MOF-based Polymeric Membranes for CO2 Capture

Sánchez Laínez, Javier
Zornoza Encabo, Beatriz (dir.) ; Coronas Ceresuela, Joaquín (dir.)

Universidad de Zaragoza, 2019


Resumen: El dióxido de carbono (CO2) es uno de los contaminantes más importantes a nivel industrial. Debido al aumento de las emisiones de este gas de efecto invernadero, disminuir su concentración atmosférica se ha convertido en uno de los retos medioambientales más importantes. Además, el CO2 es también un contaminante presente en combustibles como el gas natural o el biogás, siendo necesaria su eliminación para obtener un combustible limpio que cumpla con las especificaciones del mercado. La tecnología actual para la separación del CO2 comprende la absorción química, la adsorción física y la destilación criogénica, todos ellos procesos con una alta penalización energética. La tecnología de membranas supone una alternativa atractiva por su bajo consumo energético, su baja huella de carbono y su facilidad de operación y escalado.
El objetivo principal de esta tesis doctoral ha sido el de desarrollar membranas mejoradas para la separación del CO2. Gran parte de la investigación se ha centrado en la separación de H2/CO2 (mezclas de precombustión), pero también se han tratado mezclas de poscombustión (CO2/N2) y de gas natural y biogás (CO2/CH4). Estas membranas se han preparado a partir de polímeros con buenas propiedades de separación para la mezcla a tratar. Los polímeros elegidos para la mezcla H2/CO2 han sido la Matrimid®, el polibezimidazol (PBI) y la poliamida (PA) formada por la reacción de TMC con MPD. Las separación de mezclas de poscombustión y biogás se ha estudiado con membranas de PIM-1, PIM-EA(H2)-TB, 6FDA-DAM y Pebax® 1657.
Para conseguir mejorar la capacidad de separación intrínseca de estos polímeros, se han preparado sistemas multicomponentes en forma de membranas mixtas (mixed matrix membranes o MMMs). Estas membranas han consistido en la dispersión de MOF en la fase continua constituida por la matriz polimérica, de manera que la permeabilidad y selectividad de las membranas aumentaba por la combinación sinérgica de ambas fases. Los MOF son materiales altamente cristalinos formados por la coordinación de iones o clústeres metálicos con ligandos orgánicos. Su naturaleza parcialmente orgánica hace que muestren una gran compatibilidad con las cadenas poliméricas convirtiéndolo en una fase dispersa ideal.
En el capítulo 4 se ha explicado el uso de membranas de Matrimid® para la separación de mezclas H2/CO2, donde el ZIF-11 es utilizado como material de relleno para desarrollar MMMs. Sin embargo, ha sido el PBI el polímero más usado en esta tesis para la captura en precombustión. La preparación de MMMs de PBI con ZIF-8 como material de relleno se detalla en el capítulo 5, donde la influencia del tamaño de partícula y su incorporación en estado húmedo o seco han sido estudiadas. Además, la reproducibilidad de los resultados se confirmó mediante un Round Robin test llevado a cabo entre tres instituciones europeas. El ZIF-11 también se ha utilizado como material de relleno con el PBI y la mejora en la capacidad de separación de las memrbanas se muestra en el capítulo 6.
Aunque se han utilizado MOF existentes para la preparación de MMMs, también se ha realizado un gran esfuerzo en esta tesis doctoral para desarrollar nuevas estructuras con una compatibilidad mejorada con los polímeros. Así en el capítulo 4 se muestra la síntesis de ZIF-11 nanométrico (nZIF-11) con un tamaño de partícula de 36±6 nm. Este material se ha obtenido siguiendo una nueva ruta de síntesis basada en la centrifugación, que permitió la formación de partículas mucho más pequeñas que las del ZIF-11 tradicional (1.9±0.9 µm) pero manteniendo la misma composición química, estabilidad térmica y propiedades de adsorción de H2 y CO2. Su uso como material de relleno en Matrimid® y PBI se detalla en los capítulos 4 y 6, respectivamente. Además en este último se han estudiado los cambios en la morfología del material.
Los esfuerzos para obtener nuevos MOF se han centrado también en la síntesis de materiales híbridos. El capítulo 7 explica la formación de core-shells de ZIF-7/8 mediante la modificación postsintética del ZIF-8 con bezimidazol. Esta reacción ha concluido con la conversión completa del ZIF-8 en ZIF-7 y ha sido monitorizada por cromatografía de gases-espectroscopía de masas, cuantificando la cantidad de 2-metilimidazol liberada. Esto ha permitido el ajuste de la reacción al modelo cinético de núcleo decreciente, proveyendo datos de coeficiente de difusión del bezimidazol en el interior de los poros y de la constante cinética de la reacción. El modelo cinético permitió definir con gran precisión las condiciones de reacción para obtener una gran variedad de compuestos híbridos con un tamaño de partícula de alrededor de 124 nm. También se han desarrollado nanopartículas de ZIF-93/11 (72-73 nm) en el capítulo 8. Este ZIF híbrido se obtuvo por la modificación postsintética del ZIF-93 en una disolución de benzimidazol, pero al contrario que con el ZIF-7/8 la reacción no era completa. El uso de distintos disolventes (MeOH y DMAc) y tiempos de reacción dieron lugar a diferencias en la cantidad de benzimidazol incorporada, del 7,4 al 23 % en peso. La presencia de dos ligandos se constató mediante diferentes técnicas de caracterización en ambos híbridos: TGA, adsorción de gases, XRD, XPS y RMN. Ambos híbridos se han utilizado como material de relleno en membranas de PBI, y la capacidad de separación de mezclas H2/CO2 se compara con la de las MMMs conteniendo MOF puros (ZIF-7, ZIF-8, ZIF-11 y ZIF-93) en los capítulos correspondientes.
Además de añadiendo nanopartículas, la capacidad de separación de los polímeros se ha mejorado reduciendo el espesor de las membranas en favor de flujos de permeación más altos. Así en el capítulo 9 se han desarrollado membranas asimétricas de PBI sobre soportes de P84®. Estas membranas se han preparado por inversión de fases, obteniéndose capas selectivas de 1 µm de espesor que mostraban capacidades de separación sin precedentes para mezclas de precombustión, muy superiores a las de las membranas densas en condiciones de operación intensivas (250 °C y 6 bar). Estas membranas de PBI también se han optimizado en el capítulo 10 con un blending con PIM-EA(H2)-TB. La mezcla homogénea de ambos polímeros consiguió mejora la permeación de los gases en comparación con la de las membranas asimétricas de PBI.
Las membranas con el espesor más fino obtenidas fueron las de tipo soportado desarrolladas en el capítulo 11. Consistían en una capa de 50-100 nm de PA, sintetizada mediante la polimerización interfacial de MPD con TMC, con nanopartículas de ZIF-8 embebidas es ella. Estas membranas mostraron una capacidad de separación extraordinaria con flujos de permeado tan altos que se podía prescindir del gas de barrido para su medida. También mostraron una gran estabilidad térmica, ya que mantenían la capacidad de separación tras siete días operando en continuo a 180 °C.
La capacidad del ZIF-7, el ZIF-8 y las core-shell de ZIF-7/8 para la separación de mezclas H2/CO2 se demuestra en el capítulo 12 con la preparación de Polymer-Stabilized Percolation Membranes (PSPM), que consisten en la compresión del ZIF en polvo en pellets que posteriormente se infiltran y estabilizan con una resina epoxi impermeable al gas, de manera que se obtiene una red de percolación selectiva al flujo de gas donde solo el ZIF es responsable de la separación.
Por último, las membranas aplicadas para poscombustión y purificación de biogás se explican en los capítulos 13 y 14. El capítulo 13 muestra la preparación de MMMs para la separación de mezclas CO2/N2 y CO2/CH4 mediante blends heterogéneos de PIM-1 y 6FDA-DAM con ZIF-8 como material de relleno. Las nanopartículas mostraban una mejor compatibilidad con el 6FDA-DAM que con el PIM-1, alojándose de manera preferencial cerca de la interfase entre polímeros, lo que ayudaba a la dispersión del material de relleno. El capítulo 14 detalla la preparación de MMMs finas (espesor de 2-3 µm) de Pebax® 1657 sobre P84® y politrimetilsililpropino (PTMSP). Nanopartículas de: ZIF-8, MIL-101(Cr), UiO-66 y ZIF-7/8 fueron elegidas como material de relleno, ya que todos ellos son MOF con alta capacidad de adsorción de CO2 pero con diferente distribución de tamaño de poro. Estas membranas fueron utilizadas para la separación de mezclas de CO2/CH4 y se observó una compatibilidad sinérgica entre el Pebax® 1657 y el P84®.
Además del trabajo experimental, varios modelos matemáticos se han desarrollado en esta tesis para entender el flujo de gas a través de las membranas preparadas. En el capítulo 6 el modelo de Maxwell-Wagner-Sillar se ha utilizado para calcular las permeabilidades de H2 y CO2 a través del nZIF-11 y el ZIF-11. En el capítulo 9 se ha aplicado un modelo de resistencias en serie para explicar el flujo de gas a través de las membranas asimétricas de PBI. El capítulo 10 muestra un modelo empírico donde se correlaciona la influencia entre la cantidad de PIM en el blend y la presión de alimentación en la capacidad de separación de las membranas. Por último, se ha propuesto en el capítulo 13 un modelo de Maxwell acoplado para modelar la permeabilidad de los gases a través de los blends de PIM-1/6FDA-DAM. Con este modelo también se han calculado las propiedades de separación del ZIF-8.


Resumen (otro idioma): 

Pal. clave: fenomenos de membrana ; gases

Titulación: Programa de Doctorado en Ingeniería Química y del Medio ambiente
Plan(es): Plan 515

Departamento: Ingeniería Química y Tecnologías del Medio Ambiente

Nota: Presentado: 05 07 2019
Nota: Tesis-Univ. Zaragoza, Ingeniería Química y Tecnologías del Medio Ambiente, 2019

Todos los derechos reservados All rights Reserved - Todos los derechos reservados





 Registro creado el 2019-10-22, última modificación el 2021-05-20


Texto completo:
Descargar el texto completo
PDF

Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)