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Plasmonic Properties of Ag@Ag2Mo2O7 Hybrid Nanostructure 
Easily Designed by Solid-state Photodeposition from Very Thin 
Ag2Mo2O7 Nanowires  

Hélène Serier-Brault,a,*‡ Luc Lajaunie,a,b,*‡ Bernard Humbert,a Raul Arenal,b,c and Rémi Dessapt a,* 

A new Ag@m-Ag2Mo2O7 plasmonic hybrid nanostructure was designed by an easy two-step synthesis method. Firstly, very 

thin photosensitive monoclinic m-Ag2Mo2O7 nanowires (NWs) were synthesized under ambient pressure and at low 

temperature by using Ag2Mo3O10∙2H2O NWs as a pre-nanostucturated starting material. This innovative soft chemistry 

route offers some precise control over the purity, the structure and the nanostructuration of the m-Ag2Mo2O7 NWs that 

exhibit a very thin diameter around 100 nm, and a superior specific surface area compared to previously reported 

synthesis methods. Secondly, the plasmonic hybrid nanostructure Ag@m-Ag2Mo2O7 was easily in situ obtained, via an all 

solid-state photodeposition method, by irradiating the m-Ag2Mo2O7 NWs under low energy and low-power UV-light. The 

composition, morphology and plasmonic properties of the nanocomposite were investigated by a combination of energy 

X-ray dispersive microscopy, high-resolution scanning transmission electron microscopy, X-ray photoelectron spectroscopy 

and Auger spectroscopy, Near-infrared, Raman and UV-vis spectroscopies as well as spatially-resolved electron energy-loss 

spectroscopy. A plausible mechanism explaining the formation of the nano-heterostructure under irradiation was also 

discussed. The Ag@m-Ag2Mo2O7 nanostructure manifests interesting plasmonic properties and particulary a high Surface-

Enhanced Raman Scattering (SERS) sensitivity probed by 2,2’-bipyridine. 

INTRODUCTION 

Plasmonic hybrid nanostructures assembling nanoparticles 

(NPs) of noble metal (i.e. Ag, Au, Pt) and metal-oxide 

nanowires (NWs) are the focus of current research efforts in 

nanotechnology1–3 since they combine the localized surface 

plasmon resonance (LSPR) of the metals NPs with the specific 

photochemical properties of semiconducting NWs. On the one 

hand, due to their high surface-to-volume ratio and low radial 

dimension, metal-oxide NWs favor fast diffusion rates of 

photo-excited carriers at the surface with respect to electron-

to-hole recombination processes, and anisotropic carrier 

transport along the growth direction.4,5 On the other hand, 

metal NPs improve charge separation at the metal-

semiconductor interface and allow injection of hot electrons 

into the semiconductor.6 The synergetic coupling of these 

optical features has been recently exploited in many domains 

involving light trapping and electromagnetic field 

enhancement such as photocatalysis for pollutant and 

bacterial destruction, enzyme surrogates,7–10 

photoelectrochemical water splitting,1,11 solar energy 

conversion,12,13 biosensing,14 and Surface Enhanced Raman 

Scattering (SERS).15–17 All these applications require metal-

oxide NWs with high specific surface areas to optimize 

absorption of light, to improve interactions with noble metal 

NPs, and to increase the adsorption of reactive species. 

The main synthesis methods to design such plasmonic hybrid 

nanostructures consist in decorating metal-oxide 

semiconductors with metal NPs prepared separately11–13 or in 

situ photodeposited by reduction under high-power UV 

irradiation (100-500 W) of Ag+-containing solutions.18,19 For 

example, the facile solution‐based photoreduction process was 

successfully employed to design new hematite/Ag and ZnO/Ag 

hierarchical nanostructures which were applied as a 

photoanode in photo‐electrochemical cells for water splitting 

applications.20-22 A novel approach using a non-aqueous sol-gel 

process based on the low-temperature synthesis route has 

also been recently reported.23 However these methods require 

a solid-liquid interface that often hinders a precise control of 

the NPs size distribution and provide an inhomogeneous 

coverage onto the semiconductor surface. Recently, we 

demonstrated the possibility of easily designing Ag@metal-

oxide semiconductor hybrid nanostructures from 
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photosensitive silver molybdates via an alternative all solid-

state photodeposition method.24 Indeed, the 

Ag@Ag2Mo3O10∙2H2O nanostructure was obtained by exposing 

ultra-thin Ag2Mo3O10∙2H2O NWs under a low-power UV 

irradiation (6W). The proposed formation mechanism involves 

the photo-reduction of the polymeric 1D-[Mo3O10]2- unit 

coupled with the formation of highly reactive Ag2+ 

intermediary species, which are then easily reduced to Ag0 NPs 

at the surface of the NWs. The Ag@Ag2Mo3O10·2H2O 

nanocomposite is an efficient visible-light-driven plasmonic 

photocatalyst for degradation of Rhodamine B dye in aqueous 

solution. However, the 1D-[Mo3O10]2- block is difficult to 

photoreduce,25 and the formation of the plasmonic hybrid 

nanostructure needs high-energy UV-light (254 nm) and 

relatively long UV-irradiation time (4h). Consequently, we aim 

at transposing our approach to more easily photoreducible 

silver molybdates. For this purpose, Ag2Mo2O7 is a very 

promising candidate, because it also contains polymeric 1D-

[Mo2O7]2- units (Figure 1a) i.e., a suitable topology to reach 

nanowire-like morphologies. In addition, Ag2Mo2O7 exhibits a 

bandgap of c.a 2.7-2.9 eV26,27 what would allow generating 

photo-excited charge carriers with low-energy UV-light. 

However, controlling both the purity and the 

nanostructuration of Ag2Mo2O7 as very thin NWs with high 

specific surface areas still remains very challenging. 

 

Figure 1. (a) Polyhedral representation of the polymeric 1D-[Mo2O7]2- 

block. (b) Crystal structures of monoclinic m-Ag2Mo2O7 (left) and 
triclinic t-Ag2Mo2O7 (right) viewed perpendicular to the bc plane, the 
1D-[Mo2O7]2- chains running along the a-axis (blue octahedra = MoO6; 

magenta spheres: silver; orange spheres: oxygen). 

 

Traditional hydrothermal and more recent microwave 

methods were commonly used to design nano- and 

microstructurated Ag2Mo2O7 with various morphologies such 

as nanoparticles,8 nanowires,28–30 nanoflowers,31 broom-like 

microstructures,31 or micro-rods.31–33 However, it was often 

obtained impure with other silver molybdates,16,34–36 and the 

composition of the mixtures is extremely pH-dependent.31,34,37 

Beside Ag2Mo2O7 exhibits both monoclinic (m-Ag2Mo2O7)38 

and triclinic (t-Ag2Mo2O7)39 polymorphs (Figure 1b) that can 

co-precipitate,31 and the synthesis parameters governing their 

relative stability remain still unclear. Recently, pure t-

Ag2Mo2O7
28,29 and m-Ag2Mo2O7

40 NWs with an average 

diameter of 200-500 nm were obtained from different 

synthesis routes, but the hydrothermal treatments that favor 

the crystal growth dramatically impact the nanostructuration, 

and the obtained materials exhibited a very low specific 

surface area of c.a 2 m2/g. 

We report herein the successful synthesis of a new Ag@m-

Ag2Mo2O7 plasmonic hybrid nanostructure via a facile two-

step procedure. In a first step, very thin m-Ag2Mo2O7 NWs with 

a high specific surface area were designed under ambient 

pressure and at low temperature from ultra-thin 

Ag2Mo3O10∙2H2O NWs. Both the purity and the 

nanostructuration of the targeted material are extremely 

temperature-, pressure- and time-dependent. In a second 

step, the Ag@m-Ag2Mo2O7 hybrid nanostructure was designed 

by exposing the photosensitive m-Ag2Mo2O7 NWs under a low-

power UV irradiation. Strikingly, the solid-state 

photodeposition of Ag NPs at the surface of the m-Ag2Mo2O7 

NWs requires much lower energy UV-light (365 nm) and a 

much shorter irradiation time (40 min) than for generating the 

Ag@Ag2Mo3O10∙2H2O nanocomposite. The Ag@m-Ag2Mo2O7 

hybrid nanostructure was characterized by scanning electron 

microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), 

high-resolution scanning transmission electron microscopy 

(HR-STEM), Auger spectroscopy and X-ray photoelectron 

spectroscopy (XPS), that well evidence the presence of 

aggregates of metallic silver nanoparticles at the surface of the 

nanocomposite. The formation mechanism of the 

nanostructure is also discussed. Finally, the plasmonic activity 

of the nanocomposite has been highlighted by a combination 

of UV-vis, spatially-resolved electron energy-loss spectroscopy 

(SR-EELS) and SERS by using the molecular probe 2,2’-

bipyridine.  

RESULTS AND DISCUSSION 

Synthesis and characterization of very thin m-Ag2Mo2O7 NWs. 

All chemicals and reagents were purchased from major 

chemical suppliers and used as received except 

Ag2Mo3O10∙2H2O NWs which were prepared according to the 

reported procedure.24 Very thin m-Ag2Mo2O7 NWs were 

synthesized with a high yield (95 % in Mo), under ambient 

pressure and mild conditions (70°C/3h), from an aqueous 

slurry of Ag2Mo3O10∙2H2O NWs, one fold of Ag+ ions and one 

fold of NaOH. Indeed, considering that the [Mo3O10]2- and 

[Mo2O7]2- units are formally a conjugate acid-base pair, the 

formation of m-Ag2Mo2O7 theoretically occurs according to 

equation 1. 

 

2 Ag2Mo3O10∙2H2O + 2 Ag+ + 2 OH-  3 Ag2Mo2O7 + 5 H2O (1) 

 

Both temperature and time have a significant influence on the 

purity and the morphology of the m-Ag2Mo2O7 particles. As 

displayed in Figure 2, when the synthesis is carried out at 35°C 

for 3h, the powder X-ray diffraction (PXRD) analysis (Figure 2a) 

reveals that the obtained solid contains a mixture of unreacted 

m-Ag2Mo2O7 t-Ag2Mo2O7

1D-[Mo2O7]
2-

(a)

(b)

c

b

b

c
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Ag2Mo3O10∙2H2O and a second intermediate phase that has 

been identified as Ag2MoO4 (JCPDS card No. 08-0473). In these 

conditions, its formation from Ag2Mo3O10∙2H2O seems to be 

kinetically favored compared to that of m-Ag2Mo2O7 and might 

originate from a second reaction that formally requires an 

Ag+/Ag2Mo3O10∙2H2O ratio of 4:1 (equation 2). However as this 

latter was initially fixed to 1:1, almost only one fourth of the 

initial amount of Ag2Mo3O10∙2H2O can be really converted to 

Ag2MoO4, and hence, the mixture finally contains 

Ag2Mo3O10∙2H2O and Ag2MoO4 in equal proportions. 

 

Ag2Mo3O10∙2H2O + 4 Ag+ + 4 OH-    3 Ag2MoO4 + 4 H2O (2) 

 

When the previous mixture is heated at 70°C for 1h (Figure 

2b), Ag2Mo3O10∙2H2O and Ag2MoO4 react together to reach m-

Ag2Mo2O7 according to equation 3, and the conversion is 

complete within 3h (Figure 2c). 

 

Ag2Mo3O10∙2H2O + Ag2MoO4    2 Ag2Mo2O7 + 2 H2O (3) 

 

Figure 2. PXRD patterns of silver molybdates obtained under ambient 
pressure from Ag2Mo3O10∙2H2O NWs and one fold of Ag+ ions in an aqueous 

basic medium at (a) 35°C/3h, (b) 70°C/1h and (c) 70°C/3h. The non-indexed 
diffraction peaks correspond to m-Ag2Mo2O7. Peaks labelled with red circles 
and black crosses are assigned to Ag2MoO4 and Ag2Mo3O10∙2H2O impurities, 

respectively. 

The purity and crystallinity of the m-Ag2Mo2O7 NWs were 

confirmed by PXRD analysis at room temperature and the 

Rietveld refinement was performed using the published P21/c 

structural model38 (Figure S1, ESI†). In good agreement with a 

nanowire-like shape of the material (see below), an anisotropic 

crystal size was determined to be ∼93.0(3) and ∼70.0(5) nm 

along and perpendicular to the running axis of the crystallites, 

respectively. The SEM and TEM images (Figures 3a and 3b) 

show uniform NWs with a mean diameter around 100 nm and 

lengths up to several tens of micrometres. Noticeably, the use 

of a nanostructured precursor as well as the weak 

temperature and pressure conditions strongly limit the crystal 

growth of the m-Ag2Mo2O7 NWs that exhibit a specific surface 

area of 9.8 m2/g i.e., 5-fold higher than the reported values.40 

Furthermore, we confirmed that hydrothermal treatments 

strongly damage the nanostructuration of m-Ag2Mo2O7. 

Indeed, when the synthesis was carried out under very mild 

hydrothermal conditions (100°C/3h) (see Supporting 

Information for the detailed synthesis), the obtained particles 

exhibit a microrod-like shape (Figure S2, ESI†), and their 

specific surface area dramatically drops to 2.4 m2/g. The 

hydrothermal conditions also impact on the structure of the 

nanomaterial by favouring the polymorphous conversion from 

m-Ag2Mo2O7 to t-Ag2Mo2O7. Typically, PXRD patterns of solids 

obtained from different hydrothermal treatments (Figure S3, 

ESI†) reveal that the formation of t-Ag2Mo2O7 arises from 

100°C/6h, and its amount progressively increases with 

increasing both temperature and time. In stark contrast, 

TGA/DSC measurements performed on a dry powder of m-

Ag2Mo2O7 NWs indicate that the polymorphous 

transformation does not occur in air by only increasing the 

temperature (Figure S4, ESI†). Indeed, the DSC curve does not 

show any transition before the material melts congruently at 

516°C.41 From a structural point of view, m- and t-Ag2Mo2O7 

are built upon the same polymeric 1D-[Mo2O7]2- unit running 

along the a axis, but the relative orientation of the molybdate 

chains and the positioning of the silver cations differ (Figure 

1b). This strong structural change suggests very high free 

energy barrier for the conversion of both polymorphs, and 

could explain why they cannot be thermally transformed in the 

solid state. However the density of m-Ag2Mo2O7 (5.796) is 

slight lower than that of t-Ag2Mo2O7 (5.873), and hence, at 

first sight, the polymorphous conversion observed by 

increasing the temperature of the hydrothermal treatment 

could actually originate from the increase of the autogenous 

pressure in the autoclave. 

Optical absorption properties of the m-Ag2Mo2O7 NWs were 

investigated in ambient conditions by UV-vis diffuse 

reflectance spectroscopy (Figure S5, ESI†). This material 

exhibits an optical band gap of 3.0 eV (413 nm) that is slightly 

blue-shifted compared to other reported values (2.7-2.9 eV).26–

28 This is well consistent with the reduced thickness of the 

NWs, and it reveals the presence of quantum confinement of 

the photogenerated electron-hole carriers into the 1D-

nanomaterial.42 As already described,27,28 the valence band is 

mainly composed of the hybridization of Ag 4d and O 2p states 

while the bottom of the conduction band is mainly formed by 

the hybridization of Mo 4d and O 2p states (Figure S5, ESI†). 

The Ag 4d orbitals usually act as a sub-band lying above the O 

2p orbitals at the top of the valence band, and hence, the 

optical band gap results in a strong Ag to Mo charge transfer. 

 

Design and morphology of the Ag@m-Ag2Mo2O7 

nanostructure. Figure 3b and Figure S6, ESI† display TEM 

images at different scales of the surface morphology of the m-

Ag2Mo2O7 NWs once irradiated under UV-light (365 nm) for 40 

min. Small quasi-spherical NPs with an average diameter of 5 

nm randomly decorates the surface of the NWs which have 

well maintained their initial morphology. To better 

characterized the nature of the NPs, they were investigated by  

15 20 25 30 35 40

 

2 (degrees)

 

c) 70°C/3h

b) 70°C/1h

 

 

a) 35°C/3h

m-Ag2Mo2O7
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Figure 3. a) SEM image of the very thin m-Ag2Mo2O7 NWs. b) STEM-HAADF micrograph of m-Ag2Mo2O7 NWs after UV irradiation (365 nm) for 40 min. c) EDS 

spectra acquired on the NP (blue) and on the NW (red) corresponding to the area highlighted by the blue and red circles shown in the STEM-HAADF image 
displayed in the inset. d) Cs corrected HR-TEM image of the surface of a NW after UV irradiation. The red square highlights the area used to determine the 
FFT depicted in the inset. The successful indexation of the FFT was obtained with the Ag face-centred cubic structural data in the [011] zone axis.

 

a combination of energy X-ray dispersive spectroscopy (EDS) 

and HR-TEM techniques, which is a powerful tool to extract 

structural and chemical information at the nanoscale.43,44 The 

EDS spectra were recorded on the NPs and compared to those 

obtained on the NWs (Figure 3c). While the NWs show the 

presence of Ag, O and Mo lines (and also Cu coming from the 

TEM grid), only the Ag line is observed for the NPs. The HR-

TEM micrograph and the corresponding FFT pattern (Figure 

3d) reveal the high degree of crystallinity of the 

photogenerated nanoparticles. The successful indexation of 

the FFT pattern (inset of Figure 3d) obtained from the 

highlighted area shows that the NP corresponds to the Ag 

face-centred cubic structure. It is also worth noticing that the 

irradiation leads to the formation of an amorphous 3-4 nm-

thick layer (Figure S7, ESI†), indicating that the surface of the 

NWs is slightly modified after the photogeneration of the Ag 

NPs. It is worth noticing that the Ag@m-Ag2Mo2O7 

nanostructure is relatively stable over time with no observed 

degradation during the storage. 

Figure 4a shows the XPS Ag 3d spectra of the m-Ag2Mo2O7 

NWs before and after irradiation under UV light (365 nm, 40 

min). To extract more quantitative information, a modelling of 

the spectra is presented in Figure S8, ESI†. The binding energy 

of the Ag 3d5/2 is at 368.1 eV and the splitting between the 

3d5/2 and 3d3/2 lines is equal to 6.0 eV. After irradiation 

another contribution of similar intensity can be clearly seen for 

which the Ag 3d lines are shifted to higher energy by 0.7 eV. 

This shift can be ascribed to the presence of Ag metallic 

states.45 Examination of Auger spectra is also useful to identify 

Ag chemical states.23,24,46 The irradiation leads to the 

modification of the fine structures of the M4,5N4,5N4,5 Auger 

electron spectrum (Figure S9, ESI†) which exhibits two 

additional peaks at 357.3 eV and 351.3 eV assignable to 

metallic silver.46 Moreover, the modified Auger α parameters 

(summation of the kinetic energy of the Auger transition and 

the binding energy of the core level) of the m-Ag2Mo2O7 NWs 

and of the new contribution after irradiation are equal to 

723.6 and 726.1, respectively. This last value well corresponds 

to the Ag0 valence state.46 It should be noted that the Mo 3d 

shape and binding energy remain unchanged after UV 

irradiation (Figure S10, ESI†). Finally, the XPS valence band 

spectra are shown in Figure 4b. Before UV irradiation, the 

valence band is made up of a unique broad band in the 2−10 

eV energy with a maximum located at around 5 eV. The 

maximum position nicely corresponds to Ag 4d states.47 After 

UV irradiation, the valence band increases in intensity and 

metallic states are observed near the Fermi level. These latter 

are closed to those reported for silver metal.48 All these 
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findings confirmed that Ag+ cations are photo-reduced and the 

resulting Ag0 atoms aggregate at the surface of the NWs. 

 
Figure 4. a) XPS Ag 3d spectra of the m-Ag2Mo2O7 NWs before (black 

line) and after (red line) UV irradiation (365 nm, 40 min). b) Valence 
band XPS spectra of the m-Ag2Mo2O7 NWs before (black line) and after 
(red line) irradiation. The inset shows a magnified view of the same 

spectra between 0 and 3 eV. 

 

All these results highlight that the Ag@m-Ag2Mo2O7 nanostructure 

is easily obtained by exposing the photosensitive m-Ag2Mo2O7 NWs 

under low-power UV irradiation (365 nm, 6 W). As expected, the 

1D-[Mo2O7]2- unit is more easily photoreducible than the 1D-

[Mo3O10]2- one, and in comparison, higher energy UV-light (254 nm, 

6 W) and longer irradiation time (4h) are required to generated Ag 

NPs at the surface of the Ag2Mo3O10∙2H2O NWs.24 The formation of 

the Ag@m-Ag2Mo2O7 hybrid nanostructure might occur according 

to a mechanism based on that proposed for Ag@Ag2Mo3O10∙2H2O.24 

Considering the electronic structure of m-Ag2Mo2O7 described 

above, the photo-induced charge carriers lead to the concomitant 

formation of Mo5+ cations and high-oxidizing Ag2+ intermediary 

species. The presence of Mo5+ ions was not clearly evidenced by 

XPS but this could be explained considering the large quantity of Ag 

photodeposited at the surface of the NWs which makes it more 

difficult to detect photo-reduced molybdenum centres. In the case 

of Ag2Mo3O10∙2H2O, Ag2+ ions oxidize the neighbouring crystallized 

water molecules to O2 and protons, and generate Ag0 atoms which 

aggregate into Ag NPs. The protons are then transferred onto the 

adjacent 1D-[Mo3O10]2- units to create hydroxyl groups which 

stabilize the photoreduced Mo5+ cations. m-Ag2Mo2O7 does not 

contain any crystallized water molecules but the high specific 

surface area of the NWs must favour adsorption of water molecules 

which can be easily photoreduced at the surface of molybdenum 

oxides.49 Comparison of the near-infrared spectra of m-Ag2Mo2O7 

before and after UV irradiation reveals the loss of adsorbed water 

molecules in the Ag@m-Ag2Mo2O7 nanostructure (Figure S11, ESI†). 

Consequently, we may assume that the photo-reduction of Ag2+ and 

Mo6+ ions in the m-Ag2Mo2O7 NWs might be coupled with the 

oxidation of adsorbed water molecules.  

Plasmonic activity of the Ag@m-Ag2Mo2O7 nanostructure. 

Figure 5 displays the evolution of the absorption spectrum of 

the m-Ag2Mo2O7 NWs upon UV irradiation at 365 nm. The color of 

the powdered sample gradually shifts from pale yellowish-white to 

grey with increasing irradiation time. The color change deals with 

the appearance of a broad absorption band at= 462 nm with a 

shoulder peaking around = 795 nm. These absorptions grow up 

and reach a saturation level after about 40 min (Figure S12, ESI†). 

Similarly as observed for Ag@Ag2Mo3O10∙2H2O,24 these bands can 

be ascribed to both the LSPR of silver NPs and the photogenerated 

Mo5+ cations into the 1D-[Mo2O7]2- chains. Their amounts at the 

surface of the NWs gradually increase under UV-light and reach 

their maximum after 40 min. 

 

 
Figure 5. Evolution of the photogenerated absorption of the m-Ag2Mo2O7 
NWs after 0, 1, 5, 10, 20, 30, 40, and 80 min of UV irradiation (365 nm – 

6W). Insert: photographs of the m-Ag2Mo2O7 NWs before (left) and after 
(right) UV-light irradiation (365 nm) for 1 h. 

Figure 6a shows the STEM-HAADF micrograph of a nanowire after 

UV irradiation. This objet has a complex geometry: the surface of 

the nanowire is decorated with small Ag nanoparticles of different 

size (2-6 nm, and below). The nanoparticles are randomly, 

disorderly-driven, 3D-organized at the surface of the NW. (S)TEM-

EELS is a powerful technique for investigating the plasmonic 

response of nanostructures,50–53 and then we have carried out such 

kind of experiments on these nano-objects. The red squares in 

Figure 6a and Figure 6b highlight the area used for the SR-EELS 

analysis. Figure 6c shows the EELS response at the vicinity of the 

Ag@m-Ag2Mo2O7 nanostructure. The EELS response is mainly 

dominated by one peak (labelled B in Figure 6c) at 3.35 eV (370 

nm). The energy position of the B feature is in good agreement with 

the LSPR of quantum-size silver nanoparticles.51,54 At lower energy, 

between 1.1 and 3.0 eV, another feature (labelled A in Figure 6c) 

can be highlighted. The A feature can also clearly be seen on the 

spectra before ZLP deconvolution (Figure S13, ESI†). Contrary to the 

B feature, the A feature is continuous and shapeless. It should 

correspond to a sum of continuous energy-loss processes. The 

physical origin of these processes is not certain at the moment but 

it can include various effects such as quantum tunnelling between 

close NPs and effects related to coalescence,55 additional plasmon 

resonances already observed for ultra small silver NPs,56 different 

contributions related to the response of NPs’ size distribution and 

the influence of the nanowire substrate on the silver LSPR.51,57 It 

should be noted that the signature of the bulk plasmon peak (at 

3.85 eV) cannot be highlighted in the dataset. This is in good 

agreement with what has been already observed for silver 

nanoparticles smaller than 6 nm.54 Figures 6d and 6e show the map 

of the integrated intensity of the features B and A, respectively. The 

exaltation of the silver LSPR at the tip of the NW can clearly be 

highlighted from Figure 6d. The silver surface plasmon is mainly 

localized in the first 10 nanometres of vacuum above the NW 

surface. Interestingly, despite the random coverage of the silver  
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Figure 6. a) STEM-ABF micrograph of the Ag@m-Ag2Mo2O7 hybrid nanostructure. The red square highlights the area used for the SR-EELS analysis. b) STEM-

ABF image acquired at the same time than the SR-EELS analysis. The green, orange and red dots correspond to the areas in which the green, orange and red 
EELS spectra of c) have been monitored. c) Low-loss EELS spectra acquired with the monochromator excited and extracted from the SR-EELS dataset. The 
violet arrows highlight the presence of the A feature at low energy. d-e) Map of the integrated intensity of the B and A features, respectively. The white lines 

highlight the surface contour of the Ag@m-Ag2Mo2O7 nanostructure. 

 

NPs at the surface of the NW, the LSPR cover the whole 

surface of the NW. Some hot-pots of higher intensity localized 

over few nanometres are also present at the surface of the 

NW. This is similar to what has already been observed on 

disordered semi-continuous silver films.58 The spectral weight 

of the A feature is roughly equal to 1/3 of the spectral weight 

of the B feature. It is also localized mainly at the surface of the 

heterostructure which confirms its surface nature. From these 

observations it can be concluded that, after UV irradiation, the 

plasmonic Ag@m-Ag2Mo2O7 nanostructure acts as a single 

resonator for a broad range of wavelengths with intense, 

extremely localized and widely distributed electric fields. Then 

the electric field localization was probed by another optical 

method i.e., the Raman spectroscopy. Indeed the 

nanostructuration of the Ag@m-Ag2Mo2O7 nanostructure 

should constitute a natural source of field enhancement for 

surface enhanced Raman scattering (SERS) if silver NPs are 

accessible to small molecules. Therefore a SERS study of this 

new plasmonic substrate was investigated by using the SERS 

molecular probe, 2,2’-bipyridine.59 Several wavelengths 

(488.00, 514.53, 632.80 and 785.00 nm) of Raman excitation 

were used but only the results obtained with a green 

excitation (514.53 nm i.e. 2.41 eV) are discussed here because 

the SERS effect was the strongest at this wavelength. At 

488.00 nm, samples were damaged and at 632.80 or 785.00 

nm, no enhancement and no change of the background were 

displayed. Moreover this green excitation corresponds to the A 

feature (around 2.4 eV) positioned at the edge of the principal 

plasmonic resonance in the EELS spectra (Figure 6). Figure 7 

displays the Raman spectra of the m-Ag2Mo2O7 NWs coated 

onto a pure silica glass, before and after 365-nm UV irradiation 

for 1h. Before UV exposure, the Raman spectrum of the NWs 

in the 600-1800 cm-1 range exhibits an intense line at 906 cm-1 

and other weak lines at 881, 854, 829, 817, 761, and 696 cm-1. 

Upon UV irradiation, the Raman spectrum of the Ag@m-

Ag2Mo2O7 nanostructure displays the increase of a large 

"background" signal centred on 1200 wavenumbers Raman 

shift, i.e. in absolute, around 2.26 eV, which quite confirms the 

apparition of resonant plasmonic structures. The SERS effect 

was highlighted (Figure 8) using an aqueous solution 

containing 0.7 M 2,2’-bipyridine, with focused laser incident 

irradiances lower than 5 µW/µm2. The SERS spectrum is 

representative of all of the spectra collected at different area. 

In the range 1100-1800 cm-1, the obtained profile shows four 

main bands around 1595, 1570, 1490 and 1320 cm-1 and is 

similar to the usual SERS signature of physisorbed 2,2’-

bipyridine molecules60,61,62 obtained with nano-silver colloids 

deposited directly from an aqueous suspension (blue spectrum 

in Figure 8). The Agx-N bonds were displayed (not shown here) 

at around 230-250 cm-1, confirming the direct interaction 

between molecular probes and surface silver atoms of the 

nanoparticles. Even if 2,2’-bipyridine is not the best molecular 

probe to reach very strong enhancement, this study well 

evidences the presence of aggregates of metallic silver NPs in 
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the Ag@m-Ag2Mo2O7 plasmonic hybrid nanocomposite. In 

addition, the observation of a SERS effect confirms the 

integrity of the nanostructure when immersed in the 

molecular probe aqueous solution. 

 
Figure 7. Raman spectra of the m-Ag2Mo2O7 NWs before (black line) and 
after (red line) UV-light irradiation (365 nm) for 1h. The "background" signal 
between 1000 and 1800 cm-1 increased under UV irradiation. The energy 

corresponding of this signal is centered at 2.26 eV (blue arrow). 

Now in order to control and to quantify the SERS effect, further 

efforts will be devoted to the synthesis of controlled thin film 

substrates based on this material, and also to in-depth SERS studies 

with different molecular probes at different excitation wavelengths 

in order to investigate the SERS mechanisms (enhancement by only 

localised electric field like in a shiners composite or chemical effect 

by creating new electronic level or by charge transfer, etc..) as 

recently applied with metal oxides.63,64,65 

 

 
Figure 8. SERS spectrum of 2-2’-bipyridine adsorbed on the Ag@m-
Ag2Mo2O7 substrate (red line) compared with a usual SERS spectrum (blue 

line) obtained on a colloidal aggregates deposited on a silica glass. 

Conclusions 

To conclude, we have succeeded in designing pure very thin 

photosensitive m-Ag2Mo2O7 NWs via a new soft-chemistry 

route under ambient pressure. Through the use of both a 

nanostructured precursor and weak temperature and pressure 

conditions, the obtained m-Ag2Mo2O7 NWs exhibit a specific 

surface area higher than those reported from other reported 

synthesis methods. Hydrothermal treatments, even at low 

temperature, dramatically damage the morphology of the m-

Ag2Mo2O7 NWs, and they also favour their pressure-driven 

monoclinic to triclinic polymorphous conversion. The Ag@m-

Ag2Mo2O7 plasmonic hybrid nanostructure was then easily in 

situ obtained via a solid-state photodeposition method, by 

exposing the photosensitive m-Ag2Mo2O7 NWs under low-

power UV-light. Strikingly, compared with our previously 

reported Ag@Ag2Mo3O10∙2H2O nanocomposite, the deposition 

of Ag NPs at the surface of the m-Ag2Mo2O7 NWs requires a 

lower UV-energy and shorter irradiation duration. The 

plasmonic activity of the Ag@m-Ag2Mo2O7 hybrid 

nanostructure has been well evidenced by a combination of 

UV-vis, SR-EELS and Raman spectroscopies revealing that the 

nanocomposite acts as a single resonator for a broad range of 

wavelengths. It was also demonstrated as an efficient SERS-

active nanocomposite by using the molecular probe 2,2’-

bipyridine. 

Experimental section 

Synthesis. All chemicals and reagents were purchased from major 

chemical suppliers and used as received except Ag2Mo3O10∙2H2O 

NWs which has been synthesized according to the reported 

procedure.24  

m-Ag2Mo2O7 NWs. Ag2Mo3O10∙2H2O (300 mg, 0.429 mmol) was 

introduced in 25 mL of water. After addition of AgNO3 (73 mg, 0.429 

mmol), the mixture was stirred at room temperature, and 4.30 mL 

of NaOH 0.1 M was added dropwise. The mixture was heated at 

70°C and stirred for 3 h. After filtration, the resulting yellowish-

white solid (the final pH of the solution was 6.3) was washed with 

H2O, EtOH, and dried in air. Yield in Mo: 95%. FT-IR (cm-1): Mo=O, 

Mo-O-Mo), 930 (w), 907 (s), 889 (s), 880 (s), 839 (s), 754 (s), 704 (s), 

642 (m), 563 (v), 486 (m), 457 (sh), 408 (w). 

Ag@m-Ag2Mo2O7. The plasmonic hybrid nanostructure was 

obtained by irradiating the m-Ag2Mo2O7 NWs with a Fisher Bioblock 

labosi UV lamp (λexc = 365 nm, 6 W) for 40 min. 
 

Physical Measurements. Pure powder material was examined by 

X-ray diffraction using a D8 Bruker diffractometer in the Bragg-

Brentano geometry, equipped with a front germanium 

monochromator, a copper anode (CuK-L3 radiation, λ=1.54059 Å) 

and a LynxEye PSD detector. Nitrogen volumetric measurement 

treated by the Brunauer-Emmett-Teller (BET) approaches were 

recorded on a micrometrics ASAP 2010 device. FT-IR spectra in the 

MIR range were recorded on a BRUKER Vertex equipped with a 

computer control using the OPUS software. Differential scanning 

calorimetry (DSC) and thermogravimetric analysis (TGA) were 

performed by flowing dry argon on a SETARAM TG-DSC 111. Raman 

spectra were recorded using a microconfocal Raman Invia Reflex 

device. The instrument was equipped with a double edge filter to 

eliminate the Rayleigh scattering, and a Charged Couple Device 

(CCD) camera working at a temperature of 220 K with a 1024 by 256 

pixels array. Laser excitations were at 488.00, 514.53 nm, 632.80 

nm and 785.00 nm. The irradiation at 488.00 nm was too near the 

edge of the optical absorption of the silver molybdate NWs and 

strongly damaged the samples. Consequently, only three 

wavelengths were used to probe the SERS of 2,2’-bipyridine and to 

find the maximum SERS effects without other resonance effect. The 

spectral resolution achieved with the use of gratings of 2400, 1800 
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or 1200 grooves per millimeter was between 3 and 4 cm-1 according 

to the excitation wavelength. The focused power of the laser beam 

was also checked for each wavelength to avoid any transformation 

or heating of the samples. SERS effects were observed to be 

strongest with a laser excitation at 514.53 nm. The incident laser 

beam was focused to keep an irradiance lower than 5 µW/µm2. If 

the laser power is increased, some damages were observed, 

underlined in the Raman spectra, by the apparition of amorphous 

carbon spectra. Accordingly, the power was kept below 100 µW and 

the magnitude  20 of the objective has been selected after a test 

list. The spatial probed area by  20 objective was then around 10 

µm2 in order to average our results recorded on the deposited 

powders. The confocal mode with x100 objective was also 

sometimes used to select a smaller analyzed volume in the same 

irradiated volume or to record Raman maps with the better spatial 

resolution (around at /2). SERS substrates were obtained by 

coating pure silica glasses with drops of m-Ag2Mo2O7 NWs 

dispersed in ethanol. The coated slides were dried under ambient 

conditions. Drops of aqueous solution containing 0.7 µM 2,2’-

bipyridine were then deposited onto the substrates. Samples 

studied in this paper were heterogeneous at the micrometer scale. 

For comparison of our Raman results, we have used colloidal 

dispersion of nanoparticles of silver synthesized by the usual 

method in aqueous medium by reduction of an AgNO3 containing 

solution by NaBH4. The Ag0 NPs characterized by a diameter around 

15 nm ± 7 nm was either deposited on a pure silica glass or used 

directly in suspension in contact with 2,2’-bipyridine molecules. 

Diffuse reflectivity spectra in the UV-Visible range were collected 

with a Cary 5G spectrometer (Varian) equipped with a 60 mm 

diameter integrating sphere and computer control using the “Scan” 

software. The X-ray photoelectron spectroscopy (XPS) analyses 

were carried out using Kratos Axis Supra spectrometer. The 

photoelectron spectra were excited by a soft X-ray Al Kα (1486.6 

eV) anode at a power of 225 W (15 mA, 15 kV). Short 

measurements were performed before and after the 

measurements presented here to be sure that the sample was not 

modified by the X-ray radiation. Calibration of the spectra was done 

by setting the position of the C1s peak coming from carbon-based 

contaminants at 284.9 eV. Scanning electron microscopy (SEM) 

images were taken in a high-magnification microscope JEOL JSM-

6400F. For SEM studies, samples were prepared by spreading a 

small amount of powder on a carbon tape pasted over a copper 

metal sample holder. Preliminary transmission electron microscopy 

(TEM) experiments were performed on a Hitachi HF 2000 (Field 

Emission Gun, 100 KV) with a probe diameter of about 7 nm. 

Irradiation was performed ex-situ by directly positioning the TEM 

sample holder under a UV-lamp (365 nm, 6W) for 40 min, to ensure 

the complete irradiation of all the probed material. Moreover, 

samples before and after UV irradiation were cooled down at liquid 

nitrogen temperature to prevent the growth of Ag0 nanoparticles 

under electron beam irradiation and carbon contamination. 

Aberration corrected high-resolution scanning transmission 

electron microscopy (HR-STEM) experiments have been performed 

using a FEI Titan Low-Base microscope operated at 80 kV and 

equipped with a CESCOR Cs probe corrector, an ultra-bright X-FEG 

electron source, a monochromator and an energy-dispersive X-ray 

spectroscopy (EDS) detector. HR-STEM imaging was performed by 

using high-angle annular dark field (HAADF) and annular bright field 

(ABF) detectors. Spatially-resolved EELS (SR-EELS) experiments were 

performed with the monochromator excited to check the plasmonic 

properties of the heterostructure. The energy resolution was 240 

meV with a dispersion of 0.02 eV per pixel and the acquisition time 

was about 0.35 sec per pixel (total acquisition time ~ 8 min). The 

acquisition parameters were carefully chosen to maximize the 

signal on noise ratio while ensuring a short acquisition time in order 

to prevent strong spatial drift which are a common occurrence 

while doing TEM measurements at liquid N2 temperature. The 

dataset was then aligned on the energy scale by using the zero-loss 

peaks (ZLP) as reference. The dataset was denoised by using the 

principal component analysis routines of the hyperspy software.66 

The Richardson-Lucy deconvolution algorithm was employed to 

improve the energy resolution.67,68 For this purpose the point 

spread function was determined by using 45 aligned ZLP spectra 

recorded far away from the nanowire. The number of iterations was 

limited to 3 to avoid the introduction of artefacts. After this process 

the energy resolution was improved to 180 meV. The ZLP was 

subtracted from the dataset by using the 45 aligned ZLP taken in 

the vacuum after deconvolution. This procedure is shown in the 

Figure S13a, ESI†, and was already successfully used to determine 

the band-gap of Mo-based nanostructures.69 The B feature at 3.35 

eV (see text below for more details) was fitted by using a Gaussian 

function as shown in the Figure S13b, ESI†. The map corresponding 

to the integrated intensity of the B feature was created by area 

integration of the Gaussian function along the whole dataset. After 

subtraction of the Gaussian function from the dataset, the map of 

the A feature at lower energy was determined by area integration 

between 1.1 and 3.35 eV (Figure S13b, ESI†). Finally the two maps 

were normalized by using the maximum value of the map 

corresponding to the B feature. Additional HR-TEM measurements 

were performed by using a FEI Titan Cube microscope operating at 

80 kV and equipped with a Cs image corrector. Interpretations of 

the Fourier transform (FFT) patterns obtained on were performed 

using the JEMS software. All the (S)TEM experiments were 

performed at liquid nitrogen temperature to prevent the growth of 

Ag0 nanoparticles under electron beam irradiation and to hinder 

carbon contamination and electron beam damages. 
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