2000); and Côté et al., (2004 a), were found unreliable 

because some isolates of M. fructicola lack a group I intron in their nuclear rDNA small subunit. The 
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methods of PCR primers and protocols for M. fructicola as documented by Förster and Adaskaveg, 

(2000); Boehm et al., (2001) and Ma et al., (2003), though discriminate M. fructicola from M. laxa, 

have not been validated for distinguishing M. fructicola from M. fructigena.  

 The characterization methods of Ioos and Frey, (2000); Miessner and Stammler, (2010), and Hily 

et al., (2010), reliably differentiated three species of Monilinia (M. fructigena, M. fructicola, and M. 

laxa) within themselves, but practically unable to distinguish M. fructigena from M. yannanensis. 

Similarly, the methods developed by Ioos and Frey, (2000); and Ma et al., (2003, 2005) did not 

discriminate between M. mumecola and M. laxa. Also, the method developed by Hily et al., (2010) 

did not differentiate M. mumecola from M. fructicola, and the methods of Miessner and Stammler 

(2010) and Hily et al., (2010) also could not discriminate between M. yunnanensis and M. 

mumecola. However, some investigators (Garcia-Benitez et al., 2017 a) in their study of RT-PCR 

detection of latent Monilinia spp. infection in nectarine flowers and fruit could only be able to 

prevent cross-detection by stringently including an allelic discrimination step (extra cost) in qPCR 

runs, to enable the differentiation between M. fructicola and M. laxa (Garcia-Benitez et al., 2017 b). 

 Finally, though results from molecular assay, particularly multiplexed / quadruplexed (Lowe et 

al., 2016), have demonstrated that it remains sensitive and specific without compromising the 

reliability of the results. 

 In addition, other investigators (Ivic et al., 2014; Riccioni and Valente, 2015) have recommended 

that for optimum performance and accurate identification, particularly with PCR tests, and 

regardless of DNA extraction method, manufacturer of chemicals, thermocyclers or staining 

methods, there is the exigency for careful selection of species-specific primer pairs for molecular 

diagnosis of species of Monilinia. We refer to Raja et al., (2017) for more information on merits and 

demerits of the use of “Molecular Tools” in fungi detection and identification. 

 
4. Host-pathogen interactions 

 Brown rot is the pathologic result of a parasitic interaction between the species of Monilinia and 

the peach (EPPO, 2010; Garcia-Benitez et al., 2016). In such association, and depending on the 

region of first contact (blossom, out growth, stem, fruit), the pathogen initiates and encourages 

flower blights, spurs, twigs / branch death and fruit (brown) rot in the field and in postharvest (Gell 

et al., 2007; Papavasileiou et al., 2015). Hence the pathogen`s activity on the host is highly 

destructive from flowering stage via peach formation to storage (Thomidis and Exadaktylou, 2010), 

thereby creating an infection chain as exponent in Figure 7. Brown rot is a polycyclic epidemic 

(Seem, 1994) hence various secondary or monocyclic components of the brown rot infection 

sequence are generated throughout the annual growth cycle of the host (Schumann and D`Arcy, 

2006). This biological proficiency conversely pertain grave impairment on the harvest, storage and 

commercial shelf life of the product (Gell et al., 2007; Sisquella et al., 2013). Interestingly, as it is 

found in any pathogen-host association, the growth and development of brown rot is influenced by 
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different physicochemical conditions such as temperature and water activity (Pascual et al., 1997; 

Xu et al., 2001), light, aeration and pressure (Maharshi and Thaker, 2012), pH and titratable acidity 

of fruit (Holb,2004; Romero-Arenas et al., 2012; Obi et al., 2018). 

 

 

 

 

 

 

 

 

 

 

 During such impending epiphytotics the aforementioned physicochemical factors influence the 

microbial activity determining either the growth and reproduction or the inhibition of activity and 

the inactivation of the pathogen. And in particular, the pH and titratable acidity (TA) are 

interrelated concepts of organic acids (Dirlewanger et al., 1999; Tyl and Sadler, 2017) controlling 

physicochemical factors that act in an additive and interactive mode to inhibit pathogen metabolic 

pathway (Romero-Arenas et al., 2012). These two physicochemical components, though 

complementary in nature, are statutorily different. TA refers to the total concentration of free 

protons and undissociated acids in a fruit juice that can react with a strong base and be neutralized, 

hence it is any amount of base needed to neutralize such acidity and bring its pH to a neutral (pH 

7), or slightly alkaline (pH 8.1) value, and pH represents the free hydrogen ion activity in the fruit 

juice (Lobit et al., 2002) or a means of expressing such H+ ions concentration in a substrate. 

 In peach fruit acidity is an important genetic quality (Dirlewanger, 1999) which influences both 

perception of sourness and sweetness found in varying proportions depending on the cultivar and 

the ripening stage (Lobit et al., 2002). The influence of pH and TA on fungal-host interaction is 

documented (Yamanaka, 2003; Obi et al., 2018). Some fungal species favour neutral to slightly 

alkaline conditions (Maharshi and Thaker, 2012). However, the Monilinia species, in general, are 

acidophilic and therefore prefer acidic conditions for their growth (Maharshi and Thaker, 2012). 

Results of the fruit experiment by Holb, (2004), have shown that healthy peach fruits are quite 

acidic (pH < 3.5), but that pH rapidly increases in inoculated fruits reaching pH 4.6-5.4 depending on 

cultivar and fungus isolate. Unsurprisingly, species of Monilinia can acidify the host tissue in 

peaches and nectarines from pH 4.50 and 4.45, to pH 3.75 and 3.90, respectively (de Cal et al., 

2013). 

 

 

   

a: Mummified peach b: Blighted blossoms c: Infected peach fruits 
Figure 7: Chain of brown rot infection in peach 
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5. Other management strategies to control brown rot in peach 

 Weather conditions have been reported to influence the percentage of latent infection on peach 

and nectarine flowers and fruits (Thomidis, 2017) and remain a significant factor that must be 

considered on the effective management of this disease. Latent infection is a pathologic situation 

where fruit infected can remain asymptomatic and visual decay symptoms only develop during the 

late ripening period and during postharvest (Bernat et al., 2017 b), particularly when there is an 

enabling ambient condition. Most stone fruit with a latent brown rot infection caused by Monilinia 

do not develop visible signs of disease until the arrival of fruit at the market or consumers’ home. 

Rapid, accurate and reliable (Fazinic et al., 2017) detection of Monilinia latent infections (Garcia-

Benitez et al., 2017 b) is needed to prevent and control dispersion of Monilinia spp. in infected 

localities and non-infected countries (EPPO, 2010). The overnight freezing-incubation technique 

(ONFIT) is one of the established methods for detecting latent brown rot infection, but the test 

time-cost is between 7 to 9 days (Bernat et al., 2017 a). 

 Another established method is the fast multiplex quantitative / real-time polymerase chain 

reaction (qPCR / RT-PCR method) developed by van Brouwershaven et al., (2010), modified and 

validated by Garcia-Benitez et al., (2017 a) in reference to test performance accuracy, analytical 

specificity and sensitivity, repeatability, and reproducibility, as defined by standard PM7/98 of the 

European Plant Protection Organization (EPPO) for detection of Monilinia spp. is more sensitive, 

reliable, and quicker than ONFIT for detecting a latent brown rot infection. The advantage of the 

qPCR-based method for detecting a latent Monilinia infection in peaches are its high sensitivity, its 

ease and rapidity of execution, the low number of handling steps, and reduced personal costs. 

However, its disadvantages includes the high cost of consumables and reagents, which are much 

greater than those of ONFIT, and the occurrence of false positives due to detection of nonviable 

fungal DNA (Garcia-Benitez et al., 2017 a). In all, it has been recommended (Garcia-Benitez et al., 

2017 a) that additional investigation of new primers and probes for characterization of the species 

of Monilinia should be conducted to make identification more transferable among qPCR platforms 

and laboratories. 

 There are various control and potential management options available for brown rot epidemic in 
peach, which include: biological, conventional, chemical, physical, biofungicides, and host 
resistance (Rungjindamai et al., 2014). 

 

5.1. Biological control 

 Evidence abounds on the practical and biological control possibilities against diseases of 

Monilinia species (de Cal et al., 1990; Larena and Melgarejo, 1996). Biological control also refers to 

the use of formulations of living organisms (Biofungicides) to control the activity of plant 

pathogenic fungi and bacteria (Dicklow, 2017). An insight into its utility could find EPS125 (Pantoea 

agglomerans, a gram-negative bacterium) (Bonaterra et al., 2003), effective in preventive 
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treatments for control of stone fruit rot on several stone fruit crops, including peach, cultivars. They 

observed its ability to colonize, rapidly grow and survive in wounds, the fact that the main 

mechanisms of action is mediated by cell-to-cell interaction, and inferred that the absence of major 

toxicological effects, constitute interesting traits for an effective use as a biofungicide under fully 

commercial conditions.  

 Larena et al., (2005) carried out seven field experiments in peach orchards located in three 

different countries (Spain, Italy and France), for two years to develop an effective and practical 

method of controlling brown rot disease caused by Monilinia spp. by pre-application of Epicoccum 

nigrum. The result of their work demonstrated that E. nigrum applications alone or in combination 

with fungicides treatment to peach trees in the field reduced brown rot at postharvest. Bacillus spp. 

are among the most recommended bacteria to use against plant diseases, including brown rot, and 

marketed as commercial products, QST 713 strain, [(Table 3), Rungjindamai et al., (2014)]. Yánez-

Mendizábal et al., (2012) used Bacillus subtilis (CPA-8) strain to control Monilinia spp. in peaches 

and indicated that fengycin-like lipopeptides play a major role in the biological potential of B. 

subtilis CPA.8 against M laxa and M. fructicola. Also, antagonistic microorganisms such as 

Penicillium frequentans (Guijarro et al., 2008) and Bacillus amyloliquefaciens (Gotor-Vila et al., 

2017) are examples of practical pre-harvest and postharvest control measures, respectively, in 

peach commodity. 

 Just recently a practical potential of B. amyloliquefaciens CPA-8 as alternative or complementary 

strategies to control Monilinia spp. has been highlighted (Gotor-Vila et al., 2017). In this study 

carried out under field conditions, the authors confirmed the potency of the bioagent considering 

their observation that the population dynamics of CPA-8 on treated peach fruit surface remained 

after treatment application, at harvest and at postharvest shelf-life. 

 According records, the number of new biopesticide registrations in the EU-28 is growing steadily 

but they currently represent only 2.5 % of the pesticide market (EUROSTAT, 2018). Although several 

large agrochemical companies are now actively engaged in the development of biological control 

agents (BCAs), small-medium sized enterprises (SMEs) account for most of the activity in BCA 

development. Parenthetically, the EU-28 has commissioned a large collaborative project on 

developing and commercialising BCAs in recent times (Rungjindamai et al., 2014). 

 However, increasing concern about the effects of biochemical fungicides (BCAs and conventional 

fungicides) on the environment (Giobbe et al., 2007), human health (Papavasileiou et al., 2015), and 

strain fungicide resistance (de Cal et al., 1988) still views new alternatives, such as host resistance, 

as one of the most cost effective and environmentally safe strategies for disease control. For 

example, Giobbe et al., (2007) found that a biofilm-forming strain of Pichia fermentans proved to 

be most effective in controlling brown rot on apple fruit but pathogenic on peach fruit when co-

inoculated into artificial wounds with a phytopathogenic isolate of M. fructicola. The authors, 

therefore, emphasized the need for a thorough risk assessment before allowing any deliberate 
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release ofBCAs, considering associated potential effects such as displacement of nontarget 

organisms, allergenicity to humans and other animals, toxicity and pathogenicity, and genetic 

stability. Hence, any minimal potential biohazard is inherent to any application of biocontrol agents 

(Giobbe et al., 2007) in peach commodity. 

 

5.2. Conventional fungicide treatments 

 A major control option of this phytopathogen (species of Monilinia), especially in the Spanish 

peach management, has been the use of preventive and systemic fungicides (Table 3) such as 

thiophanate-methyl, iprodione and cyproconazole (Egüen et al., 2015). Synthetic fungicides like 

benzimidazoles, dicarboximides and demethylation inhibitors (Egüen et al., 2015) have been used 

to control the disease in the orchards. In Spain, however, there are only two active substances for 

the control of this fungus in warehouses, or in post-harvest product store: fludioxonil, with two 

different formulations (Table 3) [fludioxonil 23% (SC) P/V and fludioxonil 60% (SC) P/V] with current 

registration until 31/12/2019 and pyrimethanil 30% (GE) P/P, vigent until 30/04/2019 (MAPAMA, 

(2017); USDA, 2017). 

 
Table 3: Chemical and biological formulations used in stone fruit production for Monilinia management of 
crop production in Spain. 

Formulation 
Nº of comercial 

products Life limit 
Sulphur 80% + Cyproconazole 0.8% [WG] P/P 1 31/12/18 
Cyproconazole 10% [WG] P/P 1 17/06/18 
Cyprodinil 37.5% + fludioxonil 25% [ESP] [WG] P/P 1 31/10/18 
Copper (II) hydroxide 35% (expr. in Cu) [WG] P/P 23 31/10/18 
Iprodione 75% [WG] P/P 1 31/10/18 
Mancozeb 20% + Dicopper chloride trihydroxide 30% (expr. in Cu) [WP] P/P 20 31/01/19 
Mancozeb 75% [WG] P/P & 80% 35 31/10/18 
Thiophanate-methyl 50% [SC] P/V; 70% [WG] P/P 4 31/10/18 
Mancozeb 8% + Cuprocalcium sulphate 20% (expr. in Cu) [WP] P/P. 4 31/10/18 
Myclobutanil 4.5% [EW] P/V 1 31/05/21 
Dicopper chloride trihydroxide 11% (expr. in Cu) + Cuprocalcium sulphate 
10% (expr. in Cu) [WP] P/P  

1 30/10/17 

Copper(I) oxide 40% (expr. in Cu) (01) P/P 12 28/09/19 
Copper (I) oxide 50% (expr. in Cu) [WP] P/P & 52% 47 10/06/19 
Copper (I) oxide 75% (expr. in Cu) [WG] P/P 16 10/06/19 
Tribasic copper sulphate 40% (expr. in Cu) [WG] P/P 14 27/11/19 
Tebuconazole 25% [WG] P/P 11 31/08/19 
Fenbuconazol 2.5%/5% [EW) P/V 2 30/04/22 
Bacillus subtilis (CEPA QST 713) 15.67% (5.13 X 10E10 UFC/G ESP) [WP] P/P 1 30/04/18 
Total active ingredients applicable in preharvest peach and nectarine 
biofungicidal control in Spain (18) 

  

Fludioxonil 23% [SC] P/V/ Fludioxonil 60% [SC] P/V 2 31/12/19 
Pyrimethanil 30% [GE) P/P  1 30/04/19 
Total active ingredients applicable in postharvest peach and nectarine bio-
fungicidal control in Spain (2) 

  

Total of number of commercial biofungicidal products allowed in Spanish peach market (198) 
Source: MAPAMA, (2017) 
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 In furtherance, from more than 84 biofungicidal formulations, registered in the national 
pesticide guide web of the “Ministerio de Agricultura, Pesca, Alimentación & Medio Ambiente de 
España”, are recapitulated only eighteen active ingredients authorized for use in the control of 
brown rot of peach in Spain (Table 3). Life limit (deadline) for fungicide use in Spanish stone fruit 
production is also provided. The deadline for use ranges currently between October 2017 and April 
2022. However, the manufacturers would always like to extend this period or deadline, only when 
appropriated request is made by the responsible body and on the condition that certain applicable 
costs are paid for such permission. The same substance or formulation can be applicable to both 
pre- and post-harvest treatment but with the corresponding restriction in each case. 
 

5.3. Limitations in the use of conventional fungicide 

 The increase in the demand for fresh fruit with reduced residual quantities (Rungjindamai, et al., 

2014) has placed to interrogation the continuous use of conventional fungicides (CF) in peaches. CF 

treatments often times alter the micro-ecosystem and in extension modify disease severity by 

altering the interactions among microorganisms (de Cal et al., 1988). Moreover, the toxic chemical 

residues pose additional ecological issues. In furtherance, recent reports have confirmed that the 

differential resistance to CF in Monilinia spp. is evolving and could be modifying the frequency of 

occurrence of fungicide sensitive and fungicide-resistant Monilinia spp. (Egüen et al., 2016). The 

evolution of tolerance in species of Monilinia to certain CF (Katan and Shabi, 1981; Cañez-Jr and 

Ogawa, 1985), the increasing cost of chemical control and post application clean up (Pimentel, 

2005) and the threat of regulatory restrictions are all yearning need for sustainable and endearing 

management measure to control brown rot (Zehr, 1982). 

 The regulation of CF use, however, has become stricter in EU countries, especially after the 

release of European Directive 2009/128/EC (EPPO, 2009). There is also the global intensification in 

the number of countries advocating for the reduction / waning regarding conventional chemical 

uses (Oliveira-Lino et al., 2016). Particularly, the use of CF is becoming more unfashionable because 

of consumer demands for residue-free fruit (Usall et al., 2015). Add to all the aforementioned 

includes the fact that contamination of the environment should be avoided (Liu et al., 2012). 

Finally, the steady rise in development and occurrence of CF resistant to Monilinia strains, 

worldwide, has been reported (Katan and Shabi, 1981; Elmer and Gaunt, 1994; Liu et al., 2012; 

Chen et al., 2013; Egüen et al., 2016). All these adverse implications put together it is, therefore, 

pertinent to search for alternatives with lasting effect, enhancing consumer acceptability and at the 

same time friendly with environmental sustainability. 

 

5.4. Botanical fungicides 

 Plants provide a wide range of secondary metabolites and essential oils, which have an array of 

properties including antimicrobic, allelopathic, bioregulatory and antioxidants (Solomon et al., 

2005; Suleiman et al., 2009; Khaled-Khodja et al., 2014). This class of plant derivatives are 
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collectively referred to as biopesticides, including the botanical fungicides (Yoon et al., 2013). 

Information, both review (Parveen et al., 2016) and practical (Wilson et al., 1997; Ziedan et al., 

2008), on the biopesticidal efficacy and utility against phytopathogens abounds (Kouass et al., 2010; 

Hassani et al., 2012). Some of these bioactive substances have also been assayed in-vitro and in-

vivo (Goncalves et al., 2010) and found potent enough against brown rot of Monilinia species 

(Ganchev, 2007; Carović-Stanko et al., 2013). 

 In an overview, Hassani et al., (2012) evaluated, in-vivo, the antifungal activities of four different 

[Thymus vulgaris (L.), Eugenia caryophyllata L., Cinnamomum zeylanicum (Blume) and Carum 

copticum (L.)] plant extracts against two postharvest pathogens (M. fructicola and Botrytis cinerea) 

of stone fruit. And precisely, in reference to our target (peach, Monilinia and brown rot), Lopez-

Reyes et al., (2013) screened, in-vivo, the antifungal efficacy of plant essential oils on postharvest 

control of brown rots on different stone fruits, including the peaches. Just recently, Cindi et al., 

(2016) have recommended the thyme oil for postharvest handling as biofumigants in peaches after 

indicating that thyme oil vapours effectively reduced the incidence of brown rot caused by M. laxa.  

 In furtherance, Goncalves et al., (2010) backing their work said that the results obtained in 

postharvest control of brown rot and Rhizopus rot in plums and nectarines using carnauba wax 

(Copernicia prunifera) (Mill.) H.E.Moore was promising because the experiments were carried out 

under conditions of elevated inoculum pressure for mature fruit. Cindi et al., (2016), also propose 

that thyme oil fumigation treatment can be considered as a good alternative treatment due to the 

low concentration used in brown rot decay control in peaches.  

 Nevertheless, some authors have observed certain limitations in the evaluated biofungicides 

and made adequate recommendations accordingly. For example, Cindi et al., (2016) observed that 

there was the need to conduct further studies on the effect of thyme oil fumigation on fruit quality 

(sensory parameters) in naturally infected peaches after low temperature storage and retail shelf 

conditions. Thyme oil influences on peach volatile compounds, such as alcohols, aldehydes, 

carboxylic esters, ketones and esters need to be investigated (Cindi et al., 2016). 

 

5.5. Physical treatments to control brown rot in peach 

 There are various types of physical control srategies in the management of brown rot (BR) in 

peaches (Table 4). This includes: hot water dipping (Jemric et al., 2011); dry heat (Liu et al., 2012); 

wet heat treatment curing with chitosan or in combination with Bacillus CPA-8 (Casals et al., 2012); 

use of radio frequency, water immersion and air exposure, (Sisquella et al., 2013); and hydro 

cooling techniques (Bernat et al., 2017 a). 

 Some authors (Cañez-Jr and Ogawa, 1985; Jemric et al., 2011) have indicated that it is possible 

to control postharvest BR on peach using hot water dipping (HWD) at 48 oC for 12 min and on 

nectarine using HWD at 48 oC for 6 min without a significant loss of fruit quality. The authors, 
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however, recommended for optimization of the method according to cultivar since too long 

exposure of fruit to a high temperature can cause the loss of acidity. 

 In the study of Liu et al., (2012), the use of heat (wet and dry) showed that both the direct 

inhibition of pathogen and elicitation of defence response in fruit contributed to the significant 

reduction of decay in peach. The investigators associated the control effect to the inhibition of M. 

fructicola germination and growth, intracellular ROS accumulation, mitochondrial impairment 

leading to a reduction in ATP, and the induction of defence-related enzymes in peach. Casals et al., 

(2012) used heat to control peaches and nectarines from brown rot by exposing fruit to 50 oC for 2 

h and 95-99 % relative humidity (RH), which should markedly eradicate the pre-existing Monilinia 

spp., infections (from the field), in combination with the application of chitosan at 20 oC for 1 min 

or the antagonist B. subtilis strain CPA-8. 

 
Table 4: Physical treatments to control brown rot in peach, conditions, period and effects.  
Treatment Temperature Period of 

exposure 
Effects Reference 

Hot water dipping 
(HWD) 

48 oC 6 / 12 min Reduced brown rot (BR) incidence and no 
significant loss of fruit quality 

Jemric et al., 
(2011) 

Heat treatment (HT) 40 oC 5 / 10 min Significant reduction in peach BR Liu et al., 
(2012) 

Heat treatment (HT) 
95% RH 

50 oC 2 h Proposed as potential strategy to control 
brown rot on peaches and nectarines 

Casals et al., 
(2012) 

Radio frequency (RF) of 
dipping in hot water 
(HT) 

60 oC 20 s A 100% BRI reduction at 6 to 12 h after 
inoculation and 85.7%. BRI reduction at 0 
to 48 h after inoculation as compared to 
untreated fruit 

Spadoni et al., 
(2014) 

Radio frequency (RF) at 
27.12 MHz of water 
immersion 

20 oC 9 min Controlled brown rot without adverse 
external and internal damage in both 
peaches and nectarines 

Sisquella et 
al., (2013)  

Radio frequency (RF) at 
27.12 MHz of 
exposition in air 

20 oC 18 min Brown rot incidence significantly reduced 
in both peaches and nectarines of different 
fruit size. 

Sisquella et 
al., (2013) 

Radio frequency (RF) at 
27.12 MHz of water 
immersion 

40 oC 4.5 min Reduced BRI in stone fruits inoculated (0 - 
48 h) before treatment and at all maturity 
levels evaluated in both peaches and 
nectarines without impaired fruit quality 

Sisquella et 
al., (2014) 

Hydro cooling (HC) and 
water dump (WD) 

4 oC 30s / 
10 min 

Reduced brown rot incidence by 50-77% 
when treated at 2 / 24 h of fruit harvest  

Bernat et al., 
(2017 a) 

 

 In their study on the influence of hot water treatment on brown rot of peach and rapid fruit 

response to heat stress peach fruit, Spadoni et al., (2014) inoculated fruit with conidia of Monilinia 

laxa and dipped in hot water (HT) at 60 oC for 20 s (15 min / 48 h post inoculation). Based on 

achieved positive result, the authors recommended the techniques as an alternative and new 

perspective in brown rot incidence (BRI) reduction in peach. 

 Sisquella et al., (2013) in a study to improve RF treatment to control brown rot in stone fruit 

evaluated the effect of immersion in water for 9 min and exposure in air for 18 min (RF of 27.12 

MHz) all at 20 oC. They observed that RF treatment with fruit immersed in water at 20 oC for 9 min 

may provide a potential postharvest alternative for brown rot control in peaches and nectarines. 
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And a year later, Sisquella et al., (2014) confirmed RF treatment, particularly at 40 oC immersions 

for 4.5 min, would be very promising and attractive commercial potential for the control of brown 

rot on peaches and nectarines at postharvest. In furtherance, they reported a significantly reduced 

BRI in the naturally infected fruit, from 92% among control fruit to less than 26% in peaches and 

complete brown rot control in nectarines (Sisquella et al., 2014). In addition, before the commercial 

application of this treatment techniques, the authors rightly suggested, “it is necessary to design 

specific equipment with water to determine the economic cost of the treatment”. 

 Bernat et al., (2017 a) applied hydro cooling and water dump techniques to reduced BR 

incidence on peach fruit with recent infections (2 or 24 h before treatment). The techniques were 

able to reduce BRI in comparison to direct storage at 0 oC, but not when infections have been 

established (≥ 48 h before treatment). 

 

5.6. Host Resistance and Genetic Management 

 Apart from the pre-harvest issues with peaches, the length of conservation and commercial 

shelf life are negatively influenced due to post harvest diseases principally associated with the 

brown rot (BR) (Sisquella et al., 2013). Consequently, breeders (in: Brazil, California, Italy, and USA) 

either individually or associated with pathologists have concentrated efforts on obtaining new 

cultivars resistant to this pathogen. Nonetheless, reports of resistance (Mexican and Brazilian 

peaches) or tolerance (peaches from Florida, New Jersey, and Harrow programs) to fruit brown rot 

within peach exist (Gogorcena et al., 2012; Feliciano et al., 1987). 

 Breeding for disease resistance is one of the most challenging objectives for crop improvement 

because disease expression is tetrahedral: it is simultaneously influenced by agent, host, 

environment, and human management (Fresnedo-Ramírez et al., 2017). Notwithstanding, different 

methodologies and varying protocols have continued to be assayed in breeding programs to 

evaluate genetic resistance to fungi in stone fruit crops (Gradziel, 1994; Byrne, 2005; Oliveira-Lino 

et al., 2016; Obi et al., 2017). 

 

6. Breeding for Tolerant Cultivars or Genotypes   

 The ‘Bolinha’ peach variety, of Brazilian origin, presents a good resistance mechanism with less 

susceptibility to brown rot than other varieties and although this variety possesses relatively poor 

quality characteristics, it has been observed that the resistance to disease is transmitted to their 

descendance (Feliciano et al., 1986; Byrne, 2005; Oliveira-Lino et al., 2016). Lack of extensive 

studies on M. laxa, in particular (Rungjindamai et al., 2014), especially on the use of tolerant variety 

or genotypes with good quality characteristics in BR management and crop improvement, calls for 

academic and practical attention in that area of significant concern. 

 The use of commercial varieties or genotypes with some level of disease resistance remains one 

of the surest and long lasting tolerant alternatives within disease protection and improvement 
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management techniques in crop cultivation (Vallad and Goodman, 2004; Byrne et al., 2012). Host 

tolerance to plant pathogens is important to cost effective and environmentally safe strategy for BR 

management. In the same notion, according to Gell et al., (2007) the use of tolerant cultivars in 

crop improvement is the topmost principle of crop protection as plants and plant products are 

usually protected (prophylactic) from disease epidemic (Norton, 1976; Dodds and Coleman, 2017) 

and, often, not cured of diseases (chemotherapeutic). Cultivar significantly influence rot incidence 

and severity among other potential factors in stone fruits (Tarbath et al., 2014) and, therefore, fits 

an ideal component in the measures for disease control (Kreidl et al., 2015). Lasting prophylactic 

treatment of peach, using M. laxa tolerant cultivars, means prevention of the pathogenic problems 

first in the orchard. 

 Interestingly in recent times, phytochemicals from plants and plant organs, including fruits, have 

drawn increasing attention due to their potent antioxidant properties and their marked effects in 

the prevention of various oxidative and stress associated diseases (Compean and Ynalvez, 2014; 

Kasote et al., 2015). In addition, several other studies also point to an active involvement of these 

phytochemicals and quality characteristics in the protective reactions of crops against 

phytopathogens including fungi, bacteria and viruses (Chérif et al., 2007; Prasad et al., 2010; 

Sanzani, 2014; Oliveira-Lino et al., 2016). It is essential to note here, there exists many studies 

showing that certain phenolic compounds have inhibitory effects in-vitro and / or in-vivo against 

Monilinia spp. (Tomás-Barberán et al., 2001; Lee et al., 2006; Oliveira-Lino et al., 2016). Phenolic 

compounds including caffeic and chlorogenic acids may have inhibited M. fructicola growth and 

reduce lesion size (Lee et al., 2006). Hence an increase in susceptibility to brown rot infection has 

been associated with a concomitant decline in concentrations of these antioxidant compounds 

especially in maturing fruits (Villarino et al., 2011). 

 Breeding programs all over the world, especially the ones located in humid areas have disease 

resistance as one of their top priorities, in part, because the consumers’ concern about chemical 

residues on fruits and vegetables has increased considerably. As merits, tolerant genotypes will 

allow sustainable control with zero residues in fruits safety harvesting and at least decreasing 

disease problems in commodities in storage leading to better economic benefit. The total absence 

of treatment residue due to the use of prophylactic tolerant peach cultivar is friendly to enhanced 

environment compatibility (Usall et al., 2016). However, disease resistant varieties are not readily 

available in many fruit crops (Spiers et al., 2005) including commercial peach cultivars (Byrne, 

2012). Developing peach cultivars tolerant to M. laxa requires, in the first instance, identification of 

existing tolerant/susceptible genotypes by screening from a germplasm (Rubos et al., 2008). 

 It has been reported that although greater number of commercial stone fruit cultivars are 

susceptible to Monilinia spp. (Martínez-Gómez et al., 2005; Holb, 2008), there could exist genetic 

disease control (Martínez-García et al., 2013; Pacheco et al., 2014) to be introgressed in high fruit 

quality genetic background (Oliveira-Lino et al., 2016). Hence relative tolerance / susceptibility of 
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fruit to disease has often been used for selecting disease resistant genotype for peach breeding 

purpose. In addition, considering the recent drive for alternative technologies effective to control 

postharvest diseases (Spiers et al., 2005; Mari et al., 2015; Teksur, 2015) in particular of stone fruits 

(Usall et al., 2015), any documentation of composites inhibitory to BR susceptibility would have 

influence in breeding schemes and particularly useful in the postharvest peach market. 

 

6.1. In-situ and ex-situ screening methods to evaluate brown rot tolerance 

 There are two major known systems in screening a germplasm for susceptibility or tolerance to 

a disease or pathogen. These systems are: in-situ / field, which encompass mostly evaluation on 

flowers, bud, twigs and shoots and ex-situ / laboratory, which is mostly assessment on the 

commercial fruit of a germplasm. A researcher, therefore, can screen for these phylogenetic 

sensibilities in peach, especially on the ex-situ evaluation by: a) assessment of lesion development 

on wounded, injured or bruised fruit (Gradziel and Wang, 1993); b) assessment of lesion 

development on intact, uninjured or unbruised fruit (Gradziel and Wang, 1993; Pascal et al., 1994); 

(c) assessment of spore production from determined lesions (Walter et al., 2004); d) assessment of 

postharvest biodegradation from natural and latent infection; and e) assessment of cuticle 

thickness / firmness of commercial ripe fruit (Walter et al., 2004). Table 5 shows some research in 

the ex-situ evaluation from brown rot susceptibility in stone fruits. Some researchers (Gradziel and 

Wang, 1993; Pascal et al., 1994;) individually used lesion development on both bruised and intact 

fruit to screen for brown rot resistance in clingstone peach germplasm. Uninjured fruit inoculation 

test (UFIT) and artificially injured fruit inoculation test (AIFIT) were utilized by Gradziel and Wang, 

(1993) to evaluate for resistance to M. fructicola in peach and Pascal et al., (1994) in apricot, plum 

and peach to M. laxa. Walter et al., (2004) adopted assessment for lesion development, spore 

production, storage performance and cuticle thickness / firmness in screening apricot fruit for 

resistance to brown rot of Monilinia spp. Many advantages exist in support of ex-situ method over 

the use of in-situ method. Manipulation of fruit is easier when evaluation is ex-situ. Inoculum load 

is centrally placed on fruit cheeks, at random including mature and immature sides (Obi et al., 

2017). 

 In furtherance, ex-situ methodology ensures that the measurement of pathogenic factors such 

as lesion and colonization are adequately evaluated on each inoculated fruit. Also, ex-situ 

methodology facilitates the post inoculation evaluation for qualities such as firmness and soluble 

solid contents (SSC). Some of these operations will obviously be difficult if fruits were to be 

attached on the tree. Ex-situ enables for washing and disinfection of fruit making them pure and 

uncontaminated for screening against targeted pathogen. Finally, artificial inoculation on 

unwounded fruits, though seemingly purported to be a reliable method in evaluating for brown rot 

resistance in-situ, has been reported to be not only lengthy and laborious but also affected by 

season and year variability (Feliciano et al., 1987; Byrne et al., 2012). 
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6.2. Plant parts and screening for disease tolerance 

 Different parts have been used to study genetic resistance such as flowers in apricot (Christen et 

al., 2012) or fruits in peach (Martínez-García et al., 2013; Pacheco et al., 2014; Zeballos et al., 2016). 

Moreover, evaluations have consistently been performed in-situ with attached fruits in natural 

ambient situation in the field on peaches and nectarines (Paunovic and Paunovic, 1996; Martínez-

Gómez et al., 2005) or ex-situ in apples (Biggs and Miller, 2005) and stone fruits (Oliveira-Lino et al., 

2016); involving detached apricot fruits under controlled systems (Walter, et al., 2014). Considering 

the fact that several mechanisms are known to be involved in BR resistance, including phenolic 

concentration, thickness of epidermis components, and flesh texture, selection should be 

simultaneously based on all known as well as unknown components.  

 Hence, some authors (Martínez-Gómez et al., 2005; Walter, et al., 2014) went further to 

highlight certain imperative factors to be considered when breeding for disease resistance as: i) 

adequate knowledge of the pathogenic agent, including the diversity of virulence; ii) knowledge of 

the availability, diversity and types of genetic resistance within the breeding program, as well as 

within the species and close relatives; iii) the handling, developing and improving of screening 

methods and phenotyping, including accurate selection of the appropriate environment for 

exhibition of resistance to allow its accurate tracking. The overriding importance of the third point 

is here reverberated according to Thomidis, (2017) that the knowledge and consideration of host 

specificity / nonspecificity in disease management is paramount in the selection and preparation of 

new orchard sites and choice of tree species to be planted, among other salient parameters. 

 

6.3. Procedures for spore production and inoculation in lieu of brown rot susceptibility screening  

 Many different procedures have been adopted in the quest to have spores and mycelia 

produced in the Monilinia for the purpose of artificial inoculation. Hence Monilinia isolates could be 

grown on PDA Petri dishes directly from infected organs: fruits, mummies, twigs (Jansch, 2012) or 

already prepared cultures. Also, there exists numerous methodologies describing partially similar, 

and in some cases divergent, protocols concerning spores concentration, inoculum load and 

associated variables (Table 5) for screening BR susceptibility in stone fruits, peach and nectarine in 

particular. All the techniques as presented in Table 5 were accomplished ex-situ (in the laboratory / 

controlled environment), except that of Paunovic and Paunovic, (1996) that was in-situ (in the 

orchard / open field). In a situation where effect of inoculum pressure was incorporated in the 

study, different inoculum densities and corresponding inoculum loads (Biggs and Northover, 1988; 

Northover and Biggs, 1990) were appropriately evaluated. In general there have been variations in 

the density and load of inoculum used among different authors. 
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Table 5: Host inoculation, spore production, and ex-situ brown rot (Monilinia spp.) susceptibility assessment in stone fruits between 1988 and 2017 
Authors Fruit 

type 
Number 
of fruit 

Method of 
inoculation 

Fruit cheek Source of 
inoculum 

Inoculum 
density (cfu) 

Inoculum load Incubation 
period 

Temperature / 
RH of 
incubation  

Susceptibility 
variables 

Biggs and Northover, 
(1988) 

Peach NA UFIT Randomly PDA culture 106 - 103 mL-1 30 µL  
(30,000 to 30 spores) 

144 h 20 oC / 60-95% Disease severity 
score 

Northover and Biggs, 
(1990) 

Cherry 10 UFIT Suture PDA culture 106 - 103 mL-1 30 µL  
(30,000 to 30 spores) 

144 h 20 oC/60- 95 % % BRI, 
lesion diameter 

Gradziel and Wang, 
(1993) 

Peach 16 UFIT/ 
AIFIT 

Most 
matured 

PDA culture 2 x 104 mL-1 10 µL (200 spores) 72 h 22oC-25 oC / 
95% 

Lesion diameter 

Pascal et al., (1994) Peach, 
Plum 
Apricot. 

10 
 

UFIT/ 
AIFIT  

Randomly Natural fruit 106 mL-1 20 µL 
(20,000 spores) 

240 h /  
120 h  

23oC % BRI, lesion 
diameter 

Bassi and Cantoni, 
(1998) 

Peach 15 UFIT Randomly NA 105 mL-1 NA 168 h 25±2 oC / 95-
100 % 

% BRI, Lesion 
diameter 

Walter et al., (2004) Apricot 8 UFIT/ 
AIFIT 

Randomly Natural fruit 1.5 x104 mL-1 30 µL (450 spores) 48h / 120 h Ambient 
temperature / 
lightly misted 
with dH20  

Lesion area, 
spore counts, 
storage rot and 
cuticle thickness  

Pacheco et al., (2014) Peach 10 UFIT/ 
AIFIT 

Sun-
exposed 
fruit cheek  

Peach fruit 5 x 106 mL-1 10 μL  
(50,000 spores) 

120 h 25 oC / high RH % BRI, average 
rot diameter by 
scores 

Obi et al., (2017) Peach 20 UFIT Randomly Peach fruit 25 x 103 mL-1 25 µL (625 spores) 120 h 23 oC / 50- 60 % Lesion diameter, 
colonization 
diameter, % BRI, 
disease severity 

Abbreviations: NA (Not available); cfu (Colony forming units); RH (Relative humidity); dH20 (distilled water); % (percentage); BRI (brown rot incidence; UFIT (Uninjured fruit 
inoculation test (Pascal et al., 1994); AIFIT (Artificially injured fruit inoculation test (Pascal et al., 1994); PDA (Potato dextrose agar). 
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 Several studies have investigated tolerance to BR in existing phenotypic diversity for peach 
breeding purpose (Biggs and Northover, 1988; Gradziel and Wang, 1993; Bassi et al., 1998; Rubos et 
al., 2008; ) and in most cases relationships with the fruit quality traits (EPPO, 2009) have not been 
ignored (Pascal et al., 1994; Walter et al., 2004; Oliveira-Lino et al., 2016). Apart from selection within 
breeding descendant population in peach and nectarine (Bassi et al., 1998; Oliveira-Lino et al., 2016) 
other stone fruit germplasm include: apricot (Walter et al., 2004), plum (Pascal et al., 1994) and cherry 
(Holb, 2013). 
 Parameters usually considered in such test comprises: extent of necrosis and intensity of 
sporulation (Biggs and Northover, 1988), percentage fruit infection and lesion development 
(Northover and Biggs, 1990), lesion area, spore count, storage rot and cuticle thickness (Walter et al., 
2004). Blighted flowers, twigs and shoots have also been used (Keske et al., 2013; Papavasileiou et al., 
2015). However, the use of the fruit for susceptibility screening is widely used among stone fruits 
(Walter et al., 2004; Obi et al., 2017). Hence, in the use of peach fruit for BR susceptibility screening, 
BRI (percentage of fruits with lesion) (Keske et al., 2011; Obi et al., 2017) and BR severity (product of 
the average lesion diameter x proportion of fruit with lesions) (Keske et al., 2011; Kasote et al., 2015) 
can be synopsized into incidence-severity (I-S) relationships for clear epidemiological understanding 
and accurate susceptibility screening studies. 
 
7. Conclusions 
 Despite brown rot importance, there has been relatively little work done on the development of BR 
resistant peach fruit cultivars probably due to lack of collaborative tendencies among specialist actors 
including breeders, and phyto-pathologists. Hence, the search for phenotyping protocols to accurately 
characterize and evaluate brown rot infection is a mission that should always be encouraged by both 
breeders and pathologists in crop breeding programs. 
 This review has been able to state clearly the characteristic variance among the three most 
economic important species of Monilinia (M. laxa, M. fructicola and M. fructigena), in addition to M. 
polystroma and the chemical formulations used for brown rot management, particularly, in Spain and 
their life limits made available. The continued increase for healthy fruit by consumers and need for 
environmental concerns regarding the use of pesticides and associated ecomicrobial destitution 
require a sustainable alternative measure to combat brown rot in the peach market. Appreciable 
option, therefore, is the management with the host resistance cultivars which fits into more of the 
prophylactic than the chemotherapeutic brown rot management available strategies. 
 In the recent times, several studies have investigated tolerance to brown rot in existing phenotypic 
diversity for peach breeding purpose and in most cases relationships with the fruit quality traits. These 
studies have often viewed the use of host resistance cultivars to fit into more of the prophylactic than 
the chemotherapeutic brown rot management adoptions available. It is our recommendation, 
therefore, that if adequately and effectively combined with other alternative control schemes (IPM) 
and especially biological strategies, host resistance could enhance more sustainable peach fruit 
farming in the future. 
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The objectives of this thesis were: 
1) To have an evaluation method, by optimizing the available protocols, to screen tolerance to brown 

rot by Monilinia spp. in peach germplasm of the Experimental Station de Aula Dei-CSIC. 
2) To determine the modulating effect of pH and titarable acidity (TA) to pathogenic activities of M. 

laxa, in-vitro and in-vivo.  
3) To screen eight commercial peach cultivars used as parental for susceptibility to Monilinia laxa and 

rating cultivars’ tolerance exploring the genetic approach for breeding purposes.  
4) To evaluate for tolerance to brown rot of Monilinia laxa within the breeding descendant population 

of ‘Babygold 9’ × ‘Crown Princess’, and to examine fruit quality and phytochemical composition in 
relation to the tolerance. 
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This thesis follows an article-based structure. It contains three articles published in indexed scientific 
journals and two manuscripts. The articles are connected in the thematic area, agriculture and the 
environment, which is the main focus of the thesis, but also by common data regarding breeding in 
peach for tolerant cultivars to brown rot of Monilinia laxa in the Northeast of Spain. The study is a 
continuation of previous studies developed by the research group. Figure 8 indicates an operational / 
pictorial framework on the general methodology depicting the in-situ and ex-situ activities with 
highlight on the pathogenic and non-pathogenic parameters evaluated. Each thematic objective of the 
thesis is addressed in each one of the chapters, subsequent to the general review. Chapter I sets an 
evaluation method to screen tolerance to brown rot by Monilinia spp. in peach germplasm. This 
optimization of available protocols was achieved with the comprehensive bibliographic review and 
compilation of information currently available on peach, brown rot and species of Monilinia. Chapter II 
examines the effect of host- pathogen interaction, in-vitro and in-vivo, using specific physicochemical 
factors of pH and titratable acidity (TA) in peach and Monilinia laxa. Chapter III is a screening test on 
selected parental lines of the peach breeding program with a view to validating and breeding for 
increase tolerance to brown rot. Chapter IV screens sixty eight progenies from the ‘Babygold 9’ × 
‘Crown Princess’ population of the breeding program of EEAD-CSIC, in three years, for susceptibility to 
brown rot of Monilia laxa. These data were analysed using the SPSS-23 (Statistical Product and Service 
Solutions Inc., Chicago USA) statistical software. 
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Figure 8: Operational activities in screening for phenotypic susceptibility to brown rot of Monilinia laxa in peach germplasm of the Aula Dei -CSIC, Zaragoza 



57 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter I. Optimizing protocols to evaluate brown rot (Monilinia laxa) 
susceptibility in peach and nectarine fruits 

Published: Optimizing protocols to evaluate brown rot (Monilinia laxa) susceptibility in peach and 
nectarine fruits. Australasian Plant Pathology (2017), 46:183-189, https://doi.org/10.1007/s13313-
017-0475-2 
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Optimizing protocols to evaluate brown rot (Monilinia laxa) susceptibility in peach and nectarine 
fruits. 

Abstract 
 This study assessed and optimized an in-vivo method to evaluate the levels of 
susceptibility/resistance in fruit from the EEAD-CSIC peach germplasm to an isolate of Monilinia laxa 
(Aderhold & Ruhland) Honey from peach. A total of four commercial cultivars and six genotypes, 
descendants of three families, of peach [Prunus persica (L) Batsch.] were superficially inoculated in 
fruits as “uninjured inoculation fruit test”. Inoculum was obtained from artificially infected peach fruit 
after five days of incubation under a photoperiod of 12 h supplied by fluorescent lighting system. 
Spores were harvested from the fruit, incubated at 20-26 oC, of 40-60 % RH, being careful to avoid 
contamination. Production of inoculum (conidia) was rapid and adequate using these inoculation and 
incubation conditions (five days at 23 oC) indicating that the M. laxa used was highly pathogenic and 
inoculation protocol suitable screen the peach material and commercial cultivars. Lesion diameter and 
colonization extent were measured on inoculated fruits to estimate disease severity (colonization 
severity and lesion severity) to establish levels of susceptibility/resistance to brown rot. Results from 
the screening test showed that although all peach genotypes and commercial cultivars screened were 
susceptible to the M. laxa isolate, the lack of sporulation on lesions of ‘Calante’ cultivar and the 
significant differences in colonization and lesion severity among the genotypes indicated the existence 
of genetic tolerance to M. laxa infection. The reasons for the differences in tolerance to infection and 
implications for breeding stoned fruit in the Ebro Valley are discussed. 
 
Additional key words: Prunus persica; Ex-situ; In-situ; screening germplasm; fungus. 
 
I-1. Introduction 
 Peach [Prunus persica (L.) Batsch] is the third most important global tree crop after apples and 
pears within the economically important Rosaceae family (FAOSTAT, 2016). The largest producer is 
China, followed by Italy, Spain, and the United States (FAOSTAT, 2016). Brown rot is a disease 
principally associated with the peach fruit. It is caused by Monilinia species which include: Monilinia 
laxa (Aderhold and Ruhland) Honey, Monilinia fructigena (Honey) and Monilinia fructicola (G. Winter) 
(Hu et al., 2011; Zhu et al., 2014). As polycyclic pathogens they produce numerous secondary cycles 
throughout the annual growth cycle of the host (Schumann and D`Arcy, 2006) affecting harvest, 
storage and commercial shelf life of the product (Gell et al., 2007; Thomidis et al., 2008; Sisquella et 
al., 2014). 
 Until 2006, peach brown rot in Spain was only caused by either M. laxa (Aderh & Ruhl) Honey or M. 
fructigena Honey in Whetzel (Gell et al., 2008, 2009). Of the species, M. laxa was the most prevalent 
(85-90%), followed by M. fructigena (10-15%) (Larena et al., 2005). However, since 2006 both species, 
M. laxa and M. fructigena, may have co-existed at the same relative frequency (Villarino et al., 2013; 
de Cal et al., 2014). The entrance of M. fructicola in peach orchards in the Ebro Valley, Lerida, Spain 
(Villarino et al., 2013) and cohabitation with M. laxa, since 2010 led to the displacement of M. 
fructigena (Villarino et al., 2016). 
 In Spain the disease causes damage of 59-100 % after harvest particularly within favourable 
environmental conditions (Villarino et al., 2012). Synthetic fungicides like benzimidazoles, 
dicarboximides and demethylation inhibitors (Egüen et al., 2015) are used to control the disease in 
orchards in Spain. Also antagonistic microorganisms such as Penicillium frequentans and Epicoccum 
nigrum fungi (Guijarro et al., 2008; Larena et al., 2010) are examples of pre-harvest control measures. 
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Increasing concern about the effects of biochemical fungicides on the environment (Giobbe et al., 
2007), human health (Thomidis and Exadaktylou, 2010), and strain fungicide resistance (Ritchie, 1982) 
views new alternatives, such as host resistance, as one of the most cost effective and environmentally 
safe strategies for disease control. 
 In fruit crops different methodologies and varying protocols have been assayed in breeding 
programs to evaluate genetic resistance to fungi (Gradziel 1994, 2003; Byrne, 2005; Biggs and Miller, 
2005). Different parts have been used to study genetic resistance such as flowers in apricot (Christen 
et al., 2012), twigs and shoots in pears, quince, blueberry (Bell et al., 2004; Polashock and Kramer, 
2006), or fruits in peach and citrus (Gradziel and Wang, 1993; Sanzani et al., 2014). Moreover, 
evaluations have consistently been performed in-situ with attached fruits in natural ambient situation 
in the field on peaches and nectarines (Rubos et al. 2008) or ex-situ in apples (Biggs and Miller, 2005); 
involving detached apricot fruits under controlled systems (Walter et al., 2004).  
 In fruits, inoculum could be applied superficially on a specific spot (Northover and Biggs, 1990; 
Walter et al., 2004) or placing mycelium agar plugs on the fruit (Biggs and Miller, 2005); or dipping the 
fruit into an inoculum suspension (Denoyes-Rothan and Guerin, 1996; Gordon et al., 2005), even 
though injecting spores beyond the epidermis (Pascal et al., 1994). Finally, different inoculum 
concentration, treatment load, incubation period and temperature have been assayed for screening in 
stone fruits: 10 µL load of 2 x 104 spores mL-1 (Gradziel and Wang, 1993) and 30 µL of different spore 
density (106 to 103 mL-1) (Walter et al., 2004; Northover and Biggs, 1990; Bonaterra et al., 2003). 
 Nowadays, there are numerous methodologies describing partially similar protocols concerning 
spores concentration and inoculum load for screening brown rot (Monilinia spp) tolerance in peach 
and nectarine (Casals et al., 2012; Kreidl et al., 2015; Cindi et al., 2016). However, little information is 
available on the genetic screening of peach progenies for tolerance to brown rot of Monilinia spp in 
the Ebro valley region. Casals et al., (2012), used 50 µL of M. fructicola at different concentrations of 
104, 105 and 106 of spores mL-1; while other authors  used 104 of spores mL-1; of 10 and 50 µL inoculum 
load to study Monilinia species and M. laxa, respectively (Kreidl et al., 2015; Cindi et al., 2016). 
However, other factors, such as inoculum production, incubation time, etc., are not comparable. Kreidl 
et al., (2015) used fresh cultures of Monilinia grown on PDA media at 25 °C for 7 days (12 h light, 12 h 
dark) for enhancement of sporulation and conidia production. Casals et al., (2012) and Cindi et al., 
(2016) used 12 day old of Monilinia grown on PDA culture for inoculation. 
Using the available methods, longer periods are required for obtaining the source of inoculum and the 
amount and purity of inoculum are not assured. Moreover, an easy inoculation system would help to 
screen large populations and controlled environment would be preferable to avoid cross 
contamination. We have modified the existing protocols by shortening the inoculum production and 
also ensuring the accurate supply of inoculum. The objective of this study, therefore, was to have an 
evaluation method, by optimizing the available protocols, to screen tolerance to brown rot by 
Monilinia spp. in peach germplasm. We have evaluated brown rot tolerance on Monilinia laxa ex situ 
inoculated peach fruit by measuring brown rot incidence (%), lesion diameter (mm) and colonization 
extent (mm). In the Spanish peach collection at the EEAD-CSIC, screening for resistance to brown rot 
has shown that local germplasm accessions are susceptible although slight differences can be found. 
 
I-2. Materials and Methods 
 
I-2.1. Plant material 
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A total of two commercial peach (‘Calante’ and ‘Catherina’) cultivars, two nectarines (‘Venus’ and 
‘BigTop’) and six progenies of peach [Prunus persica (L) Batsch.] were evaluated (Table I-1). All 
cultivars, except ‘Venus’ and ‘Calante’, were grown in the experimental station of Aula Dei-CSIC. 
Orchards are all in the Ebro valley (Northern Spain, Zaragoza) under a Mediterranean climate. All 
progenies are descendant from the crossing of 'Babygold 9’ × ‘VAC-9510’; 'Babygold 9' × 'Crown 
Princess' and ‘Andross’ × ‘Calante'. They were grown under standard cultural practices (pruning, 
collection and adequate disposal of mummies, irrigation and weeding) and chemical spray programs 
for pest and disease control. In 2012, any fungicide treatment was applied in the field before harvest. 
The preventive fungicide Teldor® 500 SC was only sprayed after regular irrigation or rainfall on July 16 
and August 7.  
 Fruits were harvested based on optimum maturity (Cantín et al., 2009) (expressed on visual colour 
change and manual evaluation of firmness, selecting healthy fruit with uniform ripeness and size). 
Peaches were disinfected by immersion in aqueous solution of 1.6 % sodium hypochlorite 
(commercial), 0.005 % Tween® 80 (polysorbate surfactant) and 1.6 % ethyl alcohol for 4 minutes, 
rinsed in sterile distilled water, and spread out on sterile holding stone-fruit cardboard cells for 20 
minutes ambient air drying in blossom-stem (upside down) position to avoid any possible percolation 
at the stem position. 
 
I-2.2. Pathogen culture 
 The culture of the Monilinia laxa (Aderh. & Ruhl.) Honey used in this study was supplied by the 
Post-harvest Pathology Unit, IRTA Lerida, and it was isolated from peach from the Cataluña region of 
Spain (isolate number: CPML02). The strain was maintained at 4 oC in the dark on 39 gL-1 solid potato 
dextrose agar (PDA) medium (Panreac, Spain). The fungal culture was replicated biweekly and 
maintained at 23 oC under continuous darkness during the periods in which the experiments were 
conducted. There was also periodic inoculation on peach fruit for preservation of pathogenicity 
according to Koch-Pasteur’s postulates (de Cal et al., 1990). 
 
I-2.3. Conidia production and inoculation 
 To ensure sufficient conidia production (Kreidl et al., 2015) for the susceptibility studies, the isolate 
was inoculated onto surface sterilized peach fruits (Catherina cv.), to avoid surface contaminants, by 
wounding the fruit (1 x 2 mm) with a sterile surgical blade and transferring mycelium plug from the 
PDA culture to the wound site using a sterile inoculating needle. We have used wounded non-
inoculated fruits as control to determine the existence of latent infections. The commercial cardboard 
box hosting the fruits was covered with sterile transparent polythene sheet, with the ends slightly 
sealed with sellotape. Fruits were incubated at 20-26 oC, of 40-60 % RH and photoperiod of 12 h 
supplied by a mixture of two fluorescent lighting systems (Sylvania Gro-Lux, F36W / GRO and Ogram 
Daylight, F36W / 840DL of the Fridger Growth Chamber, Spain) for 4 to 6 days. 
 Conidia were efficiently harvested into a solution of sterile distilled water and Tween® 80 (0.0005%) 
surfactant by mildly rubbing over the infected regions of the fruit using a sterile dental brush. This 
involves superficial submerge of sample in the harvest solution and relative slight spore wash with the 
brush (restrained harvest as against profound harvest method). The spore solution was stirred at 1500 
r.p.m. for 3 min, and then filtered through a sterile fourfold cheese cloth to remove mycelia and inert 
particles. Quantification of conidial suspension was determined on a hemocytometer (Neubauer new 
improved chamber) and the density adjusted to 25 x 103 mL-1 for inoculation purposes.  
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 To evaluate tolerance to brown rot, 20 disinfected fruits from each genotype were inoculated with 
the isolate of the virulent pathogen. On the equatorial position of each unwounded fruit, 25 µL spore 
load (one drop) of the 25 x 103 mL-1 conidial suspension of M. laxa was deposited. Five fruits used as 
control were loaded with 25 µL sterile water accordingly. 
 
I-2.4. Incubation and brown rot evaluation 
 Inoculated fruits were incubated for 5 days in darkness at 23 oC and 40-60% RH (Climatronic 2132-
model growth incubator, Germany). Brown rot incidence was assessed using the fraction infected over 
total number of inoculated fruits. Lesion diameter and colonization extent were measured across 
perpendicular sectors (longitudinal and latitudinal fruit sectors) with a digimatic venier caliper 
(Mitutoyo CD-15 DCX, Tokyo Japan). These parameters were used in the determination of brown rot 
disease severity for genotype tolerance rating in the study according to (Martínez-García et al., 2013). 
Lesion severity (LS) was calculated by the percentage of brown rot incidence (% BRI) x lesion diameter 
(LD) /100 and colonization severity (CS) by the percentage of colonization (% C) x colonization extent 
(CE)/100. Mean, standard errors (SE) and Pearson correlations were carried out with SPSS-19 statistical 
software (Statistical Product and Service Solutions Inc., Chicago USA). Statistical significance was 
judged at the level P < 0.05, and the Duncan test was used for mean comparison (ANOVA test).  
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Table I-1: List of accessions, harvest time, brown rot incidence and mean ± SE of the pathological parameters evaluated in 2012 

SE: Standard error (n = 5-20); source: location of sample orchard. B9: ‘Babygold 9’, VAC: ‘VAC 9510’, A: ‘Andross’; CP: ‘Crown Princess’; ‘Calante’ was grown 
in Alcañiz (Teruel) and ‘Venus’ in orchards of CITA-Aragón. Means with different letters show significant differences at P ≤ 0.05 (Duncan’s test). 
 
 
 

Accession 
name 

Fruit 
type 

Harvest date 
(Julian days) 

Brown rot 
incidence 
(BRI) (%) 

Colonization 
extent (CE) 

(mm) 

Colonization 
severity (CS) 

(mm) 

Lesion diameter 
(LD) (mm) 

Lesion 
severity (LS) 

(mm) 
Source 

1_(B9×VAC) Peach 208 100 51.50 ± 3.6 c 51.50 ± 3.6 d 57.10 ± 1.4 b 57.10 ± 1.4 c EEAD 
2_(B9×CP) Peach 219 100 28.78 ± 5.7 b 28.78 ± 5.7 bc 49.85 ± 3.2 ab 49.85 ± 3.2 bc EEAD 
3_(A×C) Peach 219 80 27.07 ± 7.0 b 21.65 ± 5.6 bc 47.06 ± 2.7 ab 37.65 ± 2.3 b EEAD 
4_(A×C) Peach 240 100 49.76 ± 2.4 c 49.76 ± 2.4 d 55.40 ± 3.5 b 55.40 ± 3.5 c EEAD 
5_(A×C) Peach 240 100 49.68 ± 2.6 c 49.68 ± 2.6 d 61.95 ± 2.1 b 61.95 ± 2.1 c EEAD 
6_(A×C) Peach 240 100 50.68 ± 3.9 c 50.68 ± 3.9 d 62.52 ± 2.8 b 62.52 ± 2.8 c EEAD 
Big Top Nectarine 218 100 32.96 ± 8.8 b 32.96 ± 8 8 c 38.26 ± 8.6 a 38.26 ± 8.6 b EEAD 
Calante Peach 291 100 00.00± 0.0 a 00.00 ± 0.0 a 38.00 ± 5.8 a 38.00 ± 5.8 b Alcañíz 
Catherina Peach 208 100 48.56 ± 1.4 c 48.56 ± 1.4 d 54.33 ± 0.9 b 54.33 ± 0.9 c EEAD 
Venus Nectarine 218 60 27.04 ± 6.9 b 16.22 ± 4.2 b 34.95 ± 6.0 a 20.97 ± 3.6 a CITA 
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I-3. Results 
As indicated in Table I-1, there was 100 % brown rot incidence (BRI) in all genotypes except for 

the 3_(A × C) genotype with 80 % and the ‘Venus’ cultivar with 60 %. There were significant differences 
within the mean colonization extent and lesion diameters (Table I-1), as well as in the colonization and 
lesion severities (Figure I-1). 

The 3_(A × C) genotype, and ‘Big Top’, ‘Venus’ and ‘Calante’ cultivars exhibited brown rot severity 
(BRS) significantly lower than 40 mm (Figure I-1). Lesion severity (LS) was between 62.52 and 20.97 
mm, colonization severity (CS) was between 50.68 mm and zero. The ‘Venus’ and ‘Big Top’ cultivars 
and 2_(B9 × CP) and 3_(A × C) genotpes showed colonization severity below 40 mm (16.22 mm and 
32.96 mm; 28.78 mm and 21.65 mm, respectively). The ‘Calante’ was the only treatment without 
colonization owing to no or restricted sporulation and therefore, zero CS. 

The Pearson’s correlation coefficients (r) between pairs of traits are shown in Table I-2. Brown rot 
incidence (% BRI) significantly correlated with all pathologically associated factors [LD (r = 0.293, P ≤ 
0.01); LS (r = 0 471, P ≤ 0.01); CE (r = 0.349, P ≤ 0.01) and CS (r = 0.473, P ≤ 0.01)]. This indicates that 
the level or frequency of infection will always and significantly influence the lesion diameter and 
colonization extent including severities in a disease situation. All pathological traits showed significant 
correlation higher than 0.883. Also harvest date showed a positive and significant correlation with % 
BRI (r = 0.314, P ≤ 0.01); LS (r = 0.405, P ≤ 0.01) and CS (r = 0.313, P ≤ 0.01). 
 
I-4. Discussion 

In this study, we have validated the inoculation method finding differences in the susceptibility to 
the pathogenic activities of M. laxa in two peaches (‘Catherina’ and ‘Calante’); two nectarines (‘Venus’ 
and ‘Big Top’) and six peach hybrids. In order to screen a large germplasm sample we have modified 
the existing methods. Incubation factors as temperature (20-26 oC), relative humidity (40-60%) and 12 
h photoperiod enhanced colonization and sporulation for substantial conidia production. 

 

 
Figure I-1: Brown rot severity (BRS, in mm) on the studied genotypes. Lesion severity = %BRI x Lesion Diameter. 
Colonization severity = % Colonization x Colonization extent. Bars represent the standard errors (n = 5-20). The 
dotted line indicates brown rot severity less than 40 mm. Means with different letters show significant 
differences at P ≤ 0.05 (Duncan’s test). 
 

We have found that the peculiar lighting source (mixture of two fluorescent lighting systems, 
Sylvania Gro-Lux, F36W / GRO and Ogram Daylight, F36W / 840DL) was positive to obtain enough 
inoculum in a short period of time. We have also found that artificial injury ensured adequate and 
prompt infection of host (Casals et al., 2010; de Cal et al., 2013). 
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Table I-2: Pearson`s correlation coefficients among pathological traits and harvest date  
Traits LD 

(mm) 
LS 

(mm) 
EC 

(mm) 
CS 

(mm) 
Harvest date 
(Julian days) 

BRI (%) 0.293** 0.471** 0.349** 0.473** 0.314** 

LD (mm)  0.980** 0.901** 0.908** 0.374** 

LS (mm)   0.883** 0.920** 0.405** 

EC (mm)    0.989** 0.285** 

CS (mm)     0.313** 
Units and abbreviations: BRI = Brown rot incidence; LD = Lesion diameter; LS = Lesion severity; CE = Colonization 

extent; CS = Colonization severity; ** = Correlations significant at P ≤ 0.01. 

 
We have also found that artificial injury ensured adequate and prompt infection of host (Casals et 

al., 2010; de Cal et al., 2013). Fruit injury encouraged short period of incubation making available 
inoculum source within 3 days post inoculation and avoiding cross-contamination of other fungi such 
as Botrytis and Rhizopus species. Moreover, the purity of inoculum load was ensured with this method 
because potential contaminants such as nematodes were avoided during conidia harvest by mildly 
rubbing over the infected regions of the fruit using a sterile dental brush. Initially enough M. laxa 
inoculum was produced from PDA culture incubated (Memmert CO2 incubator INCO, Germany) at least 
35 days at 23 oC in the dark. Nevertheless, we tried to reduce the time to obtain inoculum adapting the 
methods used by Gell et al., (2007) and Jansch et al., (2012). They incubated prepared PDA cultures of 
Monilinia spp in the dark at 20-25 oC for 7 to 10 days for adequate sporulation. But our preliminary 
trials (data not shown) indicated poor inoculum production when incubated in the dark even with 
more than 6 days of incubation at 23 oC. Finally we have assured effective inoculum in 4 to 6 days after 
incubation of inoculated peaches under at temperature (20-26 oC), relative humidity (40-60%) and 12 h 
photoperiod. 

Furthermore, the composition of inoculum for susceptibility screening could involve one 
pathogenic strain (Gradziel and Wang, 1993) or two or more pathogenic isolates pooled (Biggs and 
Miller, 2005) to enhance pathogen virulence. A mono-conidial culture was used in our study because 
our inoculum source was tested for stable virulence and was stable enough to initiate pathogenesis 
without need for strain synergism. We established effective inoculum density of 25 x 103 mL-1 with 
inoculating load of 625 spores per fruit. Pascal et al., (1994) though employed a mono-conidial isolate 
but higher loading of 20,000 spores / fruit that may be less sustainable.  

We have evaluated 20 fruits per genotype as enough sample size to assess representative 
evaluation considering the large population involved in plant breeding. The number of samples used to 
evaluate disease tolerance against brown rot in stone fruit varies among researchers from 10 peaches 
per genotype (Gradziel and Wang, 1993) to 30 fruits in apricot, plum and peach (Pascal et al., 1994). 
Moreover, the preference for the ex-situ evaluation is that the methodology enables for effective and 
efficient handling of large population and sample material. The ex-situ system also enables for 
thorough selection of healthy fruits and disinfection from insects and potential contaminants. Also 
essential is that direct influence such as variation in temperature, precipitation and relative humidity 
are avoidable environmental factors when screening, for brown rot tolerance, under a controlled 
environment. The germination and other pathogenic activities of conidia are markedly influenced by 
the interaction of the above mentioned factors (Xu et al., 2001; Casals et al., 2010). 

The 3_(A × C) genotype, and Big Top, ‘Venus’ and ‘Calante’ cultivars exhibited brown rot severity 
(BRS) lower than 40 mm (Figure I-1). Paunovic and Paunovic, (1996) have reported similar 
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susceptibility values in peach germplasm in Yugoslavia. However, their investigation was done in-situ 
involving five pathogens (M. laxa, M. fructicola, Sphaerotheca pannosa, Tapharina deformans and 
Sharka virus).  

As shown in Table I-2, brown rot incidence (% BRI) showed positive and significant correlations 
with all pathologically associated factors (LS, CE and CS). This indicates that the level or frequency of 
infection will always and significantly influence the lesion diameter and extent of colonization 
including severities in a disease situation. Also harvest date showed a positive and significant 
correlation with % BRI, LS and CS. Inferring that genotypes that mature later generally tended to have 
bigger lesions and would be less tolerant to fungal pathogen. This is the first time to find that the 
pathological parameters correlate, positively, with Julian days. However, an ANOVA showed that there 
were scarcely any significant differences in pathological traits between early and late harvested 
treatments (Table I-1). 

There was a particular interest on the ‘Calante’ cultivar which, though produced lesion, was 
devoid of colonization (sporulation) (Table I-1), an important factor in disease spread. This feat is 
biologically and epidemiologically an advantage for plant breeding. Its high level of tolerance may be 
related to a late harvest or to the agronomical practices performed in Alcañiz. In these orchards, due 
to the singularity of this late cultivar harvested in October, fruits are protected to pathogen injuries 
using paper bags. Other authors have found annual variation for brown rot infection in ‘Calante’ (Obi 
et al., 2015; Ágreda et al., 2016). It was described that colonization in nectarines and peaches fruit 
infected by Monilinia spp. could be associated with the local acidification of the host tissue (de Cal et 
al., 2013) and that acidic environment can prevent brown rot colonization on peach (Bonaterra et al. 
2003), however, it is not the explanation for our results since the fruit has at maturity the same pH or 
acidity year by year. Other uncontrolled factors such as environmental instead of genetic may be 
responsible for non-colonization in ‘Calante’ harvested in the 2012. Moreover, colonization on host 
(extensive differentiation of hyphae at the surface of host) is not a genetic trait (Giobbe et al., 2007).  

According to this research we have not found differences indicating the impact of hairiness on 
susceptibility although other authors have proposed that fruit hairiness could encourage susceptibility 
to disease infection in some stone fruits (Wade and Cruickshank, 1992; Xu et al., 2007; Garcia-Benitez 
et al., 2016). In our plant material using this protocol we have demonstrated a relatively similar degree 
of tolerance / susceptibility between peach and nectarine fruits. An example are the low levels of 
Monilinia laxa incidence registered with the ‘Venus’ nectarine and 3_(A × C) peach genotype or the 
lower LS found in ‘Venus’ in comparison with the rest of cultivars. 
 
I-5. Conclusions 

In this study an efficient ex-situ procedure through artificial skin inoculation to assess the 
susceptibility to brown rot (Monilinia laxa) of commercially ripe fruits was performed in ten peach and 
nectarine genotypes. We have modified the existing protocols by shortening the inoculum production 
and also ensuring the accurate supply of inoculum. The methodology has been tested and shall be 
applied in our breeding program. 

The artificial injury ensured adequate and prompt availability of inoculum source. Incubation 
factors as temperature (20-26 oC), relative humidity (40-60%) and 12 h. photoperiod with two 
fluorescent lighting systems enhanced colonization and sporulation for substantial conidia production. 
In addition, this method ensured between 3 to 6 days the optimum conidia purity considering the 
‘restrained’ harvest system we adopted to obtain inoculum.  
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Finally, it was possible to discriminate between highly and less susceptible peach germplasm at the 
EEAD. However, we have observed on a few of the genotypes the interaction of firmness and soluble 
solid compounds with pathologic factors. For further studies we suggest to consider adequately in the 
screening for tolerance, firmness, soluble solid compounds (at harvest and incubation) and other 
agronomic and quality traits. On the development of brown rot the effect of the agronomical practices 
shall be surveyed to ascertain influence on evaluation of the tolerance. 
 
I-6. Acknowledgments 
Dr. Josep Usall of the Phytopathology Unit, IRTA Lleida for the original inoculum of the M. laxa (isolate 
number: CPML02). Jose Luis Espada of the Department of Agriculture, Government of Aragon, 
provided us with the Calante cultivar. The Research Center and Food Technology of Aragón (CITA) 
supplied the Venus cultivar and also allowed us the use of its plant protection facilities. Dr. Antonieta 
De Cal of the National Institute of Technology and Agricultural Research (INIA) Madrid for her useful 
professional input. We thank all of them. This work was financed by the MINECO with projects 
AGL2011-24576 and AGL2014-52063R; and the Government of Aragón with project A44, co-financed 
with FEDER and ESF, respectively. 
 
I-7. References 
Ágreda, L.; Obi V.I.; Giménez, R.; Torrents, J.; Moreno, M.A.; Barriuso, J.J.; Gogorcena, Y. (2016). 

Compuestos antioxidantes en melocotón asociados con la tolerancia a Monilinia laxa. Actas de 
Horticult. 74, 123-124. 

Bell, A.C.; Ranney, T.G.; Eaker, T.A. (2004). Resistance to fire blight among flowering pears and quince. 
HortScience 40, 413-415. 

Biggs, A.R.; Miller, S.S. (2005). Comparative relative susceptibility of NE-183 apple cultivars to fruit rot 
pathogens in West Virginia. J. Amer. Pom. Soc. 59, 72-77. 

Bonaterra, A.; Mari, M.; Casalini, L.; Montesinos, E. (2003). Biological control of Monilinia laxa and 
Rhizopus stolonifer in postharvest of stone fruit by Pantoea agglomerans EPS125 and putative 
mechanisms of antagonism. Int. J. Food Microbiol. 84, 93-104. 

Byrne, D.H. (2005). Trends in stone fruit cultivars development. Horticult. 15, 494-500. 
Cantín, C.M.; Gogorcena, Y.; Moreno, M.Á. (2009). Phenotypic diversity and relationships of fruit 

quality traits in peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. Euphytica 171, 
211-226. DOI:org/10.1007/s10681-009-0023-4. 

Casals, C.; Viñas, I.; Torres, R.; Griera, C.; Usall, J. (2010). Effect of temperature and water activity on in 
vitro germination of Monilinia spp. J. Appl. Microbiol. 108, 47-54. DOI:10.1111/j.1365-
2672.2009.04402.x. 

Casals, C.; Elmer, P.A.G.; Viñas, I.; Teixidó, N.; Sisquella, M.; Usall, J. (2012). Postharvest Biology and 
Technology 64, 126-132. The combination of curing with either chitosan or Bacillus subtilis CPA-8 
to control brown rot infections caused by Monilinia fructicola. DOI: 
10.1016/j.postharvbio.2011.06.004. 

Cindi, M.D.; Soundy, P.; Romanazzi, G.; Sivakumar, D. (2016). Different defense responses and brown 
rot control in two Prunus persica cultivars to essential oil vapours after storage. Postharvest Biol 
Technol 119, 9-17. http://dx.doi.org/10.1016/j.postharvbio.2016.04.007. 

Christen, D.; Motry, L.; Devènes, G. (2012). Comparison of three different evaluation methods of 
Monilinia laxa impact on apricot flowers. Acta Hort. 966, 143-147. 

http://dx.doi.org/10.1016/j.postharvbio.2016.04.007.


68 
 

de Cal, A, Sagasta,, E.M, Melgarejo, P. (1990). Biological control of peach twig blight (Monilinia laxa) 
with Penicilium frequentans. Plant Pathol. 39, 612-618. 

de Cal, A.; España, P.S.; Martinez, F.; Egüen, B.; Chien-Ming, C.; Lee, M.H.; Melgarejo, P.; Prusky, D. 
(2013). Role of gluconic acid and pH modulation in virulence of Monilinia fructicola on peach fruit. 
Postharvest Biol. Technol. 86, 418-423. 

de Cal, A.; Egüen, B.; Melgarejo, P. (2014). Vegetative compatibility groups and sexual reproduction 
among Spanish Monilinia fructicola isolates obtained from peach and nectarine orchards, but not 
Monilinia laxa. Fungal Biol. 118, 484-494. 

Denoyes-Rothan, B.; Guerin, G. (1996). Comparison of six inoculation techniques with Colletotrichum 
acutatum on cold stored strawberry plants and screening for resistance to this fungus in French 
strawberry collections. Eur. J. Plant Pathol. 102, 615-621. 

Egüen, B.; Melgarejo, P.; de Cal, A. (2015). Sensitivity of Monilinia fructicola from Spanish peach 
orchards to thiophanate-methyl, iprodione, and cyproconazole: fitness analysis and 
competitiveness. Eur. J. Plant Pathol. 141,789-801. DOI 10.1007/s10658-014-0579-2. 

FAOSTAT, (2016). Food and Agricultural Organization of the United Nations. 
http://www.faostat.fao.org. Accessed May 2016. 

Garcia-Benitez, C.; Melgarejo, P.; de Cal, A.; Fontaniella. B. (2016). Microscopic analyses of latent and 
visible Monilinia fructicola infections in nectarines. PLoS ONE 11, (8) e0160675. 
DOI:10.1371/journal.pone.0160675. 

Gell, I.; Larena, I.; Melgarejo, P. (2007). Genetic diversity in Monilinia laxa populations in peach 
orchards in Spain. J. Phytopathol. 155, 549-556. 

Gell, I.; de Cal, A.;, Torres, R.; Usall, J.; Melgarejo, P. (2008). Relationship between the incidences of 
latent infections caused by Monilinia spp. and the incidence of brown rot of peach fruit: Factors 
affecting latent infection. Eur. J. Plant Pathol. 121, 487-498. 

Gell, I.; de Cal, A.; Torres, R.; Usall, J.; Melgarejo, P. (2009). Conidial density of Monilinia spp. on peach 
fruit surfaces in relation to the incidences of latent infections and brown rot. Eur. J. Plant Pathol. 
123, 415-424. 

Giobbe, S.; Marceddu, S.; Scherm, B.G.; Mazzarello, V.L.; Budroni, M.; Migheli, Q. (2007). The strange 
case of a biofilm forming strain of Pichia fermentans, which controls Monilinia brown rot on apple 
but is pathogenic on peach fruit. FEMS Yeast Res. 7, 1389-1398. 

Gordon, T.R.; Shaw, D.V.; Larson, K.D. (2005). Comparative response of strawberries to conidia root-
dip inoculations and infection by micro sclerotia of Verticillium dahlie (Kleb). HortScience 40, 1398-
1400. 

Gradziel, T.M.; Wang, D. (1993). Evaluation of brown rot resistance and its relation to enzymatic 
browning in clingstone peach germplasm. J. Amer. Soc. Hort. Sci. 118, 675-679. 

Gradziel, T.M. (1994). Changes in susceptibility to brown rot with ripening in three clingstone peach 
genotypes. J. Amer. Soc. Hort. Sci. 119, 101-105. 

Gradziel, T.M. (2003). Interspecific hybridizations and subsequent gene introgression within Prunus 
subgenus Amygdalus. Acta Hort. 622, 249-55. 

Guijarro, B.; Melgarejo, P.; Torres, R.; Lamarca, N.; Usall, J.; de Cal, A. (2008). Penicillium frequentans 
population dynamics on peach fruits after its applications against brown rot in orchards. J. Appl. 
Microbiol. 104, 659-671. 

Hu, M.; Cox, K.; Schnabel, G.; Luo, C. (2011). Monilinia species causing brown rot of peach in China. 
PLoS ONE 6, e24990. Doi: 10.1371/ journal.pone.0024990. 

http://www.faostat.fao.org.


69 
 

Jansch, M.; Frey, J.E.; Hilber-Bodmer, M.; Broggini, G.A.L.; Weger, J.; Schnabel, G.; Patocchi, A. (2012). 
SSR marker analysis of Monilinia fructicola from Swiss apricots suggests introduction of the 
pathogen from neighboring countries and the United States. Plant Pathol. 61, 247-254. 
http://doi.org/10.1111/j.1365-3059.2011.02511.x. 

Kreidl, S.; Edwards, J.; Villalta, O.N. (2015). Assessment of pathogenicity and infection requirements of 
Monilinia species causing brown rot of stone fruit in Australian orchards. Australas.Plant Pathol. 
44, 419-430. Doi 10.1007/s13313-015-0362-7. 

Larena, I.; Torres, R.; de Cal, A.; Liñán, M.; Melgarejo, P.; Domenichini, P. Bellini, A.; Mandrin, J.F.; 
Lichou, J.; Ochoa de Eribe, X.; Usall, J. (2005). Biological control of postharvest brown rot (Monilinia 
spp.) of peaches by Weld applications of Epicoccum nigrum. Biol. Cont. 32, 305-310. 
Doi:10.1016/j.biocontrol.2004.10.010. 

Larena, I.; de Cal, A.; Melgarejo, P. (2010). Enhancing the adhesion of Epicoccum nigrum conidia to 
peach surfaces and its relationship to the biocontrol of brown rot caused by Monilinia laxa. J. Appl. 
Microbiol. 109, 583-593. 

Martínez-García, P.J.; Parfitt, D.E.; Bostock, R.M.; Fresnedo-Ramirez, J.; Vazquez-Lobo, A.; Ogundiwin, 
E.A.; Gradziel, T.M.; Crisosto, C.H. (2013). Application of genomic and quantitative genetic tools to 
identify candidate resistance genes for brown rot resistance in peach. PLoS One 8, 1-12. 

Northover, J.; Biggs, A.R. (1990). Susceptibility of immature and mature sweet and sour cherries to 
Monilinia fructicola. Plant Dis. 74, 280-284. 

Obi, V.I.; Giménez, R.; Ágreda, L; Barriuso, J.J; Torrents, J.; Moreno, M.A.; Gogorcena, Y. (2015). 
Identificación de genotipos de melocotón tipo ‘Calanda’ tolerantes a la podredumbre parda de 
Monilinia laxa. Horticultura 71, 68-71. 

Pascal, T.; Levigneron, A.; Kervella, J.; Ngyen-The, C. (1994). Evaluation of two screening methods for 
resistance of apricot, plum and peach to Monilinia laxa. Euphytica 77, 19-23. 

Paunovic, S.A.; Paunovic, A.S. (1996). Investigation of peach germplasm (Prunus persica spp vulgaris = 
Vineyard peach) in-situ in Yugoslavia. Acta Hort. 374, 201-207. 

Polashock, J.J.; Kramer, M. (2006). Resistances of blueberry cultivars to Botryosphaeria stem blight and 
Phomopsis twig blight. HortScience 41, 1457-1461. 

Ritchie R.D. (1982). Mycelial growth, peach fruit-rotting capability, and sporulation of strains of 
Monilinia fructicola resistant to Dichloran, Iprodion, Procymidon, and Vinclozolin. Phytopathology 
73, 44-47. 

Rubos, A.; Thomidis, T.; Tsipouridis, C.; Navrozidis, E.; Michailidou, O. (2008). Susceptibility of peach-
nectarine cultivars on brown rot infections, Analele Universităţii din Oradea. Fascicula. Protecţia 
Mediului 13, 214-217.  

Sanzani, S.M.; Schena, L.; Ippolito, A. (2014). Effectiveness of phenolic compounds against citrus green 
mould. Molecules 19, 12500-12508. DOI:10.3390/MOLECULES 190812500. 

Schumann, G.L.; D`Arcy, C.J. (2006). Essential Plant Phytopathology, APS Press. The American 
Phytopathological Society, St. Paul, Minnesota, USA. 

Sisquella, M.; Viñas, I.; Picouet, P.; Torres, R.; Usall, J. (2014). Effect of host and Monilinia spp., 
variables on the efficacy of radio frequency treatment on peaches. Postharvest Biol. Technol. 87, 6-
12. 

Thomidis, T.; Rubos, A.; Navrozidis, E. (2008). Michailides Z, Latent infections of Monilinia in peach 
orchard of Macedonia, Greece. Analele Universitii din Oradea, Fascicula. Protecia Mediului 13, 218-
222. 

http://doi.org/10.1111/j.1365-3059.2011.02511.x.


70 
 

Thomidis, T.; Exadaktylou, E. (2010). Effect of boron on the development of brown rot (Monilinia laxa) 
on peaches. Crop Prot. 29, 572-576. 

Villarino, M.; Melgarejo, P.; Usall, J.; Segarra, J.; Lamarca, N.; de Cal, A. (2012). Secondary inoculum 
dynamics of Monilinia spp. and relationship to the incidence of postharvest brown rot in peaches 
and the weather conditions during the growing season. Eur. J. Plant Pathol. 133, 585-598. 

Villarino, M.; Egüen, B.; Lamarca, N.; Segarra, J.; Usall, J.; Melgarejo, P.; de Cal, A. (2013). Occurrence 
of the Monilinia laxa and M. fructigena after introduction of M. fructicola in peach orchards in 
Spain. Eur. J. Plant Pathol. 137, 835-845. DOI 10.1007/s10658-013-0292-6. 

Villarino, M.; Melgarejo, P.; de Cal, A. (2016). Growth and aggresiveness factors affecting Monilinia 
spp. survival in peaches. Inter. J. Food Micro. 227, 6-12. 

Wade, G.; Cruickshank, R. (1992). The establishment and structure of latent infections with Monilinia 
fructicola on apricots. J. Phytopathol. 136, 95-106. 

Walter, M.; McLaren, G.F.; Fraser, J.A.; Frampton, C.M.; Boyd-Wilson, K.S.H.; Perry, J.H. (2004). 
Methods of screening apricot fruit for resistance to brown rot caused by Monilinia spp. Australas. 
Plant Pathol. 33, 541-547. http://doi.org/10.1071/AP04062. 

Xu, X.M.; Robinson, J.D.; Berrie, A.M.; Harris, D.C. (2001). Spatio-temporal dynamics of brown rot 
(Monilinia fructigena) on apple and pear. Plant Pathol. 50, 569-578. http://doi.org/10.1046/j.1365-
3059.2001.00602.x. 

Xu, X.M.; Bertone, C.; Berrie, A. (2007). Effects of wounding, fruit age and wetness duration on the 
development of cherry brown rot in the UK. Plant Pathol. 56, 114-119. 

Zhu, X.Q; Zheng, H.H.; Fang, Y.L.; Guo, L.Y. (2014). A method to induce significant production of conidia 
from Monilinia fructigena, Monilia polystroma, and Monilia yunnanensis. Australas. Plant Pathol. 
43, 531-533. DOI 10.1007/s13313-014-0307-6. 

  

http://doi.org/10.1071/AP04062.
http://doi.org/10.1046/j.1365-


71 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter II. Effects of pH and titratable acidity on the growth and development 
of Monilinia laxa (Aderh. & Ruhl.) in-vitro and in-vivo  
Published: Effects of pH and titratable acidity on the growth and development of Monilinia laxa 
(Aderh. & Ruhl.) in-vitro and in-vivo. 
European Journal of Plant Pathology (2018), 151:781-790, https://doi.org/10.1007/s10658-017-1413-
4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1007/s10658-017-1413-


72 
 

  



73 
 

Effects of pH and titratable acidity on the growth and development of Monilinia laxa (Aderh. & 
Ruhl.) in-vitro and in-vivo 
 
Abstract 

This investigation examines the effects of pH and titratable acidity on the growth and 
developments of a strain of Monilinia laxa (Aderhold & Ruhland) on seven different pH in Potato 
Dextrose Agar media and on peach fruit from formation to commercial maturity. The fungi growth was 
obtained by daily measurement of mycelia on the pH amended Potato Dextrose Agar. The sporulation 
performance was determined after 30 days of culture incubation. Fruits were inoculated with M. laxa, 
from fruit set to maturity, on weekly basis for brown rot susceptibility. The pathogen development, in-
vitro, was affected, by the pH (2.4-11.52) amended nutrient media. M. laxa exhibited variation in its 
growth and sporulation capacities on the seven pH amended PDA, preferring relatively moderate 
acidic conditions for their optimum performance. In the in-vitro analysis, there was mycelia growth in 
pH from 2.40 to 8.84 while pH 11.52 did not support any mycelia growth. There was a continuous and 
stable increase in weight of fruit as it develops whereas the fruit size increased, decreased at a time 
and finally increased as the fruit develops. The acidity dynamics exhibited non-sinusoidal waveform 
through the growth and development of the fruit. In all these characteristic variations, M. laxa could 
not develop infection or shown any brown rot incidence in the fruit until the period of commercial 
maturity. 
 
Key words: Alkaline; Monilia; Physicochemical; Prunus persica; Tolerance.  
 
Abbreviations used:  
BRI: brown rot incidence 
DAF: days after floration 
DAS: days after fruit set 
EpHV: expected pH values 
FS: fruit size 
FW: fruit weight 
JDs: Julian days 
PDA: potato dextrose agar 
PP: polypropylene 
RPM: revolutions per minute 
RpHV: real pH values 
TA: Titratable acid. 
 
II-1. Introduction 

Brown rot in peaches (Prunus persica (L.) Batsch) is a disease primarily incited by Monilinia species 
which includes M. laxa, M. fructigena, M. fructicola, and M. polystroma (Gell et al., 2007; Jansch et al., 
2012). The degree of susceptibility to infection by Monilinia spp. is variable throughout fruit 
development. Susceptibility is high during the early stages of fruit development, decreases during the 
green fruit stage and increases again during the ripening period (Gradziel, 1994). Stages of peach 
development can generally be considered to occur in four phases which includes, fruit set, rapid cell 
division, cell expansion and ripening/maturation (Moing et al., 1998; Tutu and Ciornea 2011; Guidarelli 
et al., 2014).  
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In a pathogen-host interaction the growth and development of microorganism is influenced by 
different physicochemical conditions such as temperature and water activity (Pascual et al., 1997; Xu 
et al., 2001; Moral et al., 2012), light, aeration and pressure (Maharshi and Thaker, 2012), pH and 
titratable acidity (Pascual et al., 1997; Dirlewanger et al., 1999; Holb 2004; Romero-Arenas et al., 
2012). During this process the physicochemical conditions influence the microbial activity determining 
either the growth and reproduction or the inhibition of activity and the inactivation of the pathogen 
(Dirlewanger et al., 1999; Tutu and Ciornea, 2011). 

The pH and titratable acidity (TA) are interrelated concepts of organic acids (Tyl and Sadler, 2017) 
controlling physicochemical factors that act in an additive and interactive mode to inhibit metabolic 
pathway (Dirlewanger et al., 1999). These two physicochemical components, though complementary 
in nature, are statutorily different. TA refers to the total concentration of free protons and 
undissociated acids in a fruit juice that can react with a strong base and be neutralized, hence it is any 
amount of base needed to neutralize such acidity and bring its pH to a neutral (pH 7), or slightly 
alkaline (pH 8.1) value, and pH represents the free hydrogen ion activity in the fruit juice (Lobit et al., 
2002) or a means of expressing such H+ ions concentration in a substrate (Tutu and Ciornea, 2011). In 
peach fruit acidity is an important genetic quality (Dirlewanger et al., 1999) which influences both 
perception of sourness and sweetness found in varying proportions depending on the cultivar and the 
ripening stage (Lobit et al., 2002).  

The behavior of microorganisms-host interaction shows variation in their growth and sporulation 
on different levels (Maharshi and Thaker 2012). Most microorganisms, especially non fungi, grow best 
around neutrality (pH 7), while fungi in general prefer slightly acidic conditions for their growth 
(Alexopoulos, 1952; Yamanaka, 2003; Agrios, 2011; Maharshi and Thaker, 2012). Some fungi species, 
however, favour neutral to slightly alkaline conditions (Maharshi and Thaker, 2012). Monilinia spp. can 
acidify the host tissue in peaches and nectarines from pH 4.50 and 4.45, to pH 3.75 and 3.90, 
respectively (de Cal et al., 2013). For M. laxa, information related with the effect of pH on growth and 
development in-vitro and in-vivo is hardly available. M. laxa can infect flowers, resulting in blossom 
blight, as well as both healthy and wounded fruit, resulting in brown rot (Rungjindamai et al., 2014); a 
disease able to produce millions of spores on a single fruit that can spread quickly within and between 
orchards, locations, and hosts (Fazekas et al., 2014).  

The general objective of this experiment was to determine the modulating effect of pH and 
titarable acidity (TA) to pathogenic activities of M. laxa. This included (a) determining the effect of pH 
on the mycelia growth, sporulation and development of M. laxa on solid PDA, and (b) to determine the 
effect of pH and TA evolution on the brown rot incidence (BRI) depending on the growth and 
development of peach fruit. 
 
II-2. Materials and methods 
 
II-2.1. Culture pH media preparation, inoculation and incubation 

The cultivation medium, potato dextrose agar (PDA), was prepared in line with the manufacturer’s 
instruction following which 7.8g was measured into seven Erlenmeyer flasks (500 mL) and 200 mL 
sterile water added to the different flasks and contents slightly heated in a micro wave for proper 
dissolution of mixture. They were sterilized at 121oC for 15 minutes and in a laminar flow chamber 
(aseptic conditions), known quantity of H2SO4 and KOH chemicals as previously determined by 
titration, were added with a pipetman into the flasks (pH 5.30) marked with the expected pH values 
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(EpHV) at warm (45oC-60oC) temperature. The solution was agitated with a magnetic stirrer at 110 rpm 
for about 30s for homogeneity.  

Known quantity of 20mL was separately and aseptically decanted into 50mL transparent 
polypropylene (PP) jar and pH stripe indicator cut and dipped into the jars to observe the associated 
pH readings. The molten PDA was later measured with the pH meter to obtain the real pH value 
(RpHV) before pouring out into Petri dishes of 90mm diameter at 20mL / plate for inoculation with M. 
laxa. The desired pH was adjusted with 1mole Hydrogen sulphate (H2SO4) and 5Mole Potassium 
hydroxide (KOH) for acidic, neutral or alkaline values using the pH meter. Known quantity of H2SO4 or 
KOH was, aseptically, added to the sterilized PDA (in 500mL Erlenmeyer flask at warm (45oC-60oC) 
temperature. The pH amended PDA were poured out at 20mL / Petri dishes of 90 mm diameter (5 
Petri dishes / treatment). Active growing (7 days old) M. laxa mycelia (6.5 mm) from a PDA culture was 
centrally plated in the Petri dish containing the real pH values (RpHV) and incubated at 23oC. And later 
the mycelia growth and extent of sporulation were determined. 
 
II-2.2. Measurements of mycelia growth rate and sporulation density 

Measurements of mycelia growth were taken daily using a digital Venier meter (Mitutoyo CD-15 
DCX, Tokyo Japan) at a cross section. This was done until a Petri dish was fully covered with the 
mycelia extension. Rate of evolution and influence of pH on pathogen activity were determined using 
the mycelia growth. There were five replications for each treatment.  
After the data collection on mycelial growth, the culture was subsequently evaluated for sporulation 
activity at the 30th day of incubation. Distilled water (5 mL) was added to each of the Petri dishes 
containing 25µL Tween® 80 and the mycelia colony rasped with a sterile laboratory metal spatula. The 
rasped colony together with the Petri dishes was placed on a mechanical shaker at 175rpm for 
30minutes. Each treatment was filtered through a 4 fold of cheese cloth into premarked test tubes. 
From this suspension, 25µL was pippeted onto a hemacytometer (Neubauer Cell Counting Chamber) 
and examined under a microscope. Two different spore loads (40 counts / load) were made in each 
replication of the seven treatments. 
 
II-2.3. Plant material, fruit size and weight determination 

Two peaches (Prunus persica (L.) Batsch) were the source of plant materials. The plant materials 
were ‘Babygold 9’ and ‘Crown Princess’ from the collection of the Aula Dei-CSIC, Zaragoza. There were 
three trees per cultivar. Number two (middle tree) was marked and labeled after fruit setting for use in 
the evaluation. The marked tree was not thinned to enable enough fruits for sample harvest. Numbers 
1 and 3 trees were however given the normal orchard treatments (e.g. fruit thinning). Fruits selected 
for analysis were all of similar maturity and size at each developmental stage. Inoculation with M. laxa 
was completed on ‘Babygold 9’ and not on ‘Crown Princess’ after observing that there was no infection 
at the early stage of inoculation. And the aim was to preserve enough samples for other essential 
analysis due to fewer available fruits on the ‘Crown Princess’. 

The range of complete floration and fruit settings in the two cultivars (Table II-1) occurred in the 
early to mid-season of spring between 10/03/2014 and 11/04/2014; and the range of harvest date 
occurred in the early to mid-season of summer. 'Babygold 9' reached 100 % floration and fruit setting 
on the 14/03/2014 (72 JDs) and the 11/04/2014 (100 JDs) respectively and harvested on the 
21/08/2014 (232 JDs). 'Crown Princess’ reached 100 % floration and fruit setting on the 10/03/2014 
(68 JDs) and fruit setting on the 11/04/2014 (100 JDs) and harvested on the 18/06/2014 (168 JDs).  
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Five fruits per cultivar were used for evaluations at weekly basis. Fruits of visually uniform size were 
harvested each period. Fruit size (mm) was considered by measuring the two diagonal sections with a 
digimatic venier caliper (Mitutoyo CD-15 DCX, Tokyo Japan). The fruit weight (g) was determined on a 
precision weighing machine.  
 
II-2.4. Development of pH and titratable acidity 

TA and pH were determined as explained in previous studies (Cantín et al., 2009; Abidi et al., 2015). 
In brief three fruits were used per cultivar for this purpose. At weekly bases, after setting, fruits were 
harvested, cleaned with tap water, peeled and cut into thin slices. Five grams was weighed out into an 
automatic titrator tube and mashed dry with a polytron machine (Ika T-18 Ultra Turrax Digital High 
Speed Homogenizer, Germany) and later 45mL of distilled water measured into the titrator tube. The 
pH automatic valuator machine was first calibrated using a buffer (for pH 4 and pH 8). This is after 
cleaning and hushing the electrodes with distilled water then filled with electrolyte (KCl) for 
compensations of any possible loss due to evaporation. The known quantity of the solution (50g) in the 
automatic valuator was used to determine the pH with TA values accordingly. This was repeated every 
week until the cultivar reaches commercial maturity date (Larena et al., 2005). 
 
II-2.5. Evaluation for susceptibility to Monilinia  

Five fruits per cultivar were used for this determination. Fruits were disinfected according to Obi et 
al., (2017). 
 

Table II-1: Complete floration, fruit settings and harvest in two peach cultivars (gestation period) 
Activity ‘Babygold 9’ ‘Crown Princess’ BBCH-scale 

Floration (100%) 14/03/2014 (72 JDs) 10/03/2014 (68 JDs) 65 
Fruit setting (100%) 11/04/2014 (100 JDs) 11/04/2014 (100 JDs) 73 
Harvesting date 22/08/2014 (233 JDs) 12/06/2014 (162 JDs) 87 

 
Using a Pipetman P100, fruits were inoculated with the isolate of M. laxa in the method of Obi et al. 
(2017). In brief each fruit, unwounded, was inoculated with 25µL spore load of the 25 x 103 cfu mL-1 
conidia suspension. Inoculated samples were incubated at 23 oC and 40-60% RH and duly observed for 
brown rot incidence for seven days.  
 
II-2.6. Statistical analysis 

The size, weight, pH and TA of fruit, including their standard errors were analyzed using the SPSS-23 
statistical software (Statistical Product and Service Solutions Inc., Chicago USA). Earlier normality test 
was realized on parameters with the Kolmogorov-Smirnov (P ≥ 0.05), enabling the presentation of 
frequency of histograms. The same statistical software was used for mean standard errors (SE) and 
Pearson’s correlations. ANOVA test was used to compare differences between means and a post hoc 
test of the Duncan (DMRT) used to measure for separation of specific variability (P ≤ 0.05) between 
pairs of means. 
 
II-3. Result  
 
II-3.1. Mycelial growth 

Mycelial growth or extent of colonization was evaluated on seven levels of pH. There was mycelia 
growth in all the pH levels except on pH 11.52. The highest mycelia growth was on pH 6.40 (80.61 mm) 
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at the rate of 8.96 mm/day. The lowest mycelial growth was on pH 2.40 (11.60 mm) at the rate of 1.29 
mm/day (Figure II-1). Mean values varied according to the extent of colonization.  
 
II-3.2. Sporulation capacity 

Sporulation capacity was determined using the M. laxa colonies of the seven different levels of pH 
after 30 days of incubation. Sporulation was found to be highest at pH 5.30 with mean conidia 
concentration of over 1 x 105 cfu mL-1 and lowest at pH 8.84 with mean conidia of less than 5 x 104 cfu 
mL-1 (Figure II-2). There were no sporulation of M. laxa at pH 2.40, 3.01 and 11.52. There were, 
however, significant differences (P ≤ 0.05, Duncan’s test) in the sporulation capacity among pH 4.21, 
5.30, 6.40 and 8.84. 
 
II-3.3. Development of pH and TA in ‘Babygold 9’ and ‘Crown Princess’ 

The evolution of pH and TA in fruits of ‘Babygold 9’and ‘Crown Princess’ cultivars are non-sinusoidal 
waveform. This waveform is best demonstrated in the ‘Babygold 9’ (Figures II-3 and II-5) which has a 
longer period of gestation. In this particular cultivar the pH peak (highest) was at 208 JDs (77 BBCH 
scale) which corresponds to 136 and 108 days of complete floration and fruit setting respectively. The 
lowest dip was at 215 JDs (78 BBCH scale) which was equivalent to 143 and 115 days after floration 
(DAF) and days after setting (DAS) respectively. From this position the pH increased along with the 
remaining growth and commercial maturity of the fruit. 

In all this non-sinusoidal waveform dynamics of pH in ‘Babygold 9’, the pattern in TA evolution was 
always in the contrary (Figure II-3), hence the lowest dip was at 208 JDs (77 BBCH scale) which 
corresponds to 136 and 108 DAF and DAS respectively. The highest peak was at 215 JDs (78 BBCH 
scale) which was equivalent to 143 and 115 DAF and DAS respectively. From this position the TA 
decreased along with the remaining growth of the fruit. 
 
II-3.4. Growth in fruit size and weight 

The evolution of fruit size (FS) and weight (FW) is presented in Figure II-4. FS was at steady increase 
for well over 194 JDs (75 BBCH scale). This pattern slightly changed at 201 JDs (76 BBCH scale) where 
there was a slight slope that picked up and briskly ascended at the 208 JDs (77 BBCH scale) and then a 
gentle smooth increase in size until the fruits’ period of commercial maturity and subsequent harvest 
on the 232 JDs (79 BBCH scale). 

 

 
Figure II-1: Mycelia growth rate of Monilinia laxa (mm), in-vitro, on the 7 different pH. 

M. laxa performed best at pH 6.4 and lowest at pH 2.4. No mycelium at pH 11.52. 
Each treatment was replicated five times and experiment repeated twice. 
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In the same vein, FW was at a steady increase for over a period of 201 JDs (76 BBCH scale). This 
pattern changed at the 208 JDs (77 BBCH scale) when a noticeable rapid jerk up was observed. This 
increase appeared to have continued until the fruits’ period of commercial maturity and subsequent 
harvest on the 232 JDs (79 BBCH scale). 
 
II-3.5. Effect of pH and TA on brown rot incidence 

Figure II-5 represents the effect of pH and TA on brown rot incidence along with the growth and 
development of the fruit. After the highest increase in pH 4.39 ± 0.10 at 208 JDs (77 BBCH scale) and 
the lowest dip in pH 3.63 ± 0.10 at 215 JDs (78 BBCH scale), the pH reinitiated and continued to 
increase until fruit maturity. The reverse was the case with the TA which obviously started to decrease 
until maturity (pH and TA linked with broken lines at 208 JDS (77 BBCH scale). Hence at the full 
commercial maturity, the fruit was associated with pH 4.19 ± 0.10 and TA 0.41 ± 0.01 (Mg 100g-1 FW). 
From the beginning of fruit inoculation (145 JDs) (65 BBCH scale) with M. laxa to 222 JDs (78 BBCH 
scale) there was no incidence of brown rot until when the fruit was inoculated at the 232 JDs (79 BBCH 
scale) of commercial maturity.  
 
II-4. Discussion 

In general according to the obtained results, in this investigation, there is an ample influence of pH 
and titratable acidity (TA) in the solid PDA and the peach cultivars inhibiting the growth of the M. laxa. 
According to Tutu and Ciornea (2011) pathogen host interaction involves the process of nutrition 
which leads to either the growth / reproduction or the inhibition of activity and the inactivation of the 
pathogen as a result of available acidity factors. In the pH-amended PDA there was no effective 
pathogen growth/development under a high acidic condition. Similarly, M. laxa developed no infection 
in the fruit until commercial maturity at pH 4.19 ± 0.10. This is relatively a moderate state of non-
acidity in the fruit. Previously peach fruits with a non-acid character have been characterized at 
maturity by a pH higher than 4.0 (Dirlewanger et al., 1999). 

Mycelia growth (colonization) and sporulation are the most accurate variables used in plant 
pathology to effectively compute the degree of disease development (Douds 1994; Gigot et al., 2009; 
Miles et al., 2009; Burnett et al., 2010; Obi et al., 2017).  

 

 
Figure II-2: Sporulation capacity of Monilinia laxa on 7 different pH at 30 days of incubation. 

Different mean letters indicate significant differences (P ≤ 0.05, Duncan’s test) among pH. 
M. laxa sporulated highest at pH 5.30. No sporulation at pH 2.40, 3.01 and 11.2. 

Each treatment was replicated five times and experiment repeated twice. 
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Consequently, determining the influence of pH and TA on the subsistence and development of M. 
laxa, at both in-vitro and in-vivo levels, is an avenue to understanding the epidemiology of brown rot 
and subsequent development of disease management strategies to effectively combat the problem 
(Tian and Bertolini, 1999; Hong et al., 2000).  

 

 
Figure II-3 The evolution of pH and TA plus SE in ‘Babygold 9’ fruit. Fruits were harvested once a week and each treatment 

replicated 3 times. There was significant difference (P ≤.0.05, Duncan test) in pH of fruits among weeks of harvest. 
However, no significant difference in the pH of fruit among 145, 152 and 194 JDs; and among 166, 173,180, 187, and 222 JDs. 
There was significant difference (P ≤.0.05, Duncan test) in TA of fruits among weeks of fruit harvest. However, no significant 

difference in TA of fruits among 145, 152, 159 and 187 JDs; and among 166 and 222 JDs.  
(See supplementary Table II-1 for details). 

 
Sporulation itself is a function of colonization (Douds, 1994). Colonization concerns dimension (size 

or area) occupied by infection while sporulation deals with population (conidia or spores) involved in 
an occupied or diseased area. This implies that sporulation is the subsequent effect of colonization due 
to infection (Xu et al., 2001). However, we have found according to our results that high rate of 
colonization did not equate to high rate of sporulation. Hence the extent of lesion or colonization does 
not always equate to the degree of sporulation in a host pathogen interaction but depends on 
available level of acidity as exponent by this experiment.  

For example in our assay the mycelia growth or extent of colonization against pH 6.40 and 5.30 
were 80.61 mm and 77.50 mm producing mean conidia concentration of 60800 and 110800 spores mL-

1 respectively (Figures II-3 and II-4). Though the extent of colonization was higher in pH 6.40 than in pH 
5.30 but sporulation was found to be higher in pH 5.30 than in pH 6.40 with about 45.13%. This 
appears to suggest that sporulation of M. laxa in a disease situation increases as the pH increase, 
reaches its maximum still in the acidic region and then begins to descend as the pH approaches neutral 
or the alkaline precinct.  

We are of the view and assertion, therefore, that M. laxa could sporulate at a wide range of pH 
between 3.5 and 9.5 with the optimum between pH 4.5 and 5.5. This is similar to, and in agreement 
with, the results of Agarwal and Sarbhoy, (1978) that acidic pH favours fungi growth with best 
performance within a range of pH 3.5-6.5, and Pascual et al., (1997) that observed pH 4-6 range for 
optimum growth of their working fungi Penicillium oxalicum.  

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

1.0

2.0

3.0

4.0

5.0

145 152 159 166 173 180 187 194 201 208 215 222 232
Period (JDs)  

TA
(m

g 
10

0g
 -1

 F
W

) 

pH
 

pH TA



80 
 

 
Figure II-4: The evolution of size (mm) and weight (g) plus SE in ‘Babygold 9’ from setting to fruit maturity. Fruits were 

harvested at weekly basis and each treatment replicated five times. There was significant difference (P ≤ 0.05, Duncan test) in 
fruit size between weeks. However, no significant differences found in the size of fruits harvested at 194, 201 and 208 JDs; 

222 and 232 JDs. There was significant difference (P ≤ 0.05, Duncan test) in fruit weight between weeks. No significant 
difference found in weight of fruit harvested at 145 and 152 JDs; 194 and 201 JDs (See supplementary Table II-1 for details). 

 
Furthermore, Amiri et al., (2009) found, as most suitable, pH 3.6 to enable selective isolation and 

enumeration of three Monilinia spp. of stone fruits. However, our working pathogen (M. laxa) 
sporulated best under acidic state at pH 5.3 while in the work of Pascual et al., (1997), the fungi 
sporulated best under a neutral/alkaline range of pH 7-8. Though, on different fungi from M. laxa, 
Gupta et al., (2010) observed maximum growth and sporulation of F. solani at pH 5.5. Hence M. laxa 
could be associated with the greater percentage of fungi that grow well in marginally acidic condition. 
It is equally significant to note here that M. laxa has had less attention, notwithstanding the fact that it 
is as important as M. fructicola and M. fructigena especially, in the study of epidemiology and 
management of brown rot (Rungjindamai et al., 2014). 

 

 
Figure II-5: The effect of pH and titratable acidity (TA) plus standard error (SE) on the susceptibility to brown rot incidence 
(BRI) of ‘Babygold 9’ from immature to fruit maturity. Five fruits were inoculated and three fruits evaluated for acidity at 
weekly basis. The broken line between pH and TA at 208 JDs indicates a clear and unique non-sinusoidal characteristic of 
acidity in the evolution of peach fruit. 
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The evolution of pH and TA in the growth and development of peach fruit is non-sinusoidal 
waveform, contrasting in beats or waves between them (Figure II-3). This is found to corroborate the 
report of Moing et al., (1998). High pH value gives a corresponding lower content in the TA and vice 
versa. This is so obvious, for example, at 208 JDs (77 BBCH scale) of ‘Babygold 9’ (Figure II-3) where the 
highest pH peak corresponds to the lowest dip in TA value. Also this tends to validate the works of 
Dirlewanger et al., (1999) that TA and pH in peach are negatively correlated, and Lobit et al., (2002) 
that pH and TA, the most common measure of acidity with perceived sourness or sugariness in peach 
fruit, well correlate inversely.  

The non-sinusoidal waveform peak of pH reached by fruits at 208 JDs (77 BBCH scale), which 
corresponds to 136 and 108 days of complete floration and fruit setting respectively, must have 
occurred at the cell expansion phase. In peach fruit there is usually reduction in organic accumulation, 
which results in fruit with lower acidity and higher pH as was determined in our work at 208 JDs (77 
BBCH scale). This tends to support Moing et al., (1998) that such physicochemical activity occurs far 
before reaching ripening. Stages of peach development are considered to occur in four phases which 
includes: fruit set, rapid cell division, cell expansion, and ripening/maturation (Tutu and Ciornea, 
2011).  

Hence the most resistant period to pathogen infection in peach fruit is during the stages covering 
pit hardening to pre-harvest (Keske et al., 2011). It could, therefore, be inferred that immature 
peaches are very resistant to brown rot because of high levels of acidic pH found in the epidermal 
cells. This high level of pH could have inhibited brown rot incidence at the immature stages in 
‘Babygold 9’due to acidification activities. Gluconic acid has been reported as the main organic acid 
associated with the enhancement of peach acidification in host-pathogen interaction (de Cal et al., 
2013). M. laxa colonized the ‘Babygold 9’ at the commercial stage of maturity (232 JDs) (79 BBCH 
scale) when the acidic pH has run down and probably aided by local acidification of the host tissue (de 
Cal et al., 2013).  

It is found worthy to mention, however, that in the inoculation of uninjured ‘Babygold 9’ with the 
normal conidia from immature to mature fruit state, the effects of inoculating with mycelia on both 
injured and uninjured immature fruits were also determined simultaneously. The observations indicate 
that: at 145 JDs (65 BBCH scale) (pH 3.69 ± 0.13) there was no BRI when fruit was inoculated with 25µL 
of 25 x 103 cfu mL-1 spores on artificial injury. There was also no BRI in fruits without artificial injury 
inoculated with 25µL of 25 x 103 cfu mL-1 spores. There was, however, BRI in the immature fruit with 
artificial injury inoculated with a 6.5 mm mycelia PDA. In addition, at 222 JDs (78 BBCH scale) (pH 3.89 
± 0.11), within the fruit colour break, there was no BRI in fruits with intact skin (no artificial injury) 
when inoculated with a 25µL of 25 x 103 cfu mL-1 spores. In the contrary, artificially injured fruits 
showed BRI when inoculated with 25µL of 25 x 103 cfu mL-1 spores. 

The significance of these observations is that the degree of susceptibility to infection by Monilinia 
spp. is variable throughout fruit development (Gradziel, 1994; Guidarelli et al., 2014). Our findings 
support this assertion because in our experiment at the early stage of growth and development, 
immature fruit could not exhibit brown rot symptoms when inoculated with conidia, neither through 
injury site nor on intact epidermis, but could only develop infection when inoculated with mycelium in 
an injury situation. Furthermore, at colour-break 222 JDs (78 BBCH scale), peach fruit at pH 3.89 ± 0.11 
could develop infection with conidia inoculation only through an injury and not possible when there 
was no injury on the fruit epidermis. Hence skin injury could be responsible for the incident of brown 
rot on immature peach fruits observed in orchards (Northover and Biggs, 1990; Holb, 2004). 
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Further, FW at maturity (194.04 ± 1.99) was significantly different (P ≤ 0.05, Duncan test) from the 
rest of the FW at development. Also the pH (4.19 ± 0.10) and TA (0.41 ± 0.01) values at maturity were 
all significantly different from those of the development values (Supplementary Table II-1). Pearson´s 
correlation shows inverse correlation between pH and all the pathologic activities of peach cultivars at 
harvest. Harvest date (HD) significantly correlated with fruit size (FS) (r = 0.912, P < 0.01); fruit weight 
(FW) (r = 0.889, P < 0.01); and pH (r = 0.440, P < 0.01). Also FS significantly correlated with FW (r = 
0.980, P < 0.01). There was a fair and significant correlation between pH and FW (r = 0.356, P < 0.05). 
Expectedly, however, pH inversely correlated significantly with TA (r = -0.604, p < 0.01). 

Finally while there was a continuous and stable increase in weight of fruit as it develops, the 
reverse was the case in fruit size. There was fluctuation in the size as the fruit developed. Fruit size 
increased, later decreased at a time and finally increased as the fruit developed. The obvious dynamics 
in pH and TA values also occurred when there were clear changes in fruit size and weight evolution. In 
addition the pH 4.19 ± 0.1 at which M. laxa could infect the peach in this work relatively correlate with 
the range of pH (3.5-9.5) in the solid PDA considered to support sporulation in-vivo. Hence, brown rot 
infection and expression in peach fruit is dependent on the influence of pH and TA as chemical factors 
and in extension upon the stage of the fruit growth (Emery et al., 2000; Holb, 2004; Gell et al., 2009). 
This study encompasses the necessity to know the evolution of fruit maturity in new and old varieties 
in relation to potential Monilinia infection in immature fruits. The knowledge, in addition, could be 
useful in the determination of the presence of pathogen in latent infection within molecular 
techniques. 

The study has shown that M. laxa exhibited variation in its growth and sporulation capacities on the 
seven pH amended PDA, preferring relatively moderate acidic conditions for their optimum 
performance. We found, in the in vitro analysis, that there was mycelia growth in pH from 2.40 to 8.84 
while pH 11.52 did not support any mycelia growth. The pH 5.30 supported the highest sporulation 
while pH 6.40 encouraged the highest colonization extent or mycelia growth. This is in support of the 
findings of Holb, (2004) that the most favorable initial hydrogen-ion concentration for mycelial growth 
occurs between pH 3.5 and 5.5. We found that there was a continuous and stable increase in weight of 
fruit as it develops, the reverse being the case in fruit size. The fruit size increased, decreased at a time 
and finally increased as the fruit develops. The pH dynamics exhibited non-sinusoidal waveform 
through the growth and development of the fruit. In all these physicochemical variations, M. laxa 
could not develop infection or shown any brown rot incidence in the fruit until the period of 
commercial maturity. 

On the basis of this study it can be concluded that pH and titratable acidity have great impacts on 
the growth activity of M. laxa in a host-pathogen association both in solid PDA substrate and in peach 
fruit growth and development. And as organic acids and genetic traits, pH and titratable acidity could 
constitute imperative antibrown rot determining elements to be given adequate attention in peach 
breeding program.  
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The tolerance of commercial peach cultivars to brown rot by Monilinia laxa is modulated by its 
antioxidant content? 

 
Abstract 

Brown rot, caused by Monilinia spp., provokes pre - and post-harvest damages in peach [Prunus 
persica (L.) Batsch] with an economic impact in the industry. With a view to breeding for increase 
tolerance to this disease, a screening test based upon artificial fruit inoculation was validated on 
several parental lines of the peach breeding program (‘Crown Princess’, ‘Big Top’, ‘Andross’, and 
‘BabyGold 9’), during 2014-2015. In addition, cultivars with different total phenolic content, ranging 
from 4.77 to 18.67 mg per 100 g fresh weight, early (‘Tebana’) or late harvested (‘Miraflores’, ‘Calanda 
Tardío’ and ‘Calante’), were included in the two-year study. All fruit physico-chemical traits recorded at 
harvest (pH, titratable acidity, firmness and soluble solids content) showed differences among all 
cultivars. The antioxidant content determined by spectrophotometry (ascorbic acid and antioxidant 
capacity) and UPLC-MS (phenolic compounds) also revealed important differences among all 
genotypes. Rate of brown rot lesion following fruit inoculation varied widely among cultivars and it 
was possible to discriminate between highly and less susceptible cultivars. ‘Andross’ was the cultivar 
with the lower lesion brown rot severity (LS = 30.3 mm) and ’Calante’ (LS = 50.1 mm) exhibited the 
highest one. Cultivars with minimal development of damage were identified as germplasm with the 
desirable allele combination to increase brown rot tolerance in peach breeding programs. Finally, 
Pearson’s correlation coefficients (r) between pairs of traits were calculated searching for any 
biochemical candidate conferring tolerance. The correlation of pathological traits with the antioxidant 
composition concerning contents of ascorbic, neochlorogenic and chlorogenic acids and total 
polyphenols in flesh-fruit and peel are discussed. 
 
Key words: Prunus persica; monilia, genetic disease tolerance, ascorbic and phenolic acids. 
 
III-1. Introduction 

One of the most important stone fruit crops in Spain is represented by peaches [Prunus persica (L.) 
Batsch] [(1.53 million tons in 2016) (FAOSTAT 2018; http://fao.org/faostat/)] often hindered by the 
activities of pathogenic fungi. The most important fungal disease agents of peaches and nectarines in 
Spain are Monilinia spp. The most extended species with greater damage is Monilinia laxa (Aderhold 
and Ruhland) Honey, whose occurrence is presently at the same relative frequency of M. fructicola (G. 
Winter) Honey (Egüen et al., 2015; Obi et al., 2017; Villarino et al., 2013). Both species have been 
associated with about 85-90% brown rot (BR) incidence in Spanish peach commodities (Egüen et al., 
2015). The pathogen can initiate infection in peach starting from the flower and developing later in 
storage. In general, yield losses have been recorded especially after harvest, reaching 80-85% 
depending of the meteorological conditions (Casals et al., 2010; Villarino et al., 2012) posing obviously 
a great danger for crop sustainable production. 

Common control practices for this phytopathogen, especially in the Spanish orchards, were 
represented by the use of preventive and systemic fungicides such as thiophanate-methyl, iprodione 
and cyproconazole (Egüen et al., 2015). However, the use of fungicides is becoming more limited 
because of consumer demands for residue-free fruit (Usall et al., 2015), including the fact that 
postharvest treatment have been limited by law until 2016 in Spain, and contamination of the 
environment should be avoided (Liu et al., 2012). In addition, the steady rise in development and 
occurrence of fungicide resistant to Monilinia strains, worldwide (Chen et al., 2013; Elmer and Gaunt 

http://fao.org/faostat/)
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1994; Holb and Schnabel, 2007; Liu et al., 2012) and in Spain (Egüen et al., 2015, 2016) has also been 
reported. All these adverse implications put together it is, therefore, pertinent to search for 
alternatives with lasting effect, enhanced consumer acceptability and at the same time friendly with 
the environment (Mari et al., 2014). In this direction the availability of genotypes more tolerant and or 
resistant to Monilinia would be a safety solution, in combination with fungicide application and 
practical measures, for a sustainable peach production. 

Nowadays, there exist considerable interest in the development of host-peach resistant cultivars 
and the identification of appropriate markers that segregate with resistance to Monilinia spp. One of 
the first selection studies did identify high levels of brown rot resistant in ‘Bolinha’ (Feliciano et al., 
1987) and thereafter its tolerance was associated with the high content of phenolic compounds ´with 
respect to the brown rot susceptible cultivars (Gradziel and Wang, 1993; Bostock et al., 1999). The 
involvement of secondary plant metabolites such as polyphenols in defense during fruit development 
has been well established (Lantazio et al., 2006) and widely studied in peach brown rot tolerance 
(Gradziel and Wang, 1993; Bostock et al., 1999, Mari et al., 2003; Lee and Bostock, 2007; Thomidis et 
al., 2007; Villarino et al., 2011; Guidarelli et al., 2014).  

The potential role of phenolic acids in combination with other factors in the resistance to the 
brown rot caused by Monilinia spp. thought fungal inhibition have been discussed by several authors 
(Oliveira-Lino et al., 2016 and references therein). In particular, it has been described that chlorogenic 
and caffeic acids markedly inhibited the production of the cell wall degrading enzymes 
polygalacturonase and cutinase in M. fructicola cultures (Lee and Bostock, 2007) but had no effect on 
M fructicola growth (Bostock et al., 1999). Another study also pointed out that contents on either 
neochlorogenic (NCG) or chlorogenic (CG) acids in immature fruits interfere with fungal melanin 
production to M. laxa penetration (Villarino et al., 2011). However, most of the previous studies have 
been conducted in vitro or in immature peach fruits and no conclusion can be derived concerning the 
preformed (genetic) traits conferring tolerance to brown rot. 

From a breeder point of view, it is worthy to know that although greater number of commercial 
stone fruit cultivars are susceptible to Monilinia spp. (Holb, 2008; Martínez-Gómez et al., 2005; 
Rungjindamai et al., 2014), there exist genetic disease control (Martínez-García et al., 2013; Pacheco et 
al., 2014) to be introgressed in high fruit quality genetic background (Oliveira-Lino et al., 2016). The 
objective of this study was to screen eight commercial peach/nectarine cultivars for susceptibility to 
M. laxa and exploring the genetic approach rating cultivars’ tolerance for breeding purposes. In 
addition, we have explored if the fruit antioxidant composition influence the development of brown 
rot damage after artificial inoculation. Here we discuss if the antioxidant composition such as 
endogenous ascorbic acid or NCG and CG phenolic acids in peach tissue may be involved in the host 
brown rot tolerance. 
 
III-2. Materials and methods 
 
III-2.1. Peach cultivars 

The studied peach cultivars were established in an experimental orchard at the Experimental 
Station of Aula Dei-CSIC, Zaragoza (northern Spain). Three trees per genotype were trained to the 
standard open vase system and planted at a spacing of 4 m x 2.5 m and grown under standard 
conditions of irrigation, fertilization and pest and disease control. In the two years study (2014-2015), 
any fungicide treatment was applied in the field before harvest with adequate consideration to the 
free entry period for evaluation. The preventive fungicide Teldor® 500 SC (fenhexamida) was sprayed 
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at the EEAD on 29th July, 2014 and 15th September 2015, respectively. All cultivars are non-melting-
flesh peach, except the melting-flesh nectarine ‘Big Top’. All fruits are yellow-flesh and the origin 
harvest dates and fruit characteristics are shown in Table 1.  

At commercial maturity, 20 fruits were harvested to determine physicochemical traits and 
biochemical analysis. For inoculation purposes, 25 mature fruits were harvested and disinfected by 
immersion in aqueous solution of 1.6 % sodium hypochlorite (commercial), 0.005 % Tween® 80 
(polysorbate surfactant) and 1.6 % ethyl alcohol for 4 minutes, rinsed in sterile distilled water, and 
spread out on sterile holding stone-fruit cardboard boxes for 20 minutes ambient air drying in 
blossom-stem (upside down) position to avoid any possible percolation at the stem position. After 
incubation, fruit firmness and SSC were also recorded in control (FF2, SSC2) and inoculated fruits (FF3, 
SSC3) to test storage effect. 
 
III-2.2. Physicochemical and biochemical determinations in fruits  

At harvest 20 fruits were hand picked out at commercial maturity to determine basic quality 
parameters [pH, titratable acidity (TA), fruit firmness (FF), and soluble solids content (SSC) (see details 
in Saidani et al., 2017)]. Fruits were peeled and flesh tissue was cut in small pieces (three replicates of 
five fruits each). For each replicate five grams of flesh tissue was frozen in liquid nitrogen and store at -
20 or -80 ºC for further biochemical analysis (Saidani et al., 2017).  

Contents of ascorbic acid, antioxidant capacity and phenolic compounds were determined 
according to Saidani et al. (2017). Ascorbic acid and antioxidant capacity were measured by 
spectrophotometry and polyphenols, including the major hydroxycinnamic acids neochlorogenic 
(NCGA) and chlorogenic (CGA), were identified by UPLC-MS and quantified by UPLC-DAD. Briefly, the 
ascorbic acid was extracted with 10 ml of 5% of HPO3. To determine the antioxidant capacity and total 
polyphenols, samples were extracted with 10 ml of a mixture of MeOH/H2O/formic acid (60:38:2 
v/v/v). Ascorbic acid determination was based on the reduction of Fe (III) to Fe (II) by L-ascorbic acid 
followed by the formation of Fe (II) -2, 2’-Bipyridil complex (Okamura, 1980). Absorbance was 
measured at 525 nm, and the results were expressed as mg of ascorbic acid (AsA) per 100 of FW 
following the calibration curve daily prepared. The antioxidant capacity was measured using the 1,1-
diphenyl-2-picrylhydrazyl (DPPH) method (Brand-Williams et al., 1995). The extract was mixed with 
DPPH for 60 min in darkness at room temperature. Absorbance was measured at 535 nm, and the 
results were expressed as relative antioxidant capacity (RAC) in mg of Trolox equivalents (TE) per 100 g 
of FW following the calibration curve daily prepared.  

For analysis of phenolics, one hundred micrograms of internal standard (methyl 4-
hydroxybenzoate) was added to an aliquot of the polyphenol extract, which was concentrated to 
dryness with speed vac at 45 °C. After the addition of 1 ml of the mixture of MeOH/formic acid (95:5 
v/v), 1 μl of the solubilized polyphenolic extract was directly injected into UPLC with a photodiode 
array detector (280, 330, and 520 nm) and UPLC-MS coupling with an ion trap mass spectrometer 
Bruker Daltonics HCT ultra equipped with an electrospray ionization source (see details in Aubert et al., 
2014). 

 



92 
 

Table III-1: Characteristics of the eight peach cultivars: Cultivar name, origin, harvest dates and fruit physicochemical traits. Data are mean of two years (2014-2015). 
Cultivars Origin Harvest date pH TA FF1 

(N) 
SSC1 

(oBrix) 
AsA* RAC* NCGA* CGA* TPP* 

Crown Princess USA 19-june a 3.82 b 0.56 b 26.17 a 10.85 a 5.18 a 54.60 b 1.63 ab 5.08 c 7.37 abc 
Big Top USA 03-july b 4.15 c 0.42 a 31.95 b 12.25 ab 4.09 a 20.01 a 1.25 a 3.21 a 4.77 a 
Tebana Italy 03-july b 4.12 c 0.43 a 33.04 bc 10.58 a 9.11 bc 38.43 ab 1.24 a 3.70 a  5.37 ab 
Andross USA 02-aug c 4.31 c 0.35 a 31.56 b 14.15 bc 14.91 d 88.08 d 2.66 bc 5.36 cd 8.91 c 
Baby Gold 9 USA 21-aug d 4.17 c 0.41 a 36.41 b 13.68 bc 8.75 b 75.36 cd 2.17 abc 3.77 b 6.99 abc 
Miraflores Spain 10-sep e 3.79 b 0.61 b 35.49 bc 13.43 bc 10.88 c 89.82 d 3.31 c 3.80 b 8.28 bc 
Calanda Tardío Spain 07-oct f 3.68 ab 0.75 c 59.84 e 15.53 c 8.89 b 186.45 e 10.16 e 6.52 d 18.67 e 
Calante Spain 07-oct f 3.65 ab 0.72 c 46.18 d 14.55 bc 10.72 bc 168.63 de 6.37 d 5.88 cd 13.92 d 
Abbreviations and units: Titratable acidity (TA) = g / 100 g; Fruit firmness at harvest (FF1) = Newton (N); Soluble solids content at harvest (SSC1); Ascorbic acid (AsA) 
= mg AsA/100 g FW, Relative antioxidant capacity (RAC) = mg Trolox equivalent / 100 g FW; Neochlorogenic acid (NCGA) = mg /100 g FW, Chlorogenic acid (CGA) = 
mg /100 g FW; Total polyphenols (TPP) = mg / 100 g FW. * Data are mean of three replications for two years (N=6). For each column, mean values with the same 
letter are not significantly different at p < 0.05 (Duncan test).  
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III-2.3. In-vivo assay: Inoculum, Inoculation and Brown rot evaluation 
The culture of the M. laxa (Aderhold and Ruhland) Honey, the inoculation and the brown rot 

evaluation was carried out according to the protocol described in Obi et al., (2017). The isolate 
(CPML02) used in this study was supplied by the Collection of Postharvest Pathology Group of IRTA 
(Lleida, Catalonia). In brief the inoculation was conducted with 25 µl of a suspension of 25 conidia / µl 
of M. laxa on 20 fruits per cultivar, without skin injury. Five fruits per cultivar were used as control and 
inoculated with 25 µl sterile water to discard unspecific infections. All fruits were incubated for five 
days at 23 oC and 45 - 60% relative humidity. Brown rot incidence (% BRI), colonization (% C), lesion 
diameter (LD in mm) and colonization extent (CE in mm) were the pathogenic parameters measured. 
Lesion and colonization severities (LS and CS) in each cultivar were calculated as lesion diameter x 
percentage of infected fruits and colonization extent x percentage of colonization, respectively 
(Martínez-García et al., 2013; Obi et al., 2017; RosBreed web-page: 
https://www.rosbreed.org/node/424). Colonization (% C), colonization extent (CE mm) and 
colonization severity were recorded to test the correlations with lesion damage.  
 
III-2.4. Statistical analysis 

All statistical analysis was performed using SPSS 23.0 (SPSS Inc.; Chicago, IL, USA). For biochemical 
determinations, three biological replicates were considered for year of analysis (2014-2015); mean and 
standard error (SE) were calculated for each parameter. The pathological traits were recorded for each 
cultivar in 5 individual fruits inoculated with water for control and 20 individual fruits inoculated with 
M. laxa spores, for year of analysis (2014-2015); mean and standard error (SE) were calculated for 
each parameter. ANOVA was performed and significance was judged at the level p ≤ 0.05, and the 
Duncan test used for mean comparison. Pearson’s correlation and regression analysis (Microsoft excel 
10.0) were conducted to reveal possible association between pair of traits.  
 
III-3. Results  

Peach fruits were harvested between June and October as are ordered in Table V-1. The earliest 
cultivars were ‘Crown Princess’, ‘Big Top’ and ‘Tebana’ (mid-June to July). ‘Andross’ and ‘Baby Gold 9’ 
were harvested on August. In contrast the Spanish non-melting flesh cultivars ‘Miraflores’, ‘Calanda 
Tardio’ and ‘Calante’, were harvested the latest from September to October. 
 
III-3.1. Physico-chemical traits and biochemical composition.  

All studied physico-chemical traits and biochemical composition of the cultivars at harvest are 
presented in Table V-1. For all traits, analysis of variance at 5% probability level showed significant 
differences among the cultivars. The pH values ranged from 3.65 in ‘Calante’ to 4.31 in ‘Andross’ (Table 
V-1). The cultivars with pH˃4, showed TA values below 0.5, and when pH˂4, TA values were over 0.5. 
The firmness ranged from 26.17 N in ‘Crown Princess’ to 59.84 N in ‘Calanda Tardio’. Soluble solids 
content (SSC) ranged from 10.58 to 15.53 °Brix, in ‘Tebana’ and ‘Calanda Tardio’, respectively.  

In the eight peach cultivars, we have performed the antioxidant composition in flesh fruit and 
determined ascorbic acid content, Relative Antioxidant Capacity (RAC) and polyphenol profile. 
Contents for ascorbic, RAC, the major hydroxycinamic acids (neochlorogenic, NCG and chlorogenic, CG) 
and total polyphenols (TPP) are presented in Table V-1, Supplementary Tables V-1 and V-2. 

Ascorbic acid content varied, ranging from 4.09 in ‘Big Top’ to 14.91 mg/100 g FW in ‘Andross’. The 
antioxidant levels ranged widely from ‘Big top’ to ‘Calanda Tardio’ (RAC 20.01-186.45 mg TE/100 g FW 
and TPP 4.77-18.67 mg /100 g FW). The nectarine ‘Big top’ showed the lowest contents of AsA, RAC 

https://www.rosbreed.org/node/424).
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and TPP although not significantly different from ‘Tebana’ for RAC and TPP, or ‘Crown Princess’ and 
‘Baby Gold 9’ for TPP. In contrast the cultivars, ‘Calanda Tardio’ followed by ‘Calante’ showed the 
highest relative antioxidant capacity and amounts of TPP.  

Regarding polyphenols, significant variation was found among cultivars for contents of NCG and CG 
hydroxycinnamic acids and TPP. NCGA content ranged from 1.24-1.25 mg/100 g FW in ‘Tebana’ and 
‘Big Top’ to 10.16 mg/100 g FW in ‘Calanda Tardio’. CGA from 3.21-3.30 mg/100 g FW in ‘Big Top’ and 
‘Tebana’ to 6.52 mg/100 g FW in ‘Calanda Tardio’. Neochlorogenic and chlorogenic acids were the 
main hydroxycinnamic acids and the major polyphenols found in these peach cultivars (See 
Supplementary Tables V-1 and V-2 and Supplementary Figures V-1 and V-2, submitted as Data in Brief).  
The nectarine ‘Big Top’ and ‘Tebana’ showed the lowest levels of NCGA, CGA and TPP. On the  

The lesion severity (LS) ranged from 30.29 to 50.07 mm, being ‘Andross’ the more tolerant cultivar 
and ‘Calante’ the more susceptible. ‘Andross’ exhibited the lowest LS significantly different from 
‘Crown Princess’, ‘Big Top’, ‘Calanda Tardío’, ‘and ‘Calante’.contrary, the late-maturing cultivars, 
‘Calanda Tardio’ and ‘Calante’ showed the highest levels of, RAC, both NCG and CG acids, and TPP. 
These two cultivars also showed the highest total polyphenols (TPP), total hydroxycinnamic acids (HA) 
and total flavanols (FA) contents (Supplementary Table V-2 and Supplementary Figure V-2).  
 
III-3.2. Fruit susceptibility.  

No visible symptoms of brown rot infection were observed on control fruits that had been 
inoculated with sterile distilled water. In mature fruits, symptoms of brown rot lesions appeared after 
three days of fruit inoculation and storage. Brown rot incidence, lesion diameter and colonization 
extent were recorded as pathological traits after fruit inoculation and storage. Brown rot incidence 
ranged from 70 to 90 % among the eight studied cultivars (Figure V-1).  
 

 
 
 
 
 
 

 
 
 
 
 
 
 
Figure III-1: Brown rot incidence (%) and Lesion severity (mm) on eight peach cultivars evaluated during two 
consecutive years (2014-2015). Data are mean ± SE (N=20-35 fruits). Different letters show significant differences 
on lesion severity among cultivars (Duncan test, p< 0.05). 
 

After incubation fruit firmness and SSC were also recorded (Supplementary Table 3). Fruit firmness 
after five days of incubation (mean FF2: 33.5 N) decrease significantly with M. laxa inoculation (mean 
FF3: 29.2 N), however, no significant differences were found in soluble solids content between non-
inoculated (mean SSC2 =14.0 ºBrix) and inoculated fruits (mean SSC3 = 13.5 ºBrix). 
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III-3.3. Pearson’s Correlation.  
Pearson’s correlation coefficients (r) between pairs of pathological and antioxidant traits (Table 2) 

have been calculated with purpose of highlighting its involvement in the host tolerance.  

Table III-2: Pearson`s correlation coefficients between pathological and antioxidant traits in eight peach cultivars 
harvested during two years (2014-2015). N= 37-319 

  LS %C CS AsA RAC NCGA CGA TPP 
%BRI 0.471** 0.832** 0.682** -0.537** ns ns ns ns 
LS   0.597** 0.749** -0.579** ns ns ns ns 
%C     0.830** -0.652** ns ns ns ns 
CS       -0.590** ns ns ns ns 
AsA         ns ns ns ns 
RAC           0.876** 0.704** 0.967** 
NCGA             0.707** 0.970** 
CGA               0.861** 
Significance: **p≤ 0.01. Units and abbreviations: %BRI: percentage brown rot incidence; LS: lesion severity (mm); 
%C: percentage colonization; CS: colonization severity (mm); Ascorbic acid (AsA) = mg AsA/100 g FW, Relative 
Antioxidant Capacity (RAC) = mg Trolox Equivalent / 100 g FW; Neochlorogenic acid (NCGA) = mg /100 g FW, 
Chlorogenic acid (CGA) = mg /100 g FW;  FW: fresh weight, Total Polyphenols (TPP) = mg / 100 g FW.  
 

All pathological traits (brown rot incidence, percentage of colonization, and lesion and colonization 
severities) were highly correlated among them. Figure 2 shows the correlation between the lesion 
severity with colonization severity (R2= 0.562; r = 0.749, p≤0.01).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III-2: Linear regression between the lesion severity with colonization severity on eight peach cultivars 
evaluated during two consecutive years (2014-2015) (N=266 fruits). Significance of Pearson correlation is shown 
(** p < 0.01). 
 

Furthermore, the correlation analysis was carried out to clarify the contribution of the antioxidant 
content to Monilinia tolerance. The analysis between pathological and antioxidant traits surprisingly 
revealed significant inverse correlation only with ascorbic acid content. Table 2 showed the inverse 
correlation between the lesion severity with AsA content (r = -0.579, p≤0.01). On the contrary, no 
significant correlation was found between pathological traits and RAC or the polyphenolic compounds; 
neither the neochlorogenic, nor the chlorogenic hydroxycinamic acids or TPP, were significantly 
correlated.  
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III-4. Discussion 
We have studied eight commercial peach cultivars with different fruit characteristics and tested its 

tolerance to brown rot caused by Monilinia laxa after artificial inoculation. As it was reported in our 
previous study, symptoms of infection in peach fruits were only developed after inoculation on 
commercial maturity (Obi et al., 2017, 2018). A similar approach and protocols are routinely used to 
phenotype tolerance to brown rot caused by M. fructicola in peach germplasm (Bostock R, 
https://www.rosbreed.org/node/679). These cultivars based on the pH can be classified as acid (pH˂4) 
or non-acid fruits (pH˃4) (Dirlewanger et al., 1999). However, the range of pH (3.7-4.3) found among 
cultivars has no effect on the in vivo Monilinia growth. Obi et al. (2018) demonstrated a similar in vitro 
mycelial growth at these pH ranges. Values found for pH, TA, FF1 and SSC1 were within the range 
reported in other studies in peach germplasm (Abidi et al., 2015; Font i Forcada et al., 2013; Saidani et 
al., 2017). The differences found among cultivars in firmness (FF1) are mainly related to factors, such 
as harvest date or fruit type. Firmness of ripe peaches tended to be higher for the late cultivars as we 
have found in ‘Calanda Tardio’ and ‘Calante’ (Iglesias and Echeverria, 2009; Montevecchi et al., 2012). 

Similarly, the content for Ascorbic acid varied widely (from 4.09 in ‘Big Top’ to 14.91 mg/100 g FW 
in ‘Andross’) and fell within the ranges previously reported for ascorbic acid in peach pulp (Abidi et al., 
2015; Font i Forcada et al., 2013, Saidani et al., 2017). Regarding NCG and CG acids content, ‘Calanda 
Tardio’ and ‘Calante’ showed the highest levels for both hydroxycinnamic acids. These cultivars also 
showed the highest relative antioxidant capacity (RAC), total polyphenols (TPP), total hydroxycinnamic 
acids (HA) and total flavanols (FA) contents (Table V-1, Supplementary Table V-2 and Supplementary 
Figure V-2), as reported Saidani et al. (2017) in peel and flesh tissue in a parallel study. The wide 
variation found among these cultivars has been attributed specially to seasonal influences. The 
cultivars late harvested contain higher contents on relative antioxidant capacity, flavonoid and TPP 
than cultivars harvested in earlier season (Saidani et al., 2017). The levels of antioxidants were 
gradually increases as the harvest date progresses throughout the year. These is consistent with the 
high and positive correlation (p≤0.01) found between harvest date and relative antioxidant capacity (r 
= 0.836), total hydroxycinnamic acids (r = 0.742), total flavanols (r = 0.874) and total polyphenols (r = 
0.761) (Saidani 2016).  

Based on the results found here, the degree of susceptibility to brown rot on these peach cultivars 
was not associated to the large differences in harvest dates. The cultivars were harvested from mid - 
June to early October but no correlation was found between harvest date and brown rot tolerance as 
was reported before in other peach germplasm (Obi et al., 2017, Obi et al., unpublished results). All 
pathological traits (brown rot incidence, colonization and lesion and colonization severities) were 
highly correlated among them (Obi et al., 2017). After 5 days of incubation no significant differences 
were found between the soluble solid contents (SSC) of control fruits (SSC2=14.0 ºBrix) with inoculated 
fruits (SSC3 =13.5 ºBrix). Therefore, there is no credible evidence that the activities of M. laxa depleted 
soluble solid contents in the peach as it was found previously in other progenies (Obi et al., 
unpublished results). 

In this work we have showed that only AsA content presented an inverse correlation with lesion 
severity (r = -0.555, p≤0.01). On the contrary, any disease parameter correlated with none of the other 
bioactive compounds neither the relative antioxidant capacity nor NCGA, CGA or TPP (Table V-2). In 
agreement with these findings, no relation was detected between brown rot resistance to M. 
fructicola and concentration of phenolic compounds in Californian peach germplasm (Gradziel and 
Wang, 1993). Apparently, phenolic compounds were not specifically involved in the cultivar tolerance 
to brown rot caused by Monilia fructicola or M. laxa. Nevertheless, we could suggest that a 

https://www.rosbreed.org/node/679).


97 
 

combination of different antioxidant compounds may confer partial immunity as was found in 
‘Andross’ (this study, Gradziel and Wang, 1993). This cultivar showed the highest level of ascorbic acid, 
high CG acid and moderate levels of relative antioxidant capacity that may contribute to its tolerance. 
’Andross’ also presented moderate levels of flavonoids and total phenolic content in peel and pulp 
tissues (Saidani et al., 2017). On the contrary, the levels of ascorbic, NCG and CG acids found in 
‘Calante’, and the highest contents in RAC, NCGA and CGA and TPP found in ‘Calanda Tardio’ cannot 
explain its susceptibility to brown rot.  

As it was mentioned above, the role of plant phenolic acids in fungal inhibition has been widely 
discussed by several authors (Oliveira-Lino et al., 2016 and references therein). CG and caffeic acids at 
levels similar to or in excess of those in the exocarp of immature resistant fruits did not affected M. 
fructicola growth (Bostock et al., 1999), however, these acids down regulate cutinase production in M. 
fructicola cultures (Wang et al., 2002) and markedly inhibited the production of the cell wall 
polygalacturonase and cutinase (Lee and Bostock, 2007). In the same direction, Villarino and 
coworkers (2011) found that NCGA and CGA contents in immature fruits were negatively correlated to 
brown rot incidence and in vitro demonstrated that high CGA concentration modified fungal melanin 
production that might interfere to Monilia laxa penetration. These studies suggested that phenolic 
acids may suppress the cellular activities in the fungal pathogens that may be crucial for its growth and 
colonization on a host. However, in this study the correlation analysis revealed that NCGA and CGA 
contents or total polyphenols in fruits had not effect on fungal lesion after artificial inoculation. In 
other words, contents of NCG and CG acids at harvest probably are independent and do not indicate 
cultivar tolerance.  

On the contrary, the ascorbic acid that is considered one of the most important antioxidants in 
plant tissues was negatively correlated with fungal growth after artificial inoculation. Our results are in 
agreement with Wang et al. (2002) who demonstrated that other antioxidants such as glutathione and 
lipoic acid significantly attenuate cutinase production in M fructicola and discuss that the effect of 
phenolics is due to a general antioxidant effect rather than a specific chemical interaction. Lee and 
Bostock (2007) also mentioned that phenolics in plant tissue may influence the antioxidant level in the 
pathogen and, as a consequence, the expression of genes associated with infection. The ascorbic acid, 
which concentration has been considered as an important nutritional quality indicator for peach, can 
be considered relevant in plant breeding for its antioxidant role conferring in vivo brown rot tolerance. 
These findings will open new research to test the effect of ascorbic either in-vivo on brown rot 
tolerance or in-vitro on microbial growth.  
 
III-5. Conclusions 

In conclusion the result of evaluation of tolerance in the eight commercial cultivars to brown rot 
disease demonstrates variability in the genetic susceptibility to Monilinia laxa, with ‘Andross’ and 
‘Baby Gold 9’ the more tolerant but not significantly different from ‘Tebana’ and ‘Miraflores’. ‘Crown 
Princess’, ‘Big Top’ ‘Calante’ and ‘Calanda Tardío’ were the less tolerant peach cultivars. The content of 
ascorbic acid can only partially explain the tolerance-susceptibility observed, indicating that other 
factors are probably involved in the response. Identification of these factors will be fundamental for 
breeding programs focused on improving resistance.  

In addition, neither neochlorogenic nor chlorogenic or TPP contents at harvest can explain the 
differences in tolerance to brown rot found in these peach cultivars. We suggest that together with the 
ascorbic acid, other physico-chemical factors may confer the tolerance to ‘Andross’, ‘Tebana’, ‘Baby 
Gold 9’ and ‘Miraflores’. To our knowledge this is the first study that correlates the ascorbic acid 
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contents in mature peach fruit with Monilinia laxa brown rot tolerance. From a practical point of view 
application of ascorbate based formulae may be promising. Furthermore, we may speculate that the 
complex interaction Monilinia-Prunus establish the redox environment that modulate or restrict the 
fungal infection. Nonetheless, further studies need to be done in order to know the effect of AsA as a 
curative or preventive treatment to control M. laxa infections and/or to disentangle the role of each 
specific antioxidant compound in the genetic brown rot tolerance in peach.  
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Breeding strategies for identifying superior peach genotypes tolerant to brown rot  

Abstract 
A sustainable approach to control brown rot incidence in pre- and postharvest management is to 

select genotypes with high contents in antioxidant compounds in combination with tolerance to 
Monilinia laxa [(Aderhold and Ruhland) Honey]. In this research sixty eight progenies from the 
‘Babygold 9’ × ‘Crown Princess’ population of the breeding program of EEAD-CSIC were screened 
(under controlled conditions in post inoculation test) for a period of 3 years (2013-2015). To evaluate 
the susceptibility to brown rot, twenty healthy fruits per genotype were surface inoculated with 625 
spore suspension of the M. laxa. After incubation at 23 oC for 5 days, the brown rot incidence, lesion 
diameter, colonization extent and their severities were calculated. Physico-chemical traits, such as fruit 
firmness and soluble solids content were also recorded before and after storage. Titratable acidity, pH, 
and antioxidant composition were measured at harvest. Significant differences were found for 
pathogenic traits, vitamin C, total phenolic, flavonoids and anthocyanins within genotypes in this 
population. Also inverse correlations have been found between the content of phytochemical 
compounds (anthocyanin, and total phenolic) and disease incidence and severity. Differences in 
susceptibility to brown rot confirm the genetic variability available in this progeny and therefore, the 
selection of six of them found highly tolerant to brown rot of M. laxa with high organoleptic 
properties, rich in phenols to be introduced in our peach breeding program. 
 
Key words: Genetic tolerance, bioactive, susceptibility, screening, brown rot, plant breeding. 
 
IV-1. Introduction 

The length of conservation and commercial shelf life of peach [Prunus persica (L.) Batsch] are 
negatively influenced due to pre and post-harvest diseases principally associated with the brown rot 
(Sisquella et al., 2014). Brown rot of stone fruits is a disease primarily caused by Monilinia species 
which includes: M. laxa (Aderhold and Ruhland) Honey; M. fructigena (Honey); M. fructicola (G. 
Winter) and an anamorph of Monilinia, M. polystroma (G. Leeuwen) (Jansch et al., 2012). In this crop 
the pathogen initiates and encourages flower blights, spurs, twig/branch death and fruit rot in the field 
(Gell et al., 2007). Hence the pathogen`s activity on peach is highly destructive from flowering stage via 
peach formation to storage (Thomidis and Exadaktylou, 2010). 

In Spain M. laxa and M. fructicola have been the most recurrent, subsequent to the dislodgment of 
M. fructigena after the year 2010 (Villarino et al., 2016), causing over sixty per cent fruit losses after 
harvest (Villarino et al., 2012; Egüen et al., 2015), mostly under favorable environmental conditions for 
the commencement and growth of the diseases in the orchard. 
Host tolerance to plant pathogens is important to cost effective and environmentally safe strategy for 
disease management (Gradziel, 1994). In the same idea according to Gell et al., (2007), the use of 
tolerant cultivars in crop improvement is the topmost principle of crop protection as plants and plant 
products are usually protected (prophylactic) (Mooney et al., 2012) and, often, not cured of diseases 
(chemotherapeutic).  

Cultivar significantly influence rot incidence and severity among other potential factors in stone 
fruits (Tarbath et al., 2014) and, therefore, fits an ideal component in the measures for disease control 
(Kreidl et al., 2015). Lasting prophylactic treatment of peach, using M. laxa tolerant cultivars, means 
prevention of the pathogenic problems first in the orchard. Tolerant genotypes will allow sustainable 
control with zero residues in fruits safety harvesting and at least decreasing disease problems in 
commodities in storage leading to better economic benefit. The total absence of residue in 
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prophylactic tolerant peach cultivar is friendly to enhanced environment compatibility (Usall et al., 
2016). However, disease resistant varieties are not readily available in many fruit crops (Spiers et al., 
2005) including commercial peach cultivars. 

Developing peach cultivars tolerant to M. laxa pathogen requires, in the first instance, identification 
of existing tolerant/susceptible genotypes by screening from a germplasm (Rubos et al., 2008). 
Although most commercial cultivars are susceptible to Monilinia spp., few tolerant cultivars have been 
identified in peaches (Gradziel and Wang, 1993; Martínez-García et al., 2013; Oliveira-Lino et al., 2016; 
Obi et al., 2017). Hence relative tolerance/susceptibility of fruit to disease has often been used for 
selecting disease resistant genotype for peach breeding purpose (Gradziel, 1994).  

Selection within breeding descendant population have been carried out in peach and nectarine 
(Bassi et al., 1998; Pacheco et al., 2014; see Oliveira-Lino et al., 2016, for details) and other fruits 
germplasm such as apricot (Walter et al., 2004); plum (Pascal et al., 1994) and apple (Biggs and Miller, 
2004). Evidence exists showing that powerful antioxidants such as phenolic acids, flavonoids and 
anthocyanins can be found in the phytochemical compounds of some peach cultivars (Abidi et al., 
2011; Giménez, 2013; Ágreda, 2016; Saidani et al., 2017), and that these bioactive compounds, 
especially the chlorogenic and neochlorogenic acids, major of the phenolics maintain important 
preservative functions in postharvest handling in peach commodity (Villarino et al., 2011; Pacheco et 
al., 2014; see Oliveira-Lino et al., 2016, in details). In addition, considering the recent drive for 
alternative technologies effective to control postharvest diseases of stone fruits (Mari et al., 2015; 
Usall et al., 2015, 2016), any documentation of composites inhibitory to brown rot susceptibility would 
have influence in breeding schemes and useful in the postharvest peach commerce. 

In this context, information on the global evaluation of fruit pathogenic tolerance to brown rot of 
M. laxa in breeding descendants and their relationships with quality and phytochemical traits in peach 
postharvest handling appears limited. We aim to search for the Spanish industry superior peach 
cultivars with high tolerance to brown rot of M. laxa and significant antioxidant outline. The specific 
objectives of this work, therefore, were to evaluate for tolerance to brown rot of Monilinia laxa within 
the breeding descendant population of ‘Babygold 9’ × ‘Crown Princess’, and to examine fruit quality 
and phytochemical composition correlated to the tolerance. Finally, the identification of any 
biochemical compound associated to brown rot tolerance would have impact in breeding strategies, 
relevant to go further in the postharvest industry and ample environmental sustainability. 
 
IV-2. Materials and Methods 
 
IV-2.1. Plant material 

The plant materials are progenies from a controlled biparental cross of two commercial cultivars, 
‘Babygold 9’ × ‘Crown Princess’ (B9 × CP). These genotypes were propagated during 2000 and 2001 in 
collaboration with Agromillora Catalana S.L. (Barcelona, Spain). Both progenitors and the complete 
progeny are yellow fleshed, clingstone peaches. The resulting seedlings were budded on the GF677 
rootstock and established in 2002 at the Experimental Station of AulaDei - CSIC Zaragoza Spain. Trees 
were trained to the standard open vase system, hand thinned and subsequently grown under standard 
conditions of irrigation, fertilization and chemical spray programs for pest and disease control 
(Giménez, 2013).  

For the three years study (2013-2015), any fungicide treatment was applied in the field before 
harvest with adequate consideration to the free entry period and harvest for evaluation. A total of 68 
genotypes were harvested in 2013 and 2014 seasons (Supplementary table III-1). Then, seventeen 
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genotypes were pre-selected with lesion severity (LS) < 40 mm, either in 2013, or 2014, or when the 
mean value for both years was below 40 mm (Obi et al., 2017), and harvested in 2015 to validate 
results concerning M. laxa tolerance. The pathogenic traits [percentage of brown rot incidence (%BRI), 
lesion diameter (LD) and colonization extent (CE)] were measured for each seedling tree separately 
over the 3-year period and means on the 17 selected genotypes were calculated. Fruits were 
subjectively selected and harvested based on optimum maturity [(Cantín et al., 2009) (expressed on 
visual color change and manual evaluation of firmness, apparently healthy with uniform ripeness and 
size)]. Fruits were disinfected as described by Obi et al., (2017). 
 
IV-2.2. Pathogen culture, conidia production and inoculation 

The procedure adopted is as described by Obi et al., (2017). Briefly, the culture of the Monilinia laxa 
(Aderh. & Ruhl.) Honey, isolate number: CPML02, used in this study was supplied by the Collection of 
Postharvest Pathology Group of IRTA (Lleida, Catalonia). Conidia from wounded fruits were efficiently 
harvested into a solution of sterile distilled water and Tween® 80 (0.0005%) surfactant. Quantification 
of conidia suspension was determined as in Obi et al., (2017) and adjusted to 25 x 103 mL-1 spore for 
fruit inoculation. To evaluate tolerance to brown rot, twenty disinfected fruits were inoculated with 25 
µL of spore load of the virulent pathogen. Five fruits used as control were loaded with 25 µL sterile 
water and incubated for 5 days in darkness at 23 oC. 
 
IV-2.3. Brown rot disease evaluation 

Pathogenic traits were evaluated according to Obi et al., (2017). In brief inoculated fruits were daily 
observed during 5 days of incubation. Percentage brown rot incidence (%BRI) was assessed using the 
percentage fraction infected over total number of inoculated fruits. Percentage of colonization (%C) 
was assessed using the percentage colonized over total number of fruits. Lesion diameter (LD) and 
colonization extent (CE) were also measured. These parameters were used in the determination of 
brown rot disease severity for genotype tolerance rating as it was reported previously (Martínez-
García et al., 2013; Obi et al., 2017). Lesion severity (LS) was calculated by the percentage of brown rot 
incidence (%BRI) x lesion diameter (LD)/100 and colonization severity (CS) by the percentage of 
colonization (%C) x colonization extent (CE)/100. 
 
IV-2.4. Fruit quality trait evaluation 

During the 2014 and 2015 seasons, twenty fruits were harvested to evaluate fruit quality 
individually in each seedling tree. Harvesting date (Julian days) ranged from late-May to mid-
September, depending on each genotype of the population. Fruit weight and physicochemical traits 
were determined for each genotype. Titratable acidity and pH were determined at harvest as 
explained in previous studies (Abidi et al., 2015; Zeballos et al., 2016).  

Fruits were evaluated for firmness (FF) and soluble solids content (SSC) at three different levels: at 
harvest and after 5 days of storage (inoculated and no inoculated). At harvest, firmness was 
determined on 5 fruits/genotype on opposite sides of the equator of each fruit, after a slash of the 
peel (about 2 cm²) was removed, with a penetrometer fitted with an 8-mm diameter probe (Effegi, 
Milan Italy). Both measures were averaged for each fruit, and data are given in Newton (N). Firmness 
on no-inoculated and inoculated fruits was determined on 5 and 20 fruits / genotype, respectively, in 
the undamaged fruit part after 5 days of incubation. The soluble solids content (SSC) of the juice was 
also measured at harvest and after incubation with a temperature compensated refractometer (model 
ATC-1, Atago Co., Tokyo, Japan); and data are given as oBrix.  
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IV-2.5. Antioxidant compounds analysis 

In sampling for biochemical analysis on fruit pulp and peel, ten fruits out of the twenty were 
randomly selected from the harvest, peeled using a mechanical peeler, and later cut into smaller 
pieces for relative homogeneity, and 3 g of peel and 5 g of fresh fruit weighed into 50 mL transparent 
polypropylene (PP) jars, frozen in liquid nitrogen and conserved under - 20oC for later use in 
determining (total phenolics, flavonoids, anthocyanins assays). For vitamin C determination samples 
were stored with metaphosphoric acid (HPO3) and subsequently conserved at - 20oC until analysis. 
Biochemical extractions were done as it was reported in Cantín et al. (2009). 

Vitamin C, total phenolic, flavonoid, and anthocyanin contents were determined with colorimetric 
methods (Cantín et al., 2009) and measured using a spectrophotometer [BIOCHROM ASYS UVM 340 
microplate reader, (see details in Ágreda, 2016)]. Standard calibration curves were daily prepared for 
all determinations. For vitamin C, absorbance was measured at 525 nm and the amount of vitamin C 
was expressed as milligrams (mg) of ascorbic acid (AsA) per 100 g fresh weight (FW). For total phenolic 
content, the colorimetric method based on the chemical reduction of the Folin-Ciocalteau reagent was 
used. Absorbance was measured at 725 nm and the content was expressed in mg of gallic acid (3, 4, 5-
Trihydroxy-benzoic acid) equivalents (GAE) per 100 g of FW.  

Total flavonoids content was determined measuring absorbance at 510 nm and the results were 
expressed as milligrams of catechin equivalents (CE) per 100 g of FW. The total anthocyanin content 
was evaluated measuring in the hydroalcoholic extract the absorbance at 520 and 700 nm. The 
anthocyanin concentration was calculated using the molar extinction absorptivity coefficient ε = 
26,900 / cm and was expressed in milligrams of cyaniding-3-glucoside equivalents (C3GE) per 100 g of 
FW (Liu et al., 2015; Saidani et al., 2017). 
 
IV-2.6. Statistical analysis 

Means and standard errors (SE) and Pearson’s correlation were carried out with SPSS-23 (Statistical 
Product and Service Solutions Inc., Chicago USA) statistical software. The incidence and severity of 
brown rot including influence of quality parameters were also analyzed using analysis of variance 
(ANOVA) with SPSS-23 statistical software. Statistical significance was judged at the level P < 0.05, and 
the Duncan test was used for mean comparison. 
 
IV-3. Results 

We have studied a total of 68 descendants from the population ‘Babygold 9’ × ‘Crown Princess’ 
during three years (2013, 2014, and 2015) for tolerance against brown rot of Monilinia laxa 
(Supplementary table III-1). The disease parameters include: percentage brown rot incidence (%BRI), 
lesion diameter (LD), lesion severity (LS), percentage of colonization (%C), colonization extent (CE) and 
colonization severity (CS). As we have previously mentioned, we have selected seventeen genotypes 
that showed M. laxa lesion severity (LS) < 40 mm, either in 2013, or 2014, or with the mean value for 
both years (Supplementary Table III-2) to later evaluate and validate in 2015 the M. laxa tolerance in 
these genotypes.  

Furtherance in these seventeen genotypes, harvest date (HD) was recorded and the 
physicochemical traits [fruit weight (FW), fruit firmness (FF), soluble solids content (SSC), pH and 
titarable acidity (TA)] were evaluated for three years [(2013-2015) (Table III-1)] and parametric test of 
Pearson correlation conducted within pairs of fruit quality traits (Table III-2). We have, also determined 
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phytochemical traits compounds as: Vitamin C (Vit. C), total phenolic (TPC), flavonoid and anthocyanin 
contents in flesh (2014-2015, Table III-3) and in peel only for 2015 (Table III-4). 
 
IV-3.1. Effect of phytopathogen activities 

The evaluation of 68 genotypes of ‘Babygold 9’ × ‘Crown Princess’ for brown rot tolerance in 2013 
and 2014 are shown in Supplementary table 1. The incidence of brown rot (%BRI) in both years was 
between 50 to 100 %. Among years differences exist, although similar average percentage brown rot 
incidence was found for 2013 (91.9%) and 2014 (91.6%). The average percentage of colonization (%C) 
in 2013 was 84.8 and lower in 2014 80.2 %.  

The average lesion diameter (LD) 2013 was 56.5 mm, while the average LD 2014 was 48.9 mm. In 
2013 mean lesion severity (LS) was 52.5 mm and 45.3 mm in 2014. A corresponding pattern was 
repeated in both years in the range of colonization severity (CS) with average CS (44.0 mm in 2013 and 
36.6 mm in 2014). Almost all the associated pathologic parameters indicate that the progeny in 2014 
showed fewer symptoms of M. laxa than in 2013. Concisely in 2015, the seventeen genotypes, average 
BRI (92.9 %) and % of colonization (89.4%) had been higher than in the previous years. On the 
contrary, %LD and LS with 48.1 and 44.7 mm of average were lower. 

From the mean of these seventeen genotypes evaluated in 2013, 2014 and 2015, only six 
genotypes (BC1, BC48, BC58, BC63, BC67, and BC68) showed lesion severity < 40 mm and colonization 
severity below 32 mm (Supplementary table III-2). The Pearson correlation between pairs of traits for 
pathological traits showed positive and significant correlation coefficients between 0.406 and 0.959 at 
P < 0.01. Among the strongest ones are brown rot incidence (%BRI) with percentage colonization (%C) 
(r = 0.814, P ≤ 0.01); lesion diameter (LD) with colonization extent (CE) (r = 0.859, P ≤ 0.01) and lesion 
severity with colonization severity (r = 0.959, P ≤ 0.01) (Figure III-1). 
 

 
Figure IV-1: Correlation between lesion and colonization severities in all the 

‘B9’ × ‘CP’ genotypes evaluated for three years (2013 - 2015). N = 138. 
  

y = 0.9862x - 7.3536 
R² = 0.9201 
R Pearson = 0.959** 

0

20

40

60

80

0 20 40 60 80

Co
lo

ni
za

tio
n 

Se
ve

rit
y 

(m
m

) 

Lesion Severity (mm) 



108 
 

Table IV-1: Effect of storage and inoculation in FF and SSC and physicochemical traits in the 17 descendants of ‘B9’ × ‘CP’ population. Data are mean ± SE of three years (2013 – 2015). 
In bold tolerant genotypes. 
Genotype HD 

(JDs) 
FW  
(g) 

FF at harvest 
(N) 1 

FF no-inoculated  
(N) 1 

 

FF inoculated 
(N)1 

SSC at 
harvesta 
(oBrix) 

SSC after 
storage no- 
inoculated 

(oBrix)1 

SSC after 
storage 

inoculated 
(oBrix)1 

pHa TA  
(%)a 

RIa 

BC1 175 ± 5 175 ± 21.1 26.50 ± 1.9 ab 33.40 ± 1 bcde 
.9 bcde 

28.10 ± 0.8 b 8.2 ± 0.4 8.0 ± 0.5ab 8.0 ± 0.3 b 3.62 ± 0.0 0.6 ± 0.0 13.29 ± 0.8 
BC11 227 ± 6 209 ± 27.1 51.16 ± 3.8 d 48.13 ± 4.6 f 41.55 ± 3.0 d 9.8 ± 0.7 10.0 ± 0.4 cd 9.2 ± 0.2 c 3.96 ± 0.1 0.5 ± 0.1 17.70 ± 1.3 
BC19 175 ± 5 186 ± 21.0 18.58 ± 2.3 a 24.05 ± 1.2 a 22.31 ± 0.8 ab 9.7 ± 0.1 8.0 ± 0.6 ab 7.5 ± 0.3 ab 3.82 ± 0.1 0.4 ± 0.0 20.05 ± 0.5 
BC24 226 ± 7 208 ± 32.6 39.31 ± 3.3 c 34.18 ± 2.1 cde 34.35 ± 1.9 c 10.4 ± 0.4 9.2 ± 0.3 bc 9.2 ± 0.3 c 3.96 ± 0.1 0.6 ± 0.1 17.31 ± 1.6 
BC44 175 ± 5 171 ± 21.5 20.35 ± 2.1 ab 19.07 ± 1.5 a 17.65 ± 0.6 a 8.2 ± 0.2 7.9 ± 0.3 ab 7.5 ± 0.2 ab 3.84 ± 0.3 0.5 ± 0.1 15.88 ± 3.1 
BC48 224 ± 4 208 ± 15.7 47.51 ± 2.9 cd 36.23 ± 1.4 e 35.11 ± 0.9 c 11.1 ± 0.7 11.1 ± 0.4 d 9.3 ± 0.2 c 3.88 ± 0.1 0.6 ± 0.1 16.56 ± 0.9 
BC51 175 ± 5 181 ± 21.0 24.17 ± 4.4 ab 25.15 ± 2.8 ab 25.50 ± 1.2 b 8.9 ± 0.9 8.0 ± 0.5 ab 7.9 ± 0.2 b 3.71 ± 0.1 0.5 ± 0.1 16.17 ± 2.9 
BC53 178 ± 3 143 ± 16.2 19.22 ± 0.9 a 24.50 ± 0.8 a 23.73 ± 0.7 b 8.5 ± 0.3 7.1 ± 0.4 a 7.6 ± 0.3 ab 3.68 ± 0.0 0.5 ± 0.1 14.63 ± 1.2 
BC57 227 ± 6 241 ± 18.0 48.19 ± 4.9 cd 46.76 ± 3.9 f 49.82 ± 3.1 e 9.3 ± 0.5 9.6 ± 0.5 c 7.9 ± 0.3 b 3.95 ± NE 0.5 ± NE 17.44 ± NE 
BC58 180 ± 6 187 ± 15.5 23.79 ± 2.1 ab 27.20 ± 1.1 abcd 

abcdabcd 
24.27 ± 0.7 b 7.7 ± 0.9 7.6 ± 0.5 a 7.1 ± 0.3 a 3.62 ± 0.0 0.6 ± 0.1 12.98 ± 1.3 

BC59 176 ± 8 163 ± 24.3 29.08 ± 1.5 b 34.06 ± 1.7 ced 28.07 ± 0.8 b 9.7 ± 1.8 8.0 ± 0.3 ab 8.0 ± 0.3 b 3.76 ± 0.1 0.5 ± 0.0 17.16 ± 3.0 
BC60 224 ± 7 187 ± 13.2 51.09 ± 3.1 d 52.29 ± 3.6 f 42.00 ± 1.6 d 11.0 ± 0.6 10.3 ± 0.3 cd 9.0 ± 0.2 c 3.92 ± 0.2 0.7 ± 0.2 14.40 ± 2.7 
BC61 227 ± 6 220 ± 22.4 41.27 ± 2.6 c 36.26 ± 3.2 e 33.56 ± 1.5 c 9.2 ± 0.7 10.0 ± 0.3 cd 9.6 ± 0.2 cd 4.17 ± 0.0 0.4 ± 0.1 21.20 ± 2.1 
BC63 222 ± 2 235 ± 18.0 43.28 ± 1.9 cd 35.91 ± 1.6 de 36.37 ± 1.0 c 9.4 ± 1.0 9.5 ± 0.4 c 9.1 ± 0.2 c 3.89 ± 0.1 0.6 ± 0.1 14.28 ± 0.6 
BC66 216 ± NE 151 ± NE 29.29 ± 2.1 b 33.87 ± 1.6 bcde 27.22 ± 1.3 b 8.8 ± NE 9.5 ± 0.5 c 10.1 ± 0.3 d 3.87 ± NE 0.6 ± NE 12.68 ± NE 
BC67 180 ± 6 169 ± 10.6 21.70 ± 1.1 ab 25.60 ± 1.2 abc 24.73 ± 0.5 b 8.5 ± 1.2 7.6 ± 0.5 a 6.9 ± 0.2 a 3.67 ± 0.0 0.5 ± 0.1 17.01 ± 0.3 
BC68 180 ± 6 186 ± 4.2 17.51 ± 1.0 a 25.32 ± 0.7 abc 24.05 ± 0.5 b 9.4 ± 1.0 7.2 ± 0.5 a 7.1 ± 0.2 a 3.76 ± 0.0 0.4 ± 0.1 18.01 ± NE 
a: No replication (data from pooled fruits of 5). Abbreviations: HD, harvest date; JDs, Julian days; FW, fruit weight; FF, fruit firmness; SSC, soluble solids content; TA, titratable acidity; RI, ripening index 
(SSC/TA); SE, standard error; NE, not available, because replications were less than 3 or harvested one year. 1 Different letters show differences among genotypes. 
titratable acidity; RI, ripening index (SSC/TA); SE, standard error; NE, not available, because replications were less than 3 or harvested one year. 1 Different letters show differences among genotypes. 
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IV-3.2. Effect of storage, inoculation and physicochemical traits on fruits 
Table 1 showed the effect of storage and inoculation on fruit firmness (FF) and soluble solid 

contents (SSC) and physicochemical traits in 17 selected fruits evaluated during three years (2013-
2015). Genotypes from this progeny were harvested between 175 and 227 Julian days (JDs), which is 
late June and middle of August, respectively. Incidentally the six tolerant genotypes (in bold in Table 1) 
mature between 175 and 224 JDs. The fruit weight (FW) ranged between 143 g and 241 g. Marked 
variability was encountered in the state of firmness (FF) at harvest and after storage. In the seventeen 
genotypes the mean FF at harvest was 32.47 N. Specifically the least FF at harvest (17.51 N) was 
recorded for genotype BC68, while the most FF (51.16 N) was documented on behalf of genotype 
BC11. Mean FF at harvest (32.47 N) was lower than mean FF at storage (33.06 N) in the seventeen 
genotypes. Mean SSC at harvest was 9.3 oBrix (7.7 in BC 58 to 11.1 oBrix in BC 48). Within the stored 
peaches, mean SSC in no inoculated was 8.7 oBrix, while in inoculated it was 8.3 oBrix. After storage 
significant differences were found in SSC among the 17 selected genotypes.  

There were also marked variability in pH (3.62 – 4.17), TA (0.40 – 0.60 %) and RI (12.68 – 21.20). As 
shown in Table 2, most of the physicochemical traits indicated positive and significant correlations 
among them. Harvest date (HD) correlated positively and significantly with FW, FF, SSC pH and RI. The 
FW correlated positively and significantly with FF and SSC (at harvest, inoculated and at storage), and 
pH and RI. The fruit firmness (FF) and SSC, at harvest, highly correlated with both parameters at 
storage. 
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Table IV-2: Pearson’s correlations (parametric test) within pairs of fruit quality traits in ‘B9’ × ‘CP’ population studied during three years (2013-2015). 
 FW FF 

at 
harvest 

FF 
no 

inoculated 

FF 
inoculated 

SSC 
at harvest 

SSC 
no 

inoculated 

SSC 
inoculated 

pH TA RI 

HD (JDs) 0.554** 0.602** 0.385* 0.552** 0.677** 0.630** 0.687** 0.759** 0.092 0.497** 
FW  0.220* 0.200* 0.319** 0.334** 0.463** 0.445** 0.464** 0.167 0.421** 
FF at harvest   0.833** 0.800** 0.418** 0.514** 0.363** 0.316** 0.261* 0.115 
FF no-inoculated    0.837** 0.367** 0.547** 0.386** 0.369** 0.245* 0.175 
FF inoculated     0.391** 0.562** 0.407** 0.415** 0.260* 0.173 
SSC at harvest      0.786** 0.829** 0.667** 0.174 0.586** 
SSC no-inoculated       0.810** 0.667** 0.133 0.518** 
SSC inoculated        0.696** 0.199 0.514** 
**Correlations significant at P ≤ 0.01, N = 138 
Abbreviations: HD, harvest date; JDs, Julian days; FW, fruit weight; FF, fruit firmness; SSC, soluble solids content; TA, titratable acidity; RI, ripening index (SSC/TA) 
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IV-3.3. Effect of antioxidant compound contents 
Table III-3 shows contents for all antioxidant compounds (ascorbic acid, total phenolic, flavonoid, and 

anthocyanin) in the flesh of 17 genotypes evaluated in 2014 and 2015. In addition, we have included as 
preliminary results the content of these compounds in the peel measured in 2015 to find any compound 
associated with the tolerance to M. laxa (Table III-4). Significant differences among genotypes were 
found for all antioxidant contents either in flesh or peel tissues. 
 

Table IV-3: Antioxidant compound contents in the flesh of the 17 genotypes of ‘B9’ × ‘CP’ population evaluated 
for two years (2014 - 2015). Data are mean ± SE. In bold are tolerant genotypes 

Genotype Ascorbic acid (mg of 
AsA/100 g of FW) 

Total phenolics 
(mg of GAE/100 g of 

FW)1 

Flavonoids 
(mg of CE/100 g of 

FW) 

Anthocyanins 
(mg of C3GE/100 g of 

FW) 
BC1 9.19 ± 3.3       d 49.78 ± 2.3   bcde 17.99 ± 1.8 abc  0.13 ± 0.0 a 
BC11 4.41 ± 0.3 abc 61.71 ± 3.3         e 33.49 ± 7.6       d 0.16 ± 0.0 ab 
BC19 7.89 ± 0.5     cd 48.91 ± 6.4 abcde 24.46 ± 1.1 abcd 0.14 ± 0.0 a  
BC24 7.74 ± 1.4     cd 56.06 ± 4.8     cde 35.09 ± 3.5       d 0.17 ± 0.0 ab  
BC44 6.12 ± 0.7 abcd 34.04 ± 2.4 abc 12.08 ± 1.2 ab 0.09 ± 0.0 a  
BC48 5.22 ± 0.5 abc 47.82 ± 2.0 abcde 17.69 ± 1.5 abc 0.09 ± 0.0 a 
BC51 3.64 ± 0.9 ab  60.07 ± 3.7       de 35.45 ± 6.9       d 0.15 ± 0.0 ab 
BC53 6.47 ± 0.9   bcd 28.30 ± 2.4 ab 10.02 ± 1.9 a 0.17 ± 0.0 ab 
BC57 2.76 ± 0.3 a  37.31 ±1.2 abcd 10.96 ± 0.6 ab 0.16 ± 0.0 ab 
BC58 3.16 ± 0.2 ab  42.84 ± 3.1 abcde 17.48 ± 2.9 abc 0.22 ± 0.0 ab 
BC59 5.69 ± 1.3 abc 46.57 ± 7.2 abcde 25.86 ± 9.9   bcd 0.10 ± 0.0 a 
BC60 5.25 ± 1.0 abc  27.49 ± 3.3 a 09.95 ± 3.0 a 0.29 ± 0.1  bc 
BC61 6.36 ± 0.4   bcd 42.35 ± 5.1 abcde 13.44 ± 2.1 ab  0.20 ± 0.0 ab  
BC63 2.55 ± 0.4 a 50.09 ± 6.9 abcde 29.04 ± 8.7     cd  0.16 ± 0.0 ab 
BC66 3.86 ± 0.6 ab 41.32 ± 4.0 abcde 19.04 ± 1.4 abc 0.12 ± 0.0 a 
BC67 4.88 ± 1.9 abc 49.40 ± 2.1  bcde 19.09 ± 2.2 abc 0.16 ± 0.0 ab 
BC68 4.66 ± 0.3 abc 40.10 ± 3.5 abcde 09.57 ± 0.7 a 0.40 ± 0.1     c 

Abbreviations: AsA, ascorbic acid; GAE, gallic acid equivalents; CE, catechin equivalents; C3GE 
cyaniding-3-glucoside equivalents 1Different letters show significant differences among genotypes  
The Ascorbic acid (AsA) content in flesh ranged from 2.55 to 9.19 mg of AsA/100 g of FW TPC ranged 

from 27.49 to 61.71 mg of GAE/100 g of FW) among the selected 17 genotypes Flavonoids contents 
varied from 9.57 to 35.45 mg of CE/100 g of FW. Regarding anthocyanins, particularly in fruit flesh, the 
variation was from 0.09 to 0.40 mg of C3GE/100 g of FW. Furthermore, in peel a wide range of 
antioxidant contents was found in the seventeen studied genotypes.  

In general, vitamin C, TPC and flavonoid contents were higher in peel than in the flesh. Contents for 
TPC in BC67, ascorbic and anthocyanins in BC1 and BC67 contained significantly higher values comparing 
with the other genotypes. Flavonoid contents were not significantly different in the tolerant compared 
to non-tolerant genotypes. As shown in Table 4, the ascorbic acid (AsA) content in peel of the 17 
genotypes ranged from 5.89 to 16.29 mg of AsA/100 g of FW. 
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Table IV-4: Antioxidant compound contents in the peel of the 17 genotypes of ‘B9’ × ‘CP’ evaluated in 2015. 
Data are mean ± SE of 10 fruits per genotype 

Genotype Ascorbic acid 
(mg AsA/100 g FW) 

Total phenolics 
(mg GAE/100 g FW) 

Flavonoids 
(mg CE/100 g FW) 

Anthocyanins 
(mg C3GE/100 g FW) 

BC1 15.48 ± 0.7         e 153.54 ± 1.1        hi 96.42 ± 2.7         fg 9.66 ± 0.1             i 
BC11 9.01 ± 0.7   abcd 158.92 ± 5.0         ij 106.18 ± 3.4         g 4.17 ± 0.0     e 
BC19 9.24 ± 0.9   abcd 112.17 ± 1.2  bcd     75.70 ± 4.5      de 6.00 ± 0.2      f 
BC24 8.45 ± 0.5   abcd 168.24 ± 2.8          j 128.13 ± 2.4         h 0.62 ± 0.0 a 
BC44 10.58 ± 0.4  bcd 116.81 ± 1.1   cde 67.74 ± 0.4    cd 2.42 ± 0.0   c 
BC48 9.87 ± 0.6    bcd 141.01 ± 7.5       gh 74.25 ± 6.7      de 5.99 ± 0.1      f 
BC51 8.12 ± 0.4   abcd 150.15 ± 6.7        hi 142.04 ± 5.4         hi 2.81 ± 0.0    d 
BC53 11.10 ± 0.9     cd  89.98 ± 3.2 a 50.00 ± 0.8  b 4.36 ± 0.1     e 
BC57 7.37 ± 0.7   abc 123.00 ± 2.4    de 61.69 ± 7.6  bcd 1.69 ± 0.0  b 
BC58 10.89 ± 0.1     cd 128.13 ± 5.2     ef  86.47 ± 6.6       ef 8.26 ± 0.2        h 
BC59 9.48 ± 0.1    abcd 144.07 ± 3.0       gh 132.70 ± 1.3          h 2.17 ± 0.0   c 
BC60 11.31 ± 0.2       d 106.19 ± 4.5 ab 56.30 ± 7.5  bc 6.94 ± 0.2       g 
BC61 8.45 ± 0.3   abcd 135.70 ± 3.1      fg 105.45 ± 5.5         g 2.94 ± 0.0    d 
BC63 5.89 ± 0.3   a 115.61 ± 3.8  bcde 88.72 ± 1.4       ef 4.28 ± 0.1     e 
BC66 08.42 ± 0.3 abcd 103.73 ± 2.7  b 74.16 ± 1.0      de 0.68 ± 0.0 a 
BC67 16.29 ± 1.1          e 189.43 ± 5.7           k 148.61 ± 3.4          i 12.94 ± 0.2          j 
BC68 6.77 ± 0.1   ab 148.59 ± 2.5        hi 36.54 ± 6.9    a 2.18 ± 0.0   c 

Abbreviations: AsA, ascorbic acid; GAE, gallic acid equivalents; CE, catechin equivalents; C3GE, 
Cyaniding-3-glucoside equivalents.   
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IV-4. Discussion 
Within the phytopathogenic activities in fruits, we have found that genotypes with smaller diameter 

of the fungus injury correspond to the smaller diameter of colonization. In addition, these genotypes are 
also associated with a lower incidence, that is, a lower percentage of damaged fruits (susceptibility). 
The annual disparity found in the genotypes response to brown rot after inoculation may be due to 
different levels of cuticular cracking or fractures as other authors have reported for stone fruits (Gradziel 
et al., 2003; Kappel and Sholberg 2008).  

Cuticular cracks are considered as preferential entry spots for fungi pathogens of the Monilinia 
species (Gibert et al., 2007) and incidence of fruit infection increased with increasing surface area of 
fruit cuticular cracks (Borve et al.,2000; Gibert et al., 2009). 
In this experiment fruits were not wounded before they were inoculated; therefore, the brown rot 
pathogen would require naturally occurring wounds or micro-cracks in the cuticle to gain entry into the 
fruit (Oliveira-Lino et al., 2016). Secondly since we used a uniform quantity of artificial inoculum density 
throughout our experiment the yearly variation would be attributed to the natural differences in surface 
cuticular cracks. Gradziel et al., (2003) reported that cuticular and epicuticular waxes of peaches were 
influenced by the environment during the growing season. Ágreda, (2016) has also reported yearly 
variation in the in-vitro infection of brown rot in another peach population evaluated under the same 
conditions. 

In the scrutiny of the brown rot tolerance along three years, the seventeen genotypes showed a wide 
range of variability in most of the pathogenic parameters studied (Supplementary Table III-1). The 
lowest BRI (73.3 %) and colonization (51.7%) occurred in genotype BC67, while the lowest LD (41.98 
mm), LS (31.75 mm), CE (39.05 mm) and CS (21.75 mm) were observed in genotype BC58. The highest 
values for brown rot incidence (BRI, 100%) occurred in four different genotypes (BCs:11, 24, 61 and 66), 
for LD (52.34 mm), LS (50.27 mm) and CS (42.51 mm) highest values were recorded in BC11, while for 
colonization (91.7%) and CE (49.47 mm) were observed in BC61 and BC60 genotypes, respectively. 
Consequently, the level of susceptibility to brown rot depends largely on peach genotype (Gradziel, 
1994).  

The positive and significant correlation between pairs of pathological traits in our study is rather a 
typical trend. This undoubtedly inclines to indicate that the level of infection significantly influenced the 
lesion diameter and colonization extent including severities in the diseased situation (Michailides et al., 
2000). Thus, lesion and colonization are usually two associated brown rot parameters evaluating brown 
rot tolerance in peach. Susceptibility information from the two traits is important in the evaluation for 
tolerance considering their genetic and pathogenic points of view, respectively (Xu et al., 2008; Burnett 
et al., 2010). 

Considering the physicochemical variables, the observations in harvest date (HD) of our work are in 
agreement with the report of Giménez, (2013) within the entire population which was harvested during 
2009, 2010 and 2011 between 163 to 248 JDs. And considering the fact that we obtained infection in all 
the sixty eight genotypes spread between late June and middle of August it tends to suggest, therefore, 
that peach susceptibility to brown rot of M. laxa occur even in early or late harvest season (Obi et al., 
2017). Though when fruits are harvested late they are sweeter, larger, and have higher total phenolic, 
flavonoids and total sugar concentration (Font i Forcada et al., 2013), both very early-maturing, as well 
as very late-maturing peach genotypes are of significant interest for the peach industry, particularly, in 
the Mediterranean area (Cantín et al., 2010). The fruit weight (FW) range of 143 g and 241 g obtained in 
the 17 genotypes is similar to the range reported, in the same population, by Giménez (2013). 
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Though mean FF at harvest (32.47 N) was lower than mean FF at storage (33.06 N) in the 17 
genotypes, there was no significant differences, indicating that the incubation conditions did not affect 
fruit firmness (data not showed). On the contrary, there was a significant decrease (P ≤ 0.05) at storage 
in FF no-inoculated (33.06 N) vs FF inoculated (30.49 N), indicating that fruit firmness in inoculated fruit 
is due to the activity of M. laxa and that may have affected the surrounding tissues. Our findings may 
explain the observation of Yaghmour et al., (2011) that found more severity as the state of FF decreases. 
Our analysis revealed a broad range of FF of 17.51 to 47.51 N within the genotypes with LS below 40 
mm, indicating that brown rot is not dependent on fruit firmness.  

Our study also revealed that there is loss in SSC as fruit is stored, inoculated or no inoculated, from 
harvest. In the seventeen peach genotypes mean SSC at harvest was 9.3 oBrix which ranged from 7.7 in 
BC 58 to 11.1 oBrix in BC 48. Within the stored peaches, mean SSC in fruits no inoculated was 8.7 oBrix, 
while in inoculated was 8.3 oBrix. After storage significant differences were found in SSC among the 17 
selected genotypes. The fact that we have found significant differences in SSC at harvest (9.3 oBrix) vs 
SSC after storage (8.5 oBrix) (P ≤ 0.001) indicates that the decrease in SSC might be due to the effect of 
storage including the pathogenic activities of the fungus on the inoculated host. We can speculate with 
our results that in inoculated fruit that SSC influences pathogenic activities of M. laxa in peach inferring 
that as the pathogen preys on the host, the interaction leads to the depletion of SSC as sugars are used 
for its mycelia biosynthesis, growth and development. There were significant differences (P ≤ 0.001) in 
SSC mean of the seventeen genotypes in 2014 (8.2 oBrix) comparing to 2013 (8.9 oBrix) and 2015 (8.8 
oBrix), but any difference between 2013 and 2015. This indicates that SSC were significantly lower in 
fruits with less pathogenic damage in the population.  

Concisely, our findings in the effect of storage and inoculation on fruit properties are in agreement 
with the reports of Biggs and Miller (2004) that showed positive correlations between Botryosphaeria 
dothidea pathogen activity and sugar content. However, under storage, SSC in inoculated peach 
presented an inverse significant correlation with CE, LD and LS (r = - 0.273, P ≤ 0.01 and r = - 0.236, P ≤ 
0.01; r = - 0.178, P ≤ 0.05, respectively), which is in concordance with Gradziel (1994) that associated less 
susceptibility to brown rot with high SSC content as the peach fruit ripens.  

In relation to disease parameters with FF within the seventeen genotypes, BC58 at harvest recorded 
one of the lowest FF (23.79 N) was associated with the lowest disease parameters in LD (41.98 mm), LS 
(31.75 mm), CE (39.05 mm) and CS (21.75 mm), while genotype BC11 recorded the highest FF at harvest 
(51.16 N) and the highest disease parameters in LS (50.27 mm) and CS (42.51 mm). However, genotype 
BC44 which demonstrated FF of 20.35 N) did not correspond to tolerant or susceptible genotype (LS = 
43.64 mm and CS = 34.96 mm).  

Hence, state of FF, especially at harvest, does not seem to influence brown rot development 
significantly. In the same manner the genotype BC58 which registered the least SSC at harvest (7.7 oBrix) 
was associated with the lowest disease parameters as well as the other genotype BC67 (6.9 oBrix), 
however, the genotype BC48 with the highest SSC (11.1 oBrix) reflected low damage too. Other 
genotypes with intermediate SSC content at harvest as BC 44 (9.8 oBrix) showed the highest brown rot 
severities. 

In furtherance, the positive and significant correlation of HD with FW, FF, SSC and pH in our test is 
compatible with the report by other authors (Cantín et al., 2010; Giménez, 2013; Font et al., 2014; 
Ágreda, 2016). The correlation found in FF and SSC at harvest with same parameters after storage (r = 
0.418, P ≤ 0.01) is similar to the report of Giménez (2013) (r = 0.226, P ≤ 0.01) studying one hundred 
progenies of the same population. The positive association between FF and SSC in the tolerant 
genotypes is important since the selection of genotypes with high SSC will aim first at higher firmness 
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and second lower susceptibility to pathogen predisposing mechanical damage during handling and 
package (Crisosto et al., 2001).  

The variation of pH from 3.62 to 3.89, in our six tolerant genotypes, indicates values of normal acidity 
fruits since pH lower than 4.0 at maturity are considered as acidic (Abidi et al., 2015). The inverse and 
significant correlations found between pH and TA (r = - 0.327, P ≤ 0.01) and TA vs RI (r = - 0.665, P ≤ 
0.01), are similar to the report by other authors (Giménez, 2013; Abidi et al., 2015). We have observed 
in previous experiments that the pH of the fruit increased with progress in fruit maturity while the 
titarable acidity (TA) decreased (Obi et al., 2018). These parameters can be important since it has been 
reported that acidity preserve fruits from pathologic damage (Hajilou and Fakhimrezaei 2011; Cropotova 
et al., 2013; Tarabih and El-Metwally, 2014). 

Regarding the bioactive compounds, ascorbic acid (AsA) content in flesh ranged from 2.55 to 9.19 mg 
of AsA/100 g of FW as reported by Giménez, (2013) in the same population. However, the total phenolic 
content (27.49 to 61.71 mg of GAE/100 g of FW) among the selected 17 genotypes was over the range 
found by Giménez, [(2013) (11.22 to 37.42 mg of GAE/100 g of FW)] in the same progeny studied during 
three years (2009-2011). The differences found here can be due to the screening of genotypes with LS 
lower than 40 mm. Concerning flavonoids contents varied from 9.57 to 35.45 mg of CE/100 g of FW, 
being also higher than those obtained in previous studies in different peach progenies by Giménez, 
2013, (1.6 to 13.7 mg of CE/100 g of FW); Abidi et al., 2015, (2.3 to 18.0 mg of CE/100 g of FW) and 
Ágreda (2015) (3.79 to 27.63 mg of CE/100 g of FW). Regarding anthocyanins, particularly in fruit flesh, 
the variation was from 0.09 to 0.40 mg of C3GE/100 g of. These values were below those reported by 
other authors [(0.7 to 12 mg of C3GE/100 g of FW) in a broad germplasm collection (Font i Forcada et 
al., 2013); (0.23 - 11.83 mg of C3GE/100 g of FW), in the same progeny (Giménez, 2013)]. The 
differences can be due to the flesh-colorless of these seventeen ‘B9’ × ‘CP’ genotypes and / or for the 
different method used for the quantification.  

Furthermore, in peel a wide range of antioxidant contents was found in the seventeen studied 
genotypes. In general vitamin C, total phenolic and flavonoid contents were higher in peel than contents 
found in the flesh in agreement with previous reports (Ágreda, 2016; Saidani et al., 2017). We have 
found around 65% of vitamin C, 75% of total phenolics, 81% of flavonoid and 96% of anthocyanin 
contents are concentrated in peel in our progeny. Contents for total phenolics in BC67, ascorbic and 
anthocyanins in BC1 and BC67 contained significantly higher values comparing with the other 
genotypes. However, flavonoid contents were not significantly different in the tolerant compared to 
non-tolerant genotypes.  

As shown in Table III-4, the ascorbic acid (AsA) content in peel of the 17 genotypes ranged from 5.89 
to 16.29 mg of AsA/100 g of FW, as other investigators have recently reported (Ágreda, 2016; Saidani et 
al., 2017). The content of anthocyanins from 0.62 to 12.94 mg of C3GE/100 g of FW in peel tissue of the 
17 selected genotypes reveals that most of the tolerant genotypes had 27-81 times higher contents of 
anthocyanins in peel compared to the flesh. These values are in agreement with previous reports (Prior 
et al., 1998; Gil et al., 2002; Saidani et al., 2017) inferring and supporting that anthocyanins are 
concentrated more in fruit peel than in the flesh.  

Unequal distribution of vitamin C, total phenolic in flesh (≈ 25-30 %) and peel (≈ 65-70%) of peach 
has also been documented (Ágreda, 2016; Saidani et al., 2017). Of great significance, therefore, is that 
high content of these bioactive compounds in peel help the fruit to resist the forces of abiotic stress 
(Cantín et al., 2009), whose activities often predispose peach fruits to biotic inversion. And even directly 
fruit peel has been extensively indicated as an important broad range resistance source against 
opportunistic pathogens such as Monilinia spp. (Pacheco et al., 2014).  
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Interestingly, pathologic variables, brown rot incidence and colonization (%BRI, %C) and lesion and 
colonization severities (LS, CS) correlated inversely with peel anthocyanin contents (r = - 0.551, r = - 
0.552, r = - 0.481, r = - 0.491, P ≤ 0.05 respectively (Figure III-2). However, only %BRI negatively 
correlated with anthocyanin content from fruit flesh (r = - 0.219, P ≤ 0.05).  

Anthocyanin is the most common pigment in nature (Khoddami et al., 2013), a phytochemical that 
gives plants their colour and protects tissues from oxidative abiotic stress, which invariably extends the 
life span of the plant organ. Hence it is found more concentrated in the skin portion of fruit, particularly 
near maturity (Prior et al., 1998) for protective barrier against potential phytopathogenic invaders and 
that, in our genotypes, could be an advantage to tolerance.  
 

Figure IV-2: Correlation between lesion and colonization severities and peel anthocyanin-content in the 17 (B9 × 
CP) genotypes evaluated for 2015. N = 17. 
 

Nevertheless, it was only TPC from flesh that correlated inversely and significantly in this progeny 
with LD, LS and CE (r = - 0.282, r = - 0.279, and r = - 0.225, all at P ≤ 0.05, respectively) as found by 
Ágreda (2016). Other authors also have reported significant inverse correlation between phenolic acids 
and BRI in peach and nectarine cultivars (Villarino et al., 2011). Apparently high contents of antioxidants 
tend to influence brown rot negatively by reducing pathogenic activities; however, in this work the 
genotypes with LS < 40 mm were not those with the highest TPC content and vice-versa. In particular, 
major phenolic acids, such as chlorogenic and neochlorogenic acids (Villarino et al., 2011) of high and 
potent antioxidant properties (Dai and Mumper, 2010; Khoddami et al., 2013), may protect the plant 
and plant materials against fungi and other phytopathogenic organisms (Prasad et al., 2014; Spadoni et 
al., 2014).  

However, at harvest fruit phenolic contents has decreased and their effectiveness to control brown 
rot infection can vary with peach cultivar (Obi et al., 2018; Cindi et al., 2016). 
Pearson’s correlation coefficients among bioactive compounds were between 0.790 and 0.506. TPC 
flesh correlated positively and significantly with flesh and peel flavonoids (r = 0.790, r = 0.718, 
respectively) all at P ≤ 0.01. Moreover, TPC and flavonoid contents in peel were also highly correlated (r 
= 0.722, P ≤ 0.01). The results found in this progeny were in agreement with studies carried out 
previously in this o other progenies or peach germplasm (Giménez 2013; Font et al., 2014; Abidi et al., 
2015). Furthermore, Ágreda, (2016), Saidani et al., (2017) found flesh ascorbic positively and 
significantly correlated with peel anthocyanin (r = 0.797, P ≤ 0.01), and Obi et al., (2017) found flesh 
ascorbic negatively and significantly correlated with disease incidence. This sort of high association 
found in this study within the biochemical compound implies that they are important antioxidant 
phytochemicals acting in coordination inducing tolerance to brown rot in peach but further studies need 
to be done in order to determine this. 
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Infection or incidence, sporulation and dissemination make up the three major components of a 
fungal pathogen life cycle in a disease situation (Agrios, 2005) From the genetic point of view, lesion 
severity is a good parameter to consider in selection for breeding because though there is damage from 
the fungi, dispersion of pathogen is limited due to lack of sporulation in the incidence. But from the 
pathogen point of view colonization severity is a better option to be considered because there is the 
possibility of sporulation due to colonization which leads to spore dispersion within the environment for 
further damage. 
 
IV-5. Conclusions 

The selection of genotypes with bioactive contents in peach breeding in combination with brown rot 
tolerance may avoid dramatic consequences in commodities safe alternative to control measures. Based 
on our three years screening protocol, we have found phenotypic differences in susceptibility to brown 
rot caused by Monilinia laxa in the population ‘Babygold 9’ × ‘Crown Princess’. Furthermore, we have 
found fruit firmness decreases due to 5 days of storage and to the activity of M. laxa in the surrounding 
tissues.  

It was possible to identify and select six genotypes (BC1, BC48, BC58, BC63, BC67, and BC68) of low 
brown rot susceptibility and high fruit quality in the germplasm of the Experimental Station of Aula Dei-
CSIC. Though we have found genotypes that possess bioactive compounds as total phenolic, ascorbic 
acids, flavonoids and anthocyanin compounds associated to potential brown rot tolerance, not all the 
genotypes with lesion severity less than 40 mm contained the highest bioactive contents. BC1 and BC67 
had significantly higher contents for ascorbic, total phenolics and anthocyanins. However, flavonoid 
contents were not significantly different in the tolerant compared to non-tolerant genotypes. The 
inverse correlations observed between anthocyanin and brown rot severity highlight their potential 
influence on susceptibility to M. laxa. This interaction is of paramount importance to be considered in 
the current breeding programs to select cultivars with bioactive compound contents, health-enhancing 
properties and good postharvest performance. 
 
IV-6. Abbreviations used 
B9 × CP (‘Babygold 9’ × ‘Crown Princess’); %BRI (percentage brown rot incidence); BR (brown rot); LD 
(lesion diameter); CE (colonization extent); LS (lesion severity); CS (colonization severity); %C 
(percentage colonization); HD (harvest date); FW (fruit weight); FF (fruit firmness); SSC (soluble solids 
content); TA (titarable acidity); RI (ripening index); Vit. C (vitamin C); TPC (total phenolic content); JDs 
(Julian days; Vs (versus); A × C (‘Andross’ × ‘Calante’); MS (master of science); TFM (trabajo fin de 
máster). 
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General discussion 

The use of tolerant cultivars in plant breeding is topmost in the principle of crop protection and 
improvement (Gell et al., 2007 a), as plants and plant products are usually secured (prophylactic) and, 
often, not cured of diseases (chemotherapeutic). Consequently, host tolerance to plant pathogens is 
cost effective and environmentally safe strategy for disease management (Gradziel, 2003 a; Martínez-
Gómez et al., 2005). Peach [Prunus persica (L.) Batsch] is third most important global tree crops after 
apples and pears within the economically important Rosaceae family (Obi, et al., 2017). Its production 
and commercialization is often hindered by the activities of brown rot or moniliosis (Oliveira-Lino et al., 
2016) caused by Monilinia species which includes: M. laxa (Aderhold and Ruhland) Honey, M. fructigena 
(Honey), M. fructicola (G. Winter) and M. polystroma (G. Leeuwen) (EPPO, 2009; Jansch et al., 2012). In 
Spain, M. laxa is one of the principal species against successful production of peach (Villarino et al., 
2012). Damage of 59-100% after harvest is reported (Casal et al., 2010 a; Villarino et al., 2012). And due 
to its high incidence in Spain, numerous control measures, both in the plot (pre-harvest), and during the 
shelf-marketing (post-harvest) stages have been employed. 

In summary, we have made observations that commercial peach fruits are highly susceptible to 
brown rot disease in our Mediterranean conditions. We have also observed an enhanced stricter 
regulation of fungicide use in EU countries, in recent times (Oliveira-Lino, 2016) due to rising concern 
about the effects of biochemical fungicides on the environment (Thomidis and Exadaktylou, 2010), and 
strain fungicide resistance (Egüen et al., 2015). These justify new alternatives of host resistance, among 
the most cost effective and environmentally safe strategies to be pursued for disease control in peach 
farming. To breed new peach crops more tolerant to brown rot than the present cultivars would involve 
the possibility of increasing the general level of tolerance to brown rot by crossing tolerant cultivars and 
followed by recurrent selection in progeny. Lasting prophylactic treatment of peach, using M. laxa 
tolerant cultivars means prevention of the pathogenic problems from the orchard. This will enhance 
good harvest and zero disease problem in storage leading to better economic benefit. Therefore, in this 
thesis, we aimed at, and evaluated for phenotypic tolerance to brown rot (Monilinia laxa) disease in the 
peach breeding program of the Experimental Research Station of Aula Dei-CSIC, Zaragoza, Spain, a 
novelty of being the first of its kind in this station. This thesis was organized in a series of four papers 
that are discussed below. 
 
Optimizing protocols to evaluate brown rot of Monilinia laxa susceptibility in peach fruits 

In the first paper, we have modified the existing methods in order to screen a large peach 
germplasm, of the estacion experimental de Aula Dei -CSIC, for tolerance to brown rot of Monilinia laxa. 
Incubation factors as temperature (20-26 °C), relative humidity (40-60%) and 12 h photoperiod 
enhanced colonization and sporulation for substantial conidia production. We have found that the 
peculiar lighting source (mixture of two fluorescent lighting systems, Sylvania Gro-Lux, F36W / GRO and 
Ogram Daylight, F36W / 840DL) was positive to obtain enough inoculum in a short period of time. We 
have also found that artificial injury ensured adequate and prompt infection of host (Casals et al., 2010 
a; de Cal et al., 2013). Fruit injury encouraged short period of incubation making available inoculum 
source within 3 days post inoculation and avoiding cross-contamination of other fungi such as Botrytis 
and Rhizopus species. Moreover, the purity of inoculum load was ensured with this method because 
potential contaminants such as nematodes were avoided during conidia harvest by mildly rubbing over 
the infected regions of the fruit using a sterile dental brush. Initially enough M. laxa inoculum was 
produced from PDA culture incubated (Memmert CO2 incubator INCO, Germany) at least 35 days at 23 
oC in the dark. Nevertheless, we tried to reduce the time to obtain inoculum adapting the methods used 
by Gell et al., (2007 b) and Jansch et al., (2012). They incubated prepared PDA cultures of Monilinia spp. 
in the dark at 20-25 oC for 7 to 10 days for adequate sporulation. But our preliminary trials (data not 
shown) indicated poor inoculum production when incubated in the dark even with more than 6 days of 
incubation at 23 oC. Finally, we have assured effective inoculum in 4 to 6 days after incubation of 
inoculated peaches under at temperature (20-26 oC), relative humidity (40-60%) and 12 h photoperiod. 
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Furthermore, the composition of inoculum for susceptibility screening could involve one pathogenic 
strain (Gradziel and Wang, 1993) or two or more pathogenic isolates pooled (Biggs and Miller, 2005) to 
enhance pathogen virulence. A monostrain isolate was used in our study because our inoculum source 
was tested for stable virulence and was stable enough to initiate pathogenesis without need for strain 
synergism. We established effective inoculum density of 25 x 103 mL-1 with inoculating load of 625 
spores per fruit. Pascal et al., (1994) though employed a monostrain isolate but higher loading of 20,000 
spores / fruit that may be less sustainable. 

We have evaluated 20 fruits per genotype as enough sample size to assess representative evaluation 
considering the large population involved in plant breeding. The number of samples used to evaluate 
disease tolerance against brown rot in stone fruit varies among researchers from 10 peaches per 
genotype (Gradziel and Wang, 1993) to 30 fruits in apricot, plum and peach (Pascal et al., 1994). 
Moreover, the preference for the ex-situ evaluation is that the methodology enables for effective and 
efficient handling of large population and sample material. The ex-situ system also enables for thorough 
selection of healthy fruits and disinfection from insects and potential contaminants. Also essential is that 
direct influence such as variation in temperature, precipitation and relative humidity are avoidable 
environmental factors when screening, for brown rot tolerance, under a controlled environment. The 
germination and other pathogenic activities of conidia are markedly influenced by the interaction of the 
above mentioned factors (Xu et al., 2001; Casals et al., 2010 b). 

The 3_(A×C) genotype, and ‘Big Top’, ‘Venus’ and ‘Calante’ cultivars exhibited brown rot severity 
(BRS) lower than 40 mm. Paunovic and Paunovic, (1996) have reported similar susceptibility values in 
peach germplasm in Yugoslavia. However, their investigation was done in-situ involving five pathogens 
(M. laxa, M. fructicola, Sphaerotheca pannosa, Tapharina deformans and Sharka virus). 

Brown rot incidence (% BRI) showed positive and significant correlations with all pathologically 
associated factors (LS, CE and CS). This indicates that the level or frequency of infection will always and 
significantly influence the lesion diameter and extent of colonization including severities in a disease 
situation. Also harvest date showed a positive and significant correlation with % BRI, LS and CS. Inferring 
that genotypes that mature later generally tended to have bigger lesions and would be less tolerant to 
fungal pathogen. This is the first time to find that the pathological parameters correlate, positively, with 
Julian days. 

There was a particular interest on the ‘Calante’ cultivar which, though produced lesion, was devoid of 
colonization (sporulation), an important factor in disease spread. This feat is biologically and 
epidemiologically an advantage for plant breeding. Its high level of tolerance may be related to a late 
harvest or to the agronomical practices performed in Alcañiz. In these orchards, due to the singularity of 
this late cultivar harvested in October, fruits are protected to pathogen injuries using paper bags. Other 
authors have found annual variation for brown rot infection in ‘Calante’ (Obi et al., 2015; Ágreda et al., 
2016). It was described that colonization in nectarines and peaches fruit infected by Monilinia spp. could 
be associated with the local acidification of the host tissue (de Cal et al., 2013) and that acidic 
environment can prevent brown rot colonization on peach (Bonaterra et al., 2003), however, it is not 
the explanation for our results since the fruit has at maturity the same pH or acidity year by year. Other 
uncontrolled factors such as environmental instead of genetic may be responsible for non-colonization 
in ‘Calante’ harvested in the 2012. Moreover, colonization on host (extensive differentiation of hyphae 
at the surface of host) is not a genetic trait (Giobbe et al., 2007). 

Finally, according to this research, we have not found differences indicating the impact of hairiness 
on susceptibility although other authors have proposed that fruit hairiness could encourage 
susceptibility to disease infection in some stone fruits (Wade and Cruickshank, 1992; Xu et al., 2007; 



127 
 

Garcia-Benitez et al., 2016). In our plant material using this protocol we have demonstrated a relatively 
similar degree of tolerance / susceptibility between peach and nectarine fruits. An example are the low 
levels of Monilinia laxa incidence registered with the ‘Venus’ nectarine and 3_(A x C) peach genotype or 
the lower LS found in ‘Venus’ in comparison with the rest of the cultivars. 
 
Effects of Acidity (pH and TA) on the growth and development of Monilinia laxa  

In the second paper, we have focused on the resultant effect of host pathogen interaction, in vitro 
and in vivo, specifically implicating acidity (pH and TA). There is an ample influence of pH and titratable 
acidity (TA) in the solid PDA and the peach cultivars inhibiting the growth of the M. laxa. According to 
Tutu and Ciornea, (2011) pathogen host interaction involves the process of nutrition which leads to 
either the growth / reproduction or the inhibition of activity and the inactivation of the pathogen as a 
result of available acidity factors. In the pH-amended PDA there was no effective pathogen growth / 
development under a high acidic condition. Similarly, M. laxa developed no infection in the fruit until 
commercial maturity at pH 4.19 ± 0.10. This is relatively a moderate state of non-acidity in the fruit. 
Previously, peach fruits with a non-acid character have been characterized at maturity by a pH higher 
than 4.0 (Dirlewanger et al., 1999). 

Mycelia growth (colonization) and sporulation are the most accurate variables used in plant 
pathology to effectively compute the degree of disease development (Douds, 1994; Gigot et al., 2009; 
Miles et al., 2009; Burnett et al., 2010; Obi et al., 2017). Consequently, determining the influence of pH 
and TA on the subsistence and development of M. laxa, at both in-vitro and in-vivo levels, is an avenue 
to understanding the epidemiology of brown rot and subsequent development of disease management 
strategies to effectively combat the problem (Tian and Bertolini, 1999; Hong et al., 2000).  

Sporulation itself is a function of colonization (Douds, 1994). Colonization concerns dimension (size 
or area) occupied by infection while sporulation deals with population (conidia or spores) involved in an 
occupied or diseased area. This implies that sporulation is the subsequent effect of colonization due to 
infection (Xu et al., 2001). However, we have found, according to our results, that high rate of 
colonization did not equate to high rate of sporulation. Hence the extent of lesion or colonization does 
not always equate to the degree of sporulation in a host pathogen interaction but depends on available 
level of acidity as exponent by this experiment.  

For example in our assay the mycelia growth or extent of colonization against pH 6.40 and 5.30 were 
80.61 mm and 77.50 mm producing mean conidia concentration of 60800 and 110800 spores mL-1 
respectively. Though the extent of colonization was higher in pH 6.40 than in pH 5.30 but sporulation 
was found to be higher in pH 5.30 than in pH 6.40 with about 45.13%. This appears to suggest that 
sporulation of M. laxa in a disease situation increases as the pH increase, reaches its maximum still in 
the acidic region and then begins to descend as the pH approaches neutral or the alkaline precinct.  

We are of the view and assertion, therefore, that M. laxa could sporulate at a wide range of pH 
between 3.5 and 9.5 with the optimum between pH 4.5 and 5.5. This is similar to, and in agreement 
with, the results of Agarwal and Sarbhoy, (1978) that acidic pH favours fungi growth with best 
performance within a range of pH 3.5-6.5, and Pascual et al., (1997) that observed pH 4-6 range for 
optimum growth of their working fungal pathogen, Penicillium oxalicum. Furthermore, Amiri et al., 
(2009) found, as most suitable, pH 3.6 to enable selective isolation and enumeration of three Monilinia 
spp. of stone fruits. However, our working pathogen (M. laxa) sporulated best under acidic state at pH 
5.3 while in the work of Pascual et al., (1997), the fungi sporulated best under a neutral / alkaline range 
of pH 7-8. Though, on different fungi from M. laxa, Gupta et al., (2010) observed maximum growth and 
sporulation of F. solani at pH 5.5. Hence M. laxa could be associated with the greater percentage of 
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fungi that grow well in marginally acidic condition. It is equally significant to note here that M. laxa has 
had less attention, notwithstanding the fact that it is as important as M. fructicola and M. fructigena 
especially, in the study of epidemiology and management of brown rot (Rungjindamai et al., 2014). 

The evolution of pH and TA in the growth and development of peach fruit is non-sinusoidal 
waveform, contrasting in beats or waves between them. This is found to corroborate the report of 
Moing et al., (1998). High pH value gives a corresponding lower content in the TA and vice versa. This is 
so obvious, for example, at 208 JDs (77 BBCH scale) of ‘Babygold 9’ where the highest pH peak 
corresponds to the lowest dip in TA value. Also this tends to validate the works of Dirlewanger et al., 
(1999) that TA and pH in peach are negatively correlated, and Lobit et al., (2002) that pH and TA, the 
most common measure of acidity with perceived sourness or sugariness in peach fruit, well correlate 
inversely.  

The non-sinusoidal waveform peak of pH reached by fruits at 208 JDs (77 BBCH scale), which 
corresponds to 136 and 108 days of complete floration and fruit setting respectively, must have 
occurred at the cell expansion phase. In peach fruit there is usually reduction in organic accumulation, 
which results in fruit with lower acidity and higher pH as was determined in our work at 208 JDs (77 
BBCH scale). This tends to support Moing et al., (1998) that such physicochemical activity occurs far 
before reaching ripening. Stages of peach development are considered to occur in four phases which 
includes: fruit set, rapid cell division, cell expansion, and ripening/maturation (Tutu and Ciornea 2011).  

Hence the most resistant period to pathogen infection in peach fruit is during the stages covering pit 
hardening to pre-harvest (Keske et al., 2011). It could, therefore, be inferred that immature peaches are 
very resistant to brown rot because of high levels of acidic pH found in the epidermal cells. This high 
level of pH could have inhibited brown rot incidence at the immature stages in‘Babygold 9’ due to 
acidification activities.  

Gluconic acid has been reported as the main organic acid associated with the enhancement of peach 
acidification in host-pathogen interaction (de Cal et al., 2013). M. laxa colonized the ‘Babygold 9’ at the 
commercial stage of maturity (232 JDs) (79 BBCH scale) when the acidic pH has run down and probably 
aided by local acidification of the host tissue (de Cal et al., 2013). 
It is found worthy to mention, however, that in the inoculation of uninjured ‘Babygold 9’ with the 
normal conidia from immature to mature fruit state, the effects of inoculating with mycelia on both 
injured and uninjured immature fruits were also determined simultaneously. The observations indicate 
that: at 145 JDs (65 BBCH scale) (pH 3.69 ± 0.13) there was no BRI when fruit was inoculated with 25µL 
of 25 x 103 cfu mL-1 spores on artificial injury.  

There was also no BRI in fruits without artificial injury inoculated with 25µL of 25 x 103 cfu mL-1 
spores. There was, however, BRI in the immature fruit with artificial injury inoculated with a 6.5 mm 
mycelia PDA. In addition, at 222 JDs (78 BBCH scale) (pH 3.89 ± 0.11), within the fruit colour break, there 
was no BRI in fruits with intact skin (no artificial injury) when inoculated with a 25µL of 25 x 103 cfu mL-1 
spores. In the contrary, artificially injured fruits showed BRI when inoculated with 25µL of 25 x 103 cfu 
mL-1 spores. 
The significance of these observations is that the degree of susceptibility to infection by Monilinia spp. is 
variable throughout fruit development (Gradziel, 1994; Guidarelli et al., 2014). Our findings support this 
assertion because in our experiment at the early stage of growth and development, immature fruit 
could not exhibit brown rot symptoms when inoculated with conidia, neither through injury site nor on 
intact epidermis, but could only develop infection when inoculated with mycelium in an injury situation. 
Furthermore, at colour-break 222 JDs (78 BBCH scale), peach fruit at pH 3.89 ± 0.11 could develop 
infection with conidia inoculation only through an injury and not possible when there was no injury on 
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the fruit epidermis. Hence skin injury could be responsible for the incident of brown rot on immature 
peach fruits observed in orchards (Northover and Biggs, 1990; Holb, 2004). 

In furtherance, FW at maturity (194.04 ± 1.99) was significantly different (P ≤ 0.05, Duncan test) from 
the rest of the FW at development. Also the pH (4.19 ± 0.10) and TA (0.41 ± 0.01) values at maturity 
were all significantly different from those of the development values. Pearson´s correlation shows 
inverse correlation between pH and all the pathologic activities of peach cultivars at harvest. Harvest 
date (HD) significantly correlated with fruit size (FS) (r = 0.912, P < 0.01); fruit weight (FW) (r = 0.889, P < 
0.01); and pH (r = 0.440, P < 0.01). Also FS significantly correlated with FW (r = 0.980, P < 0.01). There 
was a fair and significant correlation between pH and FW (r = 0.356, P < 0.05). Expectedly, however, pH 
inversely correlated significantly with TA (r = -0.604, p < 0.01). 

Finally while there was a continuous and stable increase in weight of fruit as it develops, the reverse 
was the case in fruit size. There was fluctuation in the size as the fruit developed. Fruit size increased, 
later decreased at a time and finally increased as the fruit developed. The obvious dynamics in pH and 
TA values also occurred when there were clear changes in fruit size and weight evolution. In addition the 
pH 4.19 ± 0.1 at which M. laxa could infect the peach in this work relatively correlate with the range of 
pH (3.5-9.5) in the solid PDA considered to support sporulation in vivo. Hence brown rot infection and 
expression in peach fruit is dependent on the influence of pH and TA as chemical factors and in 
extension upon the stage of the fruit growth (Emery et al., 2000; Holb, 2004; Gell et al., 2009). This study 
encompasses the necessity to know the evolution of fruit maturity in new and old varieties in relation to 
potential Monilinia infection in immature fruits. The knowledge, in addition, could be useful in the 
determination of the presence of pathogen in latent infection within molecular techniques. 

Finally, the study has shown that M. laxa exhibited variation in its growth and sporulation capacities 
on the seven pH amended PDA, preferring relatively moderate acidic conditions for their optimum 
performance. We found, in the in-vitro analysis, that there was mycelia growth in pH from 2.40 to 8.84 
while pH 11.52 did not support any mycelia growth. The pH 5.30 supported the highest sporulation 
while pH 6.40 encouraged the highest colonization extent or mycelia growth. This is in support of the 
findings of Holb, (2004) that the most favorable initial hydrogen-ion concentration for mycelial growth 
occurs between pH 3.5 and 5.5. We found that there was a continuous and stable increase in weight of 
fruit as it develops, the reverse being the case in fruit size. The fruit size increased, decreased at a time 
and finally increased as the fruit develops. The pH dynamics exhibited non-sinusoidal waveform through 
the growth and development of the fruit. In all these physicochemical variations, M. laxa could not 
develop infection or shown any brown rot incidence in the fruit until the period of commercial maturity. 

In conclusion, on the basis of this study it can be concluded that pH and titratable acidity have great 
impacts on the growth activity of M. laxa in a host-pathogen association both in solid PDA substrate and 
in peach fruit growth and development. And as intrinsic organic acids and genetic traits, pH and 
titratable acidity could constitute imperative antibrown rot determining elements to be given adequate 
attention in peach breeding program, as highlighted in this thesis. 

 
The tolerance of commercial peach cultivars to brown rot by Monilinia laxa is modulated by 
its antioxidant content? 

In the third paper, we have studied eight commercial peach cultivars with different fruit 
characteristics and tested their tolerance to brown rot caused by Monilinia laxa after artificial 
inoculation. As it was reported in our previous study, symptoms of infection in peach fruits were only 
developed after inoculation on commercial maturity (Obi et al., 2017, 2018). A similar approach and 
protocols are routinely used to phenotype tolerance to brown rot caused by M. fructicola in peach 
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germplasm (Bostock, 2018). These cultivars based on the pH can be classified as acid (pH˂4) or non-acid 
fruits (pH˃4) (Dirlewanger et al., 1999). However, the range of pH (3.7-4.3) found among cultivars has no 
effect on the in-vivo Monilinia growth. Obi et al., (2018) demonstrated a similar in-vitro mycelial growth 
at these pH ranges. Values found for pH, TA, FF1 and SSC1 were within the range reported in other 
studies in peach germplasm (Abidi et al., 2015; Font i Forcada et al., 2013; Saidani et al., 2017). The 
differences found among cultivars in firmness (FF1) are mainly related to factors, such as harvest date or 
fruit type. Firmness of ripe peaches tended to be higher for the late cultivars as we have found in 
‘Calanda Tardio’ and ‘Calante’ (Iglesias and Echeverria, 2009; Montevecchi et al., 2012). 

Similarly, the content for Ascorbic acid varied widely (from 4.09 in ‘Big Top’ to 14.91 mg/100 g FW in 
‘Andross’) and fell within the ranges previously reported for ascorbic acid in peach pulp (Abidi et al., 
2015; Font i Forcada et al., 2013, Saidani et al., 2017). Regarding NCG and CG acids content, ‘Calanda 
Tardio’ and ‘Calante’ showed the highest levels for both hydroxycinnamic acids. These cultivars also 
showed the highest relative antioxidant capacity (RAC), total polyphenols (TPP), total hydroxycinnamic 
acids (HA) and total flavanols (FA) contents, as reported by previous authors (Saidani et al., 2017) in peel 
and flesh tissue within a parallel study. The wide variation found among these cultivars has been 
attributed specially to seasonal influences. The cultivars late harvested contain higher contents on 
relative antioxidant capacity, flavonoid and TPP than cultivars harvested in earlier season (Saidani et al., 
2017). The levels of antioxidants gradually increases as the harvest date progresses throughout the year. 
This is consistent with the high and positive correlation (p≤0.01) found between harvest date and 
relative antioxidant capacity (r = 0.836), total hydroxycinnamic acids (r = 0.742), total flavanols (r = 
0.874) and total polyphenols (r = 0.761) (Saidani, 2016).  

Based on the results found here, the degree of susceptibility to brown rot on these peach cultivars 
was not associated to the large differences in harvest dates. The cultivars were harvested from mid - 
June to early October but no correlation was found between harvest date and brown rot tolerance as 
was reported before in other peach germplasm (Obi et al., 2017). All pathological traits (brown rot 
incidence, colonization and lesion and colonization severities) were highly correlated among them (Obi 
et al., 2017). After 5 days of incubation no significant differences were found between the soluble solid 
contents (SSC) of control fruits (SSC2=14.0 ºBrix) with inoculated fruits (SSC3 =13.5 ºBrix). Therefore, 
there is no credible evidence that the activities of M. laxa depleted soluble solid contents in the peach 
as it was found previously in other progenies (Obi et al., unpublished results). 

In this work we have showed that only AsA content presented an inverse correlation with lesion 
severity (r = -0.555, p≤0.01). On the contrary, none of the disease parameter correlated with any other 
bioactive compounds, neither the RAC nor NCGA, CGA or TPP. In agreement with these findings, no 
relation was detected between BR resistance to M. fructicola and concentration of phenolic compounds 
in Californian peach germplasm (Gradziel and Wang, 1993). Apparently, phenolic compounds were not 
specifically involved in the cultivar tolerance to BR caused by M. fructicola or M. laxa. Nevertheless, we 
could suggest that a combination of different antioxidant compounds may confer partial immunity as 
was found in ‘Andross’ (this study, Gradziel and Wang, 1993). This cultivar showed the highest level of 
ascorbic acid, high CG acid and moderate levels of RAC that may contribute to its tolerance. ‘Andross’ 
also presented moderate levels of flavonoids and TPC in peel and pulp tissues (Saidani et al., 2017). On 
the contrary, the levels of ascorbic, NCG and CG acids found in ‘Calante’, and the highest contents in 
RAC, NCGA and CGA and TPP found in ‘Calanda Tardio’ cannot explain its susceptibility to brown rot.  

As it was mentioned above, the role of plant phenolic acids in fungal inhibition has been widely 
discussed by several authors (Oliveira-Lino et al., 2016 and references therein). CG and caffeic acids at 
levels similar to or in excess of those in the exocarp of immature resistant fruits did not affect M. 
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fructicola growth (Bostock et al., 1999), however, these acids down regulate cutinase production in M. 
fructicola cultures (Wang et al., 2002) and markedly inhibited the production of the cell wall 
polygalacturonase and cutinase (Lee and Bostock, 2007). In the same direction, Villarino et al., (2011) 
found that NCGA and CGA contents in immature fruits were negatively correlated to BRI and in vitro 
demonstrated that high CGA concentration modified fungal melanin production that might interfere to 
M. laxa penetration. These studies suggested that phenolic acids may suppress the cellular activities in 
the fungal pathogens that may be crucial for its growth and colonization on a host. However, in this 
study the correlation analysis revealed that NCGA and CGA contents or total polyphenols in fruits had 
not effect on fungal lesion after artificial inoculation. In other words, contents of NCG and CG acids at 
harvest probably are independent and do not indicate cultivar tolerance. 

On the contrary, the ascorbic acid that is considered one of the most important antioxidants in plant 
tissues was negatively correlated with fungal growth after artificial inoculation. Our results are in 
agreement with Wang et al., (2002) who demonstrated that other antioxidants such as glutathione and 
lipoic acid significantly attenuate cutinase production in M. fructicola and discuss that the effect of 
phenolics is due to a general antioxidant effect rather than a specific chemical interaction. Lee and 
Bostock, (2007) also mentioned that phenolics in plant tissue may influence the antioxidant level in the 
pathogen and, as a consequence, the expression of genes associated with infection. The ascorbic acid, 
which concentration has been considered as an important nutritional quality indicator for peach, can be 
considered relevant in plant breeding for its antioxidant role conferring in vivo brown rot tolerance. 
These findings will open new research to test the effect of ascorbic either in vivo on brown rot tolerance 
or in vitro on microbial growth.  

In conclusion the result of evaluation of tolerance in the eight commercial cultivars to brown rot 
disease demonstrates variability in the genetic susceptibility to Monilinia laxa, with ‘Andross’ and ‘Baby 
Gold 9’ the more tolerant but not significantly different from ‘Tebana’ and ‘Miraflores’. ‘Crown Princess’, 
‘Big Top’ ‘Calante’ and ‘Calanda Tardío’ were the less tolerant peach cultivars. The content of ascorbic 
acid can only partially explain the tolerance-susceptibility observed, indicating that other factors are 
probably involved in the response. Identification of these factors will be fundamental for breeding 
programs focused on improving resistance.  

In addition, neither neochlorogenic nor chlorogenic or TPP contents at harvest can explain the 
differences in tolerance to brown rot found in these peach cultivars. We suggest that together with the 
ascorbic acid, other physico-chemical factors may confer the tolerance to ‘Andross’, ‘Tebana’, ‘Baby 
Gold 9’ and ‘Miraflores’. To our knowledge this is the first study that correlates the ascorbic acid 
contents in mature peach fruit with Monilinia laxa brown rot tolerance. From a practical point of view 
application of ascorbate based formulae may be promising. Furthermore, we may speculate that the 
complex interaction Monilinia-Prunus establish the redox environment that modulate or restrict the 
fungal infection. Nonetheless, further studies need to be done in order to know the effect of AsA as a 
curative or preventive treatment to control M. laxa infections and/or to disentangle the role of each 
specific antioxidant compound in the genetic brown rot tolerance in peach. 
 
Breeding strategies for identifying superior peach genotypes tolerant to brown rot  

In the fourth paper, we have screened a total of 68 individuals from the population of ‘Babygold 9’ × 
‘Crown Princess’. From the results, we have found that genotypes with smaller diameter of the fungus 
injury correspond to the smaller diameter of colonization. In addition, these genotypes are also 
associated with a lower incidence, that is, a lower percentage of damaged fruits (susceptibility). 
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The annual disparity found in the genotypes response to brown rot after inoculation may be due to 
different levels of cuticular cracking or fractures as other authors have reported for stone fruits (Gradziel 
et al., 2003 b; Kappel and Sholberg, 2008). Cuticular cracks are considered as preferential entry spots for 
fungi pathogens of the Monilinia species (Gibert et al., 2007) and incidence of fruit infection increased 
with increasing surface area of fruit cuticular cracks (Borve et al.,2000; Gibert et al., 2009). 

In this experiment fruits were not wounded before they were inoculated; therefore, the brown rot 
pathogen would require naturally occurring wounds or micro-cracks in the cuticle to gain entry into the 
fruit (Oliveira-Lino et al., 2016). Secondly since we used a uniform quantity of artificial inoculum density 
throughout our experiment the yearly variation would be attributed to the natural differences in surface 
cuticular cracks. Gradziel et al., (2003 b) reported that cuticular and epicuticular waxes of peaches were 
influenced by the environment during the growing season. Ágreda, (2016) has also reported yearly 
variation in the in-vitro infection of brown rot in another peach population evaluated under the same 
conditions. 

In the scrutiny of the brown rot tolerance along three years, the seventeen genotypes showed a wide 
range of variability in most of the pathogenic parameters studied. The lowest BRI (73.3 %) and 
colonization (51.7%) occurred in genotype BC67, while the lowest LD (41.98 mm), LS (31.75 mm), CE 
(39.05 mm) and CS (21.75 mm) were observed in genotype BC58. The highest values for brown rot 
incidence (BRI, 100%) occurred in four different genotypes (BCs:11, 24, 61 and 66), for LD (52.34 mm), LS 
(50.27 mm) and CS (42.51 mm) highest values were recorded in BC11, while for colonization (91.7%) and 
CE (49.47 mm) were observed in BC61 and BC60 genotypes, respectively. Consequently, the level of 
susceptibility to brown rot depends largely on peach genotype (Gradziel, 1994).  

The positive and significant correlation between pairs of pathological traits in our study is rather a 
typical trend. This undoubtedly inclines to indicate that the level of infection significantly influenced the 
lesion diameter and colonization extent including severities in the diseased situation (Michailides et al., 
2000). Thus lesion and colonization are usually two associated brown rot parameters evaluating brown 
rot tolerance in peach. Susceptibility information from the two traits is important in the evaluation for 
tolerance considering their genetic and pathogenic points of view, respectively (Xu et al., 2008; Burnett 
et al., 2010). 

Considering the physicochemical variables, the observations in harvest date (HD) of our work are in 
agreement with the report of Giménez, (2013) within the entire population which was harvested during 
2009, 2010 and 2011 between 163 to 248 JDs. And considering the fact that we obtained infection in all 
the sixty eight genotypes spread between late June and middle of August it tends to suggest, therefore, 
that peach susceptibility to brown rot of M. laxa occur even in early or late harvest season (Obi et al., 
2017). Though when fruits are harvested late they are sweeter, larger, and have higher total phenolic, 
flavonoids and total sugar concentration (Font i Forcada et al., 2013), both very early-maturing, as well 
as very late-maturing peach genotypes are of significant interest for the peach industry, particularly, in 
the Mediterranean area (Cantín et al., 2010). The fruit weight (FW) range of143 g and 241 g obtained in 
the 17 genotypes is similar to the range reported, in the same population, by Giménez, (2013). 

Though mean FF at harvest (32.47 N) was lower than mean FF at storage (33.06 N) in the 17 
genotypes, there was no significant differences, indicating that the incubation conditions did not affect 
fruit firmness (data not showed). On the contrary, there was a significant decrease (P ≤ 0.05) at storage 
in FF no-inoculated (33.06 N) vs FF inoculated (30.49 N), indicating that fruit firmness in inoculated fruit 
is due to the activity of M. laxa and that may have affected the surrounding tissues. Our findings may 
explain the observation of Yaghmour et al., (2011) that found more severity as the state of FF decreases. 
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Our analysis revealed a broad range of FF of 17.51 to 47.51 N within the genotypes with LS below 40 
mm, indicating that brown rot is not dependent on fruit firmness.  

Our study also revealed that there is loss in SSC as fruit is stored, inoculated or no inoculated, from 
harvest. In the seventeen peach genotypes mean SSC at harvest was 9.3 oBrix which ranged from 7.7 in 
BC 58 to 11.1 oBrix in BC 48. Within the stored peaches, mean SSC in fruits no inoculated was 8.7 oBrix, 
while in inoculated was 8.3 oBrix. After storage significant differences were found in SSC among the 17 
selected genotypes. The fact that we have found significant differences in SSC at harvest (9.3 oBrix) vs 
SSC after storage (8.5 oBrix) (P ≤ 0.001) indicates that the decrease in SSC might be due to the effect of 
storage including the pathogenic activities of the fungus on the inoculated host. We can speculate with 
our results that in inoculated fruit that SSC influences pathogenic activities of M. laxa in peach inferring 
that as the pathogen preys on the host, the interaction leads to the depletion of SSC as sugars are used 
for its mycelia biosynthesis, growth and development. There were significant differences (P ≤ 0.001) in 
SSC mean of the seventeen genotypes in 2014 (8.2 oBrix) comparing to 2013 (8.9 oBrix) and 2015 (8.8 
oBrix), but any difference between 2013 and 2015. This indicates that SSC were significantly lower in 
fruits with less pathogenic damage in the population.  

Concisely, our findings in the effect of storage and inoculation on fruit properties are in agreement 
with the reports of Biggs and Miller, (2004) that showed positive correlations between Botryosphaeria 
dothidea pathogen activity and sugar content. However, under storage, SSC in inoculated peach 
presented an inverse significant correlation with CE, LD and LS (r = - 0.273, P ≤ 0.01 and r = - 0.236, P ≤ 
0.01; r = - 0.178, P ≤ 0.05, respectively), which is in concordance with Gradziel, (1994) that associated 
less susceptibility to brown rot with high SSC content as the peach fruit ripens.  

In relation to disease parameters with FF within the seventeen genotypes, BC58 at harvest recorded 
one of the lowest FF (23.79 N) was associated with the lowest disease parameters in LD (41.98 mm), LS 
(31.75 mm), CE (39.05 mm) and CS (21.75 mm), while genotype BC11 recorded the highest FF at harvest 
(51.16 N) and the highest disease parameters in LS (50.27 mm) and CS (42.51 mm). However, genotype 
BC44 which demonstrated FF of 20.35 N) did not correspond to tolerant or susceptible genotype (LS = 
43.64 mm and CS = 34.96 mm).  
Hence state of FF, especially at harvest, does not seem to influence brown rot development significantly. 
In the same manner the genotype BC58 which registered the least SSC at harvest (7.7 oBrix) was 
associated with the lowest disease parameters as well as the other genotype BC67 (6.9 oBrix), however, 
the genotype BC48 with the highest SSC (11.1 oBrix) reflected low damage too. Other genotypes with 
intermediate SSC content at harvest as BC 44 (9.8 oBrix) showed the highest brown rot severities. 

In furtherance the positive and significant correlation of HD with FW, FF, SSC and pH in our test is 
compatible with the report by other authors (Cantín et al., 2010; Giménez, 2013; Font et al., 2014; 
Ágreda, 2016). The correlation found in FF and SSC at harvest with same parameters after storage (r = 
0.418, P ≤ 0.01) is similar to the report of Giménez (2013) (r = 0.226, P ≤ 0.01) studying one hundred 
progenies of the same population. The positive association between FF and SSC in the tolerant 
genotypes is important since the selection of genotypes with high SSC will aim first at higher firmness 
and second lower susceptibility to pathogen predisposing mechanical damage during handling and 
package (Crisosto et al., 2001). 

The variation of pH from 3.62 to 3.89, in our six tolerant genotypes, indicates values of normal acidity 
fruits since pH lower than 4.0 at maturity are considered as acidic (Abidi et al., 2015). The inverse and 
significant correlations found between pH and TA (r = - 0.327, P ≤ 0.01) and TA vs RI (r = - 0.665, P ≤ 
0.01), are similar to the report by other authors (Giménez, 2013; Abidi et al., 2015). We have observed 
in previous experiments that the pH of the fruit increased with progress in fruit maturity while the 
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titarable acidity (TA) decreased (Obi et al., 2017). These parameters can be important since it has been 
reported that acidity preserve fruits from pathologic damage (Hajilou and Fakhimrezaei 2011; Cropotova 
et al., 2013; Tarabih and El-Metwally, 2014). 

Regarding the bioactive compounds, ascorbic acid (AsA) content in flesh ranged from 2.55 to 9.19 mg 
of AsA/100 g of FW as reported by Giménez, (2013) in the same population. However, the total phenolic 
content (27.49 to 61.71 mg of GAE/100 g of FW) among the selected 17 genotypes was over the range 
found by Giménez, [(2013) (11.22 to 37.42 mg of GAE/100 g of FW)] in the same progeny studied during 
three years (2009-2011). The differences found here can be due to the screening of genotypes with LS 
lower than 40 mm. Concerning flavonoids contents varied from 9.57 to 35.45 mg of CE/100 g of FW, 
being also higher than those obtained in previous studies in different peach progenies by Giménez, 
2013, (1.6 to 13.7 mg of CE/100 g of FW); Abidi et al., 2015, (2.3 to 18.0 mg of CE/100 g of FW) and 
Ágreda, (2015) (3.79 to 27.63 mg of CE/100 g of FW). Regarding anthocyanins, particularly in fruit flesh, 
the variation was from 0.09 to 0.40 mg of C3GE/100 g of. These values were below those reported by 
other authors [(0.7 to 12 mg of C3GE/100 g of FW) in a broad germplasm collection (Font i Forcada et 
al., 2013); (0.23 - 11.83 mg of C3GE/100 g of FW), in the same progeny (Giménez, 2013)]. The 
differences can be due to the flesh-colorless of these seventeen ‘B9’ × ‘CP’ genotypes and/or for the 
different method used for the quantification.  

Furthermore, in peel a wide range of antioxidant contents was found in the seventeen studied 
genotypes. In general vitamin C, total phenolic and flavonoid contents were higher in peel than contents 
found in the flesh in agreement with previous reports (Ágreda, 2016; Saidani et al., 2017). We have 
found around 65% of vitamin C, 75% of total phenolics, 81% of flavonoid and 96% of anthocyanin 
contents are concentrated in peel in our progeny. Contents for total phenolics in BC67, ascorbic and 
anthocyanins in BC1 and BC67 contained significantly higher values comparing with the other 
genotypes. However, flavonoid contents were not significantly different in the tolerant compared to 
non-tolerant genotypes. The ascorbic acid (AsA) content in peel of the 17 genotypes ranged from 5.89 to 
16.29 mg of AsA/100 g of FW, as other investigators have recently reported (Ágreda, 2016; Saidani et al., 
2017).  

The content of anthocyanins from 0.62 to 12.94 mg of C3GE/100 g of FW in peel tissue of the 17 
selected genotypes reveals that most of the tolerant genotypes had 27-81 times higher contents of 
anthocyanins in peel compared to the flesh. These values are in agreement with previous reports (Prior 
et al., 1998; Gil et al., 2002; Saidani et al., 2017) inferring and supporting that anthocyanins are 
concentrated more in fruit peel than in the flesh.  

Unequal distribution of vitamin C, total phenolic in flesh (≈ 25-30 %) and peel (≈ 65-70%) of peach 
has also been documented (Ágreda, 2016; Saidani et al., 2017). Of great significance, therefore, is that 
high content of these bioactive compounds in peel help the fruit to resist the forces of abiotic stress 
(Cantín et al., 2009), whose activities often predispose peach fruits to biotic inversion. And even directly 
fruit peel has been extensively indicated as an important broad range resistance source against 
opportunistic pathogens such as Monilinia spp. (Pacheco et al., 2014).  

Interestingly, pathologic variables, brown rot incidence and colonization (%BRI, %C) and lesion and 
colonization severities (LS, CS) correlated inversely with peel anthocyanin contents (r = - 0.551, r = - 
0.552, r = - 0.481, r = - 0.491, P ≤ 0.05 respectively. However, only %BRI negatively correlated with 
anthocyanin content from fruit flesh (r = - 0.219, P ≤ 0.05). Anthocyanin is the most common pigment in 
nature (Khoddami et al., 2013), a phytochemical that gives plants their colour and protects tissues from 
oxidative abiotic stress, which invariably extends the life span of the plant organ. Hence it is found more 
concentrated in the skin portion of fruit, particularly near maturity (Prior et al., 1998) for protective 
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barrier against potential phytopathogenic invaders and that, in our genotypes, could be an advantage to 
tolerance.  

Nevertheless, it was only TPC from flesh that correlated inversely and significantly in this progeny 
with LD, LS and CE (r = - 0.282, r = - 0.279, and r = - 0.225, all at P ≤ 0.05, respectively) as found by 
Ágreda (2016). Other authors also have reported significant inverse correlation between phenolic acids 
and BRI in peach and nectarine cultivars (Villarino et al., 2011). Apparently high contents of antioxidants 
tend to influence brown rot negatively by reducing pathogenic activities; however, in this work the 
genotypes with LS < 40 mm were not those with the highest TPC content and vice-versa. In particular, 
major phenolic acids, such as chlorogenic and neochlorogenic acids (Villarino et al., 2011) of high and 
potent antioxidant properties (Dai and Mumper, 2010; Khoddami et al., 2013), may protect the plant 
and plant materials against fungi and other phytopathogenic organisms (Prasad et al., 2014; Spadoni et 
al., 2014). However, at harvest fruit phenolic contents has decreased and their effectiveness to control 
brown rot infection can vary with peach cultivar (Obi et al., 2017; Cindi et al., 2016). 

Pearson’s correlation coefficients among bioactive compounds were between 0.790 and 0.506. TPC 
flesh correlated positively and significantly with flesh and peel flavonoids (r = 0.790, r = 0.718, 
respectively) all at P ≤ 0.01. Moreover, TPC and flavonoid contents in peel were also highly correlated (r 
= 0.722, P ≤ 0.01). The results found in this progeny were in agreement with studies carried out 
previously in this o other progenies or peach germplasm (Giménez, 2013; Font et al., 2014; Abidi et al., 
2015). Furthermore, Ágreda, (2016), Saidani et al., (2017) found flesh ascorbic positively and 
significantly correlated with peel anthocyanin (r = 0.797, P ≤ 0.01), and Obi et al., (2017) found flesh 
ascorbic negatively and significantly correlated with disease incidence. This sort of high association 
found in this study within the biochemical compound implies that they are important antioxidant 
phytochemicals acting in coordination inducing tolerance to brown rot in peach but further studies need 
to be done in order to determine this. 

Infection or incidence, sporulation and dissemination make up the three major components of a 
fungal pathogen life cycle in a disease situation (Agrios, 2005). From the genetic point of view, lesion 
severity is a good parameter to consider in selection for breeding because though there is damage from 
the fungi, dispersion of pathogen is limited due to lack of sporulation in the incidence. But from the 
pathogen point of view colonization severity is a better option to be considered because there is the 
possibility of sporulation due to colonization which leads to spore dispersion within the environment for 
further damage. 
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Conclusions 
Optimizing protocols of the methodology to screen for tolerance in peach brown rot susceptibility in 
peach population 
 
1. An efficient ex-situ procedure through artificial skin inoculation to assess the susceptibility to brown rot 
(Monilinia laxa) of commercially ripe peach fruits was established by modifying the existing protocols, 
shortening the inoculum production and also ensuring the accurate supply of inoculum. We used 625 
spores of 25µL load / fruit, between 3-6 days of incubation, at temperature and relative humidity range of 
20-26 oC and 40-60%, respectively.  
 
2. This methodology was tested on four commercial cultivars (‘Calante’, ‘Catherina’, ‘BigTop’ and ‘Venus’) 
and six genotypes (descendants of three families) of peach and found possible to discriminate between 
highly and less susceptible peach germplasm at the EEAD, and subsequently applied in our breeding 
program. 
 
The influence of acidity (pH and TA) on the subsistence and development of M. laxa, in both artificial 
media (in-vitro) and peach (in-vivo) 
 
3. The study has shown that there is significant variation in the growth and sporulation capacities of M. 
laxa at different pH levels. The extent of mycelial growth or colonization in different pH levels does not 
actually correspond to the amount of sporulation capacity.  
 
4. Nevertheless, pH and titratable acidity (TA) proved to possess great influence on the growth activity of 
M. laxa in a host-pathogen association both in solid PDA substrate and in peach fruit growth and 
development. Thus, pH 5.30 supported the highest sporulation while pH 6.40 encouraged the highest 
colonization extent or mycelia growth. And as organic acids and genetic traits, pH and TA constitute 
imperative antibrown rot determining elements to be given adequate attention in peach breeding 
program. 
 
The tolerance of commercial peach cultivars to brown rot by Monilinia laxa is modulated by its 
antioxidant content? 
 
5. The result of evaluation of tolerance in the eight commercial cultivars to brown rot disease 
demonstrates variability in the genetic susceptibility to Monilinia laxa, with ‘Andross’ and ‘Baby Gold 9’ 
the more tolerant but not significantly different from ‘Tebana’ and ‘Miraflores’. ‘Crown Princess’, ‘Big Top’ 
‘Calante’ and ‘Calanda Tardío’ were the less tolerant peach cultivars.  
 
6. The content of ascorbic acid can only partially explain the tolerance-susceptibility observed, indicating 
that other factors are probably involved in the response.  
 
7. To our knowledge this is the first study that correlates the ascorbic acid contents in mature peach fruit 
with Monilinia laxa brown rot tolerance. From a practical point of view application of ascorbate based 
formulae may be promising. 
 
Breeding strategies for identifying superior peach genotypes tolerant to brown rot 



144 
 

8. Based on our three years screening protocol, we have identified and selected six genotypes (BC1, BC48, 
BC58, BC63, BC67, and BC68) of low brown rot susceptibility and high fruit quality within the population 
of ‘Babygold 9’ × ‘Crown Princess’ progeny in the germplasm of the Experimental Station of Aula Dei-CSIC.  
 
9. Though we have found genotypes that possess bioactive compounds as total phenolic, ascorbic acids, 
flavonoids and anthocyanin compounds associated to potential brown rot tolerance, not all with lesion 
severity less than 40 mm contained the highest bioactive contents. BC1 and BC67 had significantly higher 
contents for ascorbic, total phenolics and anthocyanins. However, flavonoid contents were not 
significantly different in the tolerant compared to non-tolerant genotypes. 
 
10. The progeny BC1 and BC67 had significantly higher contents for ascorbic, total phenolics and 
anthocyanins. However, flavonoid contents were not significantly different in the tolerant compared to 
non-tolerant genotypes.  
 
11. The inverse correlations observed between anthocyanin and brown rot severity highlight their 
potential effect on tolerance to M. laxa. The selection of genotypes with bioactive contents in peach 
breeding in combination with brown rot tolerance may avoid dramatic consequences in commodities safe 
alternative to control measures, via inherence health-enhancing properties and good postharvest 
performance. 
 
12. The identification and characterization of peach genotypes of the ‘Baby gold’ x ‘Crown Princess‘ 
tolerant to M. laxa, makes available parental for new improvement and breeding programs, and initial 
material to carry out agronomic trials in different localities for their transfer to the industrial sector. 
Interestingly, this is the first work to study tolerance / susceptibility to M. laxa in this population.  

  



145 
 

Conclusiones 
Optimización de los protocolos de la metodología para detectar la tolerancia en la susceptibilidad a la 
podredumbre parda del melocotón en la población de melocotonero 
 
1. Un procedimiento ex-situ eficiente a través de la inoculación artificial de la piel para evaluar la 
susceptibilidad a la podredumbre parda (Monilinia laxa) de melocotones madurados se estableció 
modificando los protocolos existentes, acortando la producción del inóculo y asegurando también el 
suministro preciso del inóculo. Se utilizó 625 esporas de 25 μL de carga / fruto, entre 3-6 días de 
incubación, a una temperatura y rango de humedad relativa de 20-26 oC y 40-60%, respectivamente.  
 
2. Esta metodología fue probada en cuatro cultivares comerciales ('Calante', 'Catherina', 'BigTop' y 
'Venus') y seis genotipos (descendientes de tres familias) de melocotonero y se encontró la posibilidad 
de discriminar entre germoplasma de melocotón altamente y menos susceptible en el EEAD, y 
posteriormente se aplicó en nuestro programa de mejora genética.  
 
La influencia de la acidez (pH y TA) en la subsistencia y el desarrollo de M. laxa, tanto en medios 
artificiales (in-vitro) como en melocotoneros (in-vivo). 
 
3. El estudio ha demostrado que hay una variación significativa en las capacidades de crecimiento y 
esporulación de M. laxa a diferentes niveles de pH. El grado de crecimiento micelial o colonización en 
diferentes niveles de pH en realidad no se corresponde con la cantidad de capacidad de esporulación. 
 
4. Sin embargo, el pH y la acidez titulable (AT) demostraron tener una gran influencia en la actividad de 
crecimiento de M. laxa en una asociación huésped-patógeno tanto en sustrato de PDA sólido como en el 
crecimiento y desarrollo de melocotón. Por lo tanto, el pH 5,30 soportó la mayor esporulación mientras 
que el pH 6,40 estimuló la mayor extensión de colonización o crecimiento de micelios. Y como ácidos 
orgánicos y rasgos genéticos, el pH y la TA constituyen elementos determinantes de la podredumbre 
antibrown imperativa para recibir la atención adecuada en el programa de mejora de melocotoneros. 
 
La tolerancia de los cultivares comerciales de melocotonero a la podredumbre parda por Monilinia 
laxa está modulada por su contenido de antioxidantes? 
 
5. El resultado de la evaluación de la tolerancia en los ocho cultivares comerciales a la enfermedad de 
podredumbre parda demuestra la variabilidad en la susceptibilidad genética a Monilinia laxa, con 
'Andross' y 'Babygold 9' el más tolerante pero no significativamente diferente de 'Tebana' y ' Miraflores'. 
'Crown Princess', 'Big Top' 'Calante' y 'Calanda Tardío' fueron los cultivares de melocotoneros menos 
tolerantes. 
 
6. El contenido de ácido ascórbico solo puede explicar parcialmente la tolerancia-susceptibilidad 
observada, lo que indica que probablemente intervienen otros factores en la respuesta. 
 
7. Hasta donde sabemos, este es el primer estudio que correlaciona el contenido de ácido ascórbico en 
melocotones maduros con tolerancia a la podredumbre parda de Monilinia laxa. Desde un punto de 
vista práctico, la aplicación de fórmulas basadas en ascorbato puede ser prometedora. 
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Estrategias de mejora genética para identificar genotipos superiores de melocotonero tolerantes a la 
podredumbre parda 

8. Con nuestro protocolo de evaluación de tres años, hemos identificado y seleccionado seis genotipos 
(BC1, BC48, BC58, BC63, BC67 y BC68) de baja susceptibilidad a la podredumbre parda y alta calidad del 
fruto dentro de la población de 'Babygold 9' × 'Crown Princess’ en el germoplasma de la estación 
experimental de Aula Dei-CSIC. 
 
9. Aunque hemos encontrado genotipos que poseen compuestos bioactivos como fenólicos totales, 
ácidos ascórbicos, flavonoides y compuestos de antocianinas asociados a la posible tolerancia a la 
podredumbre parda, no todos con una severidad de lesión inferior a 40 mm contenían los contenidos 
bioactivos más altos. BC1 y BC67 tenían contenidos significativamente más altos para ascórbicos, 
compuestos fenólicos totales y antocianinas. Sin embargo, los contenidos de flavonoides no fueron 
significativamente diferentes en los genotipos tolerantes en comparación con los no tolerantes. 
 
10. La progenie BC1 y BC67 tenían contenidos significativamente más altos para ascórbicos, compuestos 
fenólicos totales y antocianinas. Sin embargo, los contenidos de flavonoides no fueron 
significativamente diferentes en los genotipos tolerantes en comparación con los no tolerantes. 
 
11. Las correlaciones inversas observadas entre la antocianina y la severidad de la podredumbre parda 
muestran su efecto potencial sobre la tolerancia a M. laxa. La selección de genotipos con contenido 
bioactivo en la mejora genéticas de melocotoneros en combinación con la tolerancia a la podredumbre 
parda puede evitar consecuencias dramáticas en productos alternativos seguros a las medidas de 
control, a través de propiedades saludables que mejoran la salud y un buen rendimiento poscosecha a 
fin. 
 
12. La identificación y caracterización de los genotipos de melocotonero del ‘Babygold’ × ‘Crown 
Princess’ tolerantes a M. laxa, se pone a disposición de los padres nuevos programas de mejoramiento y 
mejoramiento, y material inicial para llevar a cabo ensayos agronómicos en diferentes localidades para 
su transferencia a la sector industrial. Curiosamente, este es el primer trabajo para estudiar la tolerancia 
/ susceptibilidad a M. laxa en esta población. 

 


